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Abstract. We give a new protocol for reliable broadcast with improved communication complexity
for long messages. Namely, to reliably broadcast a message a message m over an asynchronous network
to a set of n parties, of which fewer than n/3 may be corrupt, our protocol achieves a communication
complexity of 1.5|m|n+O(κn2 log(n)), where κ is the output length of a collision-resistant hash function.
This result improves on the previously best known bound for long messages of 2|m|n+O(κn2 log(n)).

1 Introduction

Reliable broadcast is a fundamental problem in distributed computing that was first introduced
by Bracha [Bra87]. In this problem, we have n parties P1, . . . , Pn, at most t of which are corrupt,
where t < n/3, connected by authenticated point-to-point channels (the bound t < n/3 is known
to be optimal). The communication network is completely asynchronous (i.e., there is no bound on
the time it takes to deliver messages) and the scheduling of message delivery is completely under
the control of an adversary.

A reliable broadcast protocol allows a sender S to broadcast a single message m to P1, . . . , Pn.
Such a protocol should satisfy the following correctness property (informally stated):

All honest parties that output a message must output the same message. Moreover, if the
sender S is honest, that message is the one input by S.

It should also satisfy the following completeness property (informally stated):

If any honest party outputs a message or an honest sender S inputs a message, then even-
tually all honest parties output a message.

Here, “eventually” means if and when all protocol messages sent from honest parties to honest
parties have been delivered.

In evaluating the efficiency of a reliable broadcast protocol, an important metric is communica-
tion complexity, which is defined as the total number of bits transmitted by all honest parties over
the network in the worst case. Bracha’s protocol has a communication complexity of O(|m|n2),
where |m| is the length (in bits) of the message m to be broadcast—essentially, every party echoes
m to every other party. For very long messages, this communication complexity can be impractical.

The first improvement to the communication complexity of reliable broadcast was made by
Cachin and Tessaro [CT05], who gave a protocol with communication complexity O(|m|n +
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κn2 log(n)), where κ is the output length of a hash function. Note that the security of their protocol
relies on the collision resistance of this hash function (unlike Bracha’s protocol, which makes no
other assumptions beyond authenticated channels).

Subsequent work has primarily focused on improving the term O(κn2 log(n)) (for example, see
[DXR21,DXR22]). However, for long messages (i.e., when |m| ≫ κn log(n)) the term O(|m|n),
will dominate the communication complexity, and the more interesting problem in this case is to
reduce the constant in this term. The approach of Cachin and Tessaro is based on an erasure code
that encodes m as a vector of fragments, any n − 2t of which may be used to reconstruct m. For
t ≈ n/3, each fragment will be of size ≈ 3|m|/n, and every party will echo one such fragment to all
other parties, leading to a communication complexity of (at least) ≈ (3|m|/n) · n2 = 3|m|n for any
protocol based on this approach.

The first work to improve the communication complexity for long messages is due to
Locher [Loc24]. Instead of using an erasure code with a recovery threshold of n − 2t, Locher
shows how to use a recovery threshold of n − t. Using this higher threshold presents a number
of problems, which Locher shows how to overcome, resulting in a protocol whose communication
complexity (for long messages) is ≈ 2|m|n. Locher proves a lower bound of ≈ 1.5|m|n on the
communication complexity for a certain restricted class of protocols, but leaves as open questions:

(i) Can we prove a general lower bound of ≈ 1.5|m|n?
(ii) Is there a protocol whose communication complexity is ≈ 1.5|m|n?

In this paper, we answer the second question affirmatively: we give a new protocol, called
MiniCast, whose worst-case communication complexity is

1.5|m|n+O(κn2 log(n)).

Protocol MiniCast enjoys several other properties:

– its round complexity in the “good case” (when the sender is honest) is 4;

– its communication is well balanced, meaning that each party transmits roughly the same amount
of data;

– its security only relies on a collision-resistant hash function.

The good-case round complexity of Protocol MiniCast, which is 4, is not as good as that
of Bracha’s protocol, which is 3. To address this issue, we also give an “optimistic” variant of our
protocol, called OptMiniCast. This protocol has a good-case round complexity of 3, and has a worst-
case communication complexity of ≈ 2|m|n. However, unless the sender detectably misbehaves, the
communication complexity is still ≈ 1.5|m|n. We discuss various strategies to mitigate against
such misbehavior, so that in many practical settings, we can assume it is rare. We note that like
Protocol OptMiniCast, Protocol Abit in [Loc24] also has a good-case round complexity of 3 and a
worst-case communication complexity of ≈ 2|m|n.

2 Preliminaries

We assume n parties P1, . . . , Pn, at most t of which are corrupt, where t < n/3. We assume parties
are connected by authenticated point-to-point channels. The communication network is completely
asynchronous, and we assume that message delivery is completely under the control of the adversary.
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That is, although the adversary cannot modify the contents of messages sent between honest parties,
he can decide if and when they are delivered.

As stated in Section 1, a reliable broadcast protocol allows a sender S to broadcast a single
message m to P1, . . . , Pn, and should satisfy a correctness and completeness property. We define
these properties more precisely here.

