
Leakage-Abuse Attacks Against Structured Encryption for SQL∗

Alexander Hoover†

University of Chicago
Ruth Ng†

DSO National Laboratories
Daren Khu‡

DSO National Laboratories

Yao’An Li‡

DSO National Laboratories
Joelle Lim‡

DSO National Laboratories

Derrick Ng‡

DSO National Laboratories
Jed Lim§

NUS High School of Mathematics and Science

Yiyang Song§

Raffles Institution

Abstract

Structured Encryption (StE) enables a client to securely store and query data stored on an untrusted
server. Recent constructions of StE have moved beyond basic queries, and now support large subsets of
SQL. However, the security of these constructions is poorly understood, and no systematic analysis has
been performed.

We address this by providing the first leakage-abuse attacks against StE for SQL schemes. Our attacks
can be run by a passive adversary on a server with access to some information about the distribution
of underlying data, a common model in prior work. They achieve partial query recovery against select
operations and partial plaintext recovery against join operations. We prove the optimality and near-
optimality of two new attacks, in a Bayesian inference framework. We complement our theoretical
results with an empirical investigation testing the performance of our attacks against real-world data
and show they can successfully recover a substantial proportion of queries and plaintexts.

In addition to our new attacks, we provide proofs showing that the conditional optimality of a
previously proposed leakage-abuse attack and that inference against join operations is NP-hard in general.

1 Introduction

Cloud storage is a ubiquitous and convenient solution for clients who want to store their data on remote
servers. This service, running without encryption, can provide a client convenience by allowing the server to
store large amounts of data and to process queries over the data. However, moving data on to third party
servers comes with security and privacy risks to the information stored. Unfortunately, standard encryption
techniques are not useful to clients wanting to outsource the storage and computation of a queryable database,
because a server cannot perform queries over rows which are encrypted in standard fashion.

Early work on encrypted databases [2, 42] proposed solutions which had unclear security guarantees,
using techniques that were not well understood. However, later work [11, 38, 6, 26] proposed a framework
for what are now known as leakage-abuse attacks (LAAs) against these schemes. In their work, the authors
give adversarial models and simulate attacks showing that plausible adversaries could infer or recover data,
queries that were performed by the client, or other potentially sensitive information.

∗This is the full version of work accepted to USENIX Security 2024.
†These authors contributed equally to the project
‡These authors contributed equally to the project
§These authors contributed equally to the project

1

https://orcid.org/0009-0003-9818-1419

Structured Encryption (StE) [17] provides an attractive combination of efficiency and query support, and
allows for servers to learn a quantified amount of information called leakage. Leakage captures the information
(e.g. metadata, patterns) revealed about the StE data and queries within an abstract mathematical model.
However, the implications of this leakage for cryptanalysis by a real-world adversary are not immediately
clear. For many StE schemes, follow up work [29, 49, 43, 10] has shown sometimes devastating LAAs against
the leakage.

A recent line of work has been to design schemes in the StE framework for SQL applications, with a focus
on supporting select and join queries [32, 50, 13]. Because SQL is such a wide spread and expressive query
language, these StE schemes would be very useful to a client wishing to outsource their database to a server.
And, as these and similar schemes become increasingly used, it is important to consider the practical security
of the systems in real world settings. For example, work has already shown other practical vulnerabilities
in complex non-SQL systems like MongoDB’s queryable encryption [27], and many of these vulnerabilities
could be avoided with a proper analysis before deployment.

However, the potential for leakage-abuse within StE for SQL schemes has not been studied at all. We
seek to address this gap in the security analysis of StE for SQL schemes, by extending the established
LAA framework to SQL select and join operations which compose more complex SQL queries. We then
design the first LAAs against the above StE schemes, and evaluate their effectiveness both theoretically and
experimentally.

Our contributions. We evaluate the leakage of modern StE for SQL schemes [32, 50, 13] through
leakage-abuse attacks. Our attacks assume a passive, honest-but-curious server with auxiliary data, similar
to prior work [38, 6, 26]. Our attacks enable an adversary to infer the plaintext values in SQL select queries
and to infer plaintext values within columns after a join operation. For complex or nested SQL queries, our
attacks can be applied to any or all of the intermediate select or join operations.

Specifically, our evaluation of modern StE for SQL schemes includes the following contributions:

• We develop the first LAA for query inference against select queries in StE for SQL schemes and provide a
proof that it is near-optimal. After selection queries are made, our attack can often recover the plaintext
parts of those queries. This attack uses dynamic programming to generalize prior attacks against deter-
ministic encryption, and in Section 3.1, we outline how it applies beyond StE for SQL to many searchable
encryption schemes.

• We develop the first LAAs for plaintext inference against performing a many-many join in StE for SQL
schemes. Whenever a join is performed, our attacks can exploit the leakage to recover the underlying
values of the encrypted rows in the join. Our attacks work well in practice, but we show that optimal
inference is NP-hard in general.

• We give an optimal LAA against many-many joins in the (common) case when the join output contains
every row from both columns.

• We perform an empirical analysis of our attacks using a real data set, and show they almost always recover
a substantial fraction of their targets. For many columns, before even 20% of unique values are selected,
our select attack recovers 10-20% of the values and over 40% of the rows that were queried. Our best join
attacks are arguably more devastating, recovering 30-40% of the unique values and over 60% of the rows
in most experiments.

• In the appendix, we provide an algorithm to partition a set in a way that approximately maximizes a
product of sums. This algorithm is useful as a subroutine in our attacks against the leakage of join
operations and may be of independent interest.

Our attacks follow from two main technical insights. For our attack against selections, we show how
to exploit partial frequency information, where prior attacks only worked with full information. For our
attacks against joins, we observe that the leakage between the columns can give an adversary significantly
more information to abuse. Whether it is partial or not, the server observes correlated frequency information
across the columns, which allows them to make inferences more accurately.

2

In addition to the above, we identify how the type (i.e. one-one, one-many, many-many) of a join affects
the leakage revealed to a passive adversary. Our work illustrates practical impacts of security in SQL systems
that can depend both on the distribution of underlying data and the joins which can be performed in the
database being queried. Our observations and attacks demonstrate that certain join patterns are more
vulnerable to inference attacks than others, and we conclude that some care should be given to the database
schema before deploying to a structured encryption scheme.

Attack Evaluation. For our theoretical results, our proofs measure the theoretical success of our attacks
in the Bayesian inference framework, following prior work [6]. We consider an attack “optimal” if it returns
a maximum likelihood estimator for the information it is trying to infer.

For our experimental results, we use public Chicago data and simulate a scenario where the city moves
from public release to using a StE for SQL system. We use the year prior to the hypothetical change as
auxiliary information for our adversaries who passively infer information for later years.

Limitations and Mitigations. Despite our use of real-world data, it is important to understand that
the leakage that we attack is highly data-dependent in general, making it difficult to make broad conclusions
about these scheme’s security. In general, we find that columns with few domain values or with highly skewed
data is most vulnerable to our attacks. So, one way to mitigate is to study the distribution of data and
queries for a particular database and identify potentially vulnerabilities. In such a case, one could modify
the schema or implement specific mitigation techniques for the vulnerable information.

To generically mitigate against these new attacks, one could consider using some of the same mitigations
proposed in prior work [46, 47], such as volume-hiding [33] or differentially private [1, 41] structurally
encrypted primitives.1 Additionally, one work [13] provides a Modern StE for SQL construction which
circumvents the join leakage that we attack at the cost of client computation. While these kinds of solutions
would render our attacks ineffective, it is unclear whether new similarly effective attacks could be developed.

To have stronger and more well-understood security, one should instead use more “heavy weight” cryp-
tography such as functional encryption [8], fully homomorphic encryption [21], oblivious RAM [24, 16], or
secure multiparty computation [5]. However, these will come at the cost of increased server and/or client
computation.

Organization. In Section 2, we include preliminaries, including a high level overview of SQL queries,
and review some of the related work. In Section 3, we explain the leakage that provide attacks against in our
paper. In Section 4, we present our partial query recovery attack, including a formal attack model, optimality
conditions, and experimental results. We differ the proof of the attack’s near-optimality to Appendix A.
In Section 5, we present our attacks for plaintext value recovery, including our optimal special case attack,
three general case attacks, and our experimental results. Finally, in Section 6, we provide a summary of our
findings and present alternatives and new ways forward to improve StE for SQL schemes.

1.1 Adversarial Models

We follow an adversarial model that has been considered in prior leakage-abuse attack work [38, 6, 26].
Throughout the paper, we assume that a server is running one of the modern StE for SQL schemes [32, 50, 13].
Unfortunately, these modern schemes are only provided formally and do not have implementations which
can be directly attacked. However, our threat model has been practically considered for servers running
other structurally encrypted systems or “smash-and-grab” adversaries that extract equivalent leakage from
server logs [38, 19, 27].

We consider persistent passive adversaries on the servers which cannot influence or modify the queries
or data. All of our attacks target leakage which is common in this setting for all schemes listed above.
Our adversaries additionally have access to some prior knowledge, called auxiliary information, about the
distribution of data in the database that’s being stored on the server. Finally, we assume the adversary
knows which column(s) the client queries and, when the exact same query is performed, which is often either
leaked directly by the protocol or can be inferred from deterministic tokens or query result sizes. In prior

1However, it is not clear what privacy parameter “ε” would need to be used to effectively mitigate. It may require so much
privacy that one would be better off using volume-hiding primitives.

3

work [38], the adversary has to determine which column was queried through some additional information
(i.e. the number of unique values in the column). For simplicity, we assume the adversary has access to this
information, since the exact method to determine the targeted column may vary slightly depending on the
underlying database and StE scheme chosen.

Query Scope. We narrow our scope to just attacking select and join operations. Modern StE for
SQL schemes support more complicated queries by allowing a client to nest these operations and leave and
projection or filtering to be performed client side after decryption. We emphasize that there are no proposed
StE for SQL schemes which support the full generality and expressiveness of SQL. Modern StE for SQL
schemes [32, 50, 13] only support encrypted query processing for the basic selection and join operations
outlined in Section 2.

In these schemes, the client may also issue more complicated queries by nesting the basic operations,
running them on intermediate tables. Our adversaries, with distributional information about the targeted
columns, can calculate the auxiliary distributions for intermediate SQL tables. Then, using the access
pattern of the encrypted query processing, selects and joins on the intermediate table(s) can be attacked.
Furthermore, when we attack joins, we consider the (to be defined later) cross-column equality of the
encrypted rows between two columns. If multiple joins are composed, then we could run even stronger
attacks by considering the cross-column equality between each of the different joins together. So, because
complex queries are still vulnerable to our attacks (and maybe to even stronger attacks), we focus on the
most elementary operations for simplicity and generality.

Attack Goals. When attacking select operations, the goal of the adversary is to determine the values
the user is selecting (i.e. query recovery). The adversary will observe the sizes of the query results for select
operations. Then, the adversary uses this and the auxiliary information to infer the most likely queries
performed by a client.

For attacks against join operations, the adversary observes the access pattern of the structured encryption
algorithm for the duration of the join. The goal of the adversary is to infer the data in the columns that are
joined upon (i.e. plaintext recovery) using its auxiliary information and the observed access pattern.

Despite two different attack goals, the leakage of volumes from selections and from access patterns of
joins are very similar. For both selects and joins, our attacks take as input some auxiliary information and
observed leakage pattern. The output is a guess of which plaintext values correspond to which groups in the
observed pattern. This guess has the same output format but will correspond to the predicted set of queries
(select) or to the data values in the columns (join).

