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Abstract. MRAE security is an important goal for many AEAD appli-
cations where the nonce uniqueness cannot be maintained and security
risks are significant. However, MRAE schemes can be quite expensive.
Two of the SoTA MRAE-secure schemes; Deoxys-II and AES-GCM-SIV
rely on internal parallelism and special instructions to achieve compet-
itive performance. However, they both suffer from the same bottleneck,
they have at least one call to the underlying primitive that cannot be
parallelized to any other call. Romulus-M and LM-DAE are two other
more recent MRAE secure schemes based on TBCs that target low area
hardware. However, they are unparallelizable so they are slower than
their counterparts.
In this paper, we present two new AEAD modes and four instantiations
based on Tweakable Block Ciphers. These new modes target equipping
high-speed applications on parallel platforms with nonce misuse resistant
AEAD (MRAE). The first mode, LLSIV, targets similar performance on
single-core platforms to SCT-2, while eliminating the bottlenecks that
make SCT-2 not fully parallelizable. The enhanced parallelism allows
LLSIV to encrypt significantly more blocks on parallel platforms, com-
pared to SCT-2, in the same amount of time. LLSIV is based on the NaT
MAC, where each ciphertext block can itself be viewed as an instance
of NaT when the plaintext is prepended with 0n. The trade-off is that
LLSIV requires the inverse function of the TBC. However, the inverse
function is used only once per message and we demonstrate that for
parallel implementations it represents a very small overhead.
We give an instantiation of LLSIV based on the SKINNY-128-384 TBC,
and a pruned scheme, dubbed pLLSIV, which targets enhanced perfor-
mance compared both SCT-2 and LLSIV on all platforms, while having
reduced security claims. It relies on the recently popularized prove-then-
prune methodology to take full advantage of the properties of LLSIV.
This leads to a significant performance improvement, making pLLSIV
even faster than online TBC-based schemes that are not MRAE-secure.
Last but not least, we give an instantiation that uses the primitives used
in AES-GCM-SIV: the PolyVal hash function and AES. Our instantiation
is faster than AES-GCM-SIV on all platforms and have better bounds.
On the other hand, it relies on the ideal cipher model as it uses the ICE2
TBC proposed as part of the Remus AEAD design.



The second mode we describe is LLDFV. It uses ideas from LLSIV com-
bined the Decryption-Fast SIV (DFV) framework proposed recently by
Minematsu. The goal is to reduce the number of calls to the TBC by
one, while making the scheme as parallelizable as LLSIV. This makes the
scheme faster that DFV on all platforms.

Keywords: AEAD · MRAE · TBC · SIV · Deoxys · Skinny.

1 Introduction

Authenticated Encryption with Associated Data (AEAD) has become one of the
most important symmetric-key cryptographic primitives. However, providing pri-
vacy and authenticity, simultaneously, comes at a cost. Most widely used AEAD
schemes, such as AES-GCM [21, 20], and the recently selected NIST stardardiza-
tion candidate; Ascon [16], fall into the category known as Nonce-based AEAD
(NAE). The user must provide an extra non-repeating input (nonce). This adds
a significant implementation cost and widens the attack surface. Nonces may
repeat due to bad implementations, fault attacks or (malicious) misconfigura-
tion. In some cases, such as AES-GCM, repeating the nonce even once can lead
to drastic consequences.

In 2006, Rogaway and Shrimpton [39] presented the Deterministic AEAD
(DAE) security notion, which does not require any nonce. They also introduced
a construction known as the Synthetic Initial Vector (SIV) construction. It has,
ever since, become one of two blueprints for building DAE and nonce-Misuse-
Resistant AE (MRAE), the other blueprint being the Encode-then-Encipher
(EtE) framework [11]. The SIV construction works as follows: First, the plain-
text and associated data (AD) are absorbed by a variable-input-length Pseudo-
Random Function (PRF) to generate a block T of fixed length. Then, T is used
both as an authentication tag and an IV for an IV-based encryption scheme.
This process is depicted in Figure 1(a). Decryption uses a tag provided by the
user as an IV for the IV-based decryption. Then, the unverified plaintext and
AD are passed to the PRF and the outcome is compared to the provided tag.

The security of the SIV mode boils down to two main requirements: the PRF
acts as a deterministic Message Authentication Code (MAC) whose outcome is
indistinguishable from random tags and the encryption is an IND-CPA-secure
encryption scheme. These arguments mean that the scheme also inherits the
limitations of its components. Mainly, the scheme can only offer up to Birth-
day Bound (upBB) security with respect to the tag size1. This limitation has
motivated a line of research into combining the concepts DAE and NAE into
MRAE. The idea is to build a scheme that acts as an NAE scheme when the
nonce uniqueness is ensured, and the security does not drop drastically when
the nonce is repeated a small number of times.

1 We should note that the LM-DAE mode proposed in 2020 [35] claims BBB security,
but with respect to the block size n, where the tag size is 2n. Hence, it does not
contradict our statement.
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Fig. 1. The evolution of SIV-like constructions. (a) The original SIV construction. (b)
The nSIV construction. (c) The nSIV construction using nonce-based Pseudo-Random
MAC. (d) The SCT-2k mode.

