
Scoring the predictions: a way to improve
profiling side-channel attacks

Damien Robissout1,2, Lilian Bossuet2 and Amaury Habrard2+,3

1 IMDEA Software Institute, Madrid, Spain, name.surname@imdea.org
2 Université Jean Monnet Saint-Etienne, CNRS, Institut d’Optique Graduate School, Inria+,

Laboratoire Hubert Curien UMR 5516, F-42023, Saint-Etienne, France
name.surname@univ-st-etienne.fr

3 Institut Universitaire de France (IUF), France

Abstract. Side-channel analysis is an important part of the security evaluations
of hardware components and more specifically of those that include cryptographic
algorithms. Profiling attacks are among the most powerful attacks as they assume the
attacker has access to a clone device of the one under attack. Using the clone device
allows the attacker to make a profile of physical leakages linked to the execution of
algorithms. This work focuses on the characteristics of this profile and the information
that can be extracted from its application to the attack traces. More specifically,
looking at unsuccessful attacks, it shows that by carefully ordering the attack traces
used and limiting their number, better results can be achieved with the same profile.
Using this method allows us to consider the classical attack method, i.e. where the
traces are randomly ordered, as the worst case scenario. The best case scenario is
when the attacker is able to successfully order and select the best attack traces. A
method for identifying efficient ordering when using deep learning models as profiles
is also provided. A new loss function "Scoring loss" is dedicated to training machine
learning models that give a score to the attack prediction and the score can be used
to order the predictions.

1 Introduction
Side-channel analysis is one of the most threatening attacks possible against secure
hardware components. They are based on a careful study of a physical value, such as
power consumption or electromagnetic emanations, linked to computations underway
in the device. When the computations concern secure algorithms, the resulting
leakages can yield important information concerning secret variables. If analyzed
correctly, the leaks can impact the level of security of the device and even enable
recovery of the secret key.

One of the most powerful side-channel attacks is the template attack [CRR03].
This type of attack is based on the assumption that the adversary has access to a
perfect copy of the device under attack. Using this copy, the attacker can characterize
the power consumption leakages of specific operations and use statistical analysis to
create templates. By applying the templates to the power consumption of the target
device, the attacker can then guess the secret key used for the computations based
on the probabilities obtained. Even though the assumptions needed to perform these
kinds of attacks are strong (access to a similar device, the chosen plaintext, leaking
intermediate value, etc), they are taken into consideration in security evaluations of
hardware components. However, one of the only downside is that some preprocessing
of the power traces is also required. Preprocessing typically includes alignment of
the traces, i.e. synchronization of the power consumption of the device across several
executions of the encryption algorithm, and detection of points of interest (PoI) that

mailto:name.surname@imdea.org
mailto:name.surname@univ-st-etienne.fr

2 Scoring the predictions: a way to improve profiling side-channel attacks

correspond to points where information concerning the intermediate values of the
algorithm leaks.

A new kind of attack, very similar to the template attack, has appeared in
the last few years based on machine learning algorithms, for example deep neural
networks (DNN). These networks are trained to do what the templates are used for,
i.e. assign probabilities to each possible intermediate value based on its likelihood,
with the highest value corresponding to the most likely guess. In addition, once the
learning is complete, they automatically find the PoIs in the traces and, due to the
way they recombine the input data in their intermediate layers, they are somewhat
resilient to desynchronization. This new way of performing profiling attacks has
attracted considerable attention as in most scenarios, it performs better than classical
template attacks. However, to maximize its performance, it relies on finding the best
architecture, i.e. the best combination of hyperparameters, for the neural network.
Tuning the hyperparameters [ZBHV20], i.e. the exact architecture of the networks,
is what usually takes the most time and can lead to widely different results between
good and bad tuning. Another important aspect to consider when training a neural
network is the overfitting phenomenon [RBHG21]. Overfitting is learning to predict
values using the full power consumption trace instead of only the PoIs, which has
a direct impact on the performances of the attack as the learned features are not
representative of the attack traces. All in all, training an efficient neural network is
not an easy task and often results in underperforming networks that are able to rank
the correct key relatively high but unable to recover it completely.

Contributions In this work, the focus is on particular cases where the networks are
underperforming and our objective is to explore a new way to perform the profiling
attacks. The new method is based on the use of a fixed network architecture. In other
words, the network used to obtain the predictions is not retrained or modified to
obtain a more accurate model. In addition, the attacks performed in the experimental
sections use a fixed number of traces to simulate a case where the adversary has
limited access to attack traces. Using the results of the network, it is possible to
identify its level of confidence in different traces and hence to deduce an order to use
for the attack traces; this means that when accumulating the probabilities contained
in the network’s prediction of the attack traces, a specific order is used for the
predictions. In turn, this makes it possible to reach a new rank that is lower than the
final rank obtained without ordering, thereby improving the attacks. The classical
way of performing profiling attacks is shown to correspond to a worst case scenario
for the attacker and that by properly ordering the predictions, the rank of the good
key can be lowered and in some cases the key can be recovered.

Article organization The following section of this article provides an overview
of the key concepts of side-channel analysis. Section 3 formalizes the new ordering
problem introduced and explains the changes to the attack method. Section 4 details
a first approach to predicting the order of the attack predictions based on the level
of confidence of the network that can be considered a first step toward solving the
problem. Section 4 also contains an experimental section with the details of the tests
performed to validate the new approach. Section 5 explains how machine learning
can be used to solve the problem of ordering the predictions based on the learning to
rank approach. Section 5 also focuses on how to adapt the Ranking Loss, that is, a
loss function adapted from the learning to rank problem to train DNN to perform
side-channel attacks more efficiently, into the Scoring Loss, a loss function that can
be used to train neural networks to solve the ordering problem. Finally, Section 6
contains the experimental results of the approach and the application of this approach
to the problem of ordering the predictions.

Damien Robissout, Lilian Bossuet and Amaury Habrard 3

Open device

Measurements of power
 consumption using

random keys

Profiling phase
Profiles of power

consumption

Figure 1: The steps of the profiling phase.

?

?

?

?

Closed device

Measurements of power
 consumption using

a fixed key

Matching phase
Key recovery

Figure 2: The steps of the matching phase.

2 Preliminaries and notations
2.1 Profiling side-channel analysis
The goal of profiling side-channel analysis is to retrieve a secret value or parts of a
secret value used in the computation of an encryption algorithm that can lead to
a complete or partial recovery of a secret key by the attacker. However, profiling
side-channel analysis requires making strong assumptions about the power of the
attacker. It assumes the attacker has access to a physical measurement from the
device used to perform the encryption and to a copy of the device under attack for
which the attacker has total control over the values manipulated. It also assumes
information on the values of intermediate variables is contained in the measurements
and that this information is related to the secret or part of the secret.

The physical measurements used in this article are assumed to be power consump-
tion. They are stored in temporal vectors called traces, denoted t, and grouped in a
set T ∈ RN×D where N is the number of traces in T and D is the dimension of the
traces. The targeted intermediate variable is Z = f(P, K). Here f represents parts
of the computation of a cryptographic primitive, P (∈ P) a public variable (e.g. a
plaintext or ciphertext) and K (∈ K) a part of the key (e.g. a byte). The goal of
the attacker is to retrieve the value of k∗, the secret key used by the cryptographic
algorithm. To do so, the attacker uses the divide and conquer approach to find
fractions of the key (e.g. a bit or a byte) separately and then to combine them to
obtain the full key. This article focuses on the use of profiling attacks to recover the
different parts of the secret key. These attacks can be broken down into two separate
phases: the profiling phase, described in Figure 1, and the matching phase, described
in Figure 2.

During the profiling phase, the adversary has access to a test device, often called
open device, which is a copy of the device targeted by the attack and over which the
attacker has total control as well as knowledge of the values used by the algorithm.
This means the attacker can determine where the leakages of the sensitive variable
Z (∈ Z) can be found in the traces. Using this knowledge, the adversary builds a
model F : RD → R|Z| to estimate the probability P r[Z = z | T], i.e. the probability
that, given the set of traces T, the value of the sensitive variable is z.

Once the model is created, the attacker can use it during the matching phase to
estimate the values of the intermediate variable in the device under attack. To do
so, the attacker needs to acquire traces from the device under attack, also known as

4 Scoring the predictions: a way to improve profiling side-channel attacks

closed device, for which he only controls the plaintext, P (∈ P) to be encrypted by
the algorithm, plus knowledge of the resulting ciphertext. In order to have a uniform
distribution of the secret variable Z, the plaintext value must also follow a uniform
distribution, since the key value is fixed in the closed devise. Using the traces obtained
during the encryptions, the attacker computes the probabilities P r[Z = z | T] and
combines them. The value with the highest probability is then considered as the
recovered key in the identity leakage model.

To evaluate the performance of the model, all the key candidates are classified
in a vector of size | K |, denoted g = (g1, g2, ..., g|K|), according to their respective
probability. g1 is considered to be the most likely candidate and g|K| the least likely.
The actual position of the bth byte of the secret key in g is denoted g(k∗[b]) and
called rank. The guessing entropy [SMY09] is defined as the average rank of a byte b
of k∗, denoted k∗[b], among all key hypotheses. The guessing entropy is a common
metric in side-channel analysis to evaluate the performance of attacks. A successful
attack, using Na traces, is equivalent to a guessing entropy equal to 1.

3 Introduction to the problem
This section presents a new way to perform profiling side-channel attacks using
ordering of the traces. Typically, when performing side-channel analysis, the leakage
traces are used indiscriminately in the sense that no one trace holds more information
about the sensitive variable than any other. In this work, a new approach to such
attacks is explored based on the following hypothesis: the amount of information
extracted from a trace depends on the model used, a template or a neural network,
and it is possible to discriminate correctly predicted traces from the others. This
approach raises a certain number of questions that are discussed in this article.

3.1 Discussion of the problem
The problem can be reformulated as: is it possible that some pairs (trace, prediction)
have a negative impact on the key recovery? If yes, is it possible to detect these pairs
and to isolate them to improve the results of the attack?

These questions are first applied to the use of deep neural networks to predict the
value of the sensitive variable in profiling attacks. Indeed, training neural networks
can be difficult, especially in the presence of countermeasure in the targets, such as
desynchronization or masking. Such cases can require considerable hyperparameter
tuning and training to obtain an accurate network. This can be seen in [HHO20] and
[AGF22], where the authors had to apply new and sometimes complex techniques to
improve the performance of models trained on synchronized data against desynchro-
nized traces. This process can be very time consuming and hence problematic, for
example in the evaluation of a hardware component by an IT Security Evaluation
Facility (ITSEF). Consequently, the trained neural networks are usually not the most
accurate and can produce better results when applied to traces from the training set.
This means that it is easier for a network to predict traces close to the training traces
with more confidence. The question is then: is it possible to detect such traces inside
the attack set for which the secret key is not known?

Another important point concerns template attacks that differ from attacks based
on deep learning for the computation of the predictions but, like in those attacks,
the template attack relies on the use of profiling traces similar to training traces.
Therefore, the same type of bias may be present in the template attack and thus
there is a need to look for differences in the way the traces are predicted.

3.2 Modification of the classical attack scheme
This new approach changes the usual way of performing an attack in profiling side-
channel analysis. The base method is described in Figure 3a. Once the model is
trained, the attack traces are fed to the model and the model then outputs a set of

Damien Robissout, Lilian Bossuet and Amaury Habrard 5

Set of attack
traces

Set of attack
predictions Attack

Neural
Network

(a) Classical attack method

Set of attack
traces

Set of attack
predictions Attack

Neural
Network

Ordering of
the predictions

(b) Attack method using ordering

Figure 3: Steps in (a) the classical attack method and (b) in the attack method using
ordering.

predictions linked to the traces. The predictions are then randomly selected and used
to perform the attack by accumulating the information on the key either through
the probabilities or through the scores. Once all the predictions are used, the guess
vector containing all the possible key values is computed and the key is recovered or
not.

This new way of performing the attacks resembles the classical way of attacking
but has an additional key step between computing the predictions and the attack. The
additional step consists in computing the order of the traces based on their predictions
by the model (Figure 3b). During the attack, the order is used to determine the order
with which to use the traces in the attack, i.e. to determine which prediction will be
used next in the accumulation of probability. In the end, the same traces are used
for both methods of attack only not in the same order so the end result is the same,
i.e. the final guess vectors are equal. The only difference is the evolution of the rank
of the correct key.

To summarize the introduction of the new method of attack, we now provide a
description of the process we used in the experiments to obtain the results shown.
First, a fixed number of attack traces were selected from the attack set. Then,
two attacks were performed, the classical attack and the attack using the proposed
new method. In the first attack, the order in which the predictions are used in the
evolution of the rank was randomized before the attack is performed. In the second
attack, an order was computed and used to obtain the evolution of the rank. This is
the method used to obtain the ranking shown in Figure 4. Once both attacks were
complete, the process was repeated using a different subset of attack traces again
drawn from the attack set. All the evolutions of the ranks were then averaged to
obtain the final results.

The next section formalizes this difference between the methods and gives an
example to illustrate this new approach.

3.3 Formalization of the problem
To properly formalize the problem, let us recall and define some terms:

• T : the set of attack traces;

• Fθ: a model with parameters θ that makes predictions on the traces t ∈ T ;

• P: the set of predictions of Fθ on T , i.e. P = Fθ(T);

• AdvP(n): an adversary using n predictions of P to recover the key k∗;

• ExpAdvP (n) = rn: the result of the attack of AdvP(n) expressed using the rank
rn of the key k∗ in the guess vector g containing the key hypotheses sorted
according to the results of the attacks.

6 Scoring the predictions: a way to improve profiling side-channel attacks

Number of attack traces
2500

0

50

100

150

200

750 1250 1500 2000500 1000 1750

Rank using random ordering

Rank using determined ordering

A
ve

ra
ge

 r
an

k
of

 th
e

co
rr

ec
t k

ey

Figure 4: Evolution of the average rank of the correct key using the same predictions for
the attack with or without ordering.

From these definitions, if ExpAdvP (n) = 1 then the key k∗ is successfully recovered
using n traces. Conversely, if ExpAdvP (n) = rn > 1 then the key is not directly
recovered. In the latter case, one can try to reduce the value of rn by increasing the
number n of traces used in the attack. However, it is not always possible to acquire
more traces and sometimes there is a maximum value nmax of the number of traces
usable for the attack, which creates a problem when ExpAdvP (nmax) = rnmax > 1.
This is where this work comes into play and poses the following problem.

Problem Find an order o, where Po represents the predictions of the traces ordered
according to o, such that there exists no ∈ N∗ with no < nmax such that:

ExpAdvPo (no) = rno < rnmax .

Figure 4 illustrate such a phenomenon. It shows two different evolutions of rank
based on the same set of predictions. One of the evolutions uses a random ordering
of its traces and the other uses a determined ordering. Since the set of traces is the
same, the final rank is the same but the evolutions of the ranks differ considerably.
The rank of the attack using random ordering decreases at a more or less fixed rate
before reaching the final rank value whereas the rank of the attack using a determined
attack order varies much more, i.e. decreases rapidly to rank 1 and reaches it using
750 traces. The rank of the correct key remains at 1 for a few hundred traces before
starting to increase to reach the final rank value rnmax . In this example, using the
classical attack method, a false conclusion can be reached: the attack does not succeed
using nmax traces. However, given that the nmax predictions are correctly ordered, the
attack may succeed when no traces are used. In the rest of this article, the predictions
are used to establish the order and are referred as “orderings of the predictions” or
“ordered predictions”.

Remark 1 The goal of this article is to identify and analyse different ways to
establish the order o. As can be seen in the example, being able to find the order and
the right number of traces to use can reduce the rank of the secret key and even in some
cases, can recover it. This possibility calls into question some security evaluations

Damien Robissout, Lilian Bossuet and Amaury Habrard 7

Rank using random ordering

Rank using determined ordering

Number of attack traces
1000

0

20

40

60

80

100

120

200 300 400 500

A
ve

ra
ge

 r
an

k
of

 th
e

co
rr

ec
t k

ey

Figure 5: Evolution of the average rank of the correct key using two different types of
ordering while the attack is successful.

that certify the security of systems that may be vulnerable to this new attack method.
However, some aspects of this new approach need to be clarified, first: it is not a
way to improve the results of successful attacks. Indeed, if ExpAdvP (nmax) = 1 and an
order o and a number of traces no are found such that ExpAdvPo (no) = 1, this is not
an improvement over the first attack. The key aspect to consider when performing
a side-channel attack is the number of traces the attacker needs to acquire in order
to retrieve the key. If an attack succeeds using nmax traces, then an attack that is
successful using no traces is not an improvement if nmax traces are needed to find
this subset. This is illustrated in Figure 5 where two attacks, using the same dataset
and different orders, one random and one determined, both manage to recover the
key in less than 500 traces, and can therefore be considered to be equivalent.

Remark 2 Following this clarification, the main effect of this new approach can
be discussed. By showing the possibility of making the rank converge toward 1 by
carefully selecting the traces used through ordering, the different possible cases of a
side-channel attack when ExpAdvP (nmax) > 1 can be redefined. The best case scenario
for the attacker becomes the case where it is possible to find an order o and a number
of traces no such that ExpAdvPo (no) = 1. This means that an attack that failed using
the classical method is now able to recover the secret key. The worst case scenario
now corresponds to the case where such an order cannot be established and the
attacker uses the classical method. Indeed, the attacks fall in two categories, one
where an order cannot be determined and the final rank is considered the best rank,
and one where an order improving this rank can be found and the final rank is no
longer the best rank. This new dichotomy means that the new approach described
here can only be an improvement. This is the main reason why this method can call
security evaluations into question in cases where it is not taken into consideration.

Remark 3 To complete the point made in the previous remark, let P be a set of
nmax predictions of attack traces and o be any ordering of P, then:

ExpAdvPo (nmax) = rnmax ,

8 Scoring the predictions: a way to improve profiling side-channel attacks

where rnmax is the final rank reached when all the predictions in the set have been
used. This property comes from the fact that, given the same set of traces, the result
of the attack is always the same due to the deterministic nature of the probability
accumulation.

Remark 4 As a general remark, it should be noted that this new attack method
does not guarantee the recovery of the correct key as finding the best possible order
is very difficult. However, in most scenarios where the attack is unsuccessful, i.e. the
minimum rank is still greater than zero, the minimum rank is still lower than the final
rank. This means that from then on, it is possible to perform a key enumeration in a
smaller search space in order to recover the key byte, for example. The process can
be repeated for each byte of the key until the recovery is complete. The application
of this new method can thus lead to a global reduction of the search space for each
byte of the key.

Remark 5 This final remark discusses how to find the best number of traces to use
when performing ordered attacks. This question is beyond the scope of the present
article and is left for future research. However, some leads that are worth exploring
are mentioned in Section 6.3.

The following section focuses on the study of attacks that do not succeed even
when the whole dataset is used to identify an order that improves the result of the
attack. For this purpose, a way to distinguish between two types of predictions, those
that help the rank to converge and those that have a negative impact on the rank of
the correct key, needs to be established.

4 Study of the confidence of the models
As mentioned in the previous section, it is important to be able to distinguish between
predictions that help achieve convergence of the rank of the correct key and predictions
that have a negative impact on this rank. This distinction is possible due to the
method of attack that is based on training models to make predictions on the possible
value of the intermediate variable. The training phase is done using profiling traces
that are similar to the traces used to attack the device.

However, it is impossible to obtain a training set that perfectly represents the
physical leakage of the device, which means that training using this dataset necessarily
introduces a bias in the final model. This training creates an imbalance between
the model’s prediction of the traces from the training set and the traces from the
attack set, as the model is much more precise when predicting the profiling traces.
This is confirmed by the fact that attacks on the training traces always require fewer
traces to succeed than attacks using attack traces. Thus, it is possible to infer that
the model extracts more information from the traces that were used to train it than
from the unknown traces of the attack set. It is also possible to infer that the traces
from the attack set which are the most similar to traces from the training set are
more likely to be better predicted than others. This is the origin of the distinction
between the well predicted traces and the other traces. However, this distinction is
not possible using only the leakage traces or it would need the attacker to be able to
perfectly characterize the leakage, which in practice, is very difficult. One possible
solution to this problem is to try to use the predictions of the model to make this
distinction.

Indeed, the focus is not on the traces themselves but on the way the model
predicts them and it is consequently interesting to examine the distribution of the
values within each prediction. After which the distinction between the traces is
based on the distinction between the well predicted traces and the other traces. This
supports the hypothesis that each trace contains the same level of information but
that the model’s exploitation of the information differs from trace to trace. The

Damien Robissout, Lilian Bossuet and Amaury Habrard 9

difference between well predicted traces and the others is linked to the capacity of
the model to extract relevant information.

As such, a way to characterize the distinction at the attack level is needed. As
a preliminary phase, we studied the behavior of predictions originating from the
validation and test sets for which the key is known. This means the label of each
trace is also known and so are the values of the labels inside the predictions. This
knowledge gives access to the position of the labels among the other possible classes
for each predictions. This is equivalent to observing the rank of attacks using only
one trace. In the rest of the article, the term rank of a prediction is used to describe
the position of its label among all the possible classes ranked from the most probable
to the least probable. Using the ranks of the predictions, it is possible to determine
what can be called the perfect order in which the predictions are ordered according
to their rank. However, this method requires knowledge of the key used during
encryption in order to know the values of the classes, which is only applicable in the
case of the training and test sets, not for the attack set. Therefore, other ways to
order the predictions are needed that are not based on knowledge of the intermediate
variable. We now examine potential methods to study the network’s confidence in its
predictions so we can order the predictions in order of decreasing confidence.

4.1 Some methods to distinguish the quality of the predictions
The first tests we conducted were based on some special statistical values computed
for each prediction in the set considered. The following analysis concentrates on
predictions resulting from the use of a Softmax activation function at the end of a
neural network. This function forces the values of the predictions to be between 0
and 1 and to sum up to 1. The level of confidence of the network is then analyzed
from the distribution of the values in the prediction. However, it is important to
distinguish between confidence and performance, as a model can be highly confident
in its prediction but can still be making a mistake. Nevertheless, the confidence of the
network remains useful to distinguish between well-predicted traces and the others.

The median The median of a distribution is the value that separates the distribution
into two parts each containing the same number of elements. The first part contains
all the values that are above the median, and the second part, all the values below the
median. In this case, when considering attacking a byte of the key under the identity
leakage model, there are 256 values in the predictions and the median separates the
128 highest values from the 128 lowest ones. The median is one way to distinguish
the correctly predicted predictions from the others. Indeed, it is possible to link this
value to the confidence the network has in its prediction. The more confident the
network, the more likely it will attribute higher values to the classes it considers most
likely and, as a consequence, the lower the values of the other classes will be. This is
due to the use of the Softmax function that normalizes the values of each prediction.
Concerning the impact on the median, if the network gives a high value to a small
number of classes, the median will tend to be low. On the other hand, if the network
is not sure what to predict, it will assign close values to all the classes which lead
to a higher median. Based on those facts, it is possible to order the prediction from
the one with the lowest median to the one with the highest. The median acts as an
indicator of the network’s confidence and can be used to decide which predictions
will be the best to use during the attack.

The minimum The minimum value of each prediction is also an interesting value
to explore. Its connection to the network’s confidence is less clear but still exists.
Indeed, if a network associates a high value with the class it considers most likely,
this will drive the values of all the other classes down and consequently, the minimum
of the prediction will also be lowered. Depending on the value of the minimum, it
will then be possible to order the predictions, from lowest to highest to represent the
network’s confidence. The maximum can be used in a similar way, but in this case,

10 Scoring the predictions: a way to improve profiling side-channel attacks

the predictions must be sorted from highest maximum value to the lowest maximum
value. It makes sense that the more confidence a network has in a class, the higher the
values it attributes will be. However, in the following tests, even though the maximum
produced good results, it was never as good as the minimum and consequently, in
the experiments, the focus was on the minimum.

The use of the different distinguishers is illustrated in Figure 6 which shows
the processing of three traces by the network and the different orders attributed
depending on the value used to evaluate the network’s confidence. Two ways of
ordering the predictions were tested. In the first, the predictions were ordered in
ascending order depending on the value of the distinguisher, as described above.
In the second, the predictions were sorted in descending order of the values of the
distinguisher. Both ways are described in Figure 6.

Other indicators Other values that could serve as indicators of the confidence of
the network were studied including variance, entropy, the distance between the most
probable classes and the distance between the maximum and the minimum, to name
a few of the most important ones. Details are not given on each as they all showed
some potential but were not as efficient as the median or the minimum.

The following section presents the empirical results of orderings computed using
the median and the minimum.

4.2 Experimental results on neural networks
As mentioned in the introduction, the goal of this work is to study the effect of the
new attack method in a context where access to new traces and the training and
tuning of the models are limited. This means that the model is trained using a fixed
number of traces for a fixed number of epochs and the resulting network is used for
all the attacks. This context explores in particular a situation where the attacker has
limited access to attack traces but still tries to improve the results of the attack.

4.2.1 Description of the databases and the neural network used
Databases The experimental results presented in this work were mostly obtained
using the ASCAD1 [BPS+19] database to train and test the networks. This database
was created by the French cybersecurity agency (ANSSI) with the aim of giving
researchers in this field a common starting point to train different architectures and
compare their results. The experiments reported in this section were based on the
fixed key database, called ASCAD fixed key, for which all the traces were acquired
using the same encryption key. This set is composed of 60, 000 power consumption
traces obtained with a AVR ATMega8515 8-bit microcontroller running an AES
algorithm secured against first order attacks, i.e. including a first order masking
countermeasure.

The traces were split into two subsets: the first one contains 50, 000 traces and
was used to train the networks and the second one, with the 10, 000 remaining traces,
was used as a testing set. The traces are composed of 700 points representing power
consumption over time. The points were chosen from the original 100, 000 points of
the raw traces as they contain leaking information on the third byte of the output of
the first masked SubByte operation and on the value of the corresponding mask. The
leakage model used was the identity model and the values of the labels Y associated
with each trace were obtained as follows:

Y (k∗) = SubBytes(p[3] ⊕ k∗[3]),

where p represents the input plaintext of the algorithm and k∗ is the encryption key.
Therefore the output of the neural networks is a probability distribution over the 256
possible values of the output of the unmasked SubByte operation.

1https://github.com/ANSSI-FR/ASCAD

https://github.com/ANSSI-FR/ASCAD

Damien Robissout, Lilian Bossuet and Amaury Habrard 11

Figure 6: Example of the use of distinguishers (minimum or median) to order predictions
of the different classes.

12 Scoring the predictions: a way to improve profiling side-channel attacks

The experiments were also performed on a variant of this dataset, called ASCAD
variable key, for which the training traces were acquired using random encryption
keys. This dataset is composed of 200, 000 traces for the training and 100, 000 traces
for testing and the traces are composed of 1, 400 points.

Furthermore, the databases each have 3 variants depending on the amount of
desynchronization in the traces. Desynchronization is a common countermeasure
present in the traces that aims to decorrelate the operations of the encryption
algorithm from specific time points. This results in power consumption traces in
which the same point does not correspond to the same operation and therefore does
not contain the same information. The model of desynchronization considered here is
a temporal shift. It means that all the points of the traces are shifted by a random
amount. The variants are called Desync0, Desync50 and Desync100 where the number
represents the maximum shift possible for the traces of those sets.

Network The network used for the experiments is the convolutional neural network
CNNbest introduced in the work setting up the ASCAD database [BPS+19]. CNNbest
is the best result obtained from a hyperparameter search. It is composed of 5
convolution layers followed by two fully-connected layers, all using the ReLU activation
function. The convolution filters are of size 11 and their quantity doubles after each
layer, starting from 64 and reaches a maximum of 512. Average pooling was used
after each convolutional layer to reduce the increase in the dimension of the data.
Training was done with the Categorical Cross-Entropy loss function and the RMSprop
optimizer with a learning rate of 10−5. The network was trained on the dataset
Desync0 for 75 epochs and then evaluated on the test sets of the different variants.

4.2.2 Experiments using the ASCAD fixed key
The CNNbest neural network was used to start studying the behavior of the attacks
by targeting the database ASCAD. The curves included in this section represent
the evolution of the mean rank of the correct key computed from 100 attacks using
random traces selected among the 10, 000 traces that comprise the test set. The goal
here is to compare the evolution of the mean rank when the order of the traces is
random or when the order is based on one of the indicators discussed in the previous
section.

Desync0 Figure 7 represents the mean rank of attacks using the minimum and
the median as indicators and an ascending order. The attacks were performed on
synchronized traces from Desync0, which explains why they all succeeded using less
than 1, 000 traces. As explained previously, in this case, using ordering when the
rank already converges to 1 does not lead to improvement. This is the worst case
mentioned in Section 3.3 but it had no impact on the result since the attack was
successful. However, the effect of the order is still noticeable as the curves representing
the uses of the minimum and the median converge faster than the curves representing
random ordering.

Desync50 The following tests were conducted using a more difficult dataset for
the network, the variant Desync50. The network, which was trained on synchronized
traces, was applied to desynchronized traces the network had never seen before, thus
making the attacks more difficult for the network.

The tests on Desync50 were done using 5, 000 traces for the attacks, in order
to observe how the behavior changed when more traces were used. Figure 8 shows
the evolution of the average rank of attacks using random ordering or descending
ordering based on the median and the minimum. As previously, the use of the median
produced slightly better results than the minimum with a rank of 1 reached after
a few thousands traces while the final rank was 3. This suggests that the correct
key can be retrieved directly using this attack method, unlike using the classical
method, as long as one is capable of choosing the correct number of traces to use.

Damien Robissout, Lilian Bossuet and Amaury Habrard 13

Number of attack traces

A
ve

ra
ge

 r
an

k
of

 th
e

co
rr

ec
t k

ey

Rank using random ordering
Rank using ordering based on the minimum

(a) Minimum

Number of attack traces

A
ve

ra
ge

 r
an

k
of

 th
e

co
rr

ec
t k

ey

Rank using random ordering
Rank using ordering based on the median

(b) Median

Figure 7: Evolution of the average rank of the correct key for attacks using random
ordering and ascending ordering based on a distinguisher (minimum and median) of the
predictions of the network CNNbest on the database ASCAD fixed key and the Desync0
dataset.

Number of attack traces

A
ve

ra
ge

 r
an

k
of

 th
e

co
rr

ec
t k

ey

Rank using random ordering
Rank using ordering based on the minimum

(a) Minimum
Number of attack traces

A
ve

ra
ge

 r
an

k
of

 th
e

co
rr

ec
t k

ey

Rank using random ordering
Rank using ordering based on the median

(b) Median

Figure 8: Evolution of the average rank of the correct key for attacks using random
ordering and descending ordering based on a distinguisher (minimum and median) of the
predictions of the network CNNbest on the database ASCAD fixed key and the Desync50
dataset.

The following tests were conducted on the variant Desync100 to further increase the
difficulty of the attacks.

Desync100 Like the behavior observed with the variant Desync50, the descending
ordering had to be used to obtain the best results. Figure 9 shows the results of
attacks using 5, 000 traces. As previously, the evolution of curves of the descending
ordered attacks began by converging toward the value 1 before reaching the minimum
rank and then increased toward the final rank. The minimum for the average rank
attained using a descending ordering based on the minimum was 2 and the one
based on the median was 3. The correct key byte was thus almost retrieved, whereas
the final rank was on average 50 which is significantly worse. The following section
continues with a description of the experiments conducted using a different dataset
ASCAD variable key.

4.2.3 ASCAD variable key

The following experiments were performed using the dataset ASCAD variable key.
The network was the same one as before, CNNbest, and it was still trained on 50, 000
synchronized traces for 75 epochs. The curves in the figures represent the evolution
of the average rank computed from 100 attacks using random traces taken from the

14 Scoring the predictions: a way to improve profiling side-channel attacks

Rank using ordering based on the minimum

Number of attack traces

A
ve

ra
ge

 r
an

k
of

 th
e

co
rr

ec
t k

ey

Rank using random ordering

(a) Minimum
Number of attack traces

A
ve

ra
ge

 r
an

k
of

 th
e

co
rr

ec
t k

ey

Rank using random ordering
Rank using ordering based on the median

(b) Median

Figure 9: Evolution of the average rank of the correct key for attacks using random
ordering and descending ordering based on a distinguisher (minimum and median) of
the predictions of the network CNNbest using the database ASCAD fixed key and the
Desync50 dataset.

Number of attack traces

A
ve

ra
ge

 r
an

k
of

 th
e

co
rr

ec
t k

ey

Rank using ordering based on the minimum
Rank using random ordering

(a) Minimum
Number of attack traces

A
ve

ra
ge

 r
an

k
of

 th
e

co
rr

ec
t k

ey

Rank using random ordering
Rank using ordering based on the median

(b) Median

Figure 10: Evolution of the average rank of the correct key for attacks using 1, 000 traces,
random ordering and ascending ordering based on a distinguisher (minimum and median)
of the predictions of the network CNNbest using the database ASCAD variable key and
the Desync0 dataset.

100, 000 attack traces. In contrast to the last results of the previous section, all the
following attacks were performed using ascending ordering.

Desync0 Figure 10 shows the evolution of the average value of the rank of the
correct key for attacks on Desync0 and ordering based on the minimum and the
median and ascending order. Figures 10a and 10b show that the minimum ranks
only resulted in a slight improvement in the final rank, with respectively minimum
and median order minimum ranks of 2.5 and 3, instead of 4 for the final rank.
However, once again, it appears that this new method of performing the attacks
makes the average ranks converge faster, thereby confirming the correct ordering of
the predictions.

These results are interesting but do not provide much valuable information since
the network is able to perform the attacks with little more than 1, 000 traces. Again,
the Desync50 and Desync100 datasets can be used to observe the impact of the
ordering more directly.

Desync50 Figure 11 shows the evolution of the average value of the rank of the
correct key for attacks using 5, 000 traces on Desync50 and either ascending ordering
based on the minimum and the median or a random ordering. The minimum rank
reached when the minimum was used for the ordering was 4.5 while the final rank

Damien Robissout, Lilian Bossuet and Amaury Habrard 15

Number of attack traces

A
ve

ra
ge

 r
an

k
of

 th
e

co
rr

ec
t k

ey

Rank using ordering based on the minimum
Rank using random ordering

(a) Minimum

0 1000 2000 3000 4000 5000
0

25

50

75

100

125

150

175

200

Number of attack traces

A
ve

ra
ge

 r
an

k
of

 th
e

co
rr

ec
t k

ey

Rank using random ordering
Rank using ordering based on the median

(b) Median

Figure 11: Evolution of the average rank of the correct key for attacks using 5, 000 traces,
random ordering and ascending ordering based on a distinguisher (minimum and median)
of the predictions of the network CNNbest using the database ASCAD variable key and
the Desync50 dataset.

Number of attack traces

A
ve

ra
ge

 r
an

k
of

 th
e

co
rr

ec
t k

ey

Rank using ordering based on the minimum
Rank using random ordering

(a) Minimum
Number of attack traces

A
ve

ra
ge

 r
an

k
of

 th
e

co
rr

ec
t k

ey

Rank using random ordering
Rank using ordering based on the median

(b) Median

Figure 12: Evolution of the average rank of the correct key for attacks using 5, 000 traces,
random ordering and descending ordering based on a distinguisher (minimum and median)
of the predictions of the network CNNbest on the database ASCAD variable key and the
Desync100 dataset.

was 7. However once again, the median did not result in any real improvement over
the normal attack apart from slightly faster convergence.

Like with Desync0, only ordering based on the minimum of the predictions led
to better results of the attack by reducing the rank of the correct key. The final
tests were done on Desync100 which is a more difficult dataset for the network than
Desync50.

Desync100 The results obtained using this dataset are shown on Figure 12 for
attacks using 5, 000 traces. The improvements obtained using these orders can be
seen in Figures 12a and 12b. In this case, the reduction of the minimal rank thanks
to ordering based on the minimum was bigger since it reached 9, down from a final
rank of 22. The number of ranks gained led to a 50% reduction in the value of the
final rank of the correct key.

This first set of experiments revealed interesting behaviors resulting from the new
way of performing the attacks. It is indeed possible to consistently reach values of
minimum ranks lower than the final rank, i.e. the rank reached when all the attack
traces are used. However, these tests have the disadvantage of using the network
CNNbest applied to datasets it was not trained on, in order to increase the difficulty
of the attacks. Although it reveals the effects of ordering the predictions, it is not the

16 Scoring the predictions: a way to improve profiling side-channel attacks

ideal context. Consequently, the next set of experiments used the classical templates
attack and this time, the templates were created using different numbers of traces to
determine the effects and improvements enabled by this new attack method in this
context.

4.3 Experimental results of the template attacks
In this section, a ChipWhisperer (XMEGA 8-bit) running an AES 128-bit was used
to acquire traces of power consumption. The traces were then centered on 1, 000
points including the first round of the AES. The profiling set was composed of 50, 000
traces using random keys while the attack set was composed of 1, 000 traces with a
fixed key. The target byte for the attacks was the 16th byte giving an intermediate
value of:

Y (k∗) = SubBytes(p[16] ⊕ k∗[16]),

where p is the plaintext and k∗ is the key used. As this AES implementation is not
protected it has high leakage rates, making it easy to recover the key. To increase
the difficulty of the attacks, a noise was added to the power consumption traces to
reduce the correlation between the intermediate value and the points of the traces.
The noise followed a Gaussian distribution N (0, 0.05) and each point of the traces
had a different noise value. Different numbers of traces in the construction of the
templates were used in the experiment to observe how the ordered attacks behave in
each case. The templates were created by using the 5 points with the highest SNR.

To reproduce the context of the attacks using neural networks, the templates were
not applied on the fly during the attacks but in a preliminary phase. The templates
of each possible intermediate value were applied to each attack trace to obtain a
set of predictions similar to the predictions of a neural network. The attacks were
performed using the predictions that were also used for the determination of the
orderings. The results shown in the next figures are averages of 100 attacks made
using 500 traces from the attack set.

Template built using 10, 000 traces Figure 13 shows the results of the attacks
made using the template built with 10, 000 traces. The ordered attacks used ascend-
ing ordering based on the minimum of the predictions of the 500 attack traces. The
average of the minimum rank obtained during the attacks was 47 when the final
rank was 77. Although the ordering improved the attack, the curve showing the
evolution of the average rank is less smooth than when the neural networks were
used, indicating that even though ordering based on the minimum produces better
results, this ordering is not optimal and a better ordering is possible.

Template built using 20, 000 traces Figure 14 shows the results of the attacks
performed with a template made of 20, 000 traces and represents the evolutions of the
average rank of the correct key when random ordering and descending ordering based
on the minimum were used. Thanks to descending ordering, the minimum of the
rank reached was 10 while the final rank was 26. This is a significant improvement,
but the shape of the curve shows the order of the traces is still not optimal. Indeed,
the evolution of the rank alternates increasing and decreasing phases. It is still able
to reach a minimum lower than the final rank but could be improved even more by
finding a better ordering.

Template built using 50, 000 traces Figure 15 shows the evolutions of the rank
for the different attack methods. Descending ordering produced an improvement
by lowering the final rank from 14 to a minimum of 7. However, the minimum rank
was reached using 480 traces, i.e. almost all the attack traces. Once again, the new
attack method produced better results but showed signs that it could be improved
even further.

Damien Robissout, Lilian Bossuet and Amaury Habrard 17

Number of attack traces

A
ve

ra
ge

 r
an

k
of

 th
e

co
rr

ec
t k

ey

Rank using ordering based on the minimum
Rank using random ordering

Figure 13: Evolution of the average rank of the correct key for template attacks using
random ordering and ascending ordering based on the minimum of the predictions from
a template created using 10, 000 traces.

Number of attack traces

A
ve

ra
ge

 r
an

k
of

 th
e

co
rr

ec
t k

ey

Rank using ordering based on the minimum
Rank using random ordering

Figure 14: Evolution of the average rank of the correct key for template attacks using
random ordering and descending ordering based on the minimum of the predictions from
a template created using 20, 000 traces.

18 Scoring the predictions: a way to improve profiling side-channel attacks

Number of attack traces

A
ve

ra
ge

 r
an

k
of

 th
e

co
rr

ec
t k

ey

Rank using ordering based on the minimum
Rank using random ordering

Figure 15: Evolution of the average rank of the correct key for template attacks using
random ordering and descending ordering based on the minimum of the predictions from
a template created using 50, 000 traces.

Interpretation of the results The results obtained with the templates are more
complex to interpret. Unlike the attacks based on the neural networks for which a
fixed architecture was used, the templates created for the attacks are more varied.
The number of traces used to generate them and the number of points of interest
considered can greatly affect the results of the attack. Another important point is that
the values the predictions can take are not bounded by a fixed interval. Therefore,
the minimum value of some predictions may turn out to be higher than all the values
of other predictions. It is thus less effective to use the minimum as a distinguisher to
order the predictions. Nevertheless, the minimum is still the value that produces the
most consistent results in the experiments conducted and still produces interesting
results

4.4 Conclusion of the first experiments

The results of the experiments reported in this section on attacks based on neural
networks and templates reveal that the new attack method based on the ordering of
the predictions can significantly improve the results of the attacks. However, these
experiments also show that the best possible order was never achieved. The different
distinguishers based on the value of the minimum and the median of the predictions
did improve the final rank but the instability of the results indicates they are not
optimal distinguishers. Consequently, the following section concentrates on a search
for a better way to order the predictions. To this end, it focuses on a set of machine
learning techniques that explores the comparison and ordering of examples and the
attribution of scores. More specifically, a neural network is trained to learn to classify
the predictions and to create orders.

Damien Robissout, Lilian Bossuet and Amaury Habrard 19

5 Using neural networks to solve the ordering prob-
lem
Even though the results based on the distinguishing values were promising, it was
not possible to clearly identify any one indicator that produces better results than
the others. We thus turned to deep learning to find a solution and to solve the task
of ordering the predictions. This was done by training a network to assign a score
to each pair (trace, prediction) in the attack set. The goal is to have a score that
indicates both the quality of a trace and its prediction.

In contrast to the use of neural networks in DLSCA, the problem here was not to
classify the traces but to order their predictions. To this end, a score was attributed
to each prediction and the predictions were then sorted according to their scores. The
distinguishers used previously managed to partially solve this problem but has certain
limitations as described in the previous experimental section. Training specific neural
networks to solve the task of ordering the predictions was thus explored. This use
of neural networks is part of the Learning to rank approach that is already widely
studied in machine learning [BSR+05, BRL06, CLL+09].

5.1 The Learning to rank approach
The Learning to rank approach in machine learning includes techniques that allow
the creation of models whose purpose is to sort data. These models are used in a
wide variety of problems ranging from recommendation systems [LMK+11, XJP+10,
CAS16] to information retrieval [WBSG10] or natural language processing [Li14].

A ranking problem can be formulated as follows:

Problem Let Q be a set of queries, E a set of entries and C a ranking of the entries
of E depending on the requests of Q: train a model Fθ(q, e) of parameters θ able to
rank an entry e ∈ E based on a request q ∈ Q.

The Learning to rank approach is mostly viewed as a supervised training problem
where the ranking of the training data corresponds to the training labels. The labels
show the relevance of the entries compared to the relevance the other entries. Most
often, the model gives a score to each entry that can then be used to determine its
relevance for a given query.

Below is a description of the whole attack problem in the form of a Learning to
rank problem. Let Ttrain be the training set, Tval the validation set and Tatt the
attack set, respectively. The first step of the attack consists in training a model
Fθ(t) that, given a trace t, is capable of outputting a prediction on the value of the
intermediate variable used in the encryption. The model is trained using Ttrain and
Tval, used for validation purposes, to be efficient on Tatt. The sets PTtrain , PTval and
PTatt correspond to the sets of predictions made by the model Fθ concerning traces
of the training, validation and attack sets respectively.

The goal of the Learning to rank approach is to train a second model F ′
θ′ (p) of

parameters θ′ that will give a score to each prediction p ∈ P according to which
prediction is most useful for the attack. Using the predictions from PTtrain and PTval ,
this new model learns to rank the predictions PTatt so that it is possible to order the
predictions in a way that is better for the attack than a random order.

The choice was made to focus on the Pairwise approach to solve the ranking
problem and to train the model. The Pairwise approach is defined as follows:

• the Pairwise approach [BSR+05, WBSG10] consists in giving the model pairs
of examples (pi, pj) for which it has to predict an order F ′

θ′ (pi, pj) = opi,pj . A
limit value l is set so that if opi,pj > l, prediction pi is considered to be more
important than prediction pj and this relation is denoted pi ▷ pj . Using this
method, it is possible to compare pairs of predictions to order the predictions
of the attack set. However, it is also possible to use the other Learning to rank
approaches by adapting the training method.

20 Scoring the predictions: a way to improve profiling side-channel attacks

Two other approaches are possible: the Pointwise and Listwise approach [CQL+07,
XLW+08]. They are discussed in more length in [ZBD+21]. The Listwise approach
seems to be most appropriate as it takes all the examples into consideration at the
same time, which is the closest methodology to side-channel analysis. However, its
main drawback is the complexity of its application, which is why we decided to focus
on the Pairwise approach. The following section describes the neural network used to
solve the Learning to rank problem.

Using a siamese network to solve the Learning to rank problem The use
of the Pairwise approach makes it possible to use siamese networks to learn how
to rank the predictions. A siamese network is made out of an architecture that is
duplicated to form two identical networks that share their weights and make parallel
predictions using different examples [BBB+93]. The results of the predictions are
then compared to produce the output of the siamese network. Siamese networks are
often used to solve tasks including object tracking [BVH+16, GFZ+17] and Learning
to rank problems [GSC+19].

Figure 16 depicts a whole siamese network. The two networks that share their
architecture and weights are shown in green. Each network takes a prediction as
an input and gives it a score. The scores are then compared and the result of the
comparison is used to compute the loss function. Afterwards, the weights of each
network are updated in the same way to keep the symmetry between the two networks.
In this application, one of the networks is kept at the end of the training to be used
on the attack prediction set to give a score to each p ∈ PTatt and hence order the
predictions for the attack.

The Pairwise approach is used to train the siamese network where pairs of
predictions are chosen randomly from the validation set PTval and given to the
network. Finally, to properly train the network, labels have to be defined for each
pair. The following section introduces and discusses several ways to choose the labels
and argues for the label that seems to be the best suited for this application.

5.2 Adaptation of the ranking loss
The ranking loss was introduced by Zaid et al. [ZBD+21] as a new loss function
dedicated to the training of neural networks used in side-channel analysis. In their
article, Zaid et al. try to answer some of the criticisms of the Categorical Cross
Entropy, concerning the fact that this loss function focuses on the value associated
with the correct label, by accounting for the position of the correct label among the
others labels. Starting from a Learning to rank problem, they create a loss function
that considers the position of the correct label in its computations and penalizes the
network more heavily when the label is not correctly placed. We first describe this
loss function before exploring how it can be adapted to the problematic at hand.

5.2.1 Description of the ranking loss
Let ck∗ and ck be the classes associated with k∗ the good key and k a key hypothesis,
the probability of the relation ck∗ ▷ ck establishing that ck∗ must be ranked higher
than ck is given by:

P r(ck∗ ▷ ck) = 1
1 + e−α(sNa (k∗)−sNa (k)) , (1)

where sNa (k) represents the score outputted by the network for key k and α is a
hyperparameter to tune. The logistic function is used in this computation because
the goal is to try to approximate the indicator function [QLL10].

This leads to the definition of the partial loss function:

lNa (ck∗ , ck) = −P̄k∗,k · log2(Pk∗,k) − (1 − P̄k∗,k) · log2(1 − Pk∗,k), (2)

with Pk∗,k = P r(ck∗ ▷ ck) and P̄k∗,k = 1
2 (1 + relk∗,k) where relk∗,k ∈ {−1, 0, 1}. This

definition is derived from the work of Burges et al. [BRL06]. It can be transformed

Damien Robissout, Lilian Bossuet and Amaury Habrard 21

Computation of the
loss function

Prediction 1

Network 1

Score 1

Weights
sharing

Comparison of the scores

Network 2

Score 2

Prediction 2

Siamese network

Figure 16: Description of a siamese network. The two networks composing it share their
weights and each receives a different input. The scores they produce are compared and
used in the loss function.

22 Scoring the predictions: a way to improve profiling side-channel attacks

into P̄k∗,k = 1 given that the key k∗ should always be ranked above every other key
hypothesis, so relk∗,k = 1 and:

lNa (ck∗ , ck) = log2

(
1 + e−α(sNa (k∗)−sNa (k))

)
. (3)

From there it is possible to define the Ranking Loss as follows:

LRkL(Fθ, T , Na) =
∑
k∈K
k ̸=k∗

(
log2

(
1 + e−α(sNa (k∗)−sNa (k))

))
. (4)

5.2.2 Adaptation to the problem of ordering the predictions

The first step is redefining the ranking problem to apply it the scoring problem. The
relation between classes ck∗ ▷ ck is no longer important, instead the relation pi ▷ pj

has to be taken into consideration as it represents the fact that prediction pi is more
important for the attack than prediction pj . To this end, the probability P r(ck∗ ▷ ck)
needs to be redefined.

In the ranking loss, the difference (sNa (k∗) − sNa (k)) is used to represent the
problem of ranking the correct key with respect to each prediction and this difference
makes it possible to approximate the indicator function. To adapt it to the problem
of ordering the predictions, the difference in Equation 1 can be replaced by (si − sj),
where si and sj represent the scores of the predictions pi and pj given by the siamese
network. The value (si − sj) corresponds to the difference that must made between
the ranking of the two predictions according to the siamese network.

These modifications lead to the following definition of the probability of the
relation pi ▷ pj :

P r(pi ▷ pj) = 1
1 + e−α·(si−sj) . (5)

The binary cross-entropy loss function can then be used as there are only two
possibilities: either prediction pi is more relevant than prediction pj or the reverse.
The following the partial loss function is obtained:

lNa (pi, pj) = −P̄pi,pj · log2(Ppi,pj) − (1 − P̄pi,pj) · log2(1 − Ppi,pj), (6)

with Ppi,pj = P r(pi ▷ pj) and P̄pi,pj = 1
2 (1 + relpi,pj) where relpi,pj ∈ {−1, 0, 1}.

Contrary to the work of Zaid et al., the value relpi,pj is no longer fixed at 1 since,
depending on the formation of the pairs, prediction pi can be less important than
prediction pj . Let ri and rj be the rank of the correct labels in predictions pi and pj .
To facilitate computation, here the ranks are computed by sorting the hypothesis in
ascending order of probability. This means that the best rank becomes 256 and the
worst 1. It follows:

• relpi,pj = 1 when ri > rj ;
• relpi,pj = 0 when ri = rj ;
• relpi,pj = −1 when ri < rj .

This requires distinguishing between the three cases and observing their respective
impacts on the loss function.

Case 1: relpi,pj = 1 This case is similar to the one of the ranking loss where
ri > rj and thus:

lNa (pi, pj) = log2

(
1 + e−α·(si−sj)

)
. (7)

There are three possibilities:

• si > sj : the scores given by the siamese network are in accordance with the
relation relpi,pj and lNa (pi, pj) ≈ 0 so the network is not penalized;

Damien Robissout, Lilian Bossuet and Amaury Habrard 23

• si = sj : the scores given by the siamese network are equal, which is not in
accordance with the relation relpi,pj . Therefore, lNa (pi, pj) = 1 so the network
is slightly penalized;

• si < sj : the scores given by the siamese network are in contradiction with the
relation relpi,pj , lNa (pi, pj) > 1 so the network is heavily penalized;

Case 2: relpi,pj = 0 In this case, the ordering of the two predictions should be
similar so the network should only be penalized when the scores differ. P̄k∗,k = 1

2
thus:

lNa (pi, pj) = − 1
2 log2(Ppi,pj) − 1

2 log2(1 − Ppi,pj)

= − 1
2 log2(1

1 + e−α·(si−sj)) − 1
2 log2(1 − 1

1 + e−α·(si−sj))

= − 1
2

(
− log2(1 + e−α·(si−sj))

+ log2

(
e−α·(si−sj)

1 + e−α·(si−sj)

))
= − 1

2

(
− log2(1 + e−α·(si−sj))

+ log2
(
e−α·(si−sj)) − log2

(
1 + e−α·(si−sj)))

= − 1
2

(
− 2log2(1 + e−α·(si−sj)) + log2

(
e−α·(si−sj)))

The value of lNa (pi, pj) depends on the difference (si − sj):

• If si > sj , then lNa (pi, pj) > 1. The network is penalized, since it predicted
incorrect scores;

• If si = sj , then lNa (pi, pj) = 1. The network is slightly penalized but much less
than the other situations;

• If si < sj , then lNa (pi, pj) > 1 and once again, the network is heavily penalized.

Case 3: relpi,pj = −1 This last case represents the pairs where the correct label
of pi is ranked lower than the correct label of pj , i.e. ri < rj . Therefore, when the
network attributes a score si greater than sj , it has to be penalized. This time,
P̄k∗,k = 0 thus:

lNa (pi, pj) = − log2(1 − Ppi,pj)

= − log2(1 − 1
1 + e−α·(si−sj))

= − log2

(
e−α·(si−sj)

1 + e−α·(si−sj)

)
= − log2

(
e−α·(si−sj)) + log2

(
1 + e−α·(si−sj))

In this case, the possibilities are:

• If si > sj , then lNa (pi, pj) > 1. The network makes a mistake by giving more
importance to the prediction pi, consequently, it has to be penalized;

• If si = sj , then lNa (pi, pj) = 1. The network is slightly penalized;

• If si < sj , then lNa (pi, pj) ≈ 0. The network correctly predicted the order of
the predictions and is thus not penalized.

24 Scoring the predictions: a way to improve profiling side-channel attacks

5.2.3 Equivalence to the case 1
This section explains how to carefully modify the loss function to reduce to cases
2 and 3 to case 1. To do so, the term (ri − rj) is added in the computation of the
partial loss function. Equation 7 becomes:

lNa (pi, pj) = log2

(
1 + e−α·(ri−rj)·(si−sj)

)
. (8)

In this way, the relation relpi,pj is directly included in the computation of the loss
function.

This addition also preserves the characteristics of the three cases mentioned above.
The conditions for penalization of the network are the following:

• Either (ri − rj) = 0 or (si − sj) = 0 hence lNa (pi, pj) = 1. The network is
slightly penalized;

• Either (ri − rj) · (si − sj) < 0 hence lNa (pi, pj) > 1. This time the signs of the
differences are opposed, the scores of the siamese network contradict the order
provided by the ranks, so it is heavily penalized;

• Either (ri − rj) · (si − sj) > 0 hence lNa (pi, pj) < 1, the signs of the two terms
are equal, indicating that the score predicted by the siamese network correctly
orders the predictions so the network is not penalized.

Remark The case (ri − rj) = (si − sj) = 0 is marginal, therefore the slight
penalization that occurs even if the network is correct does not impact the training.

5.3 Conclusion
Now the partial loss function has been defined, it can be used to define the loss
function linked to the scores: the Scoring Loss.
Definition 1. Let Fθ be a model with parameters θ and P be the set of predictions
of the traces of T by this model, the loss function Scoring Loss is defined by:

LScL(Fθ, P) =
∑

pi,pj ∈P
i ̸=j

(
log2

(
1 + e−α·(ri−rj)·(si−sj)

))
, (9)

where ri represents the rank of the correct label of the trace i in prediction pi and si

is the score given to prediction pi by the siamese network.
The following section focuses on finding an appropriate architecture for the siamese

network and training it using the Scoring Loss to see if it is able to find orders of the
predictions that are useful for the attacks.

6 Experimental results using the Scoring Loss
Once again, the experiments presented in this section were performed in a fixed
context where the adversary has limited access to the attack traces and the network
training and architecture are fixed. The first step in testing the Scoring Loss is
defining the architecture of the network which is then duplicated in the siamese
network in order to obtain the two scores to compare. Once training is complete, one
network is extracted and used to predict the scores of the predictions of the attack
traces. The order used to sort the predictions using the score is always descending,
as this order is specified in the design of the Scoring Loss.

Description of the attack method Figure 17 describes the new way to perform
attacks using the siamese network. The first steps up to the recovery of the prediction
of the attack traces by the neural network are the same. The siamese network, which
was trained using the predictions of the validation set, is then used to give a score to
each prediction of the attack set. This makes it possible to order the predictions that
can be used during the attack to improve the minimum rank of the correct key.

Damien Robissout, Lilian Bossuet and Amaury Habrard 25

Set of attack
traces

Set of attack
predictions Attack

Neural
Network

Siamese
Network

Ordering of
the predictions

Figure 17: The steps of the new attack method using the siamese network to determine
the order of the predictions.

Description of the network As the problem of scoring predictions is easier than
predicting the intermediate value used during an AES encryption, the complexity of
the network can be reduced. Moreover, the new network takes as input the predictions
made by the initial convolutional neural network whose values are not deeply connected
among themselves. Consequently, it is not necessary to use another convolutional
neural network, which is why an MLP (MultiLayer Perceptron) composed of two
layers of 1, 024 neurons is used in the siamese network. The layers used the activation
function ReLU and the output of the network is a single neuron responsible for giving
a score to the input prediction via a linear activation function. The full architecture
of this network can be found in Table 3. The network uses the Adam optimizer
[KB17] with a learning rate of 0.001. The Scoring Loss uses a base value of α = 0.1
and the base number of epochs of the training is 10. The impact of the α value on
the training is discussed by Zaid et al. in [ZBD+21].

Description of the training The training of the siamese network comprises the
following steps. First, if there are enough, the predictions of the validation traces
are used as the training set for the siamese network. If there are not enough, the
predictions from the training traces can be used. So far, it is not clear which of the
two sets, (i.e. the training or the validation set), is the best to use to train the siamese
network. On the one hand, the predictions of the validation traces are closer to the
predictions of the attack traces, which enables better generalization. On the other
hand, using the predictions of the training traces allows the network to distinguish
the good predictions from the bad ones as almost all the predictions from the training
traces can be considered as good. This is because the network used to obtain the
predictions is able to predict the training traces more accurately than the validation
traces.

The second step is to create random pairs of predictions that are then used to
train the siamese network. The number of pairs used will vary depending on the
dataset and on the quantity of available predictions. The pairs are given to the
siamese network and each prediction gets a score. The sign of the difference in the
scores indicates which prediction is judged the best by the siamese network. Finally,
the Scoring Loss penalizes the network depending on how it ordinates the predictions.

The following results were obtained using this methodology to train the siamese
network and to order the attack predictions before the attacks.

6.1 ASCAD fixed key
The first experiments were performed using the dataset ASCAD fixed key with the
CNNbest neural network trained on the Desync0 dataset for 75 epochs. The curves
presented in this section represent the evolution of the average rank of the correct key
obtained during attacks using traces chosen randomly among the 10, 000 traces of the
attack set. The attacks using 1, 000 traces were repeated 900 times to smooth out
the curve of the average, and the attacks using 5000 traces were repeated 100 times.

Desync0 Figure 18 shows the results of attacks against Desync0. These attacks
used either an ascending order based on the minimum value of the predictions or an
order based on the score of the predictions given by the siamese network. In this case,
where the attacks were against synchronized traces, both orders produced similar
results. The attacks were successful with fewer than 1, 000 traces which does not

26 Scoring the predictions: a way to improve profiling side-channel attacks

Number of attack traces

A
ve

ra
ge

 r
an

k
of

 th
e

co
rr

ec
t k

ey

Rank using ordering based on the minimum
Rank using ordering based on the score

Figure 18: Evolution of the average rank of the correct key for attacks using a score order
and an ascending order based on the minimum of the predictions of the CNNbest network
on the database ASCAD fixed key and the Desync0 dataset.

leave room for real improvement. However, it should be noted that the convergence
of the two average ranks is similar, showing that in this case, the siamese network is
able to come up with an order that is as good as the minimum.

Desync50 The following results were obtained using attacks against the Desync50
dataset to increase the difficulty. The siamese network was the same as before, the
only difference being that the value of α in the Scoring Loss is set to α = 0.001 to
guarantee efficient training.

Figure 19 shows the results of attacks in ascending order based on the minimum
of the predictions and on an order based on the scores of the predictions for attacks
using 5, 000 traces. The results show that ordering based on the scores ranks the attack
predictions more efficiently. The final rank was on average 4.5 while the minimal
average ranks were 1.8 and 1.6 when orders based on, respectively, the minimum and
the score were used. This small difference can be explained by the fact that when
5, 000 traces were used, the attacks were almost successful, leaving little room for
improvement. However, the evolution of the average rank using ordering based on the
score converged much faster than using ordering based on the minimum, implying
that it is better able to differentiate between correct and incorrect predictions.

Desync100 The attacks discussed now were performed on the Desync100 dataset
from the ASCAD fixed key database. The architecture of the siamese network
remained the same but the number of training epochs became 5 and the value of α
was lowered to 0.0001.

Figure 20 shows the results of the attacks against Desync100 using 5, 000 traces.
The final rank value was 51 but the minimum rank reached using the orderings was
2. Looking at the shape of the curves, it appears that when ordering was based on
the score, the curve representing the evolution of the average rank of the correct
key converged faster toward a minimum value than when ordering was based on the
minimum. This shows that ordering based on the score places the most interesting
predictions in better positions than other ways of ordering.

Damien Robissout, Lilian Bossuet and Amaury Habrard 27

Number of attack traces

A
ve

ra
ge

 r
an

k
of

 th
e

co
rr

ec
t k

ey

Rank using ordering based on the minimum
Rank using ordering based on the score

Figure 19: Evolution of the average rank of the correct key for attacks using a score order
and a descending order based on the minimum of the predictions of the CNNbest network
on the database ASCAD fixed key and the Desync50 dataset.

In addition to the potential improvements obtained using this new attack method,
these results confirm the interest of using neural networks to score the predictions.
The results of the final experiments on ASCAD variable key are presented in the
following section.

6.2 ASCAD variable key
Like the experiments described in Section 4.2, the following attacks were performed
using the ASCAD variable key database and its subsets: Desync0, Desync50 and
Desync100. The network CNNbest was again trained using 50, 000 traces out of
the 200, 000 traces in the training dataset while 150, 000 traces were kept for the
validation set. This time, the siamese network was only trained using the predictions
originating from the validation dataset; 100, 000 training pairs were generated from
50, 000 predictions of validation traces. The siamese network was trained for 10
epochs using a value α = 0.1 for the loss function. Since the attack dataset was also
larger, all the following curves were obtained by averaging the results of 900 attacks
done with either 1, 000 or 5, 000 traces.

Desync0 Figure 21 shows the evolution of the average ranks for attacks using either
the minimum or the score to order the predictions. Like for ASCAD fixed key, the
results of the attacks against Desync0 were very similar. The final rank was around 3
while the minima were around 2. Convergence was also similar for both orderings in
this case.

Desync50 The results of ordering of the predictions on Desync50 are shown in
Figure 22. The evolution of the average rank using ordering based on the score
reached a minimum value of 1.5 while the other minimum was 4.5 and the final rank
was 7.5. This time too, ordering based on the score led to faster convergence of the
curve and also to a lower minimum value for the rank. This once again shows that
the score is able to distinguish the correct and incorrect predictions more efficiently
than the minimum.

28 Scoring the predictions: a way to improve profiling side-channel attacks

Number of attack traces

A
ve

ra
ge

 r
an

k
of

 th
e

co
rr

ec
t k

ey

Rank using ordering based on the minimum
Rank using ordering based on the score

Figure 20: Evolution of the average rank of the correct key for attacks using a score order
and a descending order based on the minimum of the predictions of the CNNbest network
on the database ASCAD fixed key and the Desync100 dataset.

A
ve

ra
ge

 r
an

k
of

 th
e

co
rr

ec
t k

ey

Number of attack traces

Rank using ordering based on the minimum
Rank using ordering based on the score

Figure 21: Evolution of the average rank of the correct key for attacks using a score order
and an ascending order based on the minimum of the predictions of the CNNbest network
on the database ASCAD variable key and the Desync0 dataset.

Damien Robissout, Lilian Bossuet and Amaury Habrard 29

Number of attack traces

Rank using ordering based on the score

A
ve

ra
ge

 r
an

k
of

 th
e

co
rr

ec
t k

ey

Rank using ordering based on the minimum

Figure 22: Evolution of the average rank of the correct key for attacks using a score order
and a descending order based on the minimum of the predictions of the CNNbest network
on the database ASCAD variable key and the Desync50 dataset.

Desync100 Figure 23 shows the evolution of the average ranks of the correct key
for attacks against Desync100 when using ordering based on the minimum and the
score. When 5, 000 traces were used for the attacks, the minimum ranks reached
using ordering based on the minimum and the score were respectively 14 and 3, while
the final rank was 25. The improvement made using the score was bigger than the
improvement obtained with the Desync50 dataset and made it possible to reduce the
average rank of the correct key by almost 90%.

6.3 Conclusion on the experiments
All the experiments performed on the ASCAD datasets showed a clear advantage of
using the score of the predictions to order them. On the one hand, the scores given
by the siamese network always produced better results when the descending order
was used thanks to the design of the Scoring Loss. On the other hand, ordering based
on the score led to even bigger improvements with the new attack method. We also
want to mention that tests were done with other neural network architectures used
in the literature such as the ones from [ZBHV20] but since the networks are already
recovering the key in just a few traces, the new attack method did not bring any
improvements.

Table 1 summarizes the results of the different tests done on both the ASCAD
databases. The use of the score to order the predictions and to perform the attacks
following the new method described in this article always improved the minimum
rank when this was possible, i.e. when the attack was not already successful. In the
best scenarios, it allowed the final rank to be reduced by around 90% and almost
enabled recovery of the key.

Another advantage of using the score to order the predictions is the potential
it has for determining the best number of traces to use when performing ordered
attacks. Indeed, the best leads to answer this question came from the study of the
values of the scores given by the siamese network. For example, the validation set
could be used to set a threshold under which the predictions are discarded. Even if
such a threshold is not the most accurate, it would still result in an improvement over

30 Scoring the predictions: a way to improve profiling side-channel attacks

Number of attack traces

A
ve

ra
ge

 r
an

k
of

 th
e

co
rr

ec
t k

ey

Rank using ordering based on the minimum
Rank using ordering based on the score

Figure 23: Evolution of the average rank of the correct key for attacks using a score order
and a descending order based on the minimum of the predictions of the CNNbest network
on the database ASCAD variable key and the Desync100 dataset.

a classical attack, as mentioned in Remark 2 in Section 3.3. The same method could
also be applied to the other means of ordering the predictions such as the values of
minimum or the median. Another possible lead to follow could be to check for biases
in the predictions of the validation set, more specifically if some specific intermediate
values are predicted more accurately than others. If true, it would be possible to
perform the attack only using these traces and look for improvements. Finally, we
wanted to mention that, in this work, we focused on the predictions as a mean to
order the traces and identify the best subset to use but one could also look at the
traces themselves in order to find some information or biases that could lead to better
attack results.

Finally, even though the attacks presented here were performed in a fixed context,
one would expect that, if the adversary was able to obtain more attack traces, the
new attack method would still produce better results than the classical one. The use
of ordering would act as a filter for the new traces and make it possible to use the
best new prediction early in the attack, which would lower the rank even further.

7 Conclusion
With the popularization of the use of machine learning algorithms to perform side-
channel analysis, many techniques originating from the machine learning field have
been used to improve the results of those new attacks. This article reports on a
different approach. It asks a more fundamental question about the way side-channel
attacks are performed and tries to answer the question using different methods. This
new problem focuses on the way profiling attacks consider the traces they use and
their corresponding predictions. Whereas before, the traces were chosen randomly
to accumulate the information and retrieve the key, this article shows that not all
traces contribute to the success of the attacks. This fact makes it possible to redefine
profiling attacks by adding a new step that establishes the order in which the traces
and their predictions are to be used. In addition, it defines two different cases for
an attack: the worst case scenario, where the traces are used in random order and

Damien Robissout, Lilian Bossuet and Amaury Habrard 31

Table 1: Summary of the result on CNNbest in terms of reduction of the minimal rank
over the final rank depending on the method used to order the predictions (minimum or
score), the dataset and the number of traces used. Numbers in bold show the best results.

Dataset Desync Number
of traces

Min. val. of
the rank using the

min/Reduction
over the final rank

Min. val. of
the rank using the
score/Reduction

over the final rank

Final rank

ASCAD
fixed key

0 1000 1
-

1
- 1

50 1000 21
-40%

16
-54% 35

5000 1.8
-60%

1.6
-64% 4.5

100 1000 33
-61%

23
-73% 85

5000 2
-96%

2
-96% 51

ASCAD
variable key

0 1000 1
-

1
- 1

50 1000 41
-8%

24
-46% 45

5000 4.5
-40%

1.5
-80% 7.5

100 1000 59
-13%

34
-50% 68

5000 14
-44%

3
-88% 25

only the final rank is considered, and the best case scenario, where the best order is
chosen and the number of traces used in the attack is restricted, which leads to a
lower minimum rank than the final rank. In this article, different ways of ordering
the traces are explored and enable a reduction in the minimum rank of the correct
key during the attack. By defining a new loss function based on the Learning to
Rank approach from machine learning, the article shows that it is possible to train a
neural network to score the predictions and use this score to order the traces. This
method of ordering the predictions yields the best results as the minimum rank is an
improvement on the final rank in all the scenarios considered and even reduces the
final rank by up to 90%.

However, some important problems remain and pose interesting challenges for
future work. For example, the search for better architectures for the scoring network
to be able to obtain better orders. It is also important to note that the work reported
in this article is theoretical as no real attacks were performed and the results represent
an evaluation of the new method proposed. As such, an interesting research problem
would be to study the combination of the present results and those reported in
[APSV20].

32 Scoring the predictions: a way to improve profiling side-channel attacks

A Networks

Table 2: Network hyperparameters for CNNbest [BPS+19]
Layer type Hyperparameters
Trace input 700 or 1400

Convolution 1D

Filter = 64,
Filter length = 11,
Padding = Same,

Activation = ReLU
Average Pooling Pool length = 2

Convolution 1D

Filter = 128,
Filter length = 11,
Padding = Same,

Activation = ReLU
Average Pooling Pool length = 2

Convolution 1D

Filter = 256,
Filter length = 11,
Padding = Same,

Activation = ReLU
Average Pooling Pool length = 2

Convolution 1D

Filter = 512,
Filter length = 11,
Padding = Same,

Activation = ReLU
Average Pooling Pool length = 2

Convolution 1D

Filter = 512,
Filter length = 11,
Padding = Same,

Activation = ReLU
Average Pooling Pool length = 2

Flatten -
Fully-connected Neurons = 4096
Fully-connected Neurons = 4096

Output Softmax: 256 classes

Damien Robissout, Lilian Bossuet and Amaury Habrard 33

Table 3: Hyperparameters of the siamese network.
Layer Hyperparameters

Input prediction Size : 256

Fully-connected Number of neurons = 1024,
Activation = ReLU

Fully-connected Number of neurons = 1024,
Activation = ReLU

Output Linear : 1 score value

References
[AGF22] Rabin Y. Acharya, Fatemeh Ganji, and Domenic Forte. Information

theory-based evolution of neural networks for side-channel analysis.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
2023(1):401–437, Nov. 2022.

[APSV20] Melissa Azouaoui, Romain Poussier, François-Xavier Standaert, and Vin-
cent Verneuil. Key enumeration from the adversarial viewpoint. In
Sonia Belaïd and Tim Güneysu, editors, Smart Card Research and Ad-
vanced Applications, pages 252–267, Cham, 2020. Springer International
Publishing.

[BBB+93] Jane Bromley, James W Bentz, Léon Bottou, Isabelle Guyon, Yann LeCun,
Cliff Moore, Eduard Säckinger, and Roopak Shah. Signature verification
using a “siamese” time delay neural network. International Journal of
Pattern Recognition and Artificial Intelligence, 7(04):669–688, 1993.

[BPS+19] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and
Cécile Dumas. Deep learning for side-channel analysis and introduction
to ascad database. Journal of Cryptographic Engineering, 10:163–188,
2019.

[BRL06] Christopher Burges, Robert Ragno, and Quoc Le. Learning to rank with
nonsmooth cost functions. Advances in neural information processing
systems, 19:193–200, 2006.

[BSR+05] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole
Hamilton, and Greg Hullender. Learning to rank using gradient descent.
In Proceedings of the 22nd international conference on Machine learning,
pages 89–96, 2005.

[BVH+16] Luca Bertinetto, Jack Valmadre, João F. Henriques, Andrea Vedaldi, and
Philip H. S. Torr. Fully-convolutional siamese networks for object tracking.
In Gang Hua and Hervé Jégou, editors, Computer Vision – ECCV 2016
Workshops, pages 850–865, Cham, 2016. Springer International Publishing.

[CAS16] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for
youtube recommendations. In Proceedings of the 10th ACM Conference
on Recommender Systems, RecSys ’16, page 191–198. Association for
Computing Machinery, 2016.

[CLL+09] Wei Chen, Tie-Yan Liu, Yanyan Lan, Zhi-Ming Ma, and Hang Li. Ranking
measures and loss functions in learning to rank. Advances in Neural
Information Processing Systems, 22:315–323, 2009.

[CQL+07] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning
to rank: from pairwise approach to listwise approach. In Proceedings of
the 24th international conference on Machine learning, pages 129–136,
2007.

[CRR03] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks.
In Cryptographic Hardware and Embedded Systems - CHES 2002, pages
13–28, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

34 Scoring the predictions: a way to improve profiling side-channel attacks

[GFZ+17] Qing Guo, Wei Feng, Ce Zhou, Rui Huang, Liang Wan, and Song Wang.
Learning dynamic siamese network for visual object tracking. In Pro-
ceedings of the IEEE international conference on computer vision, pages
1763–1771, 2017.

[GSC+19] Martin Gleize, Eyal Shnarch, Leshem Choshen, Lena Dankin, Guy
Moshkowich, Ranit Aharonov, and Noam Slonim. Are you convinced?
choosing the more convincing evidence with a siamese network. arXiv
preprint arXiv:1907.08971, 2019.

[HHO20] Anh-Tuan Hoang, Neil Hanley, and Maire O’Neill. Plaintext: A missing
feature for enhancing the power of deep learning in side-channel analysis?
breaking multiple layers of side-channel countermeasures. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems, 2020(4):49–85,
Aug. 2020.

[KB17] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization, 2017.

[Li14] Hang Li. Learning to rank for information retrieval and natural language
processing. Synthesis lectures on human language technologies, 7(3):1–121,
2014.

[LMK+11] Yuanhua Lv, Taesup Moon, Pranam Kolari, Zhaohui Zheng, Xuanhui
Wang, and Yi Chang. Learning to model relatedness for news recommen-
dation. In Proceedings of the 20th international conference on World wide
web, pages 57–66, 2011.

[QLL10] Tao Qin, Tie-Yan Liu, and Hang Li. A general approximation framework
for direct optimization of information retrieval measures. Information
retrieval, 13(4):375–397, 2010.

[RBHG21] Damien Robissout, Lilian Bossuet, Amaury Habrard, and Vincent Grosso.
Improving deep learning networks for profiled side-channel analysis using
performance improvement techniques. J. Emerg. Technol. Comput. Syst.,
17(3), June 2021.

[SMY09] François-Xavier Standaert, Tal G. Malkin, and Moti Yung. A unified
framework for the analysis of side-channel key recovery attacks. In Antoine
Joux, editor, Advances in Cryptology - EUROCRYPT 2009, pages 443–461,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[WBSG10] Qiang Wu, Christopher JC Burges, Krysta M Svore, and Jianfeng Gao.
Adapting boosting for information retrieval measures. Information Re-
trieval, 13(3):254–270, 2010.

[XJP+10] Biao Xiang, Daxin Jiang, Jian Pei, Xiaohui Sun, Enhong Chen, and Hang
Li. Context-aware ranking in web search. In Proceedings of the 33rd
international ACM SIGIR conference on Research and development in
information retrieval, pages 451–458, 2010.

[XLW+08] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. Listwise
approach to learning to rank: theory and algorithm. In Proceedings of
the 25th international conference on Machine learning, pages 1192–1199,
2008.

[ZBD+21] Gabriel Zaid, Lilian Bossuet, François Dassance, Amaury Habrard, and
Alexandre Venelli. Ranking loss: Maximizing the success rate in deep
learning side-channel analysis. IACR Transactions on Cryptographic
Hardware and Embedded Systems, pages 25–55, 2021.

[ZBHV20] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre
Venelli. Methodology for efficient cnn architectures in profiling attacks.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
2020(1):1–36, 2020.

	Introduction
	Preliminaries and notations
	Profiling side-channel analysis

	Introduction to the problem
	Discussion of the problem
	 Modification of the classical attack scheme
	Formalization of the problem

	Study of the confidence of the models
	Some methods to distinguish the quality of the predictions
	Experimental results on neural networks
	Experimental results of the template attacks
	Conclusion of the first experiments

	Using neural networks to solve the ordering problem
	The Learning to rank approach
	Adaptation of the ranking loss
	Conclusion

	Experimental results using the Scoring Loss
	ASCAD fixed key
	ASCAD variable key
	Conclusion on the experiments

	Conclusion
	Networks