2 Background

Notation. Given a positive integer n, let [n] = {1, . . . , n}. Similarly, for two integers m < n, we write
[m,n] = {m, (m+ 1), . . . , n} (with the exception of [0, 1], which represents the real numbers between 0 and
1). We write the image of a function f : A → B as Im(f) = {b ∈ B : ∃a ∈ A, f(a) = b}.

We use Dist(A) to describe the set of distributions over a finite set A (i.e. a function ρ : A → [0, 1] is in
Dist(A) if and only if

∑
a∈A ρ(a) = 1).

SQL Queries. We concern ourselves with two main SQL operations in this paper, selections and joins.
In particular, we focus on how these operations work on one or two columns in a database, and we will define
select and join operations abstractly, ignoring details such as projections, hierarchical joins, and returning
columns not involved in the SQL query. This simplified view of joins and selects captures the necessary
aspects of the operations to understand the leakage of encrypted SQL databases we attack. Figure 1 shows
how these basic elements of SQL queries operate on the tables T1 and T2.

We will treat columns as a list of N values (r1, . . . , rN). Each of these values comes from some set of n
values V = {v1, . . . , vn}. We refer to each element of the column as a “row” which takes on a single value
(i.e. ri ∈ V). In a traditional database, this may instead be called a cell or entry while a row refers to the
cells across many columns. However, since our attacks use one column from each relevant table, we call these
rows.

4

T1

id1 C1

1 Ari

2 Cal

3 Ari

4 Cal

5 Ari

6 Cal

7 Bob

T2

id2 C2 C3

1 Bob Math

2 Cal Chem

3 Bob CS

4 Ari CS

5 Bob Bio

6 Ari Bio

7 Eve Bio

SEL(Bob, C2)

id2 C2 C3

1 Bob Math

3 Bob CS

5 Bob Bio

JOIN(C1, C2)

id1 id2 C1,C2 C3

1 4 Ari CS

3 4 Ari CS

5 4 Ari CS

1 6 Ari Bio

3 6 Ari Bio

5 6 Ari Bio

7 1 Bob Math

7 3 Bob CS

7 5 Bob Bio

2 2 Cal Chem

4 2 Cal Chem

6 2 Cal Chem

Figure 1: Examples of SQL type queries on tables T1, T2 and the output of example select and join operations.

A select is performed with a predicate on a single table. The operation returns a list of rows from the
table which return true for the predicate in question. The only predicate that we will consider in this paper is
a simple equality predicate, so our selects will return all instances of one value in the column. For simplicity,
we introduce a function which takes the equality predicate and the column being selected on and returns a
set of indices corresponding to rows in the column which are equal to that value. For example, we write

SEL(Bob, C2) = {1, 3, 5},

as the abstracted selection from the example in Figure 1.
An (inner) join is performed between two tables on one column from each table. For our purposes, we

only care about the result of the join on the two columns being joined upon, and all joins will be (equi)joins
that return only matching values. So, a join will return a new column (or table generally) with a row for
every matching pair of values between the first and second column. For simplicity, we consider the function
to just output a set of matching tuples corresponding to matching rows. For example, we write

JOIN(C1, C2) = {(1, 4), (3, 4), (5, 4), (1, 6), (3, 6), (5, 6),
(7, 1), (7, 3), (7, 5), (2, 2), (4, 2), (6, 2)},

for the join shown in Figure 1.

2.1 Related Work

We recall some alternative constructions for processing SQL queries with cryptographic tools. We addition-
ally recall some of the leakage-abuse attacks against those and other related schemes.

Before using the structured encryption framework, some constructions used weaker or property-preserving
primitives [42] to support a restricted class of SQL queries on a database. This sparked a line of work
attacking these types of constructions [38, 11, 37, 6, 26, 7].

Meanwhile, the structured encryption framework was first introduced in [17]. The framework has since
been used to create structurally encrypted databases supporting certain SQL queries [32, 50, 13]. Attacks

5

against these systems, however, have only begun to be analyzed [19, 31], and the practical security of such
systems remains an open question. However, other uses of the structured encryption framework are known
to be vulnerable to other leakage-abuse attacks [29, 49, 43, 10].

Our select attacks are also applicable to searchable encryption schemes. This line of work focused
on reducing leakage while maintaining efficiency. While early works had leakage equivalent to property-
preserving schemes (and therefore are vulnerable to the same attacks), more recent work has given efficient
schemes that leak only query and access patterns [18, 12]. Most leakage-abuse attacks introduced against
such schemes have focused on specific schemes or different adversarial models and/or different leakage than
what is considered in this work [11, 43, 22, 45, 39, 4, 47].

There is also a line of work considering generic leakage-abuse against such schemes which only exploit
the search pattern, access pattern, or volume pattern without additional information [35, 25, 7, 20].

In addition to the structured encryption framework, there are approaches to encrypted search that make
use of tools such as functional encryption [8], fully homomorphic encryption [21], oblivious RAM [24], or
secure multiparty computation [5]. These schemes generally have less leakage but come at a significant
theoretical and/or practical efficiency cost.

2.2 Comparison to Other Attacks

Before presenting our attacks, we take a closer look at some other approaches to leakage-abuse in prior work.
This will identify some of our key differences and where we fit into the body of related literature.

We are the first to consider attacks against Structured Encryption (StE) for SQL; however, we will
compare (mostly) against attacks against Searchable Encryption (SSE), since there is some overlap between
those attacks and attacks that apply to StE for SQL. For reference, a recent comparison of attacks against
searchable encryption (SSE) is nicely summarized in prior work [46, 47]. We also discuss our own threat
model in Section 1.1 in more depth and only focus on the differences between our work and other works.

First, many threat models against SSE or Dynamic SSE (DSSE) assume an active adversary [49, 7, 48],
which allows for either data insertion or adversarial queries to be issued. In our work, we consider a weaker
passive adversary who only tries to infer information about the underlying data or client activity.

Among the work on passive adversaries, there are attacks in which the adversary knows some or all of the
underlying data [11, 7, 39, 47]. In our threat model, our adversaries only have access to only distributional
information about the underlying data, a weaker assumption than partial knowledge. There are also attacks
which work for adversaries without even this distributional assumption [35, 25, 7, 20].

The final difference that we consider is related to the type of leakage that is abused, which influences how
present the adversary needs to be. For example, some prior work has considered “snapshot” or “smash-and-
grab” adversaries [38, 6, 19, 27], who only access a server running an encrypted system once. In contrast,
we consider a persistent adversary who observes the access pattern and activity of the server as queries are
processed. We note, however, for some practical systems recent work has shown persistent adversary attacks
may be possible from a single snapshot through the use of server logs [27].

The most similar work to our own are covered in a line of attacks such as [29, 43, 40]. These provide
some of the most similar threat models to the ones that we consider. However, these attacks are against
(sometimes specific) deployments of SSE rather than StE for SQL, which provides some key differences in
the attack setting. For example, SSE deployed for keyword-document lookup will have the same document
appear for different keywords, whereas two queries selecting on the same column with different values will
never have rows overlap (for the restricted class of queries supported by StE for SQL schemes). This means
that our attacks do not actually require access pattern leakage and could be run as a computer-in-the-middle
with volume leakage.

Additionally, we are the first paper to consider any attacks against cross-column equality leakage, because
this leakage pattern is unique to StE for SQL schemes and not present in previous SSE literature.

6

3 Leakage of Encrypted Databases

Leakage of select and join operations among current encrypted SQL database solutions broadly fall into a
handful of categories. In this section, we will outline the type of leakage that we will provide attacks against.
Broadly, we categorize our attacks into attacks against selections and attacks against joins.

3.1 Select Leakage

We begin by focusing on the column equality leakage pattern, which our attacks exploit in Section 4.
As prior work has observed, some SQL supporting schemes such as CryptDB [42] or Microsoft’s Always

Encrypted system [3] employ weakened primitives such as deterministic encryption to perform select opera-
tions by the server. These schemes will effectively reveal a deterministically created ciphertext of every row
value in the column selected upon. The more formal leakage associated with this pattern is what we call the
complete column equality (c-eq), because the server can check the equality between any two rows by checking
if they are the same ciphertext.

This leakage pattern is well studied in prior work [11, 38, 6, 26]. However, we further this work by proving
an optimality result and separation for one of the known attacks in Appendix A.

More recent work in structured encryption supports simple equality select operations without weakened
primitives [32, 50, 13]. However, these encrypted SQL databases still leak the query equality and volume
to an honest-but-curious server. Specifically, the server is able to know when a select is repeated (query
equality) and which columns and rows are repeated between different queries.

For example, a client querying columns C1 and C2 from our example tables in Figure 1, may issues 4
select queries, corresponding to:

SEL(Ari, C1),SEL(Ari, C2),SEL(Bob, C1),SEL(Ari, C1)

and a server could learn that the first and last queries were the same and that the third query was on the
same column as the first and last. However, they would not immediately know which specific values were
queried. The final relevant aspect of this is that the server would know how many (and which) rows are
returned to the client during each of the queries. In this toy example, this would allow a server to learn that
there is some value in C1 which appears 3 times (Ari), another that appears 1 time (Bob), and a value in
C2 which appears 2 times (Ari).

A server, after observing just a few queries, can determine the sizes of these equality groups, which are
sets of row ciphertexts sharing the same underlying value.

After a client has queried every value in the relevant column, this leakage becomes equivalent to the
complete equality leakage. However, before all values are queried, there can still be substantial leakage to
the adversary. Especially in instances where a few values dominate most of the rows, this leakage could allow
an adversary to infer a lot of the underlying information about the queries being performed.

Throughout this paper, we refer to this pattern as incomplete column equality or partial equality (i-eq).
We explore this more fully and provide a new near-optimal attack against this leakage in Section 4.

Searchable Encryption. For simplicity, we discuss our attacks against this leakage in the context of
encrypted SQL databases, but we observe that our attacks against encrypted SQL select queries can be
applied directly to many searchable encryption (SSE) works. The majority of schemes from the SSE and
encrypted multimap literature which achieve practical (i.e. linear) efficiency (e.g. [44, 23, 15, 18, 17, 12, 9, 14])
and encrypted multimaps supporting simple equality predicates as a select operation will similarly leak the
equality pattern of rows returned to an honest-but-curious server. Our attacks are novel in this setting
provide a new approach to an existing line of work [29, 43, 40].

3.2 Join Leakage

There are a few techniques and constructions which provide support for server-computed joins on encrypted
SQL databases. This includes the Adjustable Key Join technique used within CryptDB [42], the fully pre-

7

Complete Incomplete
One-One - -
One-Many c-eq i-eq
Many-Many c-cross i-cross

Figure 2: Table showing the leakage available to a server depending on the join type.

computed join indexes (SPX, OPX and FpSj [32, 50, 13]), and finally some structured encryption schemes
with advanced security (Secure-Join and JXT [28, 30]).

We identify generic and previously unanalyzed leakage present in every one of these schemes which we
call the cross-column equality pattern. When issuing a join query, all of these schemes allow the server to
observe pairs of rows which have matching values. This allows the server to observe the equality pattern of
the rows which are output in the join. This reveals both the equality groups within each column (as with
the column equality pattern), but additionally reveals the equality across the columns. For example, the
join represented in Figure 1 would reveal to the server that there is some value (Ari) which occurs 3 times
in C1 and 2 times in C2, another value (Bob) which occurs 1 time in C1 and 3 times in C2, and a third value
(Cal) which occurs 3 times in C1 and 1 time in C2.

However, despite this generic leakage being shared across the proposed schemes, the join type of the join
being performed informs how the leakage can be exploited, which we summarize in Figure 2. We distinguish
join types by whether it is a one-one, one-many, or many-many join and whether the join is complete or
incomplete.