A simple, yet ineffective, approach is to add the nonce as part of the AD. This
does not lead to any gain in terms of security, but it can be useful if a DAE scheme
needs to be used in an application that requires an NAE. In fact, this was done
to transform the SUNDAE scheme [7] (D-A-E stands for Deterministic AE) into
a nonce-based variant [8] compliant with the NIST lightweight standardization
project.2

Another direction has been exemplified by the line of research surrounding
the Deoxys-II AEAD scheme [30, 36, 31, 14], which is the winner of the defence-in-
depth track of the CAESAR competition.3 In [36], Peyrin and Seurin proposed
the Synthetic Counter-in-Tweak (SCT) mode. Later, the designers of Deoxys
modified it to SCT-2 [30] which uses the Nonce-as-Tweak (NaT) MAC [15] as
the PRF and the CounTeR-in-Tweak (CTRT) IV-and-nonce-based encryption
mode. The SCT-2 mode is depicted in Figure 1(d). A security proof for a two-key
version of SCT-2 was given in [14] under the name GNSIV-N and we shall be using
this version in our discussion. We shall be referring to this version as SCT-2k.
The goal of these constructions is to use the properties of the Tweakable Block
Cipher (TBC) to achieve what is known as graceful degradation: If the nonce
is unique, the scheme has almost full Beyond Birthday Bound (BBB) security,
while the security drops linearly with the maximum number of nonce repetitions,
reaching upBB security if the nonce becomes a constant. This means that for

2 https://csrc.nist.gov/projects/lightweight-cryptography
3 https://competitions.cr.yp.to/caesar.html
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applications where the nonce is only repeated a small number of times, due to
faults or weak randomness, the security does not degrade significantly. In [31], the
authors extended this concept to define the nonce-based SIV (nSIV) construction,
depicted in Figures 1(b) and (c). They also generalized the security analysis of
NaT to define the nonce-based Pseudo-Random MAC (nPRM) security notion,
which is quite different from and more flexible than simple PRFs. These concepts
were also used to design other nSIV-based schemes such as Romulus-M [27].

One of the main features of Deoxys-II that makes it appealing for high speed
applications is its internal parallelism. The NaT scheme uses a Universal Hash
Function (UHF) followed by a TBC. The UHF is implemented using the sum of
TBCs construction used in PMAC-1 [38]. On the other hand, the CTRT mode
process the counters and plaintext blocks completely in parallel. It was shown
in several works that by exploiting the internal parallelism, the performance
of Deoxys-II can be improved drastically [30–32]. In particular, the advantage
of pipelined hardware accelerators of block ciphers have been demonstrated in
multiple recent works, with sometimes upward of 50× speed-up compared to
sequential implementations [44, 46, 26, 42, 40].

This work and the bottlenecks of SIV. Our goal in this paper is to take advan-
tage of the internal parallelism the underlying encryption and hashing modes,
and eliminate the bottlenecks of SIV/SCT-2k. Simultaneously, we want to take
advantage of the recently popularized prove-the-prune methodology. The first
bottleneck comes from the requirement of SIV/SCT-2k that the IV /tag T be
indistinguishable from a random block. This requires transforming the hashed
(A,M) pair using a PRF, as exemplified by the application of π̃ in Figure 1(d).
This call to a fixed length PRF (in this case implemented using a TBC) cannot
be done in parallel to either parts of the construction, and presents a significant
bottleneck to speeding up instantiations of SIV/SCT-2k on parallel platforms,
especially for short messages.
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Ẽ1,N
K

M1

C1
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Fig. 2. The LLSIV with 3 plaintext block: M = M1∥M2∥M3
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The other technique that cannot be fully used in SIV-based schemes (in-
cluding SCT-2k) is the prove-then-prune framework. This framework have be-
come popular in the recent years with designs/constructions such as the Orthros
PRF [9], the ForkCipher [3], the Iterate-Fork-Iterate (ifi) framework [2], and other
forked constructions [19]. The basic idea of this framework is to design construc-
tions that are proven secure when the underlying primitive is an idealized primi-
tive, then argue that the way the primitive is used inside the construction limits
the adversary’s capability, so the number of rounds inside the primitive can be
reduced. In the context of SIV, this can be done to the primitive calls inside the
UHF, since the adversary does not observe their outputs and usually the outputs
are XORed together. It was indeed done in one instance of the Estate family of
AEAD algorithms [13]. However, this cannot be done to the calls that are part
of the encryption phase of the algorithm without further studies and without
increasing the overhead, since for these calls, the adversary can see, and choose,
their inputs and outputs, with almost no restrictions.

To resolve both these bottlenecks, we propose the LLSIV mode of oeration,
depicted in Figure 2. Rather than using the output of a PRF as the IV for the
CTRT encryption mode, we show that it is sufficient to use the outcome of a
UHF as an IV for a a CTRT-like mode. The first block of the CTRT mode is used
as the tag. One could see that each output block is an instance of the NaT MAC.
Hence, the proposed construction can be shown to achieve both confidentiality
and authenticity. Without pruning, the construction has the same speed as SCT-
2k on single-core platforms, but has faster encryption performance on parallel
platforms. This comes at the cost of using the inverse function (decryption)
to be able to compute the IV during decryption. Moreover, by using the ifi
mindset, we can prune not only the UHF, but also the TBC calls. We can speed
up the TBC calls by about 35%. We shall provide the security proofs, design
rationale, performance comparison and practical instantiations of the proposed
construction. We give instantiations based on the SKINNY-128-384 TBC and a
pruned version of it. We also give an instantiation based on PolyVal and AES for
comparison with AES-GCM-SIV.

Next we propose the LLDFV mode, depicted in Figure 3. It uses the same
technique used to optimize SCT-2k, which can be also applied to optimize the
DFV technique recently proposed by Minematsu [34], reducing the number of
TBC calls in a TBC-based instantiation of DFV by one call, and allowing using
the fast decryption speed up with the encryption speed up from reducing the
number of calls and parallelism.

Outline. Section 2 provides the preliminaries needed to follow the paper. Sec-
tion 3 provides the specification, security proofs and implementation results of
LLSIV and its pruned variant pLLSIV. Section 5 discusses LLDFV and compares
it to Minematsu’s proposals [34]. Finally, the paper is concluded in Section 6.
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Fig. 3. The proposed LLDFV encryption (left) and decryption (right).