The correctness property states that:

(i) any two honest parties that output a message must output the same message;

(ii) at the time any honest party outputs a message, if S is honest, then S must have previously
input the same message.

The completeness property states that:

at any point in time where all messages that have been sent by some honest party to another
honest party have been delivered, we have the following: if either

(i) some honest party has output a message, or

(ii) if S is honest and has input a message,

then all honest parties have output a message.

Of course, this definition of completeness is only meaningful for protocols with bounded message
complexity—which will be the case for our protocols here.

Incorporating cryptography. The correctness and completeness claims about our protocols will be
based on cryptographic assumptions (namely, the collision resistance of a hash function). To incor-
porate this into our model, we have to modify the above definitions of correctness and completeness.
Specifically, each property is recast as a game played between an adversary and a challenger. The
adversary encompasses the scheduling of message delivery as well as the behavior of the corrupt
parties. If the sender is honest, the adversary also supplies the input to the sender. The challenger
encompasses the behavior of the honest parties. For each game, we say the adversary wins the
game if he can make the protocol execution violate the corresponding defining property. We say
correctness (resp., completeness) holds if for every polynomial-time adversary wins the correctness
(resp., completeness) game with at most negligible probability. Here, polynomial-time and negligible
are defined in terms of an implicit security parameter.

Static vs adaptive corruptions. The above definitions and all of our results are stated in the static
corruption model, where the adversary chooses which parties are corrupt at the very beginning of
the attack. We work in this model mainly for simplicity. In fact, all of our protocols remain secure
in the adaptive corruption model, where the adversary may choose which parties to corrupt during
the course of the protocol execution.

Other notation. For a nonnegative integer k, we denote by [k] the set {1, . . . , k}.

3 Data encoding logic

Before presenting the detailed logic of the message flows of our protocol, we first present the basic
logic of how data is encoded and how it flows through the protocol.
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3.1 Erasure codes

For integer parameters k ≥ d ≥ 1, a (k, d)-erasure code encodes a bit string m as a vector
of k fragments, f1, . . . , fk, in such a way that any d such fragments may be used to efficiently
reconstruct m. Note that for variable-length m, the reconstruction algorithm also takes as input the
length ℓ of m. The reconstruction algorithm may fail (for example, a formatting error)—if it fails
it returns ⊥, while if it succeeds it returns a message that when re-encoded will yield k fragments
that agree with the original subset of d fragments. We assume that all fragments have the same
size, which is determined as a function of k, d, and ℓ.

Using a Reed-Solomon code, which is based on polynomial interpolation, we can realize a (k, d)-
erasure code so that if |m| = ℓ, then each fragment has size ≈ ℓ/d. More precisely, using a Reed-
Solomon code over binary finite fields, we can always construct a code such that fragments are of
size at most max(⌈ℓ/d⌉, ⌈log2(k)⌉)—the term ⌈log2(k)⌉ comes from the fact that we need to work
with a field of cardinality at least k. In what follows, we will use the more general upper bound of

ℓ/d+O(log(k))

on fragment size, which serves as an upper bound for the above construction, as well as for other
constructions and implementations (which may impose additional restrictions on the length of
fragments, such as being a multiple of some specific constant).

Our reliable broadcast protocol uses two erasure codes.

– An (n, n− t)-erasure code.
This is used to encode the message m to be broadcast by our protocol as a vector of n fragments,
f1, . . . , fn, any n− t of which may be used to efficiently reconstruct the message m. If |m| = ℓ,
then the size of each fragment fi, which is a function of ℓ, n, and t, is at most

ℓ

n− t
+O(log(n)) ≤ 3

2n
ℓ+O(log(n)).

– An (n, n− 2t)-erasure code.
This is used to encode a fragment fi as above as a vector of n “mini-fragments” ϕi1, . . . , ϕin,
any n−2t of which may be used to reconstruct the fragment fi. If |m| = ℓ, then the size of each
mini-fragment ϕij , which is a function of ℓ, n, and t, is at most

ℓ

(n− t)(n− 2t)
+O(log(n)) ≤ 9

2n2
ℓ+O(log(n)).

3.2 Merkle trees

Our reliable broadcast protocol will also make use of Merkle trees. Recall that a Merkle tree allows
one party P to commit to a vector of values (v1, . . . , vk) using a collision-resistant hash function
by building a (full) binary tree whose leaves are the hashes of v1, . . . , vk, and where each internal
node of the tree is the hash of its two children. The root r of the tree is the commitment. Party P
may “open” the commitment at a position i ∈ [k] by revealing vi along with a “validation path”
πi, which consists of the siblings of all nodes along the path in the tree from the hash of vi to the
root r. We call πi a validation path for vi under r at position i. Such a validation path is
checked by recomputing the nodes along the corresponding path in the tree, and verifying that the
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recomputed root is equal to the given commitment r. The collision resistance of the hash function
ensures that P cannot open the commitment to two different values at a given position.

We shall actually make use of a two-level Merkle tree structure. For a given message m, the top
level Merkle tree will be rooted at r and have leaves r1, . . . , rn, where each ri is itself the root of a
Merkle tree whose leaves are the hashes of mini-fragments ϕi1, . . . , ϕin of the fragment fi of m. We
will therefore have validation paths πi for ri under r at position i, as well as validation paths πij
for ϕij under ri at position j.

Each validation path πi and πij will have size O(κ log(n)), where κ is the output length of the
hash function.

3.3 Encoding and decoding functions

Tags. For a given message length ℓ and Merkle tree root r, we define the tag τ := (ℓ, r).

Certified fragments. For a tag τ = (ℓ, r), we shall call (fi, πi) a certified fragment for τ at
position i if

– fi has the correct length of a fragment for a message of length ℓ, and
– when we compute the mini-fragments ϕi1, . . . , ϕin for fi and build the Merkle tree rooted at ri

whose leaves are the hashes of ϕi1, . . . , ϕin, we find that πi is a correct validation path for ri
under r at position i.

Certified mini-fragments. For a tag τ = (ℓ, r), we shall call (ϕij , πij , πi) a certified mini-fragment
for τ at position (i, j) if

– ϕij has the correct length of a mini-fragment for a message of length ℓ,
– πij is a validation path for ϕij under a root ri, and
– πi is a correct validation path for ri under r.

We define several functions that will be used in our protocol. All of these functions take n and
t as implicit parameters.

The Encode function. The first function, Encode, takes as as input a messagem. It builds a two-level
Merkle for m as above with root r (encoding m as a vector of fragments, encoding each fragment as
a vector of mini-fragments, and then building a two-level Merkle tree whose leaves are the hashes
of all of these mini-fragments). It returns(

τ, {(fi, πi)}i∈[n]
)
,

where τ is the tag (ℓ, r), ℓ is the length of m, and each (fi, πi) is a certified fragment for τ at
position i.

The Decode function. The second function, Decode, takes as input(
i, τ, {{(fj , πj)}j∈J

)
,

where i ∈ [n], τ = (ℓ, r) is a tag, J is a subset of [n] of size n − t, and each (fj , πj) is a certified
fragment for τ at position j. It first reconstructs a message m′ from the fragments {fj}j∈J , using
the size parameter ℓ. If m′ = ⊥, it returns ⊥. Otherwise, it encodes m′ as a vector of fragments,
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encodes each f ′
i as a vector of mini-fragments, and builds a two-level Merkle tree with root r′ from

the mini-fragments. If r′ ̸= r, it returns ⊥. Otherwise, it returns(
m′, {(ϕ′

ji, π
′
ji, π

′
j)}j∈[n]

)
,

where each (ϕ′
ji, π

′
ji, π

′
j) is a certified mini-fragment for τ at position (j, i).

The Recover function. The third function, Recover, takes as input(
i, τ, πi, {(ϕij , πij)}j∈J

)
,

where i ∈ [n], τ = (ℓ, r) is a tag, J is a subset of [n] of size n − 2t, and each (ϕij , πij , πi) is a
certified mini-fragment for τ at position (i, j). It reconstructs and outputs the fragment fi from the
mini-fragments {ϕij}j∈J using size parameter ℓ. (Note that the decoding procedure could output
⊥, but in our application, this will not happen, except with negligible probability.)

3.4 The basic data flow

In our protocol, the sender will take a message m and compute(
τ, {(fi, πi)}i∈[n]

)
← Encode(m)

and send to each party Pi the tag τ along with the certified fragment (fi, πi), and each such Pi will
echo this tag and certified fragment to all parties. This will contribute at most

3
2ℓ(n+ 1) +O(κn2 log(n)) (1)

to the communication complexity.

By obtaining a collection {(fj , πj)}j∈J of n − t certified fragments for the tag τ , party Pi can
then compute

Decode
(
i, τ, {(fj , πj)}j∈J

)
.

The logic in Decode of re-encoding the reconstructed output message m′ and comparing the new
Merkle root r′ to the Merkle root r in the tag τ ensures correctness in case of a corrupt sender. Also,
the logic in Decode will generate mini-fragments so that Pi can send one certified mini-fragment
to each other party that needs one. This will ensure that in the case of a corrupt sender, any
party that has not obtained its own fragment from the sender will eventually be able to reconstruct
that fragment from these mini-fragments using the function Recover. More precisely, after Pi has
reconstructed an output message from {(fj , πj)}j∈J , it will send to each other party Pj a certified
mini-fragment for τ at position (j, i). This will contribute at most

9
2ℓ+O(κn2 log(n)) (2)

to the communication complexity. If Pj is able to collect n− 2t such certified mini-fragments from
n− 2t distinct parties, then Pj can reconstruct its fragment fj .

Combining (1) and (2), the total communication complexity is at most

3
2ℓ(n+ 4) +O(κn2 log(n)).
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4 The main protocol

Our new reliable broadcast protocol, which we call ΠMiniCast, is presented in Fig. 1. We express the
logic for the sender as a separate process, even though the sending party is also one of the receiving
parties. For each receiving party, the main logic is presented as a loop, and in each loop iteration
the party waits for one of several conditions to hold, triggering a reaction. These conditions are
based on local state plus an implicit pool of received messages.

The details for data encoding are discussed in Section 3. At a high level, the protocol proceeds
in rounds:

1. In the disperse round, the sender disseminates certified fragments with corresponding tags for
its message.

2. In the echo round, each party echoes the tag it received from the sender in the disperse round
to all other parties.

3. In the vote round, each party waits for n− t messages from the echo round with tags that match
the tag it received in the first round; when this happens, each party sends a vote message that
contains its certified fragment and corresponding tag to all other parties.

4. In the confirm round, each party waits for n − t messages from the vote round with matching
tags; when this happens, each party Pi decodes to obtain an output message and sends a confirm
message to each party Pj . This message contains the certified mini-fragment that Pj may need
to construct its own fragment.

5. Upon collecting n− t messages from the confirm round, each party delivers the output message
decoded in the confirm round.

In addition, there is a “feedback loop”, whereby a party Pi that did not receive an appropriate
certified fragment from the sender in the disperse round can still generate a message in the vote
round: if Pi receives n − 2t appropriate messages from the confirm round, these messages contain
sufficiently many mini-fragments so as to allow Pi to recover its own fragment and send it to all
other parties in the vote round.

The rough, intuitive argument for completeness is this. Suppose some honest party delivers an
output message.

– This party must have received n− t messages in the confirm round.

– Therefore, at least n− 2t will send out mini-fragments to any party that may need them.

– Therefore, every honest party will eventually send out a message in the vote round.

– Therefore, every honest party will eventually decode an output message and send out a message
in the confirm round.

– Therefore, every honest party will eventually deliver an output message.

In addition to allowing each party to recover its “missing fragment”, this “feedback loop” also
plays a role similar to the “feedback loop” in Bracha’s original protocol (whereby a “ready” message
is generated upon receiving either n− t “echo” messages or t+ 1 “ready” messages).

We also note that by having each party wait to receive sufficiently many echo messages with
the same tag before sending out a vote message, we ensure each party will only send a vote message
that contains a certified fragment for the “right” tag. This is only needed when dealing with a
corrupt sender who may send different tags to different parties in the disperse round.
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ΠMiniCast

// Sender S with input m
(τ, {(πi, fi)}i∈[n])← Encode(m)
for i ∈ [n] : send (disperse, τ, πi, fi) to Pi

// Receiving party Pi

echoed← voted← confirmed← delivered← false, acquired← m∗ ← ⊥

repeat forever:
wait until either:

not echoed and for some τ, fi, πi: received (disperse, τ, fi, πi) from S ⇒
echoed← true
if (fi, πi) is a certified fragment for τ at position i then

acquired← (τ, fi, πi)
send (echo, τ) to P1, . . . , Pn

not voted and for some τ, fi, πi:
acquired = (τ, fi, πi) and received (echo, τ) from n− t distinct parties ⇒

voted← true
send (vote, τ, fi, πi) to P1, . . . , Pn

not voted and for some τ , πi, J ⊆ [n] of size n− 2t, and {(ϕij , πij)}j∈J :
for all j ∈ J : received (confirm, τ, ϕij , πij , πi) from Pj

and (ϕij , πij , πi) is a certified mini-fragment for τ at position (i, j) ⇒
voted← true
fi ← Recover(i, τ, πi, {(ϕij , πij))}j∈J

)
send (vote, τ, fi, πi) to P1, . . . , Pn

not confirmed and for some τ , J ⊆ [n] of size n− t, and {(fj , πj)}j∈J :
for all j ∈ J : received (vote, τ, fj , πj) from Pj

and (fj , πj) is a certified fragment for τ at position j ⇒
confirmed← true
if Decode(i, τ, {{(fj , πj)}j∈J ) returns (m′, {(ϕ′

ji, π
′
ji, π

′
j)}j∈[n]) then

m∗ ← m′

for j ∈ [n]: send (confirm, τ, ϕ′
ji, π

′
ji, π

′
j) to Pj

not delivered and m∗ ̸= ⊥ and received (confirm, . . .) from n− t distinct parties ⇒
delivered← true
output m∗

Fig. 1. The MiniCast reliable broadcast protocol
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Theorem 4.1. Assuming collision resistance of the underlying hash functions, Protocol ΠMiniCast

satisfies the correctness and completeness property (with overwhelming probability, for any
polynomial-time adversary).

Proof. We start with some terminology. We say:

– an honest party echoes τ if it sends a message (echo, τ);
– an honest party votes for τ if it sends a message (vote, τ, . . .);

• we say it votes by echo if it does so because it received n− t echo messages;

• we say it votes by confirmation if it does so because it received n− 2t confirm messages;

– an honest party confirms τ if it sends a message (confirm, τ, . . .).

We can also extend these definitions to corrupt parties, saying that a corrupt party echoes, votes
for, or confirms τ if any honest party receives a corresponding message from that corrupt party.

The following properties prove the theorem.

P1: If an honest party confirms τ , then at least n− t parties previously echoed τ .

Proof. Consider the point in time where the first honest party confirms τ . Some honest party
must have voted for τ , and this must be a vote by echo (since no honest party previously
confirmed τ and n− 2t > t).

P2: If an honest party votes for τ , then at least n− t parties previously echoed τ .

Proof. If this is a vote by echo, then the claim holds by definition. If this is a vote by confirmation,
then at least one of these confirmations must have come from an honest party (since n−2t > t),
and the property follows from P1.

P3: Any honest parties that vote or confirm a tag, must vote or confirm the same tag.

Proof. The property follows from P1 and P2 and the fact that each honest party echoes at most
one tag (quorum intersection argument).

P4: If any honest party delivers an output message, then all honest parties eventually deliver the
same output message (with overwhelming probability, assuming collision resistance).

Proof. Consider the point in time where the first honest party delivers a message. It does so
because it received n − t confirm messages, of which n − 2t must be from honest parties. This
party must have also confirmed some tag τ , and by P3, all honest parties that confirm or vote
must confirm or vote for the same tag τ . Since all honest parties eventually receive at least
n− 2t confirm messages, all honest parties will eventually either vote for τ by echo or vote for
τ by confirmation.

By collision resistance, all honest parties that generate or receive a certified fragment or mini-
fragment for τ at the same location will generate or receive the same fragment or mini-fragment.
In particular, if one honest party collects n − t certified fragments for τ and then proceeds to
set m∗ to m′ and confirm τ , then any other honest party that collects n− t certified fragments
for τ will also confirm τ and set m∗ to m′. In addition, if one honest party Pi collects n − 2t
certified mini-fragments for τ at positions (i, ·), then one of these mini-fragments must be from
an honest party Pj , and the mini-fragments received by Pi must decode to the same fragment
fi that Pj generated.

Therefore, all honest parties will eventually obtain the n− t vote messages they need to confirm
τ , and so will also eventually send and receive n− t confirm messages.
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P5: If the sender is honest and initiates the protocol, then (i) all honest parties will eventually
output a message, (ii) honest parties output a message only after the sender has initiated the
protocol and that message is the sender’s input message m (with overwhelming probability,
assuming collision resistance).

Proof. Suppose the sender initiates the protocol and let τ be the tag generated by the sender.
By P1, any honest party that confirms must confirm τ and by P2, any honest that votes must
vote for τ . Since every honest party will eventually echo τ , every honest party will eventually
vote for τ . By collision resistance, all honest parties that generate or receive a certified fragment
or mini-fragment for τ at the same location will generate or receive the same fragment or mini-
fragment. When any honest party collects n−t certified fragments for τ , again by P1, the sender
must have already initiated the protocol, and these fragments must match those generated by
the sender. Therefore, this honest party will set m∗ to m and confirm τ . So eventually, all honest
parties will confirm τ and deliver the output message m.

That completes the proof. ⊓⊔

4.1 Message and communication complexity

The message complexity of ΠMiniCast is obviously O(n2).
As sketched in Section 3, the communication complexity of ΠMiniCast is at most

3
2ℓ(n+ 4) +O(κn2 log(n)), (3)

where κ is the output length of the hash function. Here, ℓ represents a bound on the message length.
When the sender S is honest, we can take ℓ to be the length of the message m that S is sending.
When S is corrupt, we can take ℓ to be the value that is in the dispersed tag τ—honest parties
will not transmit any data until the tag is agreed upon, and so this value is well defined, and the
size of the fragments and mini-fragments transmitted by the honest parties will be consistent with
a message of length ℓ (and if any honest party ultimately delivers a message, it will be of length ℓ).
Any particular application may impose a bound on the message length and the honest parties can
enforce this bound when they execute the protocol.

We also note that the communication is well balanced among all parties—each party transmits
roughly the same amount of data, except for the sender, which transmits about twice as much (but
see below in Section 4.1.2 on how to elimnate this asymmetry).

4.1.1 Minor improvements to the communication complexity. The reader will note that
the above stated communication complexity (3) does not quite match the bound reported in Sec-
tion 1, namely

3
2ℓn+O(κn2 log(n)). (4)

This better bound can be easily achieved through the following simple optimizations:

(i) A message sent from a party to itself need not be transmitted over the network.
(ii) In the vote round, each party may omit the certified fragment from vote messages sent to the

sender.
(iii) In the confirm round, each party may omit the certified mini-fragment from confirm messages

sent to the n− t parties from which a vote message was received.
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With these optimizations:

– In the disperse round, the sender transmits n− 1 certified fragments.

– In the vote round, the sender transmits n− 1 certified fragments, while the n− 1 other parties
each transmit n− 2 certified fragments.

– In the confirm round, each party transmits at most t < 1
3n mini-fragments.

When applying these optimizations, n2 − n certified fragments and 1
3n

2 certified mini-fragments
are transmitted altogether, from which the bound (4) follows.

4.1.2 Better balanced communication. As we noted above, communication is well balanced
among all parties—each party transmits roughly the same amount of data, except for the sender,
which transmits about twice as much. Adapting a simple idea from [Sho23], we can achieve a better
balance as follows. Instead of using an (n, n−t) erasure code for fragments, we use an (n−1, n−t−1)
code. Here, the sender does not have its own fragment, but it still sends vote messages like any other
party (sans fragments). Each party still gathers n− t vote messages, but only n− t−1 of them may
contain fragments. Similarly, instead of using an (n, n− 2t) erasure code for minifragments, we use
an (n− 1, n− 2t− 1) code. Again, the sender does not have its own minifragment, but it still sends
confirm messages (sans minifragments). Combined with the simple optimizations in Section 4.1.1,
this leads to a protocol in which each party, including the sender, transmits at most

3
2ℓ+O(κn log(n)) (5)

bits across the network.

4.2 Computational cost

The computational cost is dominated by the following operations, which are performed at most
once per party:

– encode the message into n fragments;

– encode all n fragments into n2 mini-fragments;

– decode n− t fragments to recover message;

– decode n− 2t mini-fragments to recover a single fragment;

– hash n2 mini-fragments.

4.3 Storage costs

As we have described the protocol, each party stores all protocol messages sent to it by any party.
However, an obvious optimization that one would apply in any practical implementation is to
notice that any honest party transmits at most one message of any given “type” (disperse, echo,
vote, confirm). Therefore, each party need only store one message of each type that it receives from
any one party. Thus, the number of messages that a party stores is O(n).

The total space occupied by these messages is at most O(ℓn+ κn2 log(n)). Here, ℓ represents a
bound on the message length. However, unlike in Section 4.1, we will simply have to take ℓ to be
some application-dependent bound on message length, which may be enforced by honest parties.
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4.4 A concrete example

Suppose messages are of size 4MB, n = 100, and t = 33. Each fragment is about 60KB and each
mini-fragment is about 1.8KB. Assuming 32-byte hash outputs, the size of the Merkle validation
paths is about 0.25KB. In this case, the communication complexity increases by 0.25KB per certified
fragment and 0.5KB per certified mini-fragment because the latter requires two validations paths.

Using the optimizations discussed in Section 4.1.1, the total communication complexity is
roughly

(1002 − 100) · (60KB + 0.25KB) + 100 · 33 · (1.8KB + 0.5KB) ≈ 604MB,

which is very close to the asymptotic estimate of 600MB corresponding to 3
2ℓn. This estimate only

counts the contribution to the communication complexity made by the certified fragments and
mini-fragments. The communication complexity contributed by all other data may increase this
bound by a few MB.

We also estimate the running time for various computations.

For the erasure coding, we used the reed-solomon-simd library3, which is based on
[LC12,LAHC16]. We benchmarked this implementation on a Macbook Pro with an Apple M1
Max CPU. We found the following:

– time to encode message into 100 fragments: 1.4ms;

– time to encode all 100 fragments into 1002 mini-fragments: 3.9ms;

– time to decode 67 fragments to recover message: 6.5ms;

– time to decode 34 mini-fragments to recover a single fragment: 0.6ms.

Based on these numbers, all encoding and decoding operations will take at most about 13ms.

As for hashing, using openssl speed sha256, we estimate the time to hash 1002 mini-fragments
on the same Macbook Pro to be about 12ms.

So the total computation time is approximately 25ms. Note that this time could conceivably
be reduced somewhat using multiple cores. Let us compare this computation time to time spent
in communications. Each party will send about 6MB of data (but the sender will send twice this
amount, but at different times in the protocol). Assuming a 1Gbps network speed, transmitting
6MB of data will take about 48ms. In the “good case”, there will be 4 rounds of communication.
The network latency per round obviously depends on geography and many other factors, but we
can estimate a range of 10-100ms per round in a typical wide-area network configuration.

Let us compare these estimates to the time it takes for the sender to naively send a 4MB message
to all 100 parties separately. Again using the 1Gbps network speed estimate, it will take the sender
3.2 seconds just to transmit all of this data. In contrast, even using the upper range of 100ms
communication latency per round, our protocol should take a total of less than 0.5 seconds. Of
course, as an alternative, one may also consider using some sort of “gossip protocol” to disseminate
the message more efficiently—but that will likely cost just as much or more in network latency as
our protocol.

These estimates should at least convince the reader that erasure-code-based broadcast protocols
in general, and our protocol in particular, are of more than just theoretical interest. From a practical
perspective, perhaps the most important feature of erasure-code-based broadcast protocols is the
fact that communication is typically well balanced among all parties.

3 See https://github.com/AndersTrier/reed-solomon-simd.
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5 An optimistic 3-round variant

We now present an “optimistic” version of our protocol ΠMiniCast that has better round complexity
(just 3 rounds in the “good case” where the sender is honest, instead of 4). The modification is
simple: instead of broadcasting an echo message (containing just a tag) when receiving certified
fragment from the sender, a vote message (containing the certified fragment and tag) is broadcast
right away. This variation, which we call ΠOptMiniCast, is presented in Fig. 2. Even though much
of the protocol is identical to the original, we present the protocol in its entirety, using color to
highlight what is old and what is new.

ΠOptMiniCast

// Sender S with input m
(τ, {(πi, fi)}i∈[n])← Encode(m)
for i ∈ [n] : send (disperse, τ, πi, fi) to Pi

// Receiving party Pi

d-voted← c-voted← confirmed← delivered← false, τ∗ ← m∗ ← ⊥

repeat forever:
wait until either:

not (d-voted or c-voted) and for some τ, fi, πi: received (disperse, τ, fi, πi) from S ⇒
d-voted← true
if (fi, πi) is a certified fragment for τ at position i then

τ∗ ← τ
send (vote, τ, fi, πi) to P1, . . . , Pn

not c-voted and for some τ ̸= τ∗, πi, J ⊆ [n] of size n− 2t, and {(ϕij , πij)}j∈J :
for all j ∈ J : received (confirm, τ, ϕij , πij , πi) from Pj

and (ϕij , πij , πi) is a certified mini-fragment for τ at position (i, j) ⇒
c-voted← true
fi ← Recover(i, τ, πi, {(ϕij , πij))}j∈J

)
send (vote, τ, fi, πi) to P1, . . . , Pn

not confirmed and for some τ , J ⊆ [n] of size n− t, and {(fj , πj)}j∈J :
for all j ∈ J : received (vote, τ, fj , πj) from Pj

and (fj , πj) is a certified fragment for τ at position j ⇒
confirmed← true
if Decode(i, τ, {{(fj , πj)}j∈J ) returns (m′, {(ϕ′

ji, π
′
ji, π

′
j)}j∈[n]) then

m∗ ← m′

for j ∈ [n]: send (confirm, τ, ϕ′
ji, π

′
ji, π

′
j) to Pj

not delivered and m∗ ̸= ⊥ and received (confirm, . . .) from n− t distinct parties ⇒
delivered← true
output m∗

Fig. 2. An optimistic variant of the MiniCast reliable broadcast protocol

Note that a receiving party may vote twice if the sender is corrupt. Because of this, the worst-
case communication complexity of ΠOptMiniCast is worse than that of ΠMiniCast. We shall discuss
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this issue below in Section 5, including mitigation strategies that in many settings will ensure that
this “double voting” rarely, if ever, occurs.

Theorem 5.1. Assuming collision resistance of the underlying hash functions, Proto-
col ΠOptMiniCast satisfies the correctness and completeness property (with overwhelming probability,
for any polynomial-time adversary).

In addition, if the sender is honest, then no honest party votes more than once; otherwise, the
number of honest parties that vote twice is at most t.

Proof. We use the same terminology introduced in the proof of Theorem 4.1 to say that a party
votes for or confirms a tag τ . However, we now distinguish between a d-vote, where an honest party
votes in response to a disperse message from the sender, an a c-vote, where it votes in response to
n − 2t confirm messages. Note that an honest parties may vote twice, but it d-votes at most once
and it c-votes at most once.

The following properties prove the theorem.

P1: If an honest party confirms τ , then there is a set of at least n− t parties that previously voted
for τ such all of the honest parties in this set sent a d-vote for τ .

Proof. Consider the point in time where the first honest party confirms τ . That party must have
received n− t votes for τ . Moreover, among these votes, those coming from honest parties must
be d-votes (since no honest party previously confirmed τ and n− 2t > t).

P2: Any honest parties that confirm a tag, must confirm the same tag.

Proof. The property follows from P1 and the fact that each honest party d-votes at most once
(quorum intersection argument).

P3: If any honest party c-votes for a tag, some honest party must have confirmed that tag; in
particular, any honest parties that c-vote or confirm a tag, must c-vote or confirm the same tag.

Proof. In any c-vote, at least one of the confirmations must have come from an honest party
(since n− 2t > t). The rest follows from P2.

P4: If any honest party delivers an output message, then all honest parties eventually deliver the
same output message (with overwhelming probability, assuming collision resistance).

Proof. Consider the point in time where the first honest party delivers a message. It does so
because it received n − t confirm messages, of which n − 2t must be from honest parties. This
party must have also confirmed some tag τ , and by P3, all honest parties that confirm or c-vote
must confirm or c-vote for the same tag τ . Thus, all honest parties will eventually c-vote for τ
unless they have already d-voted for τ . So in any case, all honest parties will eventually vote
for τ .
The rest of the argument proceeds essentially as in the proof of P4 in Theorem 4.1. In particular,
all honest parties will eventually obtain the n−t vote messages they need to confirm τ ; however,
we must argue that no honest party did not already receive n− t votes for a different tag. This
follows from P6 below—if it could also garner n− t votes for a different tag, at least n− 2t > t
of these votes must be from honest parties.

P5: If the sender is honest and initiates the protocol, then (i) all honest parties will eventually
output a message, (ii) honest parties output a message only after the sender has initiated the
protocol and that message is the sender’s input message m (with overwhelming probability,
assuming collision resistance).
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Proof. Suppose the sender initiates the protocol and let τ be the tag generated by the sender.
Certainly, any party that d-votes must d-vote for τ . By P1 and P3, any honest party that
confirms or c-votes must confirm or c-vote for τ . Every honest party will eventually d-vote or
c-vote, and so will eventually d-vote or c-vote for τ .

The rest of the argument proceeds as in the proof of P5 in Theorem 4.1.

P6: If the sender is honest, then no honest party votes more than once; otherwise, the number of
honest parties that vote twice is at most t.

Proof. Suppose the sender is honest and an honest party Pi votes twice, which means that it
must first d-vote and then c-vote. When it c-votes for a tag, by P3, some honest party must
have confirmed that tag, and so by P1, some honest parties must have d-voted for that tag.
But because the sender is honest, that tag must be the same as the tag for which Pi already
d-voted—and so Pi would not have c-voted, a contradiction.

Suppose the sender is corrupt and some set S of t + 1 honest parties vote twice. By P3, all
c-votes are for the same tag τ which must have been confirmed by some honest party. Each
party in S must first d-vote for some tag different from τ and then c-vote for τ . By P1, there
is a set T of n− t parties that voted for τ , and moreover, all of the honest parties in T d-voted
for τ . The sets S and T must overlap, and so one of the honest parties in S must have d-voted
for τ , a contradiction.

That completes the proof. ⊓⊔

5.1 Message and communication complexity

The message complexity of ΠOptMiniCast is still O(n2).

If the sender is honest, then by Theorem 5.1, no honest parties vote more than once, and it
follows that the worst-case communication complexity of ΠOptMiniCast in this case is at most

3
2ℓn+O(κn2 log(n)),

where ℓ is the length of the message m that S is sending. Here, we are applying the same optimiza-
tions discussed in Section 4.1.1.

If the sender is corrupt, then by Theorem 5.1, at most t < n/3 honest parties vote more than
once, and so the total number of vote messages transmitted by honest parties is at most 4

3n. It
follows that the worst-case communication complexity of ΠOptMiniCast in this case is at most

2ℓn+O(κn2 log(n)).

Here, ℓ represents a bound on the message length. Unlike in Section 4.1, honest parties may transmit
fragments before a tag is agreed upon, and we will simply have to take ℓ to be some application-
dependent bound on message length, which may be enforced by honest parties.

We note that the same “balancing technique” in Section 4.1.2 can be applied here as well.

5.2 Computational cost

The computational cost of ΠOptMiniCast is roughly the same as that of ΠMiniCast.
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5.3 Storage costs

In Section 4.3, we noted that in ΠMiniCast an honest party only transmits at most one message of a
given “type”, and therefore, a party need only store one message of each type that it receives from
any one party. In ΠOptMiniCast, however, an honest party may send two vote messages. Therefore,
each party must store up to two vote messages that it receives from any one party. Thus, the number
of messages that a party stores is still O(n).

The total space occupied by these messages is at most O(ℓn + κn2 log(n)), where ℓ is some
application-dependent bound on message length, which may be enforced by honest parties.

5.4 Dealing with corrupt senders

As we have seen, the worst-case communication complexity of ΠOptMiniCast is at most

3
2ℓn+O(κn2 log(n)),

unless the sender is corrupt and makes some honest party vote twice.
We suggest two simple ways of dealing with this.

5.4.1 Ignoring corrupt senders. In a long running system where many instances of the reliable
broadcast protocol are executed over time, if a party P sends two vote messages in any one instance
of the protocol, P can be sure that the sender S is corrupt. Therefore, P can simply ignore all
messages received from S in any future executions of the protocol; in particular, P will never
vote twice in any such future execution when S is the sender (while P may “c-vote” it will never
“d-vote”). In many applications of reliable broadcast, although a party may be engaged in many
reliable broadcast protocol instances simultaneously, it will be engaged in at most one instance with
any given sender at any point in time. In such applications, over the lifetime of the system, there
will be at most O(n2) “extra” votes in total that are ever sent by any honest parties (each honest
party will send an “extra” vote at most once for each corrupt sender).

5.4.2 Implicating corrupt senders. Suppose we modify ΠOptMiniCast, replacing each tag τ =
(ℓ, r) throughout the protocol with τ = (ℓ, r, σ), where σ is a signature under the public key of
the sender S on a message that says “S is dispersing (ℓ, r) in protocol instance id ”. Here, id is
an identifier that identifies the particular instance of the protocol. Each party needs to verify the
signature when it processes a disperse message, but need not verify the signature in processing other
protocol messages.

If a party does vote twice in a given protocol instance, it will be able to form an “equivocation
proof”, consisting of the two tags, and broadcast this equivocation proof to all parties (and even
external parties). This equivocation proof provides irrefutable proof that S was corrupt. In response
to this proof, various actions can be taken. At the very least, all parties can ignore all messages
sent by S going forward. Additionally, S could be forcefully removed from the committee and/or
punished in some way, financially or legally.

6 Conclusion

The proposed reliable broadcast protocols achieve a communication complexity of ≈ 1.5|m|n for
long messages, resolving the open question whether a bound better than ≈ 2|m|n can be attained.
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Since each party must receive at least |m| bits, it is evident that the communication complexity
is close to optimal. A lower bound of 1.5|m|n has been shown for any 3-round protocol even if
communication occurs in synchronous rounds and at most t < n/3 parties exhibit crash failures (see
[Loc24]). Protocol ΠOptMiniCast achieves the same asymptotic bound (for sufficiently long messages)
in 3 rounds even if communication is asynchronous and t parties can exhibit arbitrary corrupt
behavior aside from equivocation. While tight bounds have not been shown, we conjecture that no
better bound than 1.5|m|n can be achieved quite generally, i.e., protocol ΠMiniCast minimizes the
communication complexity of reliable broadcast.
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