The first set of terms inform the uniqueness of values in the columns joined on respectively. A one-one
join has no repeated value in either column, a one-many join has no repeated value in one column, and a
many-many join may have repeated values in either column. We call a join “complete” if every row has a
matching row in the opposite column (i.e. the join outputs every row from both tables at least once), and
otherwise the row is said to be incomplete. As an example, our join example in Figure 1, is an incomplete
many-many join. It is incomplete because Eve does not appear in the join output, and it is many-many
because both columns have values which appear multiple times (e.g. Ari).

For one-one joins (such as many primary key-foreign key joins), all the server observes is a set of encrypted
row pairs, none of which repeat. So, there is no hope for a server, even with auxiliary information, to infer
the underlying values.

During one-many joins, the server may observe that multiple rows, in the column allowing repeated
values, match with the same value in the other column. This gives a server information about the sizes
of equality groups in the column with the repeated values, since rows with the same value in the repeats
column will be output with the same encrypted row in the unique column. When a join is complete and
one-many, the cross-column equality pattern reduces to the complete column equality (c-eq) of the column
with repeated values, and similarly, it reduces to the incomplete column equality (i-eq) when the join is
incomplete.

Finally, while performing a many-many join, the server observes encrypted pairs of matching rows across
the columns. This is a unique pattern which reveals more than just the equality within the columns. The
adversary learns either the complete cross-column equality (c-cross) or the incomplete cross-column equality
(i-cross), if the join is complete or incomplete respectively. This leakage is strictly more than the respective
equality leakage of the two columns because the server learns both the equality group sizes within as well as
across the columns in the join.

In this scenario, the server could run equality pattern attacks on the individual columns, but they may
be able to outperform those attacks by knowing the rows which are equal between the two columns. In
Section 5, we give new attacks which make use of this cross-column equality pattern and show that this
additional leakage does improve the performance of inference attacks.

8

4 Select Query Recovery

In Section 3.1, we sketch how encrypted SQL systems leak the column equality pattern as queries are
made. In this section, we consider this leakage more formally and outline a new attack against incomplete
column equality and evaluate its performance against real-world data. In Appendix A, we prove that it is
near-optimal as well.

Attack Model. The formalism for our leakage-abuse attacks follows that of prior work [6] but with some
differences in notation. The leakage input to our algorithms is a vector c⃗ = (c1, . . . , cm, u) which contains
the sizes of each of the m leaked “equality groups” (in ascending order without loss of generality) and finally
the number of rows without an observed equality group is included as the number u, which can be computed
from the leakage discussed in Section 3.1.

For example, if the a client made three queries on the column C2 from Figure 1 corresponding to the
sets:

SEL(Bob, C2),SEL(Cal, C2),SEL(Ari, C2),

then the server would learn three equality groups sizes 3, 1, and 2 respectively and would know there is 1
row (row 7) which had not been returned on any query. So such an adversary would have the leakage input
c⃗ = (1, 2, 3, 1).

In addition to the leakage input, the adversary receives some auxiliary information in the form of a
distribution over values, ρ : V → [0, 1] where

∑
v∈V ρ(v) = 1. Intuitively, we expect this distribution to

describe the plaintext distribution that the column values are each independently drawn from. In such
a setting, we design our algorithms to find the most likely mapping between the equality groups and the
plaintext values V . So, our attack outputs an injective function f : [m] → V which represents the guessed
value that underlies each equality group. Throughout, we call this kind of function a plaintext mapping.

Optimality. We consider an attack optimal if it returns a function that maximizes the likelihood of
observing the given equality groups, assuming that the plaintexts are drawn from the distribution ρ and that
f is the true mapping. More formally, we want an algorithm which returns

argmax
f

Pr[⃗c|f = f, ρ],

where f is the true plaintext mapping, modeled as a uniformly random injective function. This probability is
shorthand, introduced in [6], for the probability that we would observe c⃗ if f were the true plaintext mapping
and rows were independently sampled from ρ.

When analyzing this probability under these assumptions, we can write it in a convenient and simple
form. Specifically, for the plaintext mapping f , we want to calculate the probability that we observe the
vector c⃗ = (c1, . . . , cm, u). So, we want the probability that f(i) appears exactly ci times for each i ∈ [m].

First, we count the number of ways to arrange m values, f(1), . . . , f(m), exactly c1, . . . , cm times across
the N = u+

∑
i ci rows in the column respectively. This number is exactly the multinomial coefficient

Kc⃗ =

(
N

c1, . . . , cm, u

)
,

that depends only on c⃗.
Next, we consider the probability that of any fixed ordering. Since we assume rows are independent

samples, the probability that the rows in the equality groups take on the values f assigned is
∏

i ρ(f(i))
ci ,

given our prior distribution. However, we also need that the u remaining values in the column are not in
the observed equality groups, which happens with probability ∑

v∈V \Im(f)

ρ(v)

u

9

Alg SelAttackε(c⃗, ρ)

Let (v1, . . . , vn) be the elements of V in a ascending order
of likelihood (i.e. ρ(vi) ≤ ρ(vj) for all i < j).
Parse (c1, . . . , cm, u)← c⃗
Define rndε(x) = ε · ⌈x

ε
⌋

(f, p)← helper(n,m, 0)
Return f

Alg helper(i, j, σ)

assert(i ≥ j)
If j = 0 then

For k ∈ [i] do σ ← σ + ρ(vk)
Let f(k) = ⊥ for all k ∈ [m]
Return (f, u log σ)

(f1, p1)← helper(i− 1, j − 1, σ)
p1 ← p1 + cj log ρ(vi)
If i > j then

(f2, p2)← helper(i− 1, j, rndε(σ + ρ(vi)))
If p1 < p2 then Return (f2, p2)

Set f1(j) = vi
Return (f1, p1)

Figure 3: Pseudocode for an attack against column equality leakage.

Putting this together, we can write the expression

Pr[⃗c|f = f, ρ] = Kc⃗

m∏
i=1

ρ(f(i))ci ·

 ∑
v∈V \Im(f)

ρ(v)

u

.

Complete Equality. Notice that when m = |V |, the summation drops out. Although this may seem
insignificant, it simplifies the structure of the problem. In fact, this case is equivalent to when the complete
column equality has been revealed and was directly studied in prior work [38, 37, 6]. In particular, prior work
outlined three different attacks which use frequency analysis, norm-optimization, and bipartite matching
respectively. The first and last of which were proven optimal in [37] and [6] respectively. We add to this line
of work by proving that the attack using norm-optimization is optimal when using an ℓp-norm with p > 1
(Theorem 3) and not optimal when p = 1 (Theorem 4) in Appendix A.

4.1 Incomplete Equality

Unfortunately, when a server does not observe every equality group in a column, they cannot run the attacks
from prior work, which all rely on the existence of a one-to-one mapping between equality groups and
plaintext values. For example, it is unclear how to use frequency analysis in such a setting. One can match
the most common plaintexts (based on the distribution ρ) with the largest observed equality groups, but
this strategy does not yield an optimal plaintext mapping.

Our attack remedies this issue and works for any m ≤ |V |. We present the pseudocode for SelAttackε in
Figure 3, which details how we recursively compute a plaintext mapping. We sketch some of the intuition
of the algorithm and informally why it is optimal.

This algorithm generalizes the frequency analysis attack from prior work [38]. In fact, when m = |V |,
SelAttackε always outputs the mapping f(i) = vi where vi is the ith least frequent element according to ρ.
This is the only case that never takes the i > j branch and therefore never rounds nor recurses more than
once per call.

However when m < |V |, the algorithm sometimes takes the i > j branch. And, each time it is taken,
the algorithm is recursing and exploring assignments where vi is not one of the observed equality groups

10

0 20 40 60 80 100

Equality Groups Revealed (% of total)

0

1

2

3

4

5

6

R
ec

ov
er

y
(%

)
Crimes Beat (n=274)

val-rec (rand)

row-rec (rand)

val-rec (weighted)

row-rec (weighted)

0 20 40 60 80 100

Equality Groups Revealed (% of total)

0

10

20

30

40

50

60

70

R
ec

ov
er

y
(%

)

Taxi Pickup CA (n=78)

val-rec (rand)

row-rec (rand)

val-rec (weighted)

row-rec (weighted)

0 20 40 60 80 100

Equality Groups Revealed (% of total)

0

10

20

30

40

50

60

70

R
ec

ov
er

y
(%

)

Taxi Dropoff CA (n=78)

val-rec (rand)

row-rec (rand)

val-rec (weighted)

row-rec (weighted)

0 20 40 60 80 100

Equality Groups Revealed (% of total)

0

5

10

15

20

25

30

R
ec

ov
er

y
(%

)

Crimes CA (n=77)

val-rec (rand)

row-rec (rand)

val-rec (weighted)

row-rec (weighted)

0 20 40 60 80 100

Equality Groups Revealed (% of total)

0

5

10

15

20

25

30

R
ec

ov
er

y
(%

)

Rideshare Pickup CA (n=78)

val-rec (rand)

row-rec (rand)

val-rec (weighted)

row-rec (weighted)

0 20 40 60 80 100

Equality Groups Revealed (% of total)

0

20

40

60

80

100

R
ec

ov
er

y
(%

)

Crashes Speed Limit (n=31)

val-rec (rand)

row-rec (rand)

val-rec (weighted)

row-rec (weighted)

Figure 4: Summary graphs showing the value and row recovery rates for SelAttackε. We compare sampling
values uniformly against sampling weighted by the frequency of the value. Each data point is averaged over
the attacks on years 2019-2022 with 10 independently sampled runs for each year.

(and adding this to the probability of the unobserved group). Whereas the normal branch is exploring paths
where a cj sized equality group corresponds to the vi plaintext.

Without rounding, the end result would output an assignment and the logarithm of its corresponding
probability (without the normalization constant),

log

 m∏
i=1

ρ(f(i))ci ·

 ∑
v∈V \Im(f)

ρ(v)

u
= u log

 ∑
v∈V \Im(f)

ρ(v)

+

m∑
i=1

ci log ρ(f(i)).

Additionally, we observe that any optimal plaintext mapping will never assign f(i) = v1 and f(j) = v2
when ci < cj and ρ(v1) > ρ(v2). This is formalized by Definition 2 and Lemma 1 in Appendix A, which says
any optimal mapping is non-crossing. And this exactly characterizes the mappings that helper recursively
considers.

Combining these facts shows that SelAttackε (without rounding) actually explores each of these potential
optimal mappings along its recursive branches and only keeps the one with the highest probability (because
log(·) is an increasing function). So, SelAttackε returns an optimal plaintext mapping without rounding.

However when we introduce rounding, it allows us to bound the runtime of SelAttackε very easily. In
practice, we supplement our recursive calls with memoization, a well known technique used often in dynamic
programming. With memoization and rounding, helper can only receive at most m · |V |/ε inputs, giving us a
runtime of O(m·|V |/ε). Without rounding, the input σ to helper could vary by just a little bit and still require
more recursive calls, and there are many inputs that would run in exponential time (even with memoization).
In Appendix A, we prove that this attack is still near optimal with some rounding (Theorem 5), so we benefit
from both a bounded runtime and theoretical guarantees.

11

4.2 Experimental Evaluation

To supplement our theoretical bound on the performance of the algorithm, we simulate our attack against
real-world data to better understand the practical implications of a near-optimal inference.

Setup. We run our experiments on public data from the city of Chicago.2 Our experiments focus on
reconstruction attacks over the taxi, crime, rideshare, and vehicle crash tables in the data from the years 2018
to 2022.3 We attempt to reconstruct columns containing values for beats, community areas (CA), and speed
limits. Further details about the data used in these and other experiments can be found in Appendix D.

We simulate a scenario where Chicago decides, in 2019, to keep their data more private. Specifically,
they begin using a Structured Encryption for SQL scheme for their datasets and allow authorized users to
make queries. We test the ability of an adversary observing the volumes of selections on the Chicago server
to infer the values that a users is querying.

Our attacks use the already published 2018 Chicago tables as the auxiliary distribution ρ in our attacks.
For each year 2019-2022, our adversary observes queries over some fraction of the values in the table. They
then use SelAttackε to infer the value corresponding to each query. The equality group sizes the adversary
observes and selected by either choosing a uniformly random subset of values from the value space or by
sampling values randomly weighted according to the number of rows containing that value. For each year,
fraction of equality groups revealed, and sampling method, we average over 10 independent trials.

Evaluation. To better understand the practical implications of a near-optimal plaintext mapping, we
score our results using the value recovery rate (val-rec) and the row recovery rate (row-rec). These represent
the fraction of values or rows inferred correctly in different ways.

More specifically, after m equality groups are revealed in c⃗ = (c1, . . . , cm, u), we let f : [m] → V be the
true mapping between the equality groups revealed and the underlying plaintext values.

Then, the value recovery rate (val-rec) for a plaintext mapping g is

|{i ∈ [m] : f(m) = g(m)}|
m

,

the number of values inferred correctly to the exact equality group divided by the total number equality
groups revealed.

The row recovery rate (row-rec) for a plaintext mapping g and column (r1, . . . , rN) ∈ V N is

|{i ∈ [N] : ri ∈ Im(f) ∧ f−1(ri) = g−1(ri)}|
N − u

,

the number of rows correctly inferred divided by the total number of rows observed.4 This is similar to the
value recovery rate but weighted toward values which appear frequently.

Results. In Figure 4, we present graphs charting how SelAttackε performs as more equality groups are
revealed. For each column we attack, the corresponding graph shows how our attack perform on average
(for uniform and weighted sampling) as more equality groups are revealed. This corresponds to an adversary
observing more and more queries from a client. One may expect that attacks would perform much worse
when only a small subset of values are queried, but we find that our recovery rates are not heavily influenced
by the fraction of values revealed.

Each attack we ran finished in under 40 seconds on an Intel i9 Macbook Pro, without significant optimiza-
tion. Most would finish in just a few seconds, with the main exception being our Crimes Beat experiments
when about 50% of the values were observed, which took 30-40 seconds. This was unsurprising, since this
setting of many domain values with half being observed significantly increases the number of branches the
algorithm must consider.

Our attack’s performance depends on the distribution of the underlying data. Since our attack uses the
expected frequencies of certain values, distributions which are very flat and spread across many values (e.g.

2https://data.cityofchicago.org/
3Note that there is less (and different) data for the 2020 and 2021 years in some tables, due to the COVID pandemic, which

may have an impact on the accuracy of our auxiliary distributions in the attacks.
4For values v ̸∈ Im(g), we let g−1(v) = ⊥

12

https://data.cityofchicago.org/

beats from the crimes table) perform worse, only achieving val-rec of less than 5%. Where as more skewed
data on smaller domains typically perform much better, achieving val-rec around 10-40%. Also our attack
is very good at recovering the most frequent values, evidenced by our attacks against speed limits, and taxi
data, which often get row-rec over 50%, even when values are selected uniformly at random.

Overall, this level of query recovery could be concerning for specific deployments of modern StE for
SQL schemes. When a client performs selects on sensitive data, we show that a passive adversary may be
able to infer key parts of the client’s queries. If a client wants to hide what they do with their data, these
attacks indicate that the leakage from these schemes is insufficient, when an adversary might have some prior
knowledge over the data distribution.

5 Join Plaintext Recovery

Section 3.2 illustrates how state of the art structured encryption for SQL schemes leak the equality group
sizes across the columns during a join. Notice that this leakage is more than just the equality group sizes in
both columns. The adversary additionally learns which groups have the same plaintext across the columns.

Attack Model. The formalism for this attack extends the ideas put forward in prior work [6], by using
a Bayesian inference framework. The leakage input to our algorithms attacking cross-column equality are
two vectors c⃗1 = (c1, . . . , cm, u1) and c⃗2 = (d1, . . . , dm, u2) which contain the sizes of each of the m observed
equality groups across the two columns. Unlike the vector in Section 4, we cannot assume both of these are
in ascending order without loss of generality. Instead, we assume that the equality groups corresponding to
ci and di have the same underlying plaintext value and that the observed group sizes of c⃗1 are in ascending
order. The number of rows without an observed equality group is u1 and u2 in the columns respectively,
which can be computed from the leakage discussed in Section 3.2.

As an example from Figure 1, if we were to observe the leakage from the join corresponding to JOIN(C1, C2)
then we would run our attacks with the observed vectors

c⃗1 = (1, 3, 3, 0)

and
c⃗2 = (3, 1, 2, 1),

which correspond to the values Bob, Cal, and Ari (followed by the number of unobserved rows), since we
keep c⃗1 in ascending order.

In addition to the observed leakage vectors, our algorithms take some auxiliary information as an input.
Specifically they take two distributions ρ1 and ρ2 over the set of plaintext values V . These distributions
describe the plaintext distribution that both columns have their values independently drawn from. In this
setting, our algorithms have the goal to find the most likely mapping between the equality groups and the
set of plaintext values V .

First Optimality Attempt. Unlike in Section 4, the optimality of our attacks against cross-column
equality is not as straightforward. We put forward two possible theoretical objectives of attacks and argue
to adopt the latter definition.

First, we parallel Section 4 closely and consider attacks which only output an injective function f : [m] →
V , called a plaintext mapping, which represents the guessed value that underlies each equality group. This is
not the most an adversary could infer, since they additionally know that the rows in the two columns, which
were not in the observed equality groups must be unequal from each other. However, this type of attack
may capture most of what an adversary would care about and parallels its objective nicely with the attacks
from prior work.

An attack of this sort optimal if it returns a plaintext mapping that maximizes the likelihood of observing
the given equality groups, assuming that the columns’ values are drawn from the distributions ρ1 and ρ2
respectively. More formally, an algorithm is optimal if it returns

argmax
f

Pr[⃗c1, c⃗2|f = f, ρ1, ρ2],

13

where f is the true plaintext mapping, modeled as a uniformly random injective function.
Using an analogous probability analysis, as the one made in Section 4, we can somewhat expand the

expression for the probability of the observed equality groups for a plaintext mapping f . For vectors c⃗1 =
(c1, . . . , cm, u1) and c⃗2 = (d1, . . . , dm, u2), we can expand the expression to

Pr[⃗c1, c⃗2|f = f, ρ1, ρ2] =

Kc⃗1 ,⃗c2T
u1
1 Tu2

2 P

m∏
i=1

ρ1(f(i))
ci · ρ2(f(i))di ,

where Kc⃗1 ,⃗c2 is a normalization constant that depends only on the terms in the vectors and the terms

Ti =
∑

v∈V \Im(f)

ρi(v),

the total probability of a sample lying outside of the image of f for the distribution ρi. Unfortunately, P
does not have a clean expression in terms of our input variables, so we leave it in terms of Ui which is the
set values from ui independent samples of ρi conditioned on all ui samples lying outside of the image of f .
With that notation, we can write

P = Pr[U1 ∩U2 = ∅|f = f, ρ1, ρ2],

the probability that the two unobserved rows in the two columns are never equal (since otherwise they
would’ve comprised another equality group).

Optimality. We also consider attacks which output f and sets U1 and U2 with U1 ∩ U2 = ∅ and
U1 ∪ U2 ⊆ V \ Im(f), which represent the guess at the most likely values among rows in the unobserved
equality groups in the columns. This definition captures that maximum amount of information an attack
could infer about the underlying data from c⃗1 and c⃗2, by determining the most likely values present in each
column respectively. Similar to the other definitions, an attack would be optimal if it returns

argmax
f,U1,U2

Pr[⃗c1, c⃗2|f = f,U1 = U1,U2 = U2, ρ1, ρ2].

For attacks which output these sets, we consider the probability of the triple (f, U1, U2) in a more explicit
expression. For vectors c⃗1 = (c1, . . . , cm, u1) and c⃗2 = (d1, . . . , dm, u2), we can write

Pr[⃗c1 ,⃗c2|f = f,U1 = U1,U2 = U2, ρ1, ρ2] =

Kc⃗1 ,⃗c2P (U1, U2)

m∏
i=1

ρ1(f(i))
ci · ρ2(f(i))di ,

where Kc⃗1 ,⃗c2 is a normalization constant that depends only on the terms in the vectors, and

P (U1, U2) =

(∑
v∈U1

ρ1(v)

)u1

·

(∑
v∈U2

ρ2(v)

)u2

is the probability that all the unobserved rows from the columns fall into U1 and U2 respectively.
When m = |V |, corresponding to attacking complete cross-column equality, the definitions are equivalent.

Since there are no plaintext values outside of the image of f , there is no inference to make about the values
outside of the join result. This means attacks only need to output a plaintext mapping f , and in this setting,
we give an attack and prove that it is optimal.

When m < |V |, the two optimality objectives differ. We find that the latter definition is more useful
from both theoretical and practical perspectives. For example, our attacks make use of efficient likelihood
estimatation, and in Appendix C, we show that is in fact NP-hard to make an inference which outputs the
most likely sets U1, U2 of unassigned plaintext values (Theorem 6). Additionally, this definition corresponds
to the most an adversary can infer, which is the overarching goal of leakage-abuse attacks. Given these
virtues, we stick with this as the standard definition for optimality.

14

Alg BM(c⃗1, c⃗2, ρ1, ρ2)

Parse (c1, . . . , cn, 0)← c⃗1 and (d1, . . . , dn, 0)← c⃗1
Let G = (Gℓ ∪ Gr, E) be a weighted complete bipartite
graph, where Gℓ = {ℓ1, . . . , ℓn}, Gr = {rv1 , . . . , rvn} and
the weight of each edge is

w({ℓi, rvj}) = ci · log(ρ1(vj)) + di · log(ρ2(vj))

Use the Hungarian Algorithm to obtain M , the maximum
weight matching for G
Return f where f(i) = vj if {ℓi, rvj} ∈M .

Figure 5: Bipartite matching algorithm BM for attacking complete cross-column equality.

5.1 Complete Cross-Column Equality

Our main attack for attacking complete cross-column equality uses bipartite matching, similar to one of the
attacks for complete equality in prior work [6]. The BM algorithm begins by creating a bipartite graph based
on the observed equality groups and auxiliary distributional information. A perfect matching in this graph
corresponds directly to an assignment of equality groups to plaintext values.

By weighting the edges appropriately, the weight of any matching is just the logarithm of the probability
an attack needs to maximize (up to a constant). So, BM just constructs such a graph and uses a subroutine
to find a maximum weight bipartite matching, which can be converted into a plaintext mapping maximizing
the target probability. We give the pseudocode for BM in Figure 5. Additionally, we prove the Theorem 1
that this attack is optimal, as an almost immediate corollary of the Hungarian Algorithm’s correctness.

Theorem 1. For every n element set V , c⃗1, c⃗2 ∈ Zn×{0} and ρ1, ρ2 ∈ Dist(V), BM(c⃗1, c⃗2, ρ1, ρ2) (Figure 5)
outputs a plaintext mapping g such that Pr[⃗c1, c⃗2|f = g, ρ1, ρ2] = maxf Pr[⃗c1, c⃗2|f = f, ρ1, ρ2].

Proof. Let c⃗1 = (c1, . . . , cn, 0) and c⃗2 = (d1, . . . , dn, 0). Let f be a function returned by BM(c⃗1, c⃗2, ρ1, ρ2).
Then, f is a function which maximizes∑

i∈[n]

ci log ρ1(f(i)) + di log ρ2(f(i)),

because the Hungarian Algorithm [36] always returns a maximizing function. But, observing this expression
is log(Pr[⃗c1, c⃗2|f = f, ρ1, ρ2]) up to a constant factor (depending only on c⃗1, c⃗2) and that log(·) is an increasing
function leads us to conclude that such an f also maximizes Pr[⃗c1, c⃗2|f = f, ρ1, ρ2].

5.2 Incomplete Cross-Column Equality

The two potential targets for incomplete cross-column equality both have issues when trying to find an
effective and optimal leakage abuse attack. For attacks only returning a plaintext mapping, there isn’t a
very precise general formula for the likelihood of the observed data. And for attacks which maximize the
amount they can infer, we show, in Theorem 6 that finding an optimal function is NP-hard in the worst
case.

Despite these challenges, we give attacks which output a plaintext mapping f as well as sets U1 and U2

to infer the values in the unobserved rows. We do this because they are more general, can just be modified
to only output the plaintext mapping, and having a concrete formula allows us to adapt techniques used in
our other leakage-abuse attack settings.

Partitioning Approximation. Throughout our attacks, we use our own Partitioning Optimization
Approximation Algorithm (POAA) as a subroutine. The pseudocode for POAAε is in Figure 11 (Appendix B).
After a plaintext mapping is chosen, POAAε approximately finds the best way to divide the remaining

15

Alg Greedyε(c⃗1, c⃗2, ρ1, ρ2)

S←$

(
V
m

)
; δ ← 1

(f, U1, U2, p)← MapFromSetε(S, c⃗1, c⃗2, ρ1, ρ2)
While δ > 0 do

δ ← 0 ; S′ ← S
For each (u, v) ∈ S′ × V \ S′ do

Su,v ← {v} ∪ S \ {u}
(f, U1, U2, pu,v)← MapFromSetε(Su,v, c⃗1, c⃗2, ρ1, ρ2)
If pu,v − p > δ then S ← Su,v ; δ ← pu,v − p

(f, U1, U2, p)← MapFromSetε(S, c⃗1, c⃗2, ρ1, ρ2)
Return (f, U1, U2)

Alg MapFromSetε(S, c⃗1, c⃗2, ρ1, ρ2)

Parse (c1, . . . , cm, u1)← c⃗1 and (d1, . . . , dm, u2)← c⃗2
assert(|S| = m)
Let ρ′j(v) = ρj(v)/

∑
v∈S ρj(v) for j = 1, 2 and v ∈ S

f ← BM((c1, . . . , cm, 0), (d1, . . . , dm, 0), ρ′1, ρ
′
2)

(U1, U2)← POAAε(V \ S, ρ1, ρ2, u1, u2)
p← Pr[⃗c1, c⃗2|f = f,U1 = U1,U2 = U2, ρ1, ρ2]
Return (f, U1, U2, p)

Figure 6: The algorithm Greedyε shows one way to optimize over the MapFromSetε function to find a likely
plaintext mapping for incomplete cross-column equality.

plaintext values between the two columns. It will then return sets U1, U2 which approximately maximize the
value P (U1, U2).

The algorithm is parameterized by a value ε ∈ (0, 1), which determines the precision of the approximation.
As input, it takes the set of remaining plaintext values R, the distributions ρi, and the number of rows which
were not in an equality group ui for both columns (i = 1, 2). It returns two sets, which are the respective
guesses for the most likely split of the remaining plaintext values across the columns.

Greedy Algorithm. The first approach for solving incomplete cross-column equality is to give a function
that can be optimized using generic techniques. In Figure 6, we present MapFromSetε which takes a guess
at which m plaintexts are present in the join output and returns a guess at the plaintext mapping, the split
between the unassigned values, and the probability estimate for the returned tuple.

It works by first running the BM algorithm on the equality groups, and restricted to the set S to find a
candidate plaintext mapping f . From there, it uses the POAAε algorithm on the remaining plaintext values
to figure out an approximately good split U1, U2. Finally, the algorithm returns the (f, U1, U2) along with
the approximate output probability of the triple.

We use MapFromSetε as a subroutine for Greedyε in Figure 6. The algorithm Greedyε, chooses an initial
guess for the set and incrementally chooses a value in the set and a value out of the set to swap. On each
iteration, it makes the swap which increases the likelihood of the set the most. Once it can find no more
improving swaps, the function returns the mapping for the best set that it iterated to. In our experiments,
we run Greedyε with random starting points 5 times and take the most likely mapping returned, and we cap
the number of iterations of the outer loop to 1/ε = 1000.

Genetic Algorithm. We also use MapFromSetε as a subroutine for Geneticε,k,g,t,γ in Figure 7. Our
algorithm is inspired by genetic algorithms from machine learning. At a high level, the goal is to treat the
probability as a “fitness function,” and like genetic selection, we keep “fit” sets and also randomly mutate
sets across generations. Over many generations, the goal is to achieve a more fit population and to pick out
the best plaintext mapping from the last generation.

In addition to the typical ε, Geneticε,k,g,t,γ is parameterized by k, g, t, and γ, which correspond to the pop-
ulation size, generation number, tournament size, and mutation rate respectively. Once these are specified,
the algorithm generates k sets of candidate plaintext set guesses and then proceeds to run for g generations,
each time testing the likelihood of all candidates, keeping the top 10%, a tournament selected 80% (which

16

Alg Geneticε,k,g,t,γ(c⃗1, c⃗2, ρ1, ρ2)

(S1, . . . , Sk)←$

(
V
m

)p
For i = 1, . . . , g do

For j = 1, . . . , k do
(f, U1, U2, pj)← MapFromSetε(Sj , c⃗1, c⃗2, ρ1, ρ2)

(p1, S1), . . . , (pk, Sk)← DESC((p1, S1), . . . , (pk, Sk))
For j = 1, . . . , k do

If j ≤ k
10

then S′
j ← Sj

If k
10

< j ≤ 9k
10

then
ℓ←$ TournamentSelection(t, k)
S′
j ←$ Mutate(γ, Sℓ)

If 9k
10

< j then
ℓ←$ {1, . . . , k} ; S′

j ← Sℓ

(S1, . . . , Sk)← (S′
1, . . . , S

′
k)

(f, U1, U2, p)← MapFromSetε(S1, c⃗1, c⃗2, ρ1, ρ2)
Return (f, U1, U2)

Alg TournamentSelection(t, k)

T ←$ [k]t ; Return min(T)

Alg Mutate(γ, S)

c←$ [γ] ; U ←$

(
S
c

)
; U ′←$

(
(V \S)∪U)

c

)
; Return (S\U)∪U ′

Figure 7: The Geneticε,k,g,t,γ attack uses MapFromSetε (Figure 6) as subroutine. Note that min will return
the smallest element of the tuple T and DESC returns the tuples in sorted descending order by the first entry
(the likelihood).

get mutated), and finally randomly selecting 10%, to keep the population size at k. After g generations, the
function turns the most likely set into a solution for the incomplete cross-column problem using MapFromSetε

and returns the result.
Split Algorithm. Unlike our incremental optimization, we give a single shot attack in Figure 8 as well

as a slightly generalized version, which just takes the best output of a few runs. Our main leakage-abuse
attack however, is Splitε,ϕ1,ϕ2 , which is parameterized by a parameter ε used for the POAAε algorithm and
distributions ϕ1, ϕ2 over the integers [m+ 1, n] = {m,m+ 1, . . . , n} (or any superset of this set).

The high level idea is to use the distributions ϕ1, ϕ2 as “guesses” of the underlying distribution of the data
in the two columns. The algorithm will approximately partition (split) this guessed distribution first, then
construct two new observation vectors with terms c′i and d′i respectively based on the partitioning returned.
These new vectors create an instance of a complete cross-column equality pattern, and so we can run our
optimal attack BM with them. Once, we get back a function g, we find the values corresponding to the
equality groups f and the plaintext values which correspond to the sets previously split sets.

Because this attack runs in one shot, it is also easy to enumerate over many distribution pair guesses
and find one which returns a solution that gives a higher likelihood than the others. This is what we
present as Splitε,Φ which is parameterized by a set of distribution pairs. This is more likely to give a better
solution, because it can take many guesses at the underlying distributions of plaintext values. The common
distributions pairs to try are the uniform distributions and zipfian distributions. We can also change the
domain of ρ1 and ρ2 from V to [n], where the most likely element to appear is 1, then 2 and so on, and use
such a distribution for the Splitε,ϕ1,ϕ2 function.

17

Alg Splitε,ϕ1,ϕ2(c⃗1, c⃗2, ρ1, ρ2)

Parse (c1, . . . , cm, u1)← c⃗1 and (d1, . . . , dm, u2)← c⃗2
(S1, S2)← POAAε([m+ 1, n], ϕ1, ϕ2, u1, u2)

Let c′i =


ci for 1 ≤ i ≤ m

(u1 + u2) · ϕ1(i) if i ∈ S1

0 if i ̸∈ S1

Let d′i =


di for 1 ≤ i ≤ m

(u1 + u2) · ϕ2(i) if i ∈ S2

0 if i ̸∈ S2

g ← BM((c′1, . . . , c
′
n, 0), (d

′
1, . . . , d

′
n, 0), ρ1, ρ2)

Let f(i) = g(i) for 1 ≤ i ≤ m
Let Uj = {f(i) : i ∈ Sj} for j = 1, 2
Return (f, U1, U2)

Alg Splitε,Φ(c⃗1, c⃗2, ρ1, ρ2)

For each (ϕ1, ϕ2) ∈ Φ do
(f, U1, U2)← Splitε,ϕ1,ϕ2(c⃗1, c⃗2, ρ1, ρ2)
pϕ1,ϕ2 ← Pr[⃗c1, c⃗2|f = f,U1 = U1,U2 = U2, ρ1, ρ2]

(ϕ′
1, ϕ

′
2)← argmax(ϕ1,ϕ2)∈Φ pϕ1,ϕ2

Return Splitε,ϕ
′
1,ϕ

′
2(c⃗1, c⃗2, ρ1, ρ2)

Figure 8: The Splitε,ϕ1,ϕ2 attack against incomplete cross column equality parameterized by distributions
ϕ1, ϕ2. The second Splitε,Φ attack is parameterized by a set of distribution pairs Φ and returns the best
solution from among those pairs.

5.3 Experimental Evaluation

Setup. We test the practical performance of our leakage-abuse attacks against join leakage from real-world
data. We use public data from the city of Chicago5 which has multiple datasets with columns of common
types. We use the taxi, crime, rideshare, and vehicle crash tables from the years 2018-2022 to provide join
leakage.6 Further details about the data used in these and other experiments can be found in Appendix D.

As in Section 4, we simulate a scenario where Chicago decides, in 2019, to keep their data more private.
Specifically, they begin using a Structured Encryption for SQL scheme for the tables in question and allow
authorized users to query the datasets. We test the ability of an adversary observing the join access pattern
on the Chicago server to infer the values in the tables joined on, using the 2018 data as a prior distribution.

Between the taxi and crimes tables, we simulate a join between the pickup community area (CA) and
the community area in which a crime occurred as well as the drop-off community area and the community
area of a crime. Between the crime and crashes tables, we simulate a join between the beat in which a crime
occurred and the beat in which a crash occurred.

For each of these potential joins and every year 2019-2022, we use the 2018 year table as an auxiliary
distribution to estimate the column’s plaintext distribution for the year we are attacking. We then calcu-
late the cross-column leakage for the year and the columns we are joining. Finally, we take the auxiliary
distributions and leakage and run our attacks Greedyε, Geneticε,k,g,t,γ , and Splitε,Φ. We compare against a
“no-cross” attack which runs SelAttackε on each column’s equality group leakage, runs POAAε to partition
the remaining plaintext values, and returns the more likely of the two plaintext mappings. We include this
to compare between cross-column and column equality more directly, to see how much more devastating an
adversary is with the additional leakage between columns.

Evaluation. We evaluate our results using the value and row recovery rates just as in Section 4.
For cross-column leakage-abuse attacks, the scoring formulas for the value and row recovery rates in an

5https://data.cityofchicago.org/
6Note that there is less (and different) data for the 2020 and 2021 years in some tables, due to the COVID pandemic, which

may have an impact on the accuracy of our auxiliary distributions in the attacks.

18

https://data.cityofchicago.org/

no-cross greedy genetic split
0

5

10

15

20

25

30

R
ec

ov
er

y
(%

)
Crime vs Crash Beat (n=392,m=158)

val-rec

row-rec

no-cross greedy genetic split
0

20

40

60

80

100

R
ec

ov
er

y
(%

)

Taxi Pickup vs Crime CA (n=78,m=77)

val-rec

row-rec

no-cross greedy genetic split
0

20

40

60

80

100

R
ec

ov
er

y
(%

)

Taxi Dropoff vs Crime CA (n=78,m=77)

val-rec

row-rec

no-cross greedy genetic split
0

20

40

60

80

100

R
ec

ov
er

y
(%

)

Rideshare Pickup vs Crime CA (n=78,m=77)

val-rec

row-rec

no-cross greedy genetic split
0

20

40

60

80

100

R
ec

ov
er

y
(%

)

Taxi vs Rideshare Pickup CA (n=m=78)

val-rec

row-rec

no-cross greedy genetic split
0

20

40

60

80

100

R
ec

ov
er

y
(%

)

Taxi vs Rideshare Dropoff CA (n=m=78)

val-rec

row-rec

Figure 9: Summary graphs showing performance of our attacks, using cross-column leakage. We indicate
the performance of each year using “+” and “x” marks, which represent 2019-2022 from left to right within
each bar. Notice that when n = m, our attacks reduce to running BM and have the same output.

experiment with m observed values are

|{i ∈ [m] : f(m) = g(m)}|
m

,

and
|{i ∈ [N1 +N2] : ri ∈ Im(f) ∧ f−1(ri) = g−1(ri)}|

N1 +N2 − (u1 + u2)
,

respectively, where g is the output plaintext mapping, f is the true plaintext mapping, and the join takes
place on columns (r1, . . . , rN1

) and (rN1+1, . . . , rN1+N2
). These two formulae capture the fraction of values

correctly identified and fraction of rows correctly identified respectively.
Results. We summarize some of our cross-column attacks in Figure 9. For all of our attacks we take

ε = 0.001. For our Geneticε,k,g,t,γ algorithm, we set k = 30, g = 15, t = 5, and γ = 0.2m, and for Splitε,Φ we
try all pairs of the uniform distribution, zipfian distribution, and tail of the auxiliary distribution for each
column (for a total of 9 calls to Splitε,ϕ1,ϕ2). The “no-cross” algorithm is an attack which does not use the
the cross-column equality pattern and instead just uses the column equality for each column. Specifically, it
runs SelAttackε on each column and uses POAAε to partition any remaining values between the columns. It
then returns the more likely triple between the results from the first and second columns.

For every experiment, except Crime vs Crash Beat, each attack we ran finished in under 30 seconds and
usually in less than a second on an Intel i9 Macbook Pro, without significant optimization. For Crime vs
Crash Beat, our no-cross and Geneticε,k,g,t,γ algorithms took 3-4 minutes, and Greedyε took about an hour.
Fortunately, our (overall) best algorithm Splitε,Φ is also our most efficient! It only took about 5 seconds to
run on Crime vs Crash Beat instances and was less than half a second on all of the other experiments.

Based on our experiments, the cross-column equality pattern allows an adversary to recover substantially
more than attacks using only the equality leakage from each column. This is most highlighted by a simulated
join between the “beats” column from the crimes table and the one from the crash table. The Splitε,Φ

algorithm vastly out-performs all other others, recovering over 15% of values and rows on average, versus
the others which are all under 5%. This pattern is displayed across our other joins as well, although often
to a lesser extent. And, it appears that the baseline is generally good at recovering the values which occur
in many rows, but the additional cross-column information still improves that improvement.

19

In a deployment of a modern StE for SQL scheme, this cross-column leakage is revealed entirely when
a join is performed on the server, which only takes one query. So, when a database is stored with StE for
SQL, it is important to understand what a passive adversary could infer, given some prior distributional
information. We conclude that if a client wants to keep adversaries from inferring underlying plaintext
values, then StE for SQL schemes may give insufficient protection, especially in settings where databases
store sensitive information.

6 Conclusion

Based on our theoretical and empirical results, we find that modern Structured Encryption for SQL schemes
[32, 50, 13] are often not significantly more secure than older schemes supporting SQL with property-
preserving encryption. In some contexts, this level of security carries acceptable risk and can still be used.
However, one should take caution using these schemes for databases which contain sensitive information.

In our introduction, we also discuss some of the limitations of these findings and possible mitigations.
Specifically, using certain primitives [33, 41] or “heavy weight” cryptography [24, 8, 5, 21] can be used to help
with mitigation. However, all the solutions proposed come at some cost to the server or client computation
and/or the bandwidth.

Acknowledgments

Support for this work’s researchers was provided primarily by DSO National Laboratories. We thank the
high-school interns whose exploratory work helped inspired this project: Ming Kee Kang, Ananya Khar-
banda, Allison Law, Jemma Lee, Megan Lee, Chelsea Ling Xinyi, Cadence Loh, and Naomi Wang. We
thank Eileen Ee and Ryan Seah for their help supporting the interns, and thank David Cash for writing
advice.

Availability

Our code can be found at https://github.com/ste4sql/LAA4STE4SQL. Appendix D contains details about
data used.

References

[1] Archita Agarwal, Maurice Herlihy, Seny Kamara, and Tarik Moataz. Encrypted databases for differential
privacy. PoPETs, 2019(3):170–190, July 2019.

[2] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Order preserving encryption
for numeric data. In Proceedings of the 2004 ACM SIGMOD international conference on Management
of data, pages 563–574, 2004.

[3] Panagiotis Antonopoulos, Arvind Arasu, Kunal D Singh, Ken Eguro, Nitish Gupta, Rajat Jain, Raghav
Kaushik, Hanuma Kodavalla, Donald Kossmann, Nikolas Ogg, et al. Azure sql database always en-
crypted. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data,
pages 1511–1525, 2020.

[4] Alexandre Anzala-Yamajako, Olivier Bernard, Matthieu Giraud, and Pascal Lafourcade. No such thing
as a small leak: Leakage-abuse attacks against symmetric searchable encryption. In International
Conference on E-Business and Telecommunications, pages 253–277. Springer, 2019.

20

https://github.com/ste4sql/LAA4STE4SQL

[5] Assaf Ben-David, Noam Nisan, and Benny Pinkas. FairplayMP: a system for secure multi-party com-
putation. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors, ACM CCS 2008, pages 257–266.
ACM Press, October 2008.

[6] Vincent Bindschaedler, Paul Grubbs, David Cash, Thomas Ristenpart, and Vitaly Shmatikov. The
tao of inference in privacy-protected databases. Cryptology ePrint Archive, Report 2017/1078, 2017.
https://eprint.iacr.org/2017/1078.

[7] Laura Blackstone, Seny Kamara, and Tarik Moataz. Revisiting leakage abuse attacks. In NDSS 2020.
The Internet Society, February 2020.

[8] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key encryption
with keyword search. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume
3027 of LNCS, pages 506–522. Springer, Heidelberg, May 2004.

[9] Raphael Bost. Σoϕoς: Forward secure searchable encryption. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages 1143–1154.
ACM Press, October 2016.

[10] Raphael Bost and Pierre-Alain Fouque. Thwarting leakage abuse attacks against searchable encryption –
A formal approach and applications to database padding. Cryptology ePrint Archive, Report 2017/1060,
2017. https://eprint.iacr.org/2017/1060.

[11] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-abuse attacks against search-
able encryption. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, ACM CCS 2015, pages
668–679. ACM Press, October 2015.

[12] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-Catalin
Rosu, and Michael Steiner. Dynamic searchable encryption in very-large databases: Data structures
and implementation. In NDSS 2014. The Internet Society, February 2014.

[13] David Cash, Ruth Ng, and Adam Rivkin. Improved structured encryption for SQL databases via hybrid
indexing. In Kazue Sako and Nils Ole Tippenhauer, editors, ACNS 21, Part II, volume 12727 of LNCS,
pages 480–510. Springer, Heidelberg, June 2021.

[14] Javad Ghareh Chamani, Dimitrios Papadopoulos, Charalampos Papamanthou, and Rasool Jalili. New
constructions for forward and backward private symmetric searchable encryption. In David Lie, Mo-
hammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 1038–1055.
ACM Press, October 2018.

[15] Yan-Cheng Chang and Michael Mitzenmacher. Privacy preserving keyword searches on remote encrypted
data. In John Ioannidis, Angelos Keromytis, and Moti Yung, editors, ACNS 05, volume 3531 of LNCS,
pages 442–455. Springer, Heidelberg, June 2005.

[16] Zhao Chang, Dong Xie, Sheng Wang, and Feifei Li. Towards practical oblivious join. In Proceedings of
the 2022 International Conference on Management of Data, pages 803–817, 2022.

[17] Melissa Chase and Seny Kamara. Structured encryption and controlled disclosure. In Masayuki Abe,
editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 577–594. Springer, Heidelberg, December 2010.

[18] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. Searchable symmetric encryption:
improved definitions and efficient constructions. In Ari Juels, Rebecca N. Wright, and Sabrina De
Capitani di Vimercati, editors, ACM CCS 2006, pages 79–88. ACM Press, October / November 2006.

[19] Ioannis Demertzis, Dimitrios Papadopoulos, Charalampos Papamanthou, and Saurabh Shintre. SEAL:
Attack mitigation for encrypted databases via adjustable leakage. In Srdjan Capkun and Franziska
Roesner, editors, USENIX Security 2020, pages 2433–2450. USENIX Association, August 2020.

21

https://eprint.iacr.org/2017/1078
https://eprint.iacr.org/2017/1060

[20] Francesca Falzon, Evangelia Anna Markatou, Akshima, David Cash, Adam Rivkin, Jesse Stern, and
Roberto Tamassia. Full database reconstruction in two dimensions. In Jay Ligatti, Xinming Ou,
Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 443–460. ACM Press, November
2020.

[21] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher, editor,
41st ACM STOC, pages 169–178. ACM Press, May / June 2009.

[22] Matthieu Giraud, Alexandre Anzala-Yamajako, Olivier Bernard, and Pascal Lafourcade. Practical
passive leakage-abuse attacks against symmetric searchable encryption. Cryptology ePrint Archive,
Report 2017/046, 2017. https://eprint.iacr.org/2017/046.

[23] Eu-Jin Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216, 2003. https://eprint.

iacr.org/2003/216.

[24] Oded Goldreich. Towards a theory of software protection and simulation by oblivious RAMs. In Alfred
Aho, editor, 19th ACM STOC, pages 182–194. ACM Press, May 1987.

[25] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G. Paterson. Pump up the volume:
Practical database reconstruction from volume leakage on range queries. In David Lie, Mohammad
Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 315–331. ACM Press,
October 2018.

[26] Paul Grubbs, Kevin Sekniqi, Vincent Bindschaedler, Muhammad Naveed, and Thomas Ristenpart.
Leakage-abuse attacks against order-revealing encryption. In 2017 IEEE Symposium on Security and
Privacy, pages 655–672. IEEE Computer Society Press, May 2017.

[27] Zichen Gui, Kenneth G Paterson, and Tianxin Tang. Security analysis of mongodb queryable encryption.
In 32nd USENIX Security Symposium (USENIX Security 23), pages 7445–7462, 2023.

[28] Florian Hahn, Nicolas Loza, and Florian Kerschbaum. Joins over encrypted data with fine granular
security. In 2019 IEEE 35th International Conference on Data Engineering (ICDE), pages 674–685.
IEEE, 2019.

[29] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access pattern disclosure on search-
able encryption: Ramification, attack and mitigation. In NDSS 2012. The Internet Society, February
2012.

[30] Charanjit Jutla and Sikhar Patranabis. Efficient searchable symmetric encryption for join queries. In
Advances in Cryptology–ASIACRYPT 2022: 28th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Taipei, Taiwan, December 5–9, 2022, Proceedings, Part
III, pages 304–333. Springer, 2023.

[31] Seny Kamara, Abdelkarim Kati, Tarik Moataz, Thomas Schneider, Amos Treiber, and Michael Yonli.
Sok: Cryptanalysis of encrypted search with leaker–a framework for leakage attack evaluation on real-
world data. In 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P), pages 90–108.
IEEE, 2022.

[32] Seny Kamara and Tarik Moataz. SQL on structurally-encrypted databases. In Thomas Peyrin and
Steven Galbraith, editors, ASIACRYPT 2018, Part I, volume 11272 of LNCS, pages 149–180. Springer,
Heidelberg, December 2018.

[33] Seny Kamara and Tarik Moataz. Computationally volume-hiding structured encryption. In Yuval Ishai
and Vincent Rijmen, editors, EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages 183–213.
Springer, Heidelberg, May 2019.

22

https://eprint.iacr.org/2017/046
https://eprint.iacr.org/2003/216
https://eprint.iacr.org/2003/216

[34] Richard M Karp. Reducibility among combinatorial problems. In Complexity of computer computations,
pages 85–103. Springer, 1972.

[35] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. Generic attacks on secure out-
sourced databases. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers,
and Shai Halevi, editors, ACM CCS 2016, pages 1329–1340. ACM Press, October 2016.

[36] Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics quarterly,
2(1-2):83–97, 1955.

[37] Marie-Sarah Lacharité and Kenneth G. Paterson. A note on the optimality of frequency analysis vs. ℓp-
optimization. Cryptology ePrint Archive, Report 2015/1158, 2015. https://eprint.iacr.org/2015/
1158.

[38] Muhammad Naveed, Seny Kamara, and Charles V. Wright. Inference attacks on property-preserving
encrypted databases. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, ACM CCS 2015,
pages 644–655. ACM Press, October 2015.

[39] Jianting Ning, Xinyi Huang, Geong Sen Poh, Jiaming Yuan, Yingjiu Li, Jian Weng, and Robert H.
Deng. LEAP: Leakage-abuse attack on efficiently deployable, efficiently searchable encryption with
partially known dataset. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 2307–2320.
ACM Press, November 2021.

[40] Simon Oya and Florian Kerschbaum. IHOP: Improved statistical query recovery against searchable
symmetric encryption through quadratic optimization. In Kevin R. B. Butler and Kurt Thomas, editors,
USENIX Security 2022, pages 2407–2424. USENIX Association, August 2022.

[41] Sarvar Patel, Giuseppe Persiano, Kevin Yeo, and Moti Yung. Mitigating leakage in secure cloud-hosted
data structures: Volume-hiding for multi-maps via hashing. In Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 79–93. ACM Press, November
2019.

[42] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakrishnan. Cryptdb:
A practical encrypted relational dbms. In In Proceedings of the 23rd ACM Symposium on Operating
Systems Principles (SOSP), Cascais, Portugal, October 2011. ACM.

[43] David Pouliot and Charles V. Wright. The shadow nemesis: Inference attacks on efficiently deploy-
able, efficiently searchable encryption. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel,
Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages 1341–1352. ACM Press, October
2016.

[44] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for searches on encrypted
data. In 2000 IEEE Symposium on Security and Privacy, pages 44–55. IEEE Computer Society Press,
May 2000.

[45] Cédric Van Rompay, Refik Molva, and Melek Önen. A leakage-abuse attack against multi-user searchable
encryption. Cryptology ePrint Archive, Report 2017/400, 2017. https://eprint.iacr.org/2017/400.

[46] Lei Xu, Huayi Duan, Anxin Zhou, Xingliang Yuan, and CongWang. Interpreting and mitigating leakage-
abuse attacks in searchable symmetric encryption. IEEE Transactions on Information Forensics and
Security, 16:5310–5325, 2021.

[47] Lei Xu, Leqian Zheng, Chengzhi Xu, Xingliang Yuan, and Cong Wang. Leakage-abuse attacks against
forward and backward private searchable symmetric encryption. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security, pages 3003–3017, 2023.

23

https://eprint.iacr.org/2015/1158
https://eprint.iacr.org/2015/1158
https://eprint.iacr.org/2017/400

Alg Lp(c⃗, ρ)

Parse (c1, . . . , cn, 0)← c⃗ ; N ←
n∑

i=1

ci

f ←$ argmin
f

n∑
i=1

|ci −N · ρ(f(i))|p

Return f

Figure 10: The ℓp-norm optimization leakage-abuse attack, originally presented in [38].

[48] Xianglong Zhang, Wei Wang, Peng Xu, Laurence T. Yang, and Kaitai Liang. High recovery with fewer
injections: Practical binary volumetric injection attacks against dynamic searchable encryption. In 32nd
USENIX Security Symposium (USENIX Security 23), pages 5953–5970, Anaheim, CA, August 2023.
USENIX Association.

[49] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. All your queries are belong to us: The
power of file-injection attacks on searchable encryption. In Thorsten Holz and Stefan Savage, editors,
USENIX Security 2016, pages 707–720. USENIX Association, August 2016.

[50] Zheguang Zhao, Seny Kamara, Tarik Moataz, and Stan Zdonik. Encrypted databases: From theory to
systems. In CIDR, 2021.

A Column Equality Theory

This section contains theorems and proofs omitted from the main text for brevity. We recall an attack from
prior work in Figure 10. The following definition and lemma are useful in proofs below.

Definition 2. Let V be an n element set, m ≤ n be an integer, c⃗ = (c1, . . . , cm, u) ∈ Zm+1, and ρ ∈ Dist(V).
We call a function f : [m] → V non-crossing if for any i, j ∈ [m]

ρ(f(i)) < ρ(f(j)) =⇒ ci ≤ cj and

ci < cj =⇒ ρ(f(i)) ≤ ρ(f(j)).

Lemma 1. Let V be an n element set, m ≤ n be an integer, c⃗ = (c1, . . . , cm, u) ∈ Zm+1, and ρ ∈ Dist(V).
Then, if f maximizes Pr[⃗c|f = f, ρ], then f is non-crossing.

Proof. We prove this by contrapositive. Assume f is a maximizing function with some i, j such that ρ(f(i)) <
ρ(f(j)) and ci > cj or ci < cj and ρ(f(i)) > ρ(f(j)). Further assume without loss of generality that ci < cj
and ρ(f(i)) > ρ(f(j)), since our enumeration of indices i, j does not specify an ordering. Then, we build a
function g such that Pr[⃗c|f = g, ρ] > Pr[⃗c|f = f, ρ]. By switching the indices i and j, we define

g(k) =


f(j) if k = i

f(i) if k = j

f(k) o.w.

Then, expressing the ratio as a fraction to cancel repeated terms, we see that

Pr[⃗c|f = g, ρ]

Pr[⃗c|f = f, ρ]
=

ρ(f(j))ciρ(f(i))cj

ρ(f(i))ciρ(f(j))cj
=

(
ρ(f(i))

ρ(f(j))

)cj−ci

> 1.

The final inequality is true because by assumption we have ci < cj and ρ(f(i)) > ρ(f(j)).

Theorem 3. For every n element set V , c⃗ ∈ Zn × {0} and ρ ∈ Dist(V), and p > 1 Lp(c⃗, ρ) outputs a
plaintext mapping g such that Pr[⃗c|f = g, ρ] = maxf Pr[⃗c|f = f, ρ].

24

Proof. At a high level, we will establish the above by showing any change to the function output by Lp
(p > 1) will be non-crossing (Definition 2). Next, we show that any non-crossing function has a function
with the same probability that can be output by the frequency analysis attack from [38]. Finally, we appeal
to the known optimality of frequency analysis [37] to observe that Lp is similarly optimal.

Let f be the output of Lp (p > 1), so that it minimizes
∑n

i=1 |ci −N · ρ(f(i))|p. If f is not non-crossing,
we can construct a function f ′ which is identical to f everywhere except that f ′(j) = f(k) and f ′(k) = f(j).
This is still a valid plaintext mapping and, we can see that

∑n
i=1 |ci−N ·ρ(f ′(i))|p <

∑n
i=1 |ci−N ·ρ(f(i))|p

The inequality follows by focusing just on the swapped indices and the fact that for x1 < y1 and x2 > y2,

|x1 − x2|p + |y1 − y2|p > |x1 − y2|p + |y1 − x2|p,

when p > 1. This is the equivalent of saying a point below the y = x line on a plane and a point above get
closer (in the ℓp-norm sense) when one is reflected across y = x.7

Now, recall that the frequency analysis attacks works by picking a random ordering of V = {v1, . . . , vn}
so that ρ(v1) ≤ ρ(v2) ≤ · · · ≤ ρ(vn) (i.e. a sorted order breaking ties randomly) and outputs the function
f(i) = vi.

Given a non-crossing function f , define v1 = f(1), v2 = f(2), . . . , vn = f(n). Then, either ρ(v1) ≤ ρ(v2) ≤
· · · ≤ ρ(vn) or for any j < k with ρ(f(j)) > ρ(f(k)), cj = ck, in which case we can create a new non-crossing
function f ′ which is identical to f everywhere except that f ′(j) = f(k) and f ′(k) = f(j). Notice that
Pr[⃗c|f = f, ρ] = Pr[⃗c|f = f ′, ρ]. By repeatedly making these swaps, we can eventually construct a function
which can be output by the frequency analysis attack. Finally, because the frequency analysis attack is
optimal [37], any function f output maximizes Pr[⃗c|f = f, ρ] and therefore any non-crossing function is also
a maximizer.

Theorem 4. There exists a 4 element set V , c⃗ ∈ Z5, and ρ ∈ Dist(V), such that L1(c⃗, ρ) may output a
plaintext mapping g such that Pr[⃗c|f = g, ρ] < maxf Pr[⃗c|f = f, ρ].

Proof. We prove this by giving a counter example below with 4 values (n = m = 4). In particular we present
a distribution ρ, a vector of observed equality group sizes c⃗, and two group to plaintext mappings f and g.
Then, we show that f is more likely but that g has the same minimized ℓ1-norm.

In particular, we define the distribution over V = [4]

ρ = (20/60, 15/60, 13/60, 12/60),

where the ith entry corresponds to ρ(i). Next, we define c⃗ = (10, 11, 12, 27, 0). Finally, let f = (4, 3, 2, 1) and g =
(3, 2, 4, 1), where the ith entry corresponds to f(i) and g(i) respectively.

We calculate that Pr[⃗c|f=f,ρ]
Pr[⃗c|f=g,ρ] =

15·13
122 > 1. However, notice that that f and g produce the same ℓ1-norm

exactly 14, and that there is no function achieving a lower ℓ1-norm. Therefore, L1(c⃗, ρ) may output g, which
is not an optimal plaintext mapping.

Theorem 5. Let ε > 0, V be an n element set, m < n be an integer, c⃗ = (c1, . . . , cm, u) ∈ Zm+1 (with
u ≥ 1) and ρ ∈ Dist(V) with ρ(v) ≥ ε for all v ∈ V . Then, SelAttackε(c⃗, ρ) outputs a plaintext mapping
g : [m] → V such that

Pr[⃗c|f = g, ρ] ≥ (max
f

Pr[⃗c|f = f, ρ])−O(u(n−m)ε),

when ε > 0.

Proof. We appeal to Lemma 1 which states that any maximizing function is non-crossing (Definition 2).
Now, observe that helper (Figure 3) explores every non-crossing function and keeps the one with the highest
likelihood, because it either assigns the most frequent auxiliary value available to the most frequent ciphertext
or will skip the auxiliary value. This is enough to establish the fact that SelAttackε is optimal without
rounding.

7Notice however, strict inequality is not true when p = 1. For example, (1, 2) and (3, 2) do not get closer (in the ℓ11-norm
sense) when one is reflected about y = x.

25

Alg POAAε(R, ρ1, ρ2, u1, u2)

If u1 = 0 return (∅, R)
If u2 = 0 return (R, ∅)
{v1, . . . , vr} ← R
T1 ←

∑
i∈[r] ρ1(vi) ; T2 ←

∑
i∈[r] ρ2(vi)

Define rndε(x, y) = (εT1 · ⌈ x
εT1
⌋, εT2 · ⌈ y

εT2
⌋)

T[rndε(ρ1(v1), 0)]← ({v1}, 1)
T[rndε(0, ρ2(v1))]← (∅, 1)
For i = 2, . . . , r:

For (x, y) ∈ T.keys()
(S, c)← T[(x, y)]
If c = i− 1 then

T[rndε(x+ ρ1(vi), y)] = (S ∪ {vi}, i)
T[rndε(x, y + ρ2(vi))] = (S, i)

m← 0 ; S′ ← ∅
For (x, y) ∈ T.keys()

(S, c)← T[(x, y)]
p← (

∑
v∈S ρ1(v))

u1(
∑

v∈R\S ρ2(v))
u2

If c = r and p > m then
m← p ; S′ ← S

Return (S′, R \ S′)

Figure 11: Pseudocode for POAAε.

In order to prove that SelAttackε is near-optimal, we consider the effect of rounding on the approximate
probability that helper returns. Notice that the return pair (f, p) from helper(n,m, 0) has the property that
p = log Pr[⃗c|f = f, ρ]− logKc⃗ for the constant Kc⃗. Terms which are unassigned are added to the variable σ
recursively and assigned elements have their probabilities added to the returned value.

The only part of this approximation that is effected by rounding
∑

v∈V \Im(f) ρ(v), which is rounded at
most n−m times along any recursive path and written σ̂. This means that

|Kc⃗ · 2p − Pr[⃗c|f = f, ρ]| ≤ π ((σ̂ + δ)u − σ̂u) ,

where π =
∏m

i=1 ρ(f(i))
ci and δ = (n−m)ε for brevity.

We we can bound as follows,

π · ((σ̂+δ)u − σ̂u) ≤ σ̂u · (eδ·u/σ̂ − 1)

=
∑

1≤k<u

σ̂u−k · (δ · u)
k

k!
+ δu ·

∑
k≥u

(
δ

σ̂

)k−u

· u
k

k!

≤ δu · e+ (δe)u

= O(ε(n−m)u)

using the facts π ≤ 1, σ̂ ≤ 1, and the Taylor’s series expansion of ex. By assumption, we also use that δ ≤ σ̂
and that δu ≤ 1, because ρ(v) ≥ ε for every v ∈ V and ε ≤ 1/u(n−m).

This bound gives use the claimed approximation of the theorem. No function can have much higher
likelihood than the function returned by helper since it otherwise would have been chosen by the algorithm.

B Partition Optimization

In this section, we discuss our new Partitioning Optimization Approximation Algorithm (POAA). As written,
POAAε uses time an space O(|R|/ε2) in a word-RAM model. The same functionality can be performed using

26

only O(|R|/ε) time and space. The idea is that we do not need to keep track of both dimensions of the
sums. Instead, we can just keep track of the largest y available at that point for a given x sum, which is the
version used in our experiments.

We further observe that the algorithm could be further optimized to use only O(|R|+ 1
ε) space at the cost

of some time by only tracking the possible sums and recursively reconstructing the sets after the best sum
is found. We leave this code out of the paper for brevity and because we didn’t need the space improvement
in our experiments.

C Hardness of Optimal Inference

In this section, we use the optimality definition from Section 5 which requires an attack to return a triple
(f, U1, U2) which maximizes Pr[⃗c1, c⃗2|f = f,U1 = U1,U2 = U2, ρ1, ρ2]. For concreteness in the proof, we
explicitly state the constant implied in Section 5,

Kc⃗1 ,⃗c2 =

(
N1

c1, . . . , cm, u1

)(
N2

d1, . . . , dm, u2

)
,

the product of two multinomial coefficients, with N1 = u1 +
∑

i ci and N2 = u2 +
∑

i di.
We go on to define the DICI problem below, which is strictly easier than finding the maximizing triple

(f, U1, U2).

Name: Decision Incomplete Cross Inference (DICI)
Given: Two integers with m < n, a number t ∈ [0, 1], c⃗1 ∈ [n]m+1 and c⃗2 ∈ [n]m+1 and distributions ρ1
and ρ2 over [n] and. 8

Question: Does there exist a triple (f, U1, U2) such that Pr[⃗c1, c⃗2|f = f,U1 = U1,U2 = U2, ρ1, ρ2] ≥ t?

Theorem 6. Decision Incomplete Cross Inference (DICI) is NP-hard.

Proof. We prove the theorem by reduction from Set Partition (defined below), which is well known to be
NP-complete [34].

Name: Set Partition
Given: A set of n positive integers A.
Question: Is there a set S ⊆ A s.t.

∑
a∈S a =

∑
a∈A\S a?

We take an instance of Set Partition and transform it into an instance of DICI as follows. Given A =
{a1, . . . , an}, let T =

∑
ai∈A ai. Then, the DICI instance we construct for m = 1 and n′ = n+1 is as follows.

Let ρ1(i) = ρ2(i) = 0.1 · ai/T for 1 ≤ i ≤ n and ρ1(n + 1) = ρ2(n + 1) = 0.9. Let c⃗1 = c⃗2 = (1, 1) and
t = 4(.9)2(.1/2)2 = 0.0081. Note that Kc⃗1 ,⃗c2 =

(
2
1,1

)(
2
1,1

)
= 4, so Pr[⃗c1, c⃗2|f = f,U1 = U1,U2 = U2, ρ1, ρ2] is

4ρ1(f(1))ρ2(f(1))

(∑
i∈U1

ρ1(i)

)(∑
i∈U2

ρ2(i)

)
.

Claim 7. There exists (f, U1, U2) with Pr[⃗c1, c⃗2|f = f,U1 = U1,U2 = U2, ρ1, ρ2] ≥ t if and only if ∃S ⊆ A
s.t.

∑
a∈S a =

∑
a∈A\S a.

First, observe that if f(1) ̸= n + 1, then Pr[⃗c1, c⃗2|f = f,U1 = U1,U2 = U2, ρ1, ρ2] < t. In this case,
the plaintext value n + 1 can appear in at most one of U1 or U2, and if n + 1 does not appear in Uj , then∑

i∈Uj
ρj(i) ≤ 0.1. Additionally ρj(f(1)) ≤ 0.1, because no plaintext value other than n + 1 occurs with

probability larger than 0.1. Therefore,

Pr[⃗c1, c⃗2|f = f,U1 = U1,U2 = U2, ρ1, ρ2] ≤ 4(0.1)3 < t.

8Formally, this problem only takes in t and distributions which can be described using poly(n) bits, rather than all real
numbers.

27

Crime Taxi Rideshare Crashes
2018 268,820 20,732,089 14,735,872 118,950
2019 261,297 16,477,366 22,783,672 117,763
2020 212,185 3,889,033 53,561 92,092
2021 208,775 3,948,046 11,150 108,764
2022 238,758 6,382,426 21,467,407 108,398

Figure 12: The number of rows for each table by year.

So for the first direction, we may assume that f(1) = n+1, in which case the set S = {ai : i ∈ U1} is a solu-
tion to Set Partition. We know that 4(0.9)2

(∑
i∈U1

ρ1(i)
) (∑

i∈U2
ρ2(i)

)
≥ t, and that

(∑
i∈U1

ρ1(i)
) (∑

i∈U2
ρ2(i)

)
≤

(0.1/2)2, the maximum value of any partition of the elements of [n]. Together, these show that each sum is
exactly 0.1/2, so S is a solution to the original Set Partition instance.

For the other direction, if there is some set S ⊆ A that is a solution to Set Partition, then there will
be a triple (f, U1, U2) with f(1) = n + 1, U1 = {i : ai ∈ S}, and U2 = [n] \ U1, which has Pr[⃗c1, c⃗2|f =
f,U1 = U1,U2 = U2, ρ1, ρ2] ≥ t, because

∑
ai∈S ai =

∑
ai∈A\S ai = T/2. Which gives, Pr[⃗c1, c⃗2|f = f,U1 =

U1,U2 = U2, ρ1, ρ2] is exactly 4(0.9)2
(
0.1
T

)2 · T
2 · T

2 = 0.0081 = t, completing the proof.

D Experimental Data and Results

In our experiments, we use data made public by the city of Chicago.9 In particular, we using datasets of
crimes,10 taxi rides,11 rideshare services,12 and car crashes13 for years between 2019 and 2022. Information
about the number of rows can be found in Figure 12. The lack of data for the 2020 and 2021 years likely
negatively impacted our experiments, but we were still able to attack these anomalous years.

9https://data.cityofchicago.org/
10https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2
11https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew
12https://data.cityofchicago.org/Transportation/Transportation-Network-Providers-Trips-2018-2022-/m6dm-c72p
13https://data.cityofchicago.org/Transportation/Traffic-Crashes-Crashes/85ca-t3if

28

https://data.cityofchicago.org/
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2
https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew
https://data.cityofchicago.org/Transportation/Transportation-Network-Providers-Trips-2018-2022-/m6dm-c72p
https://data.cityofchicago.org/Transportation/Traffic-Crashes-Crashes/85ca-t3if

	Introduction
	Adversarial Models

	Background
	Related Work
	Comparison to Other Attacks

	Leakage of Encrypted Databases
	Select Leakage
	Join Leakage

	Select Query Recovery
	Incomplete Equality
	Experimental Evaluation

	Join Plaintext Recovery
	Complete Cross-Column Equality
	Incomplete Cross-Column Equality
	Experimental Evaluation

	Conclusion
	Column Equality Theory
	Partition Optimization
	Hardness of Optimal Inference
	Experimental Data and Results