2 Preliminaries

Let {0, 1}∗ be the set of all finite bit strings including the empty string ε. For
X ∈ {0, 1}∗, |X| is its bit length. For an integer i ≥ 0, {0, 1}i is the set of all bit
strings of length i bits and {0, 1}≤i is the set of all bit strings of length at most
i bits. For an integer l ≤ 1, |X|l is the length of X ∈ {0, 1}∗ in l-bit blocks, i.e.,
|X|l = ⌈|X|/l⌉ ifX ̸= ε and |X|l = 1 ifX = ε. For two bit stringsX and Y ,X∥Y
is the concatenation of the two strings. 0i is the string consisting of i zero bits
and 1∥0i is written as 10i. For X ∈ {0, 1}∗ with |X| ≥ i, msbi(X) is the leftmost
i bits of X and lsbi(X) is the rightmost i bits of X. Let X be a uniformly

sampled bit string from the set X , we write X
$←− X . For X ∈ {0, 1}∗, padn(X)

is the de-facto one-zero padding: Let |X| mod n = i. Then, padn(X) = 10n−1

if X = ε, padn(X) = X if i = 0, and padn(X) = X∥10n−i−1, otherwise. Let
0 ≤ i < 2b be an integer, then īb be the b-bit binary representation of i, such
that if i ̸= j, īb ̸= j̄b. If b is understood from context, we write ī.

Authenticated Encryption with Associated Data (AEAD) We define the syntax
of AEAD using nonce and AD, then we describe the special cases where either
of these inputs are not available/not used. Let NAE = (NAE.Enc,NAE.Dec) be
an NAE scheme. NAE.Enc takes as input a key K ∈ K and a tuple (N,A,M) ∈
N × A ×M, and returns a ciphertext C ∈ M and a tag T ∈ T , such that
|M | = |C|. We shall define M = {0, 1}∗ and T = {0, 1}τ for a fixed small τ .
NAE.Dec takes as input a key K ∈ K and a tuple (N,A,C, T ) ∈ N ×A×M×T ,
and returns either an invalid symbol ⊥ or a plaintext M ∈M.

If A = ϕ, we shall follow the notation of [34] and refer to the scheme as
pNAE. If N = ϕ, then we refer to the scheme as DAE. If N ≠ ϕ but the nonce
can be repeated, then we refer to the scheme as MRAE.
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MRAE Security LetMRAE be an AEAD scheme. We define two security notions.
The privacy notion is the indistinguishability of ciphertexts from random string.
Let A be an nonce-repeating adversary against MRAE. A has access to one
oracle and makes queries on the form of (N,A,M) and does not repeat queries.
A makes qe queries. Given N ∈ N , N appears in at most µ queries. If N = ϕ,
then µ = qe. Let $ be the oracle that takes as input the tuple (N,A,M) and

returns C
$←− {0, 1}|M | and T

$←− {0, 1}τ . Then, the advantage of A against the
nonce-misuse privacy of MRAE is defined as

Advnm−priv
MRAE (A)

def
= |Pr[K $←− K : AMRAE.Enc → 1]− Pr[A$ → 1]|

Let B be an nonce-repeating adversary against MRAE. B has access to two
oracles. It makes qe queries the form of (N,A,M) to its first oracle and qd
queries the form of (N,A,C, T ) to its second oracle. B does not repeat queries
and does not request queries from its second oracles that have been previously
generated by the first oracle. Then, the advantage of B against the nonce-misuse
authenticity of MRAE is defined as

Advnm−auth
MRAE (B)

def
= Pr[K

$←− K : BMRAE.Enc,MRAE.Dec forges MRAE]

where B forges MRAE means that for any query B makes to its second oracle,
it receives a plaintext M⋆ ̸=⊥.

When understood in context, we will use nr− to refer to the same security
notions when the adversary is nonce respecting and d− when the scheme is
deterministic, i.e., N = ϕ.

Tweakable Block Cipher (TBC) A TBC is a mapping Ẽ : K × T × {0, 1}n →
{0, 1}n such that for any choice of K ∈ K, and any choice of Tw ∈ T , Y ←
Ẽ(K,Tw, X) is a permutation of {0, 1}n. Let permt,n be the set of all tweakable
permutations of {0, 1}n with tweak space T . We say π̃ : T ×{0, 1}n → {0, 1}n is
a tweakable permutation if for every choice of T ∈ T , Y ← π̃(T,X) is a permu-
tation of {0, 1}n, and ω̃ : T × {0, 1}n → {0, 1}n is the inverse tweakable permu-
tation such that ω̃T (π̃T (M)) = M . We write ẼT

K(X) to indicate Ẽ(K,T,X). A
(qe, qd, t)-adversary A against the strong Tweakable Pseudo-Random Permuta-
tion (sTPRP) security of Ẽ is an algorithm that has oracle access to a tweakable
permutation of {0, 1}n as well as its inverse, makes qe queries to the first oracle,
qd queries to the second oracle and runs in time at most t. It outputs a single
bit. The advantage of A against the sTPRP security of Ẽ is given by

Advstprp
Ẽ

(A)
def
= |Pr[K $←− K : AẼ·

K ,(Ẽ·
K)−1

→ 1]− Pr[π̃
$←− permt,b : A

π̃,ω̃ → 1]|.

Let B be an adversary that has has only access to the first oracle and makes qe
queries, then

Adv
tprp

Ẽ
(B)

def
= |Pr[K $←− K : AẼ·

K → 1]− Pr[π̃
$←− permt,n : Aπ̃ → 1]|.

If π̃ is selected randomly from permt,n, we call it a Tweakable Uniformly Random
Permutation (TURP). An ideal cipher is a TBC is a that is sampled uniformly
from the set of all possible TBCs with the same domain.
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Universal Hash Function (UHF) Let H : Kh×X → Y be a keyed hash function
with key space Kh, input space X and output space Y. Let ϵ > 0. We say H is
ϵ-Almost Universal (ϵ-AU) if for any distinct X1 and X2 ∈ X

Pr[K
$←− K : HK(X1) = HK(X2)] ≤ ϵ.

2.1 Useful Constructions

The XOR-Hash Let Ẽ : K× (D × I × {0, 1}n)× {0, 1}n → ×{0, 1}n be a TBC,
where D = {1, 2, 3, 4, 5, 6} and I be the set of non-negative integers ≤ lmax

for a constant lmax ∈ N. Then, the TBC-based version of XOR-Hash XH :
K×({0, 1}≤2nlmax×{0, 1}≤2nlmax)→ {0, 1}n is given by Algorithm 1. The XOR-
Hash is a known construction and was used in other designs [14, 28]. However, it
requires careful assignment of message blocks, padding and domain separators.
We describe it in this section for the sake of completeness. We shall also discuss
it in Section 4. Otherwise, we will refer to it as a black-box construction.

Algorithm 1 The XOR-Hash Function

1: XH(K,A,M)
2: return XH1(K,A)⊕ XH2(K,M)

3: XHi(K,X)
4: X1, X2, . . . , Xx

n←− pad2n(X)
5: if X = ϵ ∨ |X| mod 2n ̸= 0 then
6: dl ← 3 + 3(i− 1)
7: else

8: dl ← 2 + 3(i− 1)
9: end if
10: Xh ← 0n

11: d← 1 + 3(i− 1)
12: for i ∈ {0, . . . , x/2− 2} do
13: Xh ← X ⊕ Ẽ

d,i,X2i+2

K (X2i+1)
14: end for
15: Xh ← X ⊕ Ẽ

dl,x/2−1,Xx
K (Xx−1)

16: return Xh

Cogliati et. al. [14] proved that if the underlying TBC is unpredictable against
any adversary running in time O(l) and making at most queries of at most 2l
queries to the TBC, with advantage at most ϵ, then the described hash function
is ϵ-AU against all adversaries making queries of length at most l blocks. They
then conjectured that in the case of this hash function,

ϵ ≤ l

2k
+

1

2n − 2
. (1)

We refer the reader to [14] for a discussion on this conjecture, which we will
assume is true.

Nonce-as-Tweak (NaT) [15] Let Ẽ : K ×N × {0, 1}n → {0, 1}n be a TBC and
H : Kh ×M→ {0, 1}n be an ϵ-AU hash function. Then, the NaT MAC is given
by

NaT[Ẽ,H]K,Kh
(M) = ẼN

K (HKh
(M)). (2)
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Besides, let Ver be the oracle that takes as input M ∈ M and T ∈ {0, 1}n, and
returns ⊤ if NaT[Ẽ,H]K,Kh

(M) = T and ⊥, otherwise. Let $ be the oracle that
returns a uniformly random n-bit block for each plaintext-nonce pair (N,M) ∈
N ×M and Rej is the oracle that outputs ⊥ for all queries. Then, Cogliati et
al. [15] show that for any adversary A that makes qm queries to the first oracle
and qv queries to the second oracle and runs in time t, there exists an adversary
A

′
than runs in time O(t+ (qm + qv)tH) and makes qm + qv queries to Ẽ, such

that,

|Pr[K $←− K,Kh
$←− Kh : ANaT,Ver ⇒ 1]− Pr[A$,Rej ⇒ 1]| ≤

Adv
tprp

Ẽ
(A

′
) + 2(µ− 1)qmϵ+

qv
2n − µ

+ µqvϵ. (3)

where tH is the upper bound on the time needed to compute H and µ is the
maximum number of times a given N ∈ N is repeated in different queries to the
first oracle.

PolyVal [22] Let GF(2128) be the binary field of size 2128 defined by the irre-
ducible polynomial x128 + x127 + x126 + x121 + 1. Let M be a message than is
divided into a sequence of m 128-bit blocks. Then, PolyVal is the keyed universal
hash function defined by

PolyValKh
(M) = Sm

where S0 = 0n, and

Si = (Si−1 ⊕Mi)×Kh × (x127 + x124 + x121 + x114 + 1).

Gueron et al. [22] show that PolyVal is ϵ-AU, such that

ϵ ≤ lmax

2128
,

where lmax is the maximum number of blocks in any input message.

ICE2 Iwata et al. [27] proposed a TBC construction that transforms an ideal
cipher into a TBC using three calls to the ideal cipher. However, it is opti-
mized particularly for counter-in-tweak style of processing. Given a tweak space
{0, 1}n × I, where I ⊂ N, and an ideal cipher E : {0, 1}n × {0, 1}n → {0, 1}n,
then ICE2 (K, (N, i),M) is given by

2iV ⊕ E(2iL, 2iV ⊕M), (4)

where L = E(K,N) and V = E(K ⊕ 1, L). The multiplication and exponentia-
tion are done in GF(2n), and we will use n = 128 and the same field represen-
tation used in PolyVal. ICE2 is very efficient in applications where one part of
the tweak is not updated in every TBC call while another part is a sequential
counter. Consider a long message than consists of multiple blocks, then the two
calls used to generate L and V are only called once, while Equation 4 is evalu-
ated many times, leading to an asymptotic performance of one ideal cipher call
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per message block. Iwata et al. [27] showed that for any unbounded adversary A
that makes qc queries to ICE2 and qp chosen-key queries to the underlying ideal
cipher,

AdvstprpICE2[E](A) ≤ 9q2c + 4qcqp
22n

+
2qp
2n

. (5)

3 Low Latency SIV

The LLSIV AEAD scheme is described in details in Algorithm 2. A diagram for
the case of 3 full blocks is depicted in Figure 2. In Section 3.1, we study the
security of the LLSIV construction. In Section 3.2, we discuss the performance
gain of LLSIV compared to SCT-2k and other recently proposed designs.

Algorithm 2 The LLSIV Scheme.

1: EncK,Kh(N,A,M)
2: IV ← UHF(Kh, A,M)
3: M1, . . . ,Mm

n←−M
4: T ← Ẽ0,N

K (IV )
5: for i ∈ {1, . . . ,m} do
6: Ci ←Mi ⊕|Mi| Ẽ

0,i,N
K (IV )

7: end for
8: C ← C1∥ . . . ∥Cm

9: return (C, T )

10: DecK,Kh(N,A,C, T )

11: C1, . . . , Cc
n←− C

12: IV ← (Ẽ0,0,N
K )−1(T )

13: for i ∈ {1, . . . , c} do
14: Mi ← Ci ⊕|Ci| Ẽ

i,N
K (IV )

15: end for
16: M ←M1∥ . . . ∥Mm

17: IV ∗ ← UHF(Kh, A,M)
18: if IV = IV ∗ then
19: return M
20: else
21: return ⊥
22: end if

3.1 Security of LLSIV

The scheme closely resembles the NaT MAC introduced in [15], where instead
of generating one nonce-based block, we generate m + 1 blocks with the nonce
and a counter as a tweak. However, the analysis differs in two main ways:

1. The decryption function uses one call to the TBC in the inverse direction
to decrypt the tag. Hence, the forgery analysis relies on the strong TPRP
(sTPRP) security of the TBC.

2. The authors of [15] used the H-Coefficient technique for proving that their
construction is a secure PRF-MAC when the number of nonce repetitions is
small. In the proof, the challenger reveals Kh at the end of the game. The
adversary can then link each message with its hash value in both verifica-
tion and MAC queries. This is not directly possible here, since the adversary
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does not know the message during decryption/verification queries. The au-
thors of [15] estimate the number of inequalities in the transcript using the
hash values, which is not possible here. The inequalities are the number of
hash/tag pairs observed during verification, where no permutation that is
compatible with the attack transcript can have those points in its codebook.
The security proof of Romulus-M [27] overcomes this challenge by modifying
the authenticity game to to give the adversary oracle access to the encryp-
tion and MAC parts, separately, giving the adversary more power to choose
the forgeries, then reduce the authenticity to the security of the MAC. Using
a sequence of hybrid arguments, we are able to employ this trick here.

Our goal in the security proof of authenticity is to construct an appropriate
auxiliary oracle that allows us to:

– prevent the adversary from inferring any information on the decryption of
T .

– be able to reduce the security to the security bound of NaT.

Due to these issues, we opted to use game hopping to prove the security. First, we
address the nm− priv security. We will replace all the TBC calls in encryption
queries with random functions, using [27, Lemma (6)]. Then, we will bound
the probability that two pairs (A1,M1) ̸= (A2,M2) have the same hash. If the
hash value never repeat, then all the function calls have unique inputs. For
nm− auth, we will define a sequence of hybrid games that will be used to reduce
the authenticity of LLSIV to the integrity of the NaT MAC [15].

Lemma 1. (Adapted from [27, Lemma (6)]) Consider a PRF-adversary A against
the TURP π̃ : I × {0, 1}t × {0, 1}n → {0, 1}n. A makes qi queries with the first
input i ∈ I, such that

∑
i∈I qi = σ. Any pair (i,N) ∈ I × {0, 1}t appears in

at most µ queries. Then, the advantage of A against the PRF security of π̃ is
bound by

Advprfπ̃ (A) ≤ (µ− 1)σ

2n

Proof. Consider π̃ is implemented using lazy-sampling. Fix an index i ∈ I. For
a query j ∈ {1, . . . , qi} with input (i,Nj , Pj), it always returns a random block

unless that block has appeared in a previous query (i,Nj , P
′
). For each new

call, there are at most (µ − 1) previous calls on the form (i,Nj , P
′
). Thus, the

probability of this collision is at most (µ− 1)/2n. Since the adversary makes at
most qi queries with first input i, the advantage is bounded by (µ − 1)qi/2

n.
Using the standard hybrid argument, we apply this sequentially to each input
i ∈ I, getting

Adv(A) ≤
∑
i∈I

(µ− 1)qi
2n

=
(µ− 1)σ

2n
.

11



Theorem 1. Let A be an NM privacy adversary against LLSIV that can repeat
a nonce at most µ times in encryption queries. A makes qe queries of total
ciphertext size σe blocks. Let A run in time at most t. Then, there exists a
(qe + σe, t + O(qetH + σe))-TPRP adversary A

′
against the underlying TBC

such that

Advnm−priv
LLSIV (A) ≤ Advtprp

Ẽ
(A

′
) + (µ− 1)qeϵ+

(µ− 1)(qe + σe)

2n

The hash function UHF : Kh × {0, 1}∗ × {0, 1}∗ → {0, 1}n is an ϵ-AU hash
function and runs in time at most tH .

Proof. We will define a sequence of hybrid games and bound the transition
probability between these games. Let Ei be the event that the adversary wins
in game Gi.
G0: The oracle implements the real-world construction.
G1: We replace the TBC with a TURP.

|Pr[E0]− Pr[E1]| ≤ Adv
tprp

Ẽ
(A

′
).

G2: We replace the TURP with a random function R : N× {0, 1}t × {0, 1}n →
{0, 1}n. In order to bound the transition probability, we need to bound how many
permutations are sampled from the TURP and the number of queries made to
each permutation. In order to do so, we will define a series of hybrid sub-games,
where G2i is the where the all the TURP calls with index i ∈ N are replaced
with a random function R(i, ·, ·). Let qi be the number of queries of plaintext
length ≥ i (partial) blocks. Let lmax be the maximum number of plaintext blocks
in one query. Then, applying Lemma 1 [27, Lemma (6)];

|Pr[E1]− Pr[E0
2 ]| ≤

(µ− 1)qe
2n

,

|Pr[Ei−1
2 ]− Pr[Ei

2]| ≤
(µ− 1)qi

2n

and G2lmax ≡G2

|Pr[E1]− Pr[E2]| ≤
(µ− 1)qe

2n
+

lmax∑
i=1

(µ− 1)qi
2n

=

(µ− 1)qe
2n

+
µ− 1

2n

lmax∑
i=1

qi =
(µ− 1)(qe + σe)

2n
,

where σe =
∑lmax

i=1 qi holds from counting the number of calls made in all queries.

G3: All the calls R are removed and replaced by a random function R
′
: N ×

{0, 1}t×{0, 1}n → {0, 1}∗, which takes a nonce, a hash value, and a natural num-
ber l ∈ N and returns a random string of length l+ n. G2 and G3 are indistin-
guishable unless the second and third inputs repeat, i.e., if for any query i, there
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exists a query j < i such that Ni = Nj and UHFKh
(Ai,Mi) = UHFKh

(Aj ,Mj).
In case of repetition, the oracle of G2 will return two ciphertexts encrypted
with a common prefix, while G3 will return two independent ciphertexts. Oth-
erwise, all the ciphertexts are indistinguishable. We further define G3 such that
it terminates if such event happens. Since for any query, there are at most µ− 1
queries with the same nonce, the probability of such collision is bounded by

|Pr[E2]− Pr[E3]| = (µ− 1)qeϵ

Besides, G3 and the ideal world can only be distinguished if R
′
is called with

the same input twice, which is impossible without G3 terminating. Thus,

Pr[E3] = 0.

Combining all transitions,

Pr[E0] ≤ Pr[E3] +

2∑
i=0

|Pr[Ei]− Pr[Ei+1]| ≤

Adv
tprp

Ẽ
(A

′
) + (µ− 1)qeϵ+

(µ− 1)(qe + σe)

2n
.

Lemma 2. Consider a TBC Ẽ : K× I × {0, 1}n × {0, 1}n → {0, 1}n. Consider
the construction Γ :

Ẽ(K, i,N, (Ẽ)−1(K, 0, N,X))

where i ∈ I \ {0}. Then, for any adversary G that runs in times t and makes
q queries to Γ , there exists an adversary G

′
against the strong TPRP security

of Ẽ that makes q encryption queries, q decryption queries and runs in time
t
′
= O(t+ q), such that

Adv
tprp
Γ (G) ≤ Adv

stprp

Ẽ
(G

′
)

Proof. First, we replace all the calls of Ẽ with a TURP π̃. Let P̃0 : {0, 1}n ×
{0, 1}n × {0, 1}n → {0, 1}n be the tweakable permutation corresponding to
ω̃(0, ·, ·). For all X,Y ∈ {0, 1}n, and for a given N ∈ {0, 1}n, Y = P̃0(N,X)
is a one-to-one relation between X and Y . Consider a different family of random
permutations σ̃. We define the game G1 as the game where the oracle performs
the queries π̃(i,N, P̃0(N,X)) and the game G2 as the game where the oracle
performs the queries σ̃(i,N,X). Let E1 be the event that the adversary wins in
G1 and E2 be the event that the adversary wins in G2. Since P̃0 is a one-to-one
function and i = 0 never appears in any of the forward queries to π̃, we can see
that

|Pr[E1]− Pr[E2]| = 0,

and since σ̃ is TURP, then
Pr[E2] = 0.

This concludes the proof.
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Note that the different tweaks play an important role. P̃0 is indeed part of the
same TURP family as the other calls. However, the TURP assumption ensures
that since the tweak 0 never appears in any calls other than P̃0, the outputs of
these calls is sampled uniformly and independently of the input-output pairs of
P̃0.

Theorem 2. Let B be an NM authenticity adversary against LLSIV that can
repeat a nonce at most µ times in encryption queries. B makes qe queries of total
ciphertext size σe blocks and qd decryption/verification queries of total ciphertext
size σd. Let B run in time at most tb. Then, there exists a (qe+qd+σe+σd, tb+
O((qe+qd)tH+σe+σd))-sTPRP adversary B

′
against the underlying TBC such

that
Advnm−auth

LLSIV (B) ≤ Advstprp
Ẽ

(B
′
) + AdvmacNaT(B

”)

≤ Adv
stprp

Ẽ
(B

′
) + 2(µ− 1)qeϵ+

qd
2n − µ

+ µqdϵ.

The hash function UHF : Kh × {0, 1}∗ × {0, 1}∗ → {0, 1}n is an ϵ-AU hash
function and runs in time at most tH .

Proof. We will define a sequence of hybrid games and bound the transition
probability between these games. Let Ei be the event that the adversary wins
in game Gi.
G0: The oracle implements the real-world construction. in Algorithm 2.
G1: We replace the TBC with a TURP π̃. Let (π̃)−1 ≡ ω̃.

|Pr[E0]− Pr[E1]| ≤ Advstprp
Ẽ

(B‘).

G2: We modify the calls during the encryption/decryption phase to be a function
of T without first calculating IV , as indicated in lines 6 and 14 of Algorithm 3.
This change does not affect the security of the scheme. Thus,

|Pr[E1]− Pr[E2]| = 0.

G3: We change the oracles by applying the transformation in Lemma 2 to lines
6 and 14 of Algorithm 3. Since π̃ is a TURP, then Lemma 2 implies

|Pr[E2]− Pr[E3]| = 0.

G4: As shown in Algorithm 4, we change the equality check during verifica-
tion to check the equality of the tag T instead of IV . Note that the tweakable
permutation π̃ ensures that

(N,T ) = (N∗, T ∗)⇔ (N, IV ) = (N∗, IV ∗).

Thus, changing which variable to check has no implication on the security, i.e.,

|Pr[E3]− Pr[E4]| = 0.
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Algorithm 3 The oracles of game G2 in the proof of Theorem 2.

1: EncK,Kh(N,A,M)
2: IV ← UHF(Kh, A,M)
3: M1, . . . ,Mm

n←−M
4: T ← π̃0,N (IV )
5: for i ∈ {1, . . . ,m} do
6: Ci ←Mi ⊕|Mi| π̃

i,N (ω̃0,N (T ))
7: end for
8: C ← C1∥ . . . ∥Cm

9: return (C, T )

10: DecK,Kh(N,A,C, T )

11: C1, . . . , Cc
n←− C

12: IV ← ω̃0,N (T )
13: for i ∈ {1, . . . , c} do
14: Mi ← Ci ⊕|Ci| π̃

i,N (ω̃0,N (T ))
15: end for
16: M ←M1∥ . . . ∥Mm

17: IV ∗ ← UHF(Kh, A,M)
18: if IV = IV ∗ then
19: return M
20: else
21: return ⊥
22: end if

In the rest of the proof, we need to show that for any adversary B against G4,
there exists an adversary B” against the NaT MAC with the same number of
MAC and verification queries such that

Pr[E4] ≤ AdvnmauthG4 (B) ≤ AdvmacNaT(B
”).

In order to do so, we follow the strategy proposed in the security proof of
Romulus-M [27].

Algorithm 4 The oracles of game G4 in the proof of Theorem 2.

1: EncK,Kh(N,A,M)
2: IV ← UHF(Kh, A,M)
3: M1, . . . ,Mm

n←−M
4: T ← π̃0,N (IV )
5: for i ∈ {1, . . . ,m} do
6: Ci ←Mi ⊕|Mi| σ̃

i,N (T )
7: end for
8: C ← T∥C1∥ . . . ∥Cm

9: return C

10: DecK,Kh(N,A,C)

11: T,C1, . . . , Cc
n←− C

12: for i ∈ {1, . . . , c} do
13: Mi ← Ci ⊕|Ci| σ̃

i,N (T )
14: end for
15: M ←M1∥ . . . ∥Mm

16: IV ∗ ← UHF(Kh, A,M)
17: T ∗ ← π̃0,N (IV ∗)
18: if T = T ∗ then
19: return M
20: else
21: return ⊥
22: end if

G5: We give the adversary oracle access to σ̃, and the adversary makes verifica-
tion queries on the form (N,A,M, T ), rather than (N,A,C). The encryption and
decryption oracles in this case are depicted in Algorithm 5, where the adversary

15



uses the σ̃ oracle to perform the omitted parts. We say B breaks the authen-
ticity of G5 if the second oracle returns ⊤. This change can only increase the
adversary’s advantage. Note that the permutations of σ̃ and π̃ are sampled inde-
pendently, which was ensured in G3. We can see that the oracles in Algorithm 5
are equivalent to the NaT construction. Thus,

Pr[E4] ≤ Pr[E5] ≤ 2(µ− 1)qeϵ+
qd

2n − µ
+ µqdϵ

which follows from Equation 3 [15, Theorem 1].

Algorithm 5 The oracles of game G5 in the proof of Theorem 2.

1: EncK,Kh(N,A,M)
2: IV ← UHF(Kh, A,M)
3: T ← π̃0,N (IV )
4: return T

5: DecK,Kh(N,A,M, T )
6: IV ∗ ← UHF(Kh, A,M)
7: T ∗ ← π̃0,N (IV ∗)
8: if T = T ∗ then
9: return ⊤
10: else
11: return ⊥
12: end if

The overall bound is reached by combing the different transition probabilities
as follows:

Advnm−auth
LLSIV (B) ≤

Pr[E4] +

3∑
g=0

|Pr[Eg]− Pr[Eg+1]| ≤ Pr[E5] +

3∑
g=0

|Pr[Eg]− Pr[Eg+1]|.

3.2 Performance Comparison

In most SIV-based constructions, the encryption algorithm starts by processing A
and M using a UHF. Thus, we can say, for now, that this part of the computation
is more less the same. Obviously, different designs of the UHF have different cost
and security bounds, but this can be adjusted depending on the application. We
shall restrict our discussion in this section to the XOR-Hash XH described in
Algorithm 1 as a reference for comparison. In this section, compare the cost of
tag generation and encryption. Earlier MRAE-secure design [30, 14, 27, 28, 2, 8,
13] based on TBCs behave in the following fashion:

1. The hash value is processed by one or more TBC calls to generate the tag.
2. The tag is used to encrypt the plaintext using one call to the TBC per

plaintext block.
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The LLSIV construction, on the other hand, generates both the tag and ci-
phertext in parallel. As explained in Section 1, earlier SIV-like designs are not
pruning-friendly, and require a fully secure TBC for the most part. In the case
of LLSIV, this is not necessarily true. Thus, we shall refer to the instantiation
using a fully secure TBC as LLSIV, and to the instantiation using a pruned
TBC as pLLSIV, with a pruning ratio p, where for a TBC with r rounds, its
pruned variant has pr rounds. We will consider the performance in different
computational models. For software, we count the cost in terms of TBC calls.
For hardware, we count the cost in terms of number of cycles, assuming each
round takes 1 cycle. The plaintext consists of m blocks. Table 1 present the com-
parison between the three schemes in three different computational models. The
single-core and multi-core models apply to both software and hardware, where
in software a cycle is a call to the round function of the TBC, while in the case
of hardware we assume that the implementation computes one round per clock
cycle. We need that due to the need of the decryption function, cost of LLSIV
is higher that SCT-2k, which translates to area in hardware and code size in
software. However, while the performance of LLSIV is the same as SCT-2k on
single-core platforms, pLLSIV is faster due to the reduced number of rounds. On
parallel platforms, both LLSIV and pLLSIV are faster. They specially excel on
pipelined hardware implementations, where only the TBC encryption needs to
be pipelined while the decryption can use a small iterative circuit. Thus, the area
overhead of LLSIV is very small (one round) compared to SCT-2k, while pLLSIV
can have even smaller area than SCT-2k, due to the shallower pipeline. In terms
of speed, a pipelined implementation of LLSIV can encrypt r− 1 more blocks in
the same amount of time compared to SCT-2k, while a pipelined implementation
of pLLSIV can encrypt (2− p)r− 1 extra block compared to SCT-2k in teh same
amount of time. For short and medium messages, this is a significant speed up
and improves the latency of the proposed schemes in time-critical application
drastically.

Scheme Model TBC Encryption TBC Decryption # cycles

SCT-2k
Single-Core

Iterative - r(m+ 1)
LLSIV Iterative Iterative r(m+ 1)
pLLSIV Iterative Iterative pr(m+ 1)

SCT-2k
Multi-Core

Multi-core - r(⌈m/c⌉+ 1)
LLSIV Multi-core Iterative r⌈(m+ 1)/c⌉
pLLSIV Multi-core Iterative pr⌈(m+ 1)/c⌉

SCT-2k
Pipelined

Pipelined - 2r +m− 1
LLSIV Pipelined Iterative r +m
pLLSIV Pipelined Iterative pr +m

Table 1. Performance comparison between SCT-2k, LLSIV and pLLSIV
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4 Instantiations and Implementations

In this section we describe instantiations of the LLSIV and pLLSIV modes. We
provide two sets of instantiations. The first set is based on the SKINNY-128-
384 [10] TBC. We also describe the hardware architecture and implementation
of a fully pipelined accelarator of FPGAs and compare the cost and performance
of the proposed designs to the generalized version of SCT-2k described in [14]
under the name GNSIV-N.

The second instantiation is based on PolyVal and AES, and is meant to show
the advantage of our approach relative to AES-GCM-SIV, which is one of the
most popular MRAE-secure schemes.

4.1 Skinny-Based Instantiations

The UHF The topic of designing an ϵ-AU hash function is a rich topic in sym-
metric key cryptography. UHF can be designed in a variety of ways that are
outside the scope of our work. Since our goal is to design a TBC based scheme
to be compared with SCT-2k in terms of performance, we shall rely on the same
UHF used in SCT-2k: the XOR-hash defined in Algorithm 1. We will use the same
hash function for all our instantiations. We will use n = 128 bits and |Kh| = 192
bits for LLSIV and SCT-2k, and the maximum length or AD or plaintext is 264

blocks. The security of LLSIV in this case is up to ≈ min{2k/lmaxµ, 2
n/µ} en-

cryption or decryption queries, of size at most 2n/µ encrypted n-bit plaintext
blocks.

While the dependency on the maximum length of associated data and plain-
text in the security bound is unpleasant, it seems to be still the best suited solu-
tion for our study. UHFs whose security does not depend on the message length
have been proposed in other MRAE-secure AEAD schemes such as Romulus-
M [27] or ZAE [28]. However, these hash functions are either unparallelizable, or
produces 2n-bit outputs, respectively. We note the design of a fully parallelizable
UHF whose security does not depend on the maximum length and outputs only
n bits as an interesting open problem.

Tweakable Block Cipher Choosing the TBC for a practical instantiation is not
an easy task. Several TBCs with large tweak sizes have been proposed in the
past decade, several TBCs with large tweak sizes have been proposed, including
Deoxys-TBC [30, 14], SKINNY [10] and QARMA [5, 6]. Any of these TBCs can by
used in LLSIV. We choose SKINNY for its hardware-optimized round function
and its maturity, with plenty of literature discussing its security.

Pruning When SKINNY-128-384 was first proposed in 2016 [10], it consisted
on 56 iterative rounds. Later, Guo et. al. [23] conjectured that 56 rounds is an
overkill, and proposed reducing the number of rounds to 40 rounds. Henceforth,
we shall refer to the 40-round version as the fully secure version and use it as
the underlying TBC for any unpruned instantiation. Table 2 includes a list of
the most recent cryptanalytic results on SKINNY-128-384. The models that are
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relevant for both SCT-2k and pLLSIV are the single key and chosen tweak models.
We note that the best attacks in these models are those from [12] and [25],
respectively. However, this attacks are significantly beyond the security bounds
of pLLSIV, where the time complexity is limited to 2128/lµ for k = 128. For
example, even for only 23 rounds, [12] requires time complexity of more than
2362. The attacks from [25] against SKINNY-128-256 can only reach up to 22
rounds.

Model Technique Ref. Number of Rounds Data Time

Single Key
ID [45] 22 292.22 2373.48

MitM [17] 23 2120 2368

DS-MitM [41] 23 296 2372

Diff-MitM [12] 25 2122.3 2372.5

Chosen Tweak
Int [25] 26 2121 2344

DS-MitM [41] 25 296 2363.83

Related Key Rectangle

[24] 30 2125 2361

[37] 30 2122 2341

[18] 32 2123 2355

[43] 32 2123 2345

Table 2. A summary of the most recent notable cryptanalytic results on SKINNY-128-
384. ID: Impossible Differential. MitM: Meet in the Middle. DS-MitM: Demirci-Selçuk
MitM. Diff-MitM: Differential MitM.

The situation in pLLSIV loosely resembles the situation of ForkSkinny [4].
The designers have discussed the applicability of different type of attacks to this
forked structure. We shall consider the pruned version pLLSIV to use 25 rounds
of SKINNY-128-384 for the TBC calls in both the UHF and the rest of the LL-
SIV mode. Figure 4 depicts conceptