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ABSTRACT
Analyzing user data while protecting the privacy of individuals

remains a big challenge. Trusted execution environments (TEEs)

are a possible solution as they protect processes and Virtual Ma-

chines (VMs) against malicious hosts. However, TEEs can leak ac-

cess patterns to code and to the data being processed. Furthermore,

when data is stored in a TEE database, the data volume required to

answer a query is another unwanted side channel that contains sen-

sitive information. Both types of information leaks, access patterns

and volume patterns, allow for database reconstruction attacks.

In this paper, we present Menhir, an oblivious TEE database that

hides access patterns with ORAM guarantees and volume patterns

through differential privacy. The database allows range and point

queries with SQL-like WHERE-clauses. It builds on the state-of-the-

art oblivious AVL tree construction Oblix (S&P’18), which by itself

does not protect against volume leakage. We show how volume

leakage can be exploited in range queries and improve the construc-

tion to mitigate this type of attack. We prove the correctness and

obliviousness of Menhir. Our evaluation shows that our approach

is feasible and scales well with the number of rows and columns in

the database.
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1 INTRODUCTION
In 2020, Google published statistics on the impact of the COVID-19

pandemic on usermobility to assist the public inmitigating the virus

spread. Such studies require large amounts of authentic data [3].

For this purpose, the mobility study relied on data from Google

users. By using state-of-the-art differential privacy (DP) mecha-

nisms, the privacy of individuals is protected in published statistics.

Despite the resulting limitations on accuracy, the mobility study

has found widespread use in epidemiological modeling [13, 54], en-

vironmental research [37], policy [4], public health [24], and urban

planning [25]. While differential privacy safeguards user privacy

in public statistics, the underlying data is often stored centrally.

Although this is convenient, it facilitates data breaches [47], which

can in turn reduce users’ willingness to share data [22, 23].

To ensure privacy, even in the face of data breaches, hardware

and software solutions can complement legal measures. Trusted ex-

ecution environments (TEEs), such as Intel TDX [26], Intel SGX [16],

or AMD SEV-SNP [5], are technical approaches that protect pro-

cesses or virtual machines from malicious hosts in the cloud. How-

ever, TEEs rely on the host for paging, which exposes access pat-

terns and control flow [44]. While Oblivious RAM (ORAM) can hide

access patterns, running an unpatched ORAM client inside a TEE

is insufficient as it leaks control flow information. Oblivious data

structures like oblivious AVL trees build on ORAM properties and

allow the storage and query of data in a systematic fashion [42, 56].

In this case, query-specific data volume patterns are an additional

threat to privacy [31, 33, 36]. Hiding volume patterns is an open

challenge in this setting.

In this work, we present Menhir, a privacy-preserving TEE data-

base. It protects against access pattern leakage and volume pattern

leakage in a server-only data collection setting. By employing TEE

remote attestation, data subjects participating in crowd-sourcing

or data donation campaigns can rely on privacy guarantees against

compromised data analysts. They can also be sure that no private

data is leaked to the server provider.

https://doi.org/10.1145/3634737.3657005
https://doi.org/10.1145/3634737.3657005
https://doi.org/10.1145/3634737.3657005
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Menhir requires a server with a TEE such as Intel TDX or AMD

SEV-SNP with remote attestation and, depending on the number of

columns, at least 2.0 GB of RAM for 2
20

data points. The approach

can also be applied to other TEEs such as Intel SGX. Our evaluation

shows that insertion operations to the oblivious database are fast

and take around 0.01 ms even on a database with 2
24

data points.

Menhir allows storing data points with multiple columns in com-

bination with an additional unindexed file with very little impact on

query performance. This makes Menhir well suited for crowdsourc-

ing applications such as the aforementioned mobility study [3]. It is

also useful for applications where the stored files must be queried

based on certain keys. These files can contain sequential data or

additional data fields. For example, in a research study on collecting

location traces, the indexed columns can contain personal details,

while the file itself is a long list of past locations. By adopting Men-

hir, privacy can be safeguarded while generating insightful location

histograms that take into account sensitive information such as

infection status or occupation. Furthermore, such files have the

potential to accommodate more intricate forms of data, including

images or voice samples [11].

Our contributions. The contributions in this paper are summa-

rized as follows:

• We present an oblivious database that supports point and range

queries, SQL-like WHERE-clauses, and differentially private aggre-

gation. Our construction protects against both access pattern and

volume pattern leakage.

• We show how data volume pattern leakage can be used to extract

data from the state-of-the-art oblivious AVL tree construction

Oblix [42], and how protecting volume patterns with differen-

tially private sanitizers thwarts that attack. Our volume sanitizer

improves upon prior work [10] by guaranteeing correctness and

requiring fewer dummies for the same DP parameters.

• As part of our construction, we provide a multi-index data struc-

ture based on AVL trees that is optimized for ORAMs, while avoid-

ing expensive constructions such as oblivious priority queues.

This is of independent interest.

• We prove the correctness and obliviousness of our construction.

• We published our implementation
1
and provide various bench-

marks showing its practicality.

Outline. Section 2 introduces the terms and concepts that will be

used throughout this paper. Our threat model and an overview of

our oblivious database construction are presented in Section 3. In

Section 4, we discuss the details of the construction of our oblivious

database and improvements on oblivious AVL trees. This is fol-

lowed by a performance analysis in Section 5. We give an overview

of related work in Section 6 and conclude in Section 7. The ap-

pendix contains pseudocode as well as the proofs of correctness,

obliviousness, and security of our database.

2 PRELIMINARIES
In this section, we provide the background relevant to understand-

ing this paper.

1
The source code is available at https://github.com/ReichertL/Menhir.

2.1 TEEs
Trusted Execution Environments (TEEs) are secure runtime envi-

ronments to protect code and data from an adversary on the same

system. Most relevant for our endeavors are TEEs that isolate vir-

tual machines. To facilitate trusted computing in cloud settings,

remote attestation is an important feature to establish trust with

remote TEEs. It allows verifying that the software running remotely

is unaltered.

Intel Trust Domain Extensions (TDX), announced in 2020, is a

combination of tools for supporting virtual machine isolation [49].

TDX is designed to guarantee confidentiality and integrity for the

memory and CPU state of protected virtual machines called Trust
Domains (TDs). The TD host cannot access the TD’s privatememory

unless it is explicitly shared by the TD. A TDX module, supplied

and signed by Intel, acts as a trusted middleware between the host

and TDs [28]. It provides functionalities such as interrupt handling,

protects TDs from adversaries by recognizing active attacks, and

keeps branch predictions from leaking or being tampered with [27].

The TD owner is responsible for the software in the TD and updates

to it and, therefore, needs to be trusted. Similar to its predecessor

Intel SGX, a TDX TD relies on the untrusted host for scheduling

and paging. To run a TD, the host switches to Secure-Arbitration

Mode and calls the TDX module, which can then create, initialize,

and schedule TDs. For paging, the host uses an interface of the TDX

module for adding and removing TD pages [27].

Unlike SGX, TDX aims to ensure confidentiality and integrity

even against side-channel attacks [28]. To mitigate some types of

cache side-channel attacks, a single bit is used for each cache line

to signify whether it belongs to a TD. In January 2023, TDX was

released on the 4th Gen Xeon Scalable CPU platform. As of October

2023, these CPUs are only available through cloud providers to

selected customers [6].

AMD SEV-SNP [5] is the third generation of AMD’s Secure En-

crypted Virtualization (SEV) TEE that provides trusted virtual ma-

chines on AMD server CPUs. It was released in 2020 and leverages

existingAMD features for trusted computing like hardwarememory

encryption, the Secure Processor subsystem (AMD SP) for key stor-

age, and encryption of the VM state on world switches. Additionally,

SEV-SNP ensures VM memory integrity against a host-level adver-

sary. It also deals with side-channel attacks by restricting interrupts

to the trusted VM and protecting branch predictions. Similar to

TDX, the host is responsible for scheduling and paging the TEE VM,

which provides a side channel for an adversary with the capabilities

of the TEE host. Both Intel TDX and AMD SEV do not deal with

elaborate hardware adversaries or denial-of-service attacks by the

TEE host against the VM. Neither platform prevents leaks via cache-

based side channel attacks from code that performs secret-based

memory access, e.g., Prime+Probe [5, 29]. This can be solved by

careful programming. Providing techniques to this end is the focus

of this paper.

2.2 Oblivious Data Structures and ORAMs
An algorithm is (data-) oblivious if its control flow and access pattern

do not depend on private data. This property is especially useful in

cloud computing scenarios. Even if data is encrypted, reconstruction

attacks using access patterns can leak sensitive information [33, 36].
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Figure 1: Overview of Menhir. Attack vectors are highlighted in red. RA: Remote Attestation.

Adapting the definition of Wang et al. [56], we define oblivious data

structures as follows,

Definition 1. (Oblivious Data Structure).
A data structure D is oblivious if there exists a polynomial time

simulator S, such that for any polynomial-length sequence of data
structure operations
#   »
𝑜𝑝𝑠 = ((𝑜𝑝1, 𝑎𝑟𝑔𝑠1), ..., (𝑜𝑝𝑀 , 𝑎𝑟𝑔𝑠𝑀 )) it holds that

𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠D ( #   »
𝑜𝑝𝑠) 𝑐≡ S(L( #   »

𝑜𝑝𝑠)).

where
𝑐≡ denotes the computational indistinguishability of two dis-

tributions. L( #   »
𝑜𝑝𝑠) is a leakage function. The physical addresses

𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠D ( #   »
𝑜𝑝𝑠) are generated by the oblivious data structure during

the sequence of operations #   »
𝑜𝑝𝑠 .

AnOblivious RAM (ORAM) protocol hides the pattern of accesses

to private client data stored on an untrusted server [53]. To hide this

meta information, data needs to be accessed in an oblivious manner.

This means that the access patterns for two sequences of read or

write operations must be indistinguishable to the server. ORAM

protocols, such as the highly popular PathORAM [53], require a

position map and a stash, which are stored on the client side to

facilitate lookups.

In distributed settings with untrusted clients, the ORAM client

can be placed in a TEE. However, this can only be done if the

algorithms of the ORAM client do not leak any access pattern

themselves. Such a Doubly-Oblivious RAM (DORAM) can be created

by altering the protocols for PathORAM to ensure that operations

on the stash and the positionmap are oblivious but still efficient [42].

Oblivious data structures can be built on a DORAM if they have

tree-like access patterns [56].

2.3 Differential Privacy
Differential Privacy (DP) is a mechanism for anonymizing responses

to database queries by adding noise to the result. Its goal is to

prevent an adversary from reconstructing the database or parts of

it through strategic queries while allowing aggregate information

to be learned about the data. Dwork et al. [17] define (𝜖 , 𝛿)-DP as

follows:

Definition 2. (Differential Privacy).
A randomized algorithm 𝑀 with domain 𝑋 is (𝜖, 𝛿)-differentially
private whether for all 𝑆 ⊆ range(𝑀) and for all data sets 𝑥,𝑦 ∈ 𝑋
differing in at most one item,

Pr[𝑀 (𝑥) ∈ 𝑆] ≤ exp(𝜖) Pr[𝑀 (𝑦) ∈ 𝑆] + 𝛿 .

In summary, a mechanism 𝑀 is DP if an adversary cannot tell

whether an arbitrary individual was part of the database or not.

This is usually achieved by adding random noise to the outputs

of𝑀 , which is tailored to the sensitivity Δ of𝑀 , i.e., the maximal

influence any individual input can have on the output.

Important properties of DP include its immunity to post-processing

and its composability. Two DP algorithms can be composed with

sequential composition if they operate on the same data. The new

algorithm then provides (𝜖1 + 𝜖2, 𝛿1 + 𝛿2)-DP. In case two DP al-

gorithms operate on disjoint private data sets (i.e., no user is con-

tained in both sets), parallel composition can be applied, resulting

in (max(𝜖1, 𝜖2),max(𝛿1, 𝛿2))-DP.
Noise Distribution. The most common approach to generate

DP noise for continuous values is to draw noise from a Laplace

distribution. The scale for the noise is proportional to 𝜆 = Δ/𝜀,
i.e., the sensitivity Δ of the query divided by privacy parameter 𝜖

(also called privacy budget). In discrete settings, a discrete Laplace
distribution is often used, defined by its probability mass function

Pr[𝑋 = 𝑥] ∝ exp(−|𝑥 |/𝜆) [9]. Since both the discrete and continu-

ous Laplace distributions have (theoretically) unbounded support

over (−∞,∞), they are inconvenient in settings where there are

additional requirements on the noise, such as being bound by a

certain number or being always positive. By shifting and truncating

the distribution appropriately, this can be mitigated at the cost of in-

troducing a non-zero probability 𝛿 of providing no privacy to a user

(see Definition 2). Following Bell et al. [9], we define the truncated,

shifted, discrete Laplace distribution TSDLap(𝑡, 𝜆) with support

{0, . . . , 2𝑡} and probability mass function ∝ exp(−|𝑥 − 𝑡 |/𝜆). It can
be shown through a tail bound that when choosing

𝑡 = ⌈Δ + Δ ln(2/𝛿)/𝜖⌉, adding noise from TSDLap(𝑡, 𝜆) to an output
with sensitivity Δ provides (𝜀, 𝛿)-DP [9].

3 SYSTEM DESIGN OF MENHIR
This section gives a brief overview of Menhir and discusses the

security properties of our construction.

3.1 System Overview
An overview of Menhir’s architecture and possible attack vectors

is given in Figure 1.

Menhir consists of an oblivious database running inside a TEE.

As shown in the figure, data providers can insert or delete data
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in the database.Data analyzers can analyze the collected data by is-
suing queries. To protect the privacy of data providers, the response

to each query 𝑞 is anonymized with (𝜖 , 𝛿)-DP using sequential com-

position. The database relies on an oblivious AVL tree construction

for the underlying data structure (see Section 4.2). This construction

supports indexing the collected data over multiple columns, which

allows queries to filter by these columns. Additionally, an arbitrary

file can be stored for each data point, facilitating a key-value storage

with multiple keys. To protect against a malicious TEE host, all

database operations hide access patterns and obfuscate the volume

of data required to answer a query, the volume pattern.

Each data point, which consists of multiple keys and a value, is

stored in one block of a doubly-oblivious ORAM (DORAM, a type

of ORAM where accesses to the position map do not leak access

patterns). Each block is part of multiple oblivious trees, one tree per

database column. This allows the analyzer to write queries that filter

the data by different columns. Accesses to the trees are padded to the

worst-case tree height to conceal their structure. When processing

queries, all relevant data points are retrieved from the ORAM by

accessing the root of the oblivious AVL tree corresponding to the

database column being queried. Additionally, dummies are retrieved

and processed to hide the amount of data required to answer a

query. The number of these dummies is determined through (𝜖, 𝛿)-
DP. Before returning the (aggregated) result of a query to the data

analyzer, it is anonymized with (𝜖, 𝛿)-DP to protect the privacy of

data providers.

Menhir extends the previous work Oblix [42] from an oblivious

AVL Tree that only protects against access pattern leakage into

an oblivious database that supports range and point queries and

additionally protects against volume pattern leakage. For this, sev-

eral essential changes had to be made to the underlying oblivious

AVL tree construction. One change is to provide a mechanism for

retrieving a fixed number of data points from the oblivious AVL

tree, so volume sanitation can be realized. Another change is pro-

viding database functionality by constructing multiple AVL trees on

the same ORAM nodes. This allows filtering by different columns

while minimizing the storage overhead compared to Oblix. Also

see Table 1 for a comparison of Menhir’s functionalities to Oblix.

For sanitizing the volume patterns, Menhir relies on the findings

of Epsolute [10]. However, Menhir improves on the theoretical

part of Epsolute by introducing the truncated Laplace function

for volume sanitation. This allows dropping the failure probability

for volume sanitation which was necessary in Epsolute. Unlike

Epsolute,Menhir can ensure that, in all cases, all data points relevant

to a query are retrieved and processed.

3.2 Threat Model
3.2.1 Client. The client in Menhir can either be a data provider or

a data analyzer. We allow the client to be malicious. This means

that if the data provider is malicious, they can perform insert or
delete operations to manipulate the database and the data analysis.

By uploading multiple data points, they can skew the evaluation

results or mount a denial-of-service attack.

A malicious data analyzer can try to use the query interface of
Menhir to pose specifically crafted queries in order to reconstruct

the database contents. Menhir only allows DP aggregates to be

Table 1: Comparison of functionality and privacy guarantees
between Oblix [42] and Menhir. (* Only oblivious retrieval
of a fixed number of data points).

Oblix [42]

Menhir

(This work)

Oblivious

Data Structure
AVL Tree Database

Query Functionality Limited*

More comprehensive

(Point and Range)

Number of columns

that can be indexed
One Multiple

Access Pattern

Leakage mitigated
Yes Yes

Volume Pattern

Leakage mitigated
No Yes

Volume Sanitation

Mechanism
No

Truncated Laplace

for (𝜖, 𝛿 )-DP

Output Sanitation No (𝜖, 𝛿 )-DP

returned by the query function to defend against the above attacks.

A malicious client, so a data provider or an analyzer, can collude

with a malicious TEE Host to infer more information about the data.

However, Menhir prevents any leaks sprouting from such collusion

by hiding access and volume patterns.

3.2.2 TEE Host. In the threat model of Menhir, the main adversary

has the capabilities of a TEE Host. The host cannot see the data or

code running inside the TEE. However, it can observe the addresses

of the accessed data and code at cache line granularity [29]. These

access patterns can be used to launch cache-based side channel

attacks such as PRIME+PROBE [5, 29]. In Menhir, we provide pro-

tection against these attacks using oblivious data structures, such

as oblivious AVL trees, that hide access patterns.

Our source code carefully implements the presented algorithms

by removing data-dependent branching. To ensure no new branch-

ing is reintroduced into the final binary through various compiler

optimizations [51], a verified compiler such as CompCert [38] can

be used, which supports most languages that follow the ISO C 99

standard. Other steps to solving this issue are turning off most

compiler optimizations and programming branch-aware code (e.g.,

by implementing algorithms that are already data oblivious).

Even if the accesses to private data inside the TEE are carefully

obfuscated, the number of accesses to a TEE database can reveal

the amount of private data that is processed. This information can

be used in database reconstruction attacks mounted by the TEE

host [33]. For this, the TEE host needs to know the column and data

interval requested by database queries. In Section 4.1.2, an attack is

demonstrated which uses this volume pattern leakage. However, for

the attack, it is also sufficient if the TEE host only has knowledge

about how the private data is distributed to reconstruct parts of

the database [36]. We, therefore, assume that the adversary can

access the query interface of the database. The privacy leakage via

maliciously crafted queries that use the query interface is mitigated

by anonymizing all responses to queries with DP. As the data points

which are inserted into the database are uploaded by potentially

untrusted data providers, it is also possible for the adversary to

access the insert and delete interfaces of the database.

To defend against database reconstruction attacks using volume

patterns, Menhir hides the number of data points processed by a

query with DP guarantees.
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Although we do not consider timing attacks, the mechanism for

volume pattern sanitation makes such attacks more difficult. Denial-

of-service and power analysis attacks as well as attacks requiring

physical access to the TEE host are out-of-scope of our work.

4 OBLIVIOUS DATABASE: MENHIR
In this section, we present the design of our oblivious database sys-

tem Menhir. The functionality Menhir provides is a database con-

sisting of a single table with multiple rows and columns that allows

for insert, delete, query, and pre-filtering similar to SQL WHERE-
clauses. While support for multiple tables is feasible, realizing

privacy-preserving joins poses its own separate challenges [35, 58].

We leave extending Menhir to multiple tables for future work. The

supported query types are point queries (where all records with

a specific key are retrieved) and range queries (where all records

falling into a specific interval are returned). Only differentially

private aggregates are returned to the analyzer.

4.1 Querying an Oblivious Tree
Our oblivious database extends the Doubly-Oblivious Sorted Mul-
timap (DOSM) construction of Oblix [42], which provides the func-

tionality of a key-value store. We first explain this data structure

and discuss in detail the data leakage of this construction. We then

present our improved construction that fixes this issue.

4.1.1 Doubly-Oblivious Sorted Multimap (DOSM). Oblivious data
structures can be built upon ORAM primitives. Wang et al. [56]

show that by replacing pointers in tree-like data structures with

pointers to the ORAM, it is possible to make data structures such

as AVL trees oblivious. Pointers to child nodes become pointers to

the corresponding ORAM block, so ptr𝑖 = (𝐼𝐷𝑖 , 𝐿𝑖 ), where 𝐼𝐷𝑖 is

the ORAM block number and 𝐿𝑖 is the corresponding leaf in the

ORAM (see Section 2.2). Oblix [42] transfers this AVL tree construc-

tion to a doubly-oblivious ORAM to create a DOSM. The DOSM

stores key-value pairs by organizing them as nodes in an AVL tree.

When computing operations on this tree, the root node, which is

stored separately, is used as the entry point. Depending on the

operation, the tree is traversed from top to bottom to either find a

node with a certain key or determine the correct location to insert

a new node. All such operations must be padded to the worst-case

tree height ℎ𝑚𝑎𝑥 so that no information is leaked about the struc-

ture of the tree. For an AVL tree with 𝑛 nodes, ℎ𝑚𝑎𝑥 = 1.44 · log
2
𝑛.

Balanced trees require rebalancing after insertion and deletion oper-

ations. These operations also need to be padded toℎ𝑚𝑎𝑥 and are not

allowed to reveal on which level the insertion or deletion happened.

The AVL tree construction allows storing multiple instances of the

same key by storing an additional hash to distinguish between data

points.

Oblix [42] proposes an algorithm for retrieving several records

with the same key. In short, this algorithm,DOSM.FindOblix(𝑘, 𝑖, 𝑗),
retrieves all key-value pairs for key 𝑘 starting from index 𝑖 to in-

dex 𝑗 . Although not mentioned in the original paper [42], we can

see that it is simple to construct full point queries and range queries

from this function: for point queries, instead of using the 𝑖-th index,

always use index 0, and instead of the 𝑗-th index use the highest

index possible for key 𝑘 . Similarly, range queries can be constructed

by providing different keys for the start and end of the interval.

4.1.2 Leakage through Volume Patterns. In the following, we show

how the construction of the Oblix find function (DOSM.FindOblix)
leaks volume pattern, which in turn leaks information about the

data points in the database. Following Definition 1 on Page 3, the

execution of functions on an oblivious data structure is not al-

lowed to leak any private information to an attacker. Let us as-

sume an attacker A who can monitor the access patterns to code

and data. Query responses to this DOSM are computed using the

DOSM.FindOblix function. A does not need to learn the result of

the queries or pose the queries themselves. It is sufficient for them

to know what ranges are queried so they can observe the resulting

patterns. In particular, A can see the length of the return array

of DOSM.FindOblix and use this information to partially or fully

reconstruct the DOSM keys. See Figure 2 for an example. As we

see, insertion operations into the return array clearly provide a side

channel to the adversary.

5

3 7

3 4 8

Queries Attacker View

Query 1: [0-10]
Returned R:

Query 2: [0-5]
Returned R:

Query 3: [0-4]
Returned R:

Query 4: [0-3]
Returned R:

tree height=3
num nodes=6
len(R)=6

len(R)=4
⇒ 5 <

⇒ 5 <

len(R)=3
⇒ 4 <

len(R)=2
⇒ = 4

Figure 2: Volume patterns leakage of DOSM.FindOblix. Ob-
serving the volume of array 𝑅 allows the attacker to deter-
mine the approximate and exact values of nodes.

4.1.3 DOSM without Volume Pattern Leakage. As we have seen in

Section 4.1.2, the DOSM.FindOblix algorithm of Oblix [42] leaks

information via volume pattern. To mitigate this leakage, the Find
algorithmmust not reveal the volume of data used to answer specific

queries. This has to include temporary data structures like queues

and arrays for which the adversary can observe access patterns and

volume patterns.

A naïve and information-theoretically secure solution for hid-

ing the volume of the data such that all queries are completely

indistinguishable is to process the entire database every time [43].

However, this is extremely inefficient. Consequently, as a trade-off,

some information needs to be revealed to the adversary for better
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efficiency. In the context of distributed ORAMs, Bogatov et al. [10]

proposed sanitizing the volume patterns through DP algorithms.

Here, using all keys, a hierarchical histogram is created which is

then perturbed with DP. We employ this idea and determine the

number of dummies 𝑑 used to hide the volume of a query with an

(𝜖𝑠 , 𝛿𝑠 )-DP sanitation algorithm 𝑆 . Improving on the theoretical re-

sults of Bogatov et al., Menhir uses a truncated Laplace distribution

for sampling noise. This ensures that the number of retrieved data

points𝑚 is never smaller than the number of nodes 𝑛′ that need to

be retrieved (we see that:𝑚 = 𝑛′+𝑑). The information learned by an

attacker who monitors volume patterns is hereby limited through

DP. The value of𝑚 does not reveal the existence or absence of a

node associated with an individual. Optimal parameters for 𝑆 can

be found in [48]. After the data collection has ended and before

querying can start, 𝑆 uses the contents of the DOSM to compute

the DP-sanitized volumes for each key. When a query 𝑞 is posed,

the value of𝑚 is determined by checking this data structure. For

simplicity, we write𝑚 = 𝑆 (𝑞).
To hide the volume pattern, the query function needs to process

𝑚 values when answering a query. Additionally, the DOSM must

be accessed obliviously to not reveal the tree structure. Traversing

an AVL tree to sequentially retrieve a fixed number of data points

is not straightforward as successors might be located in the right

subtree of a node (if it exists) or in a parent node (see Figure 6 in

the appendix). Unpadded access to the successor can reveal the tree

structure and the level at which the node is located. If all accesses are

padded, the overhead of additional accesses to the ORAM becomes

large. As a result, only queries with a small selectivity would be

possible.

A better approach is to change the structure of the AVL tree so

each tree node holds a pointer to its successor. When a new node is

inserted, the pointer of its predecessor is replaced with a pointer to

the new node. The new node reuses the predecessor’s old successor

pointer. We now define the functions for retrieving an interval of

key-value pairs and for inserting a new key-value pair into the

DOSM. The corresponding pseudocode is given in Algorithm 1 and

Algorithm 3 in Appendix A.

• DOSM.Find([𝑘𝑆 , 𝑘𝐸 ],𝑚)→ [(𝑘𝑖 , 𝑣𝑖 )]𝑚
1
:

The algorithm is given an interval from start key 𝑘𝑆 to end key 𝑘𝐸
as well as a fixed number𝑚 of entries to return. This algorithm

first traverses the tree to find the smallest node for which 𝑘𝑆 ≤ 𝑘𝑖 .

The number of accesses is padded to ℎ𝑚𝑎𝑥 . Having found this

first node, additional 𝑚 − 1 nodes are retrieved and added to

the output by sequentially accessing each node’s successor. The

algorithm returns a set of key-value pairs of cardinality𝑚.

• DOSM.Insert(𝑘 ,𝑣)→ ⊥:
The function is given a key 𝑘 and a value 𝑣 . First, using 𝑘 , the tree

is traversed starting from the root to find the insertion location

of the new node with (𝑘, 𝑣). This temporary parent must be a

leaf node conforming to the standard AVL insertion strategy. The

number of accesses to the ORAM for this step is padded to ℎ𝑚𝑎𝑥 .

During traversal, the pointer ptr𝑝𝑟𝑒 to the predecessor and the

pointer ptr𝑝𝑎𝑟𝑒𝑛𝑡 to the parent are stored. The predecessor is

the last node on the way from the root to the leaf, where the

path turns to the right child. If the new node is the first node in

the tree, no predecessor exists and ptr𝑝𝑟𝑒 will point to a dummy

node (see Figure 6 in the appendix).

In the next step, the tree is obliviously rebalanced following

AVL tree conventions. At last, the successor pointers are updated.

If the new node is the first node in the tree, then its ptr𝑝𝑎𝑟𝑒𝑛𝑡 is
used as successor. Otherwise, the new node copies the successor

pointer of the predecessor and then sets itself as successor. If a

node does not have a successor because it is the last node of the

tree, the pointer will point to a dummy node. The dummy node

points to itself.

Using the adapted AVL tree, retrieval using DOSM.Find is pos-

sible with O(ℎ𝑚𝑎𝑥 +𝑚) ORAM operations and insertion using

DOSM.Insert can be done in O(ℎ𝑚𝑎𝑥 ) ORAM operations.

Correctness. The correctness of the sub-procedure of
DOSM.Insert for finding the predecessor of a newly inserted node

is given as follows. We call a node smaller than another one if its

key is smaller than the key of the other node. In case both keys

are equal, the hash associated with each node is used to determine

the order. The predecessor of a newly inserted node 𝑛𝑛𝑒𝑤 is the

largest node which is still smaller than 𝑛𝑛𝑒𝑤 . The path from the

root to the leaf where 𝑛𝑛𝑒𝑤 is inserted consists of a sequence of

nodes that are either left or right children. Due to the properties

of the binary tree, for all nodes 𝑛𝑟 where the path diverges to the

right, it holds that 𝑛𝑟 < 𝑛𝑛𝑒𝑤 . This is because all nodes in the right

subtree of 𝑛𝑟 (where 𝑛𝑛𝑒𝑤 is added) are larger than 𝑛𝑟 . Any 𝑛𝑟 that

is found in the right subtree of another 𝑛𝑟 is automatically larger

and, therefore, better suited as the predecessor for 𝑛𝑛𝑒𝑤 . Therefore,

the largest node that is still smaller than the new node is the 𝑛𝑟
closest to the leaf level. In case the path never diverges to the right

and no 𝑛𝑟 exists in the path, the new node is the smallest node in

the tree and no predecessor exists. Its successor is, therefore, the

previous smallest node in the tree. This node is the leaf node that

was identified as the insertion location. □
After insertion, a single rebalancing is sufficient to ensure that

the AVL Tree invariant is fulfilled. This is due to the fact that all

nodes in the tree have balance values of 𝑏 ∈ {−1, 0, 1} prior to the

insertion. The insertion will change this by one. The rebalancing

will cause the balance value of the node for which the AVL tree

invariant was broken (so |𝑏 | > 1) to be set to 0. The remaining tree

will not become imbalanced if it was balanced before the insertion.

An optimization can be applied during rebalancing. The nodes

retrieved during insertion are all nodes from the root to the leaf

where the new node is inserted. The rebalancing procedure to

be executed depends on the tree’s structure. For a left or right

rotation, the nodes that need to be updated are the one for which

the invariant is broken and one of its children. The imbalance is

caused by the newly inserted node. This means both nodes are on

the path to the newly inserted node and were retrieved previously.

In case a more complex left-right or right-left rotation is required,

balancing becomes more difficult. Again the imbalance is caused by

the change of subtree heights resulting from the insertion of a new

node. Let’s take a look at right-left rotations (left-right rotations

work analogously). Let 𝑛 be the node in question, 𝑟 be the right

child of, and 𝑟𝑙 be the left child of 𝑟 . Rebalancing procedures that

will cause a right-left rotation only occur after insertion to either
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Table 2: Information stored in the node of an multi-index
AVL tree used to realize an ODB with 𝐶 columns.

key
1
,· · · , key𝐶
value
hash

Column 1 · · · Column C

right_child_ptr
1
· · · right_child_ptr𝐶

left_child_ptr
1

· · · left_child_ptr𝐶
left_height

1
· · · left_height𝐶

right_height
1

· · · right_height𝐶
successor1 · · · successor𝐶

subtree of 𝑟𝑙 . So both 𝑟 and 𝑟𝑙 have been retrieved when the new

node was inserted.

4.2 Oblivious Database (ODB)
Our Menhir database can store multiple columns of different types

following a column layout schema 𝐹 . Entries inserted into the

database need to follow this schema. It allows for point or range

queries along all its indexed columns. Additionally, analyzers can

filter along one column. Menhir allows for SQL Queries of the

following format

SELECT 𝑓𝑗 (𝑐 𝑓 , 𝜖𝑞) FROM database WHERE 𝑘𝑆 ≤ 𝑐𝑤 ≤ 𝑘𝐸

with query 𝑞 ∈ 𝑄 is defined as a tuple 𝑞 = (𝑘𝑆 , 𝑘𝐸 , 𝑐𝑤 , 𝑐 𝑓 , 𝑗, 𝜖𝑞). The
start key 𝑘𝑆 and end key 𝑘𝐸 define a range that is used for filtering

a column 𝑐𝑤 . For the rows that remain after filtering, the values

in column 𝑐 𝑓 are passed to the DP aggregation function 𝑓𝑗 . This

function is passed in the query via its index 𝑗 . The function uses

privacy budget 𝜖𝑞 for anonymization if enough budget is available.

4.2.1 Construction. To create an Oblivious Database (ODB), we
alter the nodes of the doubly-oblivious sorted multimap (DOSM)

(see Section 4.1.3) so that each row of the ODB is represented by

one node that is stored in the DORAM. For each of the 𝐶 columns,

a DOSM is built using the same nodes. This requires each node to

have𝐶 pointers to right children and𝐶 pointers to left children. The

resulting data structure is a multi-index AVL tree. See Table 2 for

an overview of all information stored in an ODB node. Additionally,

a total of 𝐶 root nodes need to be stored as entry points to each

DOSM. We define the ODB as follows:

• ODB.Init(𝑁 , 𝐹 )→ ⊥:
This function takes as input a maximum number of entries 𝑁 and

a column schema 𝐹 with𝐶 = len(𝐹 ). The function then calculates
the required block size for the DORAM using the schema 𝐹 . Next,

it initializes a DORAM using 𝑁 and the block size. Last, space is

allocated for an empty array of length 𝐶 to store root pointers.

• ODB.Insert( [𝑘1 · · · , 𝑘𝐶 ], 𝑣)→ (ptr, ℎ):
This function takes as input a set of𝐶 keys [𝑘1, · · · , 𝑘𝐶 ] and one

value 𝑣 . The function computes a hash ℎ. It creates a new node

using the provided data and the hash. Then the tree structure of

each of the𝐶 DOSMs is updated iteratively. The function returns

a pointer to the newly created node as well as a hash.

• ODB.Find(𝑘𝑆 ,𝑘𝐸 ,𝑚,𝑐𝑤 )→ [[𝑘𝑖,1, · · · , 𝑘𝑖,𝐶 ], 𝑣𝑖 ]𝑚
1
:

On input of an interval [𝑘𝑆 , 𝑘𝐸 ], the required number of nodes𝑚,

and the index 𝑐𝑤 of the column to be queried, this function

calls DOSM.Find starting with the root node for column 𝑐𝑤 .

The function returns the keys and values for𝑚 nodes starting

from the smallest node for which 𝑘𝑆 ≤ 𝑘𝑐𝑤 . This function is a

sub-procedure of ODB.Query and is not exposed to database

analyzers.

• ODB.Query(𝑘𝑆 , 𝑘𝐸 , 𝑐𝑤 , 𝑐 𝑓 , 𝑗, 𝜖𝑞 )→ 𝑓𝑗 ( [𝑘𝑖,𝑐 𝑓 ]𝑚1 )
On input of a query 𝑞 = (𝑘𝑆 , 𝑘𝐸 , 𝑐𝑤 , 𝑐 𝑓 , 𝑗, 𝜖𝑞), determine the

value of 𝑚 for the interval [𝑘𝑆 , 𝑘𝐸 ] and column 𝑐𝑤 using the

corresponding volume pattern sanitizer, so 𝑚 = 𝑆𝑐𝑤 (𝑞). Next,
ODB.Find is called with the parameters 𝑘𝑆 , 𝑘𝐸 ,𝑚, and 𝑐𝑤 . A set

𝑅 of rows is returned by the call. Using the data for column 𝑐 𝑓 of

all rows in R
2
, function 𝑓𝑗 is computed with privacy budget 𝜖𝑞 .

Then the aggregated and anonymized query result is returned.

• ODB.Delete(ℎ)→ ⊥:
Upon receiving a hash ℎ, the corresponding node 𝑛𝑑 is searched.

This takes ℎ𝑚𝑎𝑥 accesses. The node 𝑛𝑑 is removed from the

DORAM. Then, all 𝐶 DOSMs are updated. For each DOSM 𝑐 ,

a replacement is found for 𝑘𝑐 of 𝑛𝑑 . If 𝑛𝑑 does not have any

children, no replacement is necessary. If 𝑛𝑑 has only one child,

this child is the replacement. If 𝑛𝑑 has two children, the smallest

node of the right subtree is used as a replacement. The search for

the replacement is padded to ℎ𝑚𝑎𝑥 , independent of the number

of children of the deleted node. Once a replacement is found, all

nodes in the DOSM on the path to the deleted node are updated.

Again, this operation is padded to ℎ𝑚𝑎𝑥 .

We prove the correctness and obliviousness of the ODB construc-

tion in Section B of the appendix.

The GDPR [21] allows people whose data was processed to ask

for it to be removed later. A delete functionality is therefore re-

quired. The hash ℎ is computed from the data uploaded by the data

subject or from identifiable information of the data subject. The

latter allows the hash to be recreated if the person is no longer in

its possession.

4.2.2 Volume Sanitation. To hide volume patterns,𝑚 values are

retrieved from the database when processing a query. However,

not all of these 𝑚 data points are relevant to the final result for

the query (as some are dummies). It is not possible to simply re-

move all dummies and then pass the array with all relevant values

to a DP library, as this would again leak the volume of real data

points. Instead, each DP function needs to process all 𝑚 entries.

When a dummy is processed, a dummy operation is made with

the neutral element to this operation, e.g., adding a zero for sum-

mation. As the data distribution of each column 𝑐𝑖 is different, the

corresponding volume sanitizer 𝑆𝑖 for this column needs to be initi-

ated with suitable parameters. An overview of suitable sanitizers is

provided by [48]. In our implementation, we rely on the Epsolute

sanitizer [10]. However, by drawing noise from a truncated Laplace

distribution, we achieve correctness with a smaller noise overhead

compared to Epsolute.

The Epsolute volume sanitizer functions as follows. When initial-

izing the database, the valid data range for each column is passed.

For each column, a binary tree with 𝐷 leaves is created, where

𝐷 is the size of the (public, discretized) domain of the values in

the respective column. Each node at level 𝑙 in the sanitizer tree,

starting with the leaves at 𝑙 = 0, represents a range of 2
𝑙
possible

values. Each node of this tree is associated with the number of

2
So 𝑘𝑐𝑓 or alternatively 𝑣𝑖 , if it contains numeric data.
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(a) Insertion (b) Retrieve One (c) Retrieve Multiple

Figure 3: Performance of the ODB database for insertion, deletion, and query operations. a) Insertion time of the 𝑖th data point
for ODBs with different numbers of columns. b) Runtime for retrieving one data point from the ODB. c) Runtime for retrieving
a fixed number of data points from the ODB.

database elements falling into the respective range. The volume for

any queried range can then be computed by decomposing the query

into power-of-2-sized ranges and summing the values associated

with the corresponding tree nodes.

To provide differential privacy, the value of each node in the san-

itizer tree is perturbed with noise drawn from the Laplace distribu-

tion Lap(𝛼, 𝜆), with 𝜆 = 1/𝜀 for point queries and 𝜆 = ⌈log
2
(𝐷)⌉/𝜀

for range queries. Here, 𝛼 is chosen such that drawing 𝐷 samples

guarantees that all samples are positive with probability 1 − 𝛽 , for
negligible 𝛽 [10, Section 4.6].

We observe that we can guarantee correctness with probability 1

by using a truncated, shifted Laplace distribution TSDLap(𝑡, 𝜆)
instead (see Section 2.3). This guarantees (𝜀, 𝛿)-differential privacy
with non-zero probability 𝛿 . However, unlike 𝛽 in Epsolute, the

probability 𝛿 does not depend on the size of the domain 𝐷 . Instead,

it is only influenced by the log
2
(𝐷) ones drawn for any particular

user. In Table 5 in appendix A, we compare the expected number

of dummies needed per node for Epsolute and Menhir for a fixed

choice of 𝜀 = ln(2), 𝛿 = 2
−20

.

4.2.3 Output Sanitation. Before the analyzer can pose queries, data
points that do not fulfill their quality requirements need to be

filtered out. Since data can only be deleted and queries can only be

posed afterward, there is no privacy risk for data subjects.

The data collector might be interested in a wide spectrum of

information regarding the collected data. A problem is that even if

the data collector is honest, they might be compromised or hacked

without knowing. Therefore, to protect the privacy of data subjects,

only differentially private aggregates are returned. Menhir provides

the private aggregation functions COUNT, SUM, MEAN, VARIANCE, as
well as the MOST FREQUENT and LEAST FREQUENT item by using the

report noisy max algorithm [17]. For a query 𝑞, a budget 𝜖𝑞 is used

for the anonymization. The privacy loss can be quantified using the

sequential composition theorem. For a total number 𝑛𝑄 of queries,

this means the loss is limited by

∑𝑛𝑄
1

𝜖𝑖𝑞 .

The sensitivity for each column is derived from the minimum

and maximum values predefined by the attribute schema 𝐹 . The

privacy budget must be maintained by the database system. Data

collectors posing queries can, however, specify how much of their

budget they want to use for each query. If the budget is used up, no

more queries can be processed. While some works reset the privacy

budget after a certain time [55], we refrain from this approach as

the data in the database does not change after the querying phase

starts.

Although the added noise changes the actual result, Bassily et

al. [8] have shown that DP can improve the result of statistical

analysis. This is because statistics aim to model a real distribution

from observed samples and draw knowledge from this real distri-

bution. DP algorithms can improve the generalization error which

is introduced by the fact that only a limited number of samples are

available.

Non-private databases cover a wide array of functions, such as

providing SQL-like GROUP-BY functionality, multiple tables, and

allowing different JOIN functions. Multiple tables can be easily real-

ized with our approach by using a newODB for each table. However,

JOIN functions have to ensure that volume patterns remain hidden.

As this is a complex task in itself, we point to related work on this

topic such as [35, 58]. Similarly, when realizing GROUP-BY functions,
the number of groups must be either padded to the maximum or

sanitized using DP. Wilson et al. [57] discuss how user contribution

needs to be limited to provide DP guarantees for SQL-like GROUP-BY
operations.

5 EVALUATION
In this section, we evaluate the performance and utility of our

oblivious database.

5.1 Implementation and Measurements
We implemented the Menhir oblivious database in C++. The imple-

mentation uses parts of the Epsolute [10] source code for hiding

volume patterns. However, in Epsolute, the queried interval some-

times had to be increased to fit the buckets of the volume sanitizer

tree. As a result, additional data points were retrieved due to this

padding, which caused significant runtime overheads. Therefore,

we adapted the code so that all leaves of the volume sanitizer tree are

associated with exactly one element from the data domain instead
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Table 3: Comparison of the data protection guarantees and retrieval performance for multiple databases. The values for Oblix
were taken from [42]. ORAM speed is the latency for ORAM operations for block size=64 Byte and ORAM size=105. Retrieval
duration is given for ORAM size=224.

Retrieval of

10 Data Points

Retrieval of

60 Data PointsAccess Pattern

Protection

Volume Pattern

Protection

ORAM

Speed 1 Column 5 Columns 1 Column 5 Columns

Standard x x - 0.107 ms 0.165 ms 0.087 ms 0.082 ms

Naive ✓ ✓ 90.1 µs 17.4 s 24 s 732.4 s 1065.4 s

Oblix [42] ✓ x 125 µs ≈ 12.5 ms - ≈ 25 ms -

Menhir ✓ ✓ 90.1 µs 7.4 ms 7.4 ms 14 ms 17.5 ms

Speedup

(Oblix/Menhir)

1.4× 1.7× 1.8×

of an interval. The Menhir source code calculates the volume sani-

tizers 𝑆𝑖 once for each column 𝑐𝑖 individually. The implementation

of the oblivious database can handle integer and float values. When

implementing the DP query function, we accounted for leakage

when using floating point operations [14].

As the authors of Oblix [42] did not make their DORAM imple-

mentation public, we opted for using the readily available Path-ORAM

backend of Epsolute. As discussed in the threat model (see Sec-

tion 3.2), data confidentiality is provided by the TEE. We, therefore,

removed the AES encryption for ORAM blocks to improve runtime.

All evaluations were conducted on an AWS server with 121 GB

RAM and 16 cores. The selected instance type r6a.4xlarge pro-

vides 3rd generation AMD EPYC processors (7003-series) for which

we enabled the AMD SEV-SNP feature. Each data point represented

in the following figures consists of at least 10 measurements. Error

bars represent 95 % confidence intervals unless box plots are used.

DP noise for volume and output sanitation was drawn from Laplace

distributions.

5.2 Performance
Figure 3a shows how fast new elements can be inserted into Men-

hir’s ODB. Using more columns corresponds to an increase in run-

time for insertions, with a factor of 2.0 for 2 columns and a factor

of 4.64 for 5 columns. This is due to the fact that for each additional

column, a separate DOSM needs to be updated. Also, with an in-

creasing amount of data stored in the DOSM and the increasing size

of the underlying ORAM, accesses take longer. We can see from

the figure that insertion performs well even for a large number of

data points and takes less than 0.01 ms for one column even when

2
24

data points are already in the ODB.

The deletion operation also performs well, despite the large

amount of padding that is required to obfuscate the tree structure

when deleting a node. For an ODB with 2
24

data points, deletion of

one element takes 45.55 ms for 1 column, respectively 234.15 ms

for 5 columns.

For analyzers, it is important to know how fast their queries

can be answered. Figure 3b shows how the query answer time is

impacted by the number of data points in the ODB. We can see here

that the influence of the number of data points stored in the ODB

on the runtime is logarithmic, while the impact of the number of

columns is constant. The number of points retrieved from the ODB

also affects query runtime. Figure 3c shows that the overhead of

retrieving increasingly more data points from the ODB is a constant,

independent of ORAM size and the number of columns.

5.3 Comparison to Other Databases
To compare against a naive baseline, we implemented a naive data-

base that consists of a list of data points. To query this naive data-

base, first, the number 𝑚′ of data points to be returned is deter-

mined through a sanitized DP histogram. Then an output array

with dummy values is initiated with𝑚′ slots. Next, for every data

point in the database, the naive algorithm iterates over each slot of

the output array. If the data point falls into the interval, the first

dummy value encountered in the output array is overwritten. The

complexity of this algorithm is O(𝑛 ·𝑚′).
In Table 3, we compare Menhir against a standard database with-

out any privacy protection, the naive approach described above,

and Oblix [42]. For the standard database without privacy, a Mari-

aDB [41] SQL database was deployed on the AMD SEV-SNP server.

Accesses were performed through a Python connector. As we can

see from the table, the performance of Menhir is up to 1.8× faster

than Oblix while additionally providing volume sanitation guar-

antees. The speedup in runtime is likely due to differences in im-

plementation and used hardware. Menhir is faster than the naive

approach by a factor of 2351 with the same protections and only be-

tween 45 times to 219 times slower than the approach without any

protection. As we can see, unlike the naive approach, the runtimes

of Menhir allow for a real-world deployment.

5.4 Parallelization
The linear increase in Figure 3c can be used to extrapolate the

expected time it takes to retrieve a fixed number of data points. For

an ODB with one column, 2
24

data points and relying on an ORAM

of the same size, it would take around 10.3 s to retrieve 2
16

data

points, respectively 15.1 s for 5 columns. For an ODB using an

ORAM of size 2
16
, retrieving the same amount of data requires only

6.4 s for 1 column, respectively 7.3 s for 5 columns. This insight can

be used to improve the overall performance of Menhir for larger

datasets. By storing data in multiple ODBs, which are accessed in

parallel (each with a separate ORAM), data points can be retrieved

faster and the worst-case runtime for large queries can be capped.

Parallelization in Menhir is realized as follows. Multiple ODBs

are associated with the database, each with its’ own ORAM of fixed

size. New data points are always inserted into the newest DOSM. A
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Table 4: Overhead in ms of using multiple OSMs for two
different OSM sizes. For each ODB, exactly 60 data points
were retrieved in parallel.

DOSM Size

Dataset

Size
2
16

2
15

Factor

2
16

9.62 ± 0.12 9.2 ± 0.07 1.05

2
17

10.19 ± 0.17 10.79 ± 0.13 1.06

2
18

11.93 ± 0.16 21.07 ± 0.41 1.77

2
19

23.73 ± 0.42 42.03 ± 0.31 1.77

2
20

44.73 ± 0.36 74.48 ± 0.93 1.66

new DOSM is created when the maximal capacity of the last one is

reached. For deleting a data point, all ODBs have to be checked. To

calculate the response for a query, the data returned by all ODBs

has to be combined.

Let’s take a dataset of size 2
24
. In the worst case, a query retrieves

all data points in the database. Using the extrapolated runtimes from

earlier, it can be determined that each ODB should contain a maxi-

mum of 2
16

data points. To hold the complete dataset, 256 ODBs

are required. An ODB of size 2
16

requires 18.36 MB of RAM for

1 column, respectively 58.43 MB for 5 columns.

Parallelization itself also introduces an overhead to runtime due

to caching effects. A query is also only as fast as the slowest thread.

Table 4 shows the runtime for various dataset sizes and DOSM

sizes to help determine the performance overhead introduced by

accessing multiple ODBs in parallel. For each ODB, exactly 60 data

points were retrieved in parallel. Note that the number of ODBs

for different dataset sizes depends on ORAM capacity. We can see

that with an increasing total number of data points, the runtime

increases despite parallelization. The drastic increase for 2
18

data

points suggests that this is a side effect caused by caching. Therefore,

we repeated the measurements on a server with the same number

of CPUs but a cache size 32 times as big. The results mirror the

measurements from the AMD SEV-SNP server. However, the drastic

increase for a DOSM size of 2
15

is shifted to a dataset size of 2
20
.

It is clear that the improvement of using multiple smaller ODBs is

limited by the overhead of parallelization. So despite better worst-

case guarantees, the ODB size should be set with considerations

for the average case.

To guarantee this performance, each ODB should be associated

with one CPU core. It is not uncommon to have up to 64 cores even

for consumer CPU. In the case of a dataset with 2
24

data points,

4 machines with 16 cores each are sufficient to privately query the

dataset while guaranteeing one core per OSM. Offloading DOSMs

to other machines does induce an overhead as intermediate results

have to be communicated over the network. However, if the round

delay between the central ODB and the satellite machines is low,

parallelization improves the overall runtime.

5.5 Real-World Datasets and Use Cases
In this section, we evaluate the utility of Menhir on real-world

datasets and for different use cases. Many datasets used in related

work were not relevant for evaluating a database that focuses on

volume pattern sanitation, such as the key-value datasets used by

Oblix [42]. Others were unavailable, such as the Big Data Bench-

mark dataset used by Opaque [59]. For this reason, we evaluated

Menhir two other datasets
3
. As the TEE server used for measure-

ments only has 16 CPUs, we limited the number of DOSMs to 16,

allowing for a maximal dataset size of 2
20
.

5.5.1 Real-World Datasets. To evaluate the performance of Menhir

on realistic data, we used a dataset collected from user requests on

the Interplanetary File System (IPFS), a Peer-to-Peer file storage.

The data was collected for research purposes and was provided by

the authors of [7]. For this evaluation, all sensitive information, such

as IP addresses and request IDs, was removed from the data and

replaced with pseudonyms. The dataset consists of 1 h of captured

IPFS traffic and contains 15.960.697 data points with 8 attributes

each. Figure 4a shows the runtime for queries with a selectivity of

up to 9% (which are 94.372 data points). Data is stored in ODBs of

size 2
16

and queried in parallel. Additionally to the IPFS dataset,

another real-world dataset with more columns was also tested. The

Covid-19 dataset [45] contains anonymized information onMexican

Covid-19 patients. It consists of 2
20

data points and 21 columns.

Figure 4a shows how the query runtime changes for both datasets

and different query selectivities. Despite capping the worst-case

runtime, parallelization itself does introduce an overhead in the

average case.

5.5.2 ManyColumns. As seen in Section 5.2, the number of columns

does have an impact on the query runtime. Looking at the 20 most

voted datasets from kaggle.com [30] in the categories "health" and

"survey", the median number of columns is 32.5 with a maximum

of 644 columns. To analyze the performance of Menhir on a large

number of columns, Figure 4b shows the performance of Menhir

for datasets with different numbers of columns and 2
16

data points.

The more columns of data are stored, the larger the performance

penalties during querying becomes. With less than 1.5 s for a query

on a table with 50 columns, our ODB is practical.

5.5.3 Searchable File Storage. The ODB allows associating each

set of keys [𝑘1, · · · , 𝑘𝐶 ] with a value 𝑣 . The size of this value is set

when initializing the ODB. It can be used to associate a file with

each tuple of keys or store additional data that does not need to

be indexed itself. For all prior evaluations, the size of the value

was set to zero. Figure 4c shows how different sizes impact query

runtime for a dataset with 2
16

data points and 1 column. The figure

makes clear that the overhead for having values of different sizes

associated with each data point is constant. We can see that using

Menhir as a searchable file store with volume pattern sanitation is

practical.

5.6 Volume Sanitizer Overhead
To hide the response volume of queries, Menhir uses volume pattern

sanitizers. To estimate the number of data points that must be

retrieved for queries, a sanitizer 𝑆𝑖 is computed for each column

𝑐𝑖 . The sanitizer 𝑆𝑖 is a differentially private histogram for the data

domain (see Section 4.2.2). The domain is computed based on the

expected maximum and minimum values and the resolution of the

data in column 𝑐𝑖 .

For point queries, the histogram’s data structure is a flat array

with as many buckets as there are elements in the domain. To

3
The datasets can be found at https://github.com/ReichertL/Menhir.
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(a) Real-World Dataset (b) Use Case Many Columns (c) Use Case Large File

Figure 4: Performance of Menhir for different use cases. a) Query duration for different query selectivities on two different
real-world datasets (dataset sizes= 2

20). b) Query selectivity to query duration for larger numbers of columns (dataset size=216).
c) Time for retrieving a fixed number of datapoints each associated with an unindexed file (dataset size=216).

deduce the noise required for a specific query, the corresponding

bucket is checked to get the sanitized volume𝑚.

For range queries, the data structure of the histogram is a tree.

There are two approaches introduced by Epsolute [10] for volume

sanitation. The no-𝛾-method requires that for each OSM, an inde-

pendent set of sanitizers is created. The 𝛾-method, on the other

hand, is optimized for a distributed setting and aims to keep the

total noise added as low as possible. Here, even if multiple OSMs

are used, only one sanitizer is required for each column.

Figure 5a shows how much noise is added for range queries

that cover different ranges but have the same selectivity using the

no-𝑔𝑎𝑚𝑚𝑎-method and normal Laplace noise. With the increased

range, more buckets in the sanitizer tree are required to cover the

queried range. As each bucket adds DP noise to the query, the total

noise per query increases.

Figure 5b highlights the relationship between domain size and

added noise when using the no-𝑔𝑎𝑚𝑚𝑎-method and normal Laplace

noise. Here, all the queries used for this graph have a selectivity of

exactly 1% and the range for range queries was fixed to 10. While

the noise calculation for both point and range queries depends on

the domain size, the influence is clearly visible for range queries but

minimal for point queries. However, we can see that the impact of

the range of range queries is larger than the impact of the domain

size. Both plots, Figure 5a and Figure 5b, clearly emphasize the

importance of setting well-suited parameters for the volume pattern

sanitizers to best capture the (expected) data distribution of each

column. This can be influenced by defining a data resolution. For

example, if the expected minimal data resolution is 10, then buckets

in the volume pattern sanitizer for any values in between are not

necessary. This is especially relevant for floating point data as the

volume pattern sanitizer only allows for a limited resolution of

fixed size.

5.7 Discussion
As seen in Section 5.2, the runtime of each ODB is linear in the

number of elements that fall into the queried interval. Paralleliza-

tion allows capping the worst-case runtime. This means Menhir

is well suited if the expected selectivity of queries is low, for ex-

ample in heavily distributed or uniformly distributed data. If the

database is first filtered by a column containing binary data, the

worst-case performance is to be expected. Data resolution and how

data is expected to be evaluated are relevant for the decision on

how well-suited Menhir is for a specific use case.

Another potentially interesting use case for Menhir would be

an interactive data collection setting where data can be queried

while data collection continues. This is possible, yet not optimal, in

a setting with a global privacy budget as the privacy budget might

already be used up when new, relevant data points are inserted.

Queries on these data points will not be answered in a setting with

a global budget. Another issue for the interactive setting is the

approach Menhir takes on volume pattern sanitation. Every time

a query is posed after new data has been added, the volume pat-

tern sanitizers would need to be recalculated. Hence, the privacy

budget for sanitation in an interactive setting scales with the num-

ber of queries 𝑛𝑄 . We leave the optimization of this bound for an

interactive query setting for future work.

6 RELATEDWORK
There are many approaches to realizing privacy-preserving data

analytics. In this section, we present different approaches to this

problem with and without TEEs.

TEEs aim to protect data stored and processed inside as well as

the code executed against a malicious host or other types of adver-

saries on the same system. However, depending on the underlying

technology, using a TEE can come with side-channel leakage [44].

At the same time, TEEs provide a great advantage as the perfor-

mance is better than what is possible with most cryptographic ap-

proaches [34]. Also, the guarantee provided by remote attestation

can be valuable for systems where trust needs to be well-founded.

A wide range of TEE database systems has been proposed in the

past, most of which rely on Intel SGX for data protection. All these

approaches provide different database functionalities and security

guarantees, especially when it comes to access and volume patterns.

ObliDB [18] provides the full range of SQL database functionalities.

Encrypted tables are stored outside the SGX enclave in an ORAM

and trusted code runs inside the TEE. However, the trusted code

does not hide its own access patterns. Also, volume patterns are not

considered by this approach. ZeroTrace [50] consists of a secure

memory service on top of an ORAM which runs inside an SGX

enclave and operates obliviously. However, the memory controller
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(a) Noise to Queried Range (b) Noise to Domain Size

Figure 5: a) Noise applied for range queries depending on the range. The number of data points, the selectivity of queries, and
the domain size were fixed. b) Noise applied to range queries and point queries depending on the domain size.

of ZeroTrace does not provide database functionalities. As a result,

it does not take volume pattern leakage into account. Oblix [42]

uses the methods of Wang et al. [56] to construct an oblivious

AVL tree on top of ORAM. The authors pay special attention to

the leakage of access patterns from data structures stored inside

the TEE. In particular, they discuss how an ORAM client can be

changed to not leak access patterns itself. However, they do not

consider volume pattern leakage and reveal private information

with their query function (see Section 4.1.2). Patel et al. [46] present

an approach for volume hiding for encrypted databases without

TEE. This approach is similar to the one used in this paper [10]

and protects volume patterns with (𝜖, 𝛿)-DP. They do not consider

access pattern leakage.

TEEs are not the only approach to preserve privacy during com-

putation and data analysis. Multi-Party Computation (MPC) allows

two or more parties to evaluate a joint function over the private

inputs of the participants [52]. MPC protocols can be realized via

generic MPC such as garbled circuits that allow any type of com-

putation, or through special-purpose MPC protocols for specific

functionalities. MPC protocols often have quadratic complexity in

the number of parties, so they are not suitable for applications with

many clients. In these cases, the computation can be outsourced as

proposed by Kamara and Raykova [32] and realized by Prio [15].

MPC protocols do not leak access patterns. They generally compute

on all available data, as no branching is allowed. They, therefore,

do not reveal volume patterns [19].

Encrypted Search Algorithms (ESAs) are another approach to

protecting private data in online databases from malicious cloud

services [20]. Here, the data is encrypted, so it is unreadable for

anyone who does not have the corresponding decryption key while

still retaining the capability to search over it without decryption.

This can be realized, for example, with ORAMs [53], homomorphic

encryption [1], property-preserving encryption, or searchable en-

cryption. However, ESAs are prone to data leakages such as access

pattern and volume pattern leakage [31, 33, 36].

A main contribution of this paper is our oblivious multi-index

AVL tree with a volume pattern obfuscation. However, other ap-

proaches exist for obtaining oblivious algorithms or executables.

ObliVM [40] is a domain-specific programming language for writ-

ing oblivious algorithms. This approach does not provide protection

against volume pattern leakage. GhostRider [39] is a compiler that

creates an oblivious executable. For this purpose, it employs ORAM

techniques. However, GhostRider requires a CPU with a custom co-

processor making this approach unsuitable for off-the-shelf TEEs.

OBFUSCURO [2] is an obfuscation engine that aims to protect

intellectual property by using ORAM techniques to protect pro-

gram code. While access and timing pattern leakage are considered,

volume patterns are not covered by this tool.

7 CONCLUSION
In this paper, we presented Menhir, an oblivious database for TEEs

such as Intel TDX and AMD SEV-SNP that protects against access

pattern leakage and, unlike the previous works, also protects against

volume pattern leakage. We first presented an attack against the

state-of-the-art oblivious data structure Oblix [42] by using volume

pattern leakage. To mitigate this, we changed the underlying AVL

tree construction to allow the retrieval of fixed-size intervals from

the tree. We build a database on the improved data structure and

prove the correctness and obliviousness of our database.

Our evaluation shows that Menhir performs well even for many

data points and multiple columns. Larger files can also be asso-

ciated with each database row, while still retaining good query

performance.
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A ALGORITHM
In this appendix, we provide and explain the pseudocodes refer-

enced in Section 4.1.3 and Section 4.2. We use 𝑙𝐶 and 𝑟𝐶 as short-

hand for "left Child" and "right Child", the successor of node 𝑖 is

written as 𝑛𝑜𝑑𝑒𝑖 .𝑠𝑢𝑐𝑐 , and 𝑏𝑇 stands for "balanceType".

Algorithm 1 DOSM.Insert(𝑘, 𝑣)

ℎ ← hash(𝑘, 𝑣)
𝑛𝑜𝑑𝑒𝑛𝑒𝑤 , 𝑝𝑡𝑟𝑛𝑒𝑤 ← AVLTreeNode(𝑘, 𝑣, ℎ)
𝑛𝑜𝑑𝑒𝑠 ← [ ]
𝑝𝑡𝑟𝑝𝑟𝑒 , 𝑝𝑡𝑟𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑝𝑡𝑟𝑑𝑢𝑚𝑚𝑦

𝑝𝑡𝑟𝑖 ← 𝑝𝑡𝑟𝑟𝑜𝑜𝑡
//Find insert location and predecessor

for 𝑖 ← 1 to ℎ𝑚𝑎𝑥 do
𝑛𝑜𝑑𝑒𝑖 ← ORAM.Get(𝑝𝑡𝑟𝑖 )
𝑛𝑜𝑑𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑛𝑜𝑑𝑒𝑖 )
𝑙𝑒 𝑓 𝑡 ← (𝑘 < 𝑘𝑖 ) ∨ (𝑘 == 𝑘𝑖 ∧ ℎ < ℎ𝑖 )
𝑝𝑡𝑟𝑝𝑟𝑒 ← if not 𝑙𝑒 𝑓 𝑡 then 𝑝𝑡𝑟𝑖
𝑝𝑡𝑟𝑖+1 ← if 𝑙𝑒 𝑓 𝑡 then 𝑛𝑜𝑑𝑒𝑖 .𝑙𝐶 else 𝑛𝑜𝑑𝑒𝑖 .𝑟𝐶
𝑖𝑠𝐷𝑢𝑚𝑚𝑦← (𝑝𝑡𝑟𝑖+1 == 𝑝𝑡𝑟𝑑𝑢𝑚𝑚𝑦)
𝑝𝑡𝑟𝑝𝑎𝑟𝑒𝑛𝑡 ← if not 𝑖𝑠𝐷𝑢𝑚𝑚𝑦 then 𝑝𝑡𝑟𝑖
𝑝𝑡𝑟𝑖 ← 𝑝𝑡𝑟𝑖+1

end for
//update parents (ℎ𝑚𝑎𝑥 write operations to ORAM)

𝑏𝑇 , 𝑝𝑡𝑟𝑐ℎ𝑖𝑙𝑑 , 𝑝𝑡𝑟𝑔𝑟𝑎𝑛𝑑𝑐ℎ𝑖𝑙𝑑 ← UpdateParents(𝑛𝑜𝑑𝑒𝑠)
//Update successor pointers

𝑛𝑜𝑑𝑒𝑛𝑒𝑤 ← ORAM.Get(𝑝𝑡𝑟𝑛𝑒𝑤)
𝑛𝑜𝑑𝑒𝑝𝑟𝑒 ← ORAM.Get(𝑝𝑡𝑟𝑝𝑟𝑒 )
𝑖𝑠𝑆𝑚𝑎𝑙𝑙𝑒𝑠𝑡 ← (𝑝𝑡𝑟𝑝𝑟𝑒 == 𝑝𝑡𝑟𝑑𝑢𝑚𝑚𝑦)
𝑛𝑜𝑑𝑒𝑝𝑟𝑒 .𝑠𝑢𝑐𝑐 ← if not 𝑖𝑠𝑆𝑚𝑎𝑙𝑙𝑒𝑠𝑡 then 𝑝𝑡𝑟𝑛𝑒𝑤
𝑛𝑜𝑑𝑒𝑛𝑒𝑤 .𝑠𝑢𝑐𝑐 ← if 𝑖𝑠𝑆𝑚𝑎𝑙𝑙𝑒𝑠𝑡 then 𝑝𝑡𝑟𝑝𝑎𝑟𝑒𝑛𝑡 else 𝑝𝑡𝑟𝑝𝑟𝑒
ORAM.Put({𝑛𝑜𝑑𝑒𝑝𝑟𝑒 , 𝑛𝑜𝑑𝑒𝑛𝑒𝑤 })
//Insert node and rebalance tree

Rebalance(𝑏𝑇 , 𝑝𝑡𝑟𝑛𝑒𝑤 , 𝑝𝑡𝑟𝑐ℎ𝑖𝑙𝑑 , 𝑝𝑡𝑟𝑔𝑟𝑎𝑛𝑑𝑐ℎ𝑖𝑙𝑑 )
return {ℎ𝑖 , 𝑝𝑡𝑟𝑛𝑒𝑤 }

Algorithm 1 describes how a key-value pair [𝑘, 𝑣] can be inserted
into a doubly-oblivious sorted multimap (DOSM) without leaking

the structure of the tree. Conditions like "if c then r=a else r=b" can

be realized without jumps as a single mathematical statement of

the form: 𝑟 = 𝑐 ·𝑎 + (not 𝑐) ·𝑏. The simpler version of this condition

"if c then r=a" can be realized as: 𝑟 = 𝑐 · 𝑎 + (not 𝑐) · 𝑟 .
The sub-procedureRebalance() relies on the insight in Section 4.1.3

that only a single or double rotation is sufficient to ensure that the

AVL tree invariant is fulfilled after a new node is inserted. It per-

forms 3 read and 3 write operations to ORAM independent of the

fact whether any rebalancing is needed. Algorithm 2 shows the

algorithm for the sub-procedure.

4th

2nd

1st 3rd

Figure 6: Order in which nodes are accessed for the interval
[2− 4] and𝑚 = 4. Pointers to successor nodes are shown with
dashed lines.

Algorithm 2 Rebalance(𝑏𝑇 , 𝑝𝑡𝑟𝑛𝑒𝑤 , 𝑝𝑡𝑟𝑐ℎ𝑖𝑙𝑑 , 𝑝𝑡𝑟𝑔𝑟𝑎𝑛𝑑𝑐ℎ𝑖𝑙𝑑 )

𝑛𝑜𝑑𝑒𝑛𝑒𝑤 ← ORAM.Get(𝑝𝑡𝑟𝑛𝑒𝑤)
𝑛𝑜𝑑𝑒𝑐 ← ORAM.Get(𝑝𝑡𝑟𝑐ℎ𝑖𝑙𝑑 )
𝑛𝑜𝑑𝑒𝑔 ← ORAM.Get(𝑝𝑡𝑟𝑔𝑟𝑎𝑛𝑑𝑐ℎ𝑖𝑙𝑑 )
//depending on balanceType 𝑏𝑇 these rotations are only dummy

operations

Rotate(𝑛𝑜𝑑𝑒𝑛𝑒𝑤 ,𝑛𝑜𝑑𝑒𝑐 , 𝑏𝑇 )
Rotate(𝑛𝑜𝑑𝑒𝑛𝑒𝑤 ,𝑛𝑜𝑑𝑒𝑔 , 𝑏𝑇 )
ORAM.Put({𝑛𝑜𝑑𝑒𝑛𝑒𝑤 , 𝑛𝑜𝑑𝑒𝑐 , 𝑛𝑜𝑑𝑒𝑔})
return {ℎ𝑖 , 𝑝𝑡𝑟𝑛𝑒𝑤}

The insertion procedure sets the successor of each newly inserted

node. This is relevant for data retrieval. Figure 6 shows an example

in which order elements in an AVL Tree are accessed using the

pointer to the next node when an interval is retrieved. Algorithm 3

explains in detail how data is retrieved from the DOSM for an

interval [𝑘𝑆 , 𝑘𝐸 ] and a fixed number𝑚. This𝑚 is selected to hide

the volume of data in the queried interval. This algorithm returns

a set of𝑚 nodes, each with all its associated data (keys and values).

The function FindSmallesNodeInInterval() retrieves the smallest

node for which the key 𝑘 is larger or equal to 𝑘𝑆 . If multiple nodes

with the same key exist, they are ordered based on their hash. The

function always makes ℎ𝑚𝑎𝑥 accesses to the ORAM.

Algorithm 3 DOSM.Find(𝑘𝑆 , 𝑘𝐸 ,𝑚)

𝑝𝑡𝑟𝑟𝑜𝑜𝑡 ← DOSM.root
𝑛𝑜𝑑𝑒𝑖 ← FindSmallestNodeInInterval(𝑝𝑡𝑟𝑟𝑜𝑜𝑡 , 𝑘𝑆 , 𝑘𝐸 )
for 𝑖 ← 1 to𝑚 − 1 do

𝑅 ← 𝑅
⋃{𝑛𝑜𝑑𝑒𝑖 }

𝑛𝑜𝑑𝑒𝑖+1 ← 𝑛𝑜𝑑𝑒𝑖 .𝑠𝑢𝑐𝑐

end for
return 𝑅

In Section 4.2, an oblivious database (ODB) is built from the

DOSM. Algorithm 4 explains how a data collector can query the

ODB. During data retrieval and computation, no volume patterns

are leaked. The function takes as input a query consisting of an

interval [𝑘𝑆 , 𝑘𝐸 ], the column index 𝑐𝑤 for which entries are re-

trieved (the column for the WHERE-clause), and the column index 𝑐 𝑓
for which the function 𝑓𝑗 is applied on the retrieved entries. Func-

tion 𝑓𝑗 is differentially private and is passed by the query through
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log
2
(𝐷) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Epsolute [10] 21 44 69 96 125 156 189 224 261 300 341 384 429 476 525 576 630 685 742 800

Menhir 22 45 69 93 118 143 168 193 219 245 271 297 323 349 375 401 428 455 481 508

ratio 1.05 1.02 1.00 0.97 0.94 0.92 0.89 0.86 0.84 0.82 0.79 0.77 0.75 0.73 0.71 0.70 0.68 0.66 0.65 0.64

Table 5: The size of the sanitized domain 𝐷 to the expected number of dummies needed for volume sanitation by Epsolute [10]
and Menhir, as well as their ratio (lower is better). 𝜀 = ln 2, 𝛿 = 2

−20.

its index 𝑗 . It uses the privacy budget 𝜖𝑞 for computing the differ-

entially private aggregate. If the remaining global privacy budget

is less than 𝜖𝑞 , the query can not be answered.

Algorithm 4 ODB.Query(𝑘𝑆 , 𝑘𝐸 , 𝑐𝑤 , 𝑐 𝑓 , 𝑗, 𝜖𝑞 )

𝑚 ← 𝑆𝑐𝑤 (𝑘𝑆 , 𝑘𝐸 )
𝑅 ← ODB.Find(𝑘𝑆 , 𝑘𝐸 ,𝑚, 𝑐𝑤)
𝑣𝑎𝑙𝑢𝑒 ← 𝑓𝑗 (𝑐 𝑓 , 𝜖𝑞, 𝑅)
return 𝑣𝑎𝑙𝑢𝑒

ODB.Query uses the find function from Algorithm 5 for retriev-

ing𝑚 data points for the respective interval [𝑘𝑆 , 𝑘𝐸 ] from the col-

umn 𝑐𝑤 . For this purpose, it first finds the smallest node larger than

or equal to 𝑘𝑆 from the DOSM for column 𝑐𝑤 . For each column, the

ODB holds a pointer to the root node of the corresponding DOSM.

Due to the use of the truncated Laplace function, all data points

that fall into the interval [𝑘𝑆 , 𝑘𝐸 ] are contained in the output of

ODB.Find.

Algorithm 5 ODB.Find(𝑘𝑆 , 𝑘𝐸 ,𝑚, 𝑐𝑤 )

𝑝𝑡𝑟𝑟𝑜𝑜𝑡 ← ODB.DOSMRoots[𝑐𝑤]
𝑛𝑜𝑑𝑒𝑖 ← FindSmallestNodeInInterval(𝑝𝑡𝑟𝑟𝑜𝑜𝑡 , 𝑘𝑆 , 𝑘𝐸 )
for 𝑖 ← 1 to𝑚 − 1 do

𝑅 ← 𝑅
⋃{𝑛𝑜𝑑𝑒𝑖 }

𝑛𝑜𝑑𝑒𝑖+1 ← 𝑛𝑜𝑑𝑒𝑖 .𝑠𝑢𝑐𝑐

end for
return 𝑅

Using a truncated Laplace distribution for volume sanitation

not only allows us to drop the failure probability required in Epso-

lute [10]. The amount of noise that needs to be introduced is also

reduced. In Table 5, we compare the expected number of dummies

needed for volume sanitation per node for Epsolute [10] andMenhir

for a fixed choice of 𝜀 = ln 2, 𝛿 = 2
−20

.

B CORRECTNESS AND OBLIVIOUSNESS
In the following, we prove the correctness and obliviousness of our

ODB construction.

B.1 Correctness
Definition 3. (Correctness).

Let 𝑥 ∈ {0, 1}∗ represent the contents of a database table with mul-
tiple rows and columns. Function 𝑓 is an operation on this table. A
protocol 𝜋 implementing 𝑓 is correct if the output of 𝜋 is computa-
tionally indistinguishable from 𝑓 (𝑥). In short, 𝑜𝑢𝑡𝑝𝑢𝑡𝜋 (𝑥) 𝑐≡ 𝑓 (𝑥).

This means for a negligible function 𝜇 it holds that

𝑃𝑟 [𝑜𝑢𝑡𝑝𝑢𝑡𝜋 (𝑥) = 𝑓 (𝑥)] ≥ 1 − 𝜇.

We first introduce some notations. As mentioned before, a query

𝑞 ∈ 𝑄 is a tuple 𝑞 = (𝑘𝑆 , 𝑘𝐸 , 𝑐𝑤 , 𝑐 𝑓 , 𝑗, 𝜖𝑞). Let 𝑉𝑞 be the set con-

taining all entries from column 𝑐 𝑓 for which the corresponding

entry in column 𝑐𝑤 fulfills the query condition 𝑘𝑆 ≤ 𝑐𝑤 ≤ 𝑘𝐸 . For

proper privacy protection, we require that the sensitivity of 𝑓𝑗 is

set correctly for the data type in column 𝑐 𝑓 .

Theorem 1. Following Definition 3, the ODB scheme in Section 4
is correct for the functions ODB.Init, ODB.Insert and ODB.Delete.

Proof. This follows from the correctness of the oblivious data

structure framework of Wang et al. [56] and the plaintext AVL tree

construction which the DOSM builds on. □

The correctness of the ODB.Query function boils down to the

correctness of the ODB.Find function and the correctness of the

function 𝑓𝑗 evaluation. First, we discuss the correctness of the

ODB.Find function.

Theorem 2. ODB.Find correctly returns all elements in an inter-
val given by a query 𝑞 ∈ 𝑄 if𝑚 ≥ |𝑉𝑞 |.

Proof. The ODB.Find function makes a call to the DOSM.Find
function for finding the elements in a given interval. Therefore, the

correctness of the ODB.Find function follows from the correctness

of the DOSM.Find function for a particular column 𝑐 𝑓 . □

Theorem 3. The ODB.Query function correctly computes the
function 𝑓 on the required entries.

Proof. As mentioned earlier, the correctness of the ODB.Query
function depends on the correctness of the ODB.Find function and

the computation of function 𝑓 . Theorem 2 proves the correctness

of ODB.Find. To show that the query function 𝑓 is computed cor-

rectly, it suffices to show that (a) all required elements are included

in the aggregation and (b) the dummies added through the vol-

ume sanitizer do not change the output. Claim (a) follows directly

from the fact that our volume sanitizer always adds positive noise

through the truncated Laplace mechanism (see Section 4.2.2). For

this reason, the constraint𝑚 ≥ |𝑉𝑞 | always holds. This is in con-

trast to Epsolute [10], which fails with a (negligible) probability 𝛽 .

Claim (b) can be ensured to hold by using the neutral element of the

respective aggregation function as the value for dummies, thereby

ensuring that they don’t change the output.

□

Remark: A malicious database provider can insert data points in

the ODB and delete these. This allows them to alter the result of
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all queries and skew the data analysis. However, this is a general

risk of crowd-sourcing campaigns, and in particular, it does not

depend on or reveal any user’s input. Sybil attacks can be made

more resource intensive for attackers by requiring data providers

to identify themselves. To preserve privacy, the identification pro-

cess can be realized through anonymous authentication schemes.

However, such schemes are not the focus of this work, so we point

the reader to the relevant work on this topic, such as [12].

B.2 Obliviousness
Theorem 4. The ODB.Init, ODB.Insert, and ODB.Delete oper-

ations of the ODB scheme are oblivious with a leakage function
L = ((𝑜𝑝1, 𝑐1) · · · , (𝑜𝑝𝑀 , 𝑐𝑀 )) according to Definition 1 on page 3.
The leakage function leaks only the operation type 𝑜𝑝𝑖 , the accessed
column 𝑐𝑖 , and the total number of operations𝑀 , but nothing else.

Proof. First, observe thatODB.Init,ODB.Insert, andODB.Delete
make the same number and types of ORAM accesses for two func-

tion calls even if different data is provided. It then follows imme-

diately from the security of the underlying ORAM scheme [53]

that the memory addresses produced are indistinguishable for any

two function calls. We can, therefore, define the simulator S that

takes the sequence of operations and then runs the corresponding

algorithms on a dummy index-value pair (say, (0, 0)).
□

Without additional perturbation, the volume of data used for

answering a query can be used to reconstruct a database [33, 36].

Algorithms for oblivious databases that do not pay attention to

this side-channel, such as Oblix [42], end up leaking this informa-

tion (see Section 4.1.2). To obliviously answer queries, one could

process the whole database for each query. However, this is not

very efficient. Therefore, we weaken the definition by allowing

additional leakage per operation but requiring that this leakage be

differentially private.

Definition 4. (Obliviousness with DP volume leakage).
Let𝑚𝑖 be the volume of data processed for an operation 𝑜𝑝𝑖 on column
𝑐𝑖 with arguments 𝑎𝑟𝑔𝑖 . A data structure D is oblivious with DP
volume leakage, if there exists a polynomial time simulator S, such
that for any polynomial-length sequence of data structure operations
#   »
𝑜𝑝𝑠 = ((𝑜𝑝1, 𝑐1, 𝑎𝑟𝑔𝑠1,𝑚1), ..., (𝑜𝑝𝑀 , 𝑐𝑀 , 𝑎𝑟𝑔𝑠𝑀 ,𝑚𝑀 )) and
L( #   »

𝑜𝑝𝑠) = ((𝑜𝑝1, 𝑐1,𝑚1), · · · , (𝑜𝑝𝑀 , 𝑐𝑀 ,𝑚𝑀 )) it holds that

𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠D ( #   »
𝑜𝑝𝑠) 𝑐≡ S(L( #   »

𝑜𝑝𝑠)),

and each𝑚𝑖 provides (𝜀, 𝛿)-differential privacy with respect to indi-
vidual database items.

Theorem 5. For an ODB with (𝜀, 𝛿)-DP volume sanitation, a se-
quence of𝑀 ODB.Query operations is oblivious with (𝑀 ·𝜖,𝑀 ·𝛿)-DP
volume leakage.

Proof. We start by defining the simulator S that takes as input

the leakage L containing the operations 𝑜𝑝𝑖 , sanitized volumes𝑚𝑖 ,

and column indices 𝑐𝑖 , then calls ODB.Query on 𝑐𝑖 and a dummy

key, replacing𝑚 in the first line by𝑚𝑖 .

Since FindSmallestNodeInInterval() makes the same number of

ORAM queries independent of the arguments, the resulting ad-

dresses will be indistinguishable from the real implementation of

ODB.Query.
It remains to be shown that each𝑚𝑖 is differentially private. As

described in Section 4.2.2, the volume sanitizer uses a binary tree,

where each database item is counted exactly once per level. If we

consider two neighboring databases that differ in exactly one item

𝑥 , there will therefore be exactly ℎ = ⌈log
2
(𝐷)⌉ nodes that 𝑥 con-

tributes to. Since each node has noise drawn from TSDLap(𝑡, ℎ/𝜀),
revealing a single node’s value is (𝜀/ℎ, 𝛿/ℎ)-DP for appropriately

chosen 𝑡 (see Section 2.3). By basic composition, the revealing all

ℎ nodes is, therefore, (𝜀, 𝛿)-DP. The claim follows through basic

composition across𝑀 queries.

□
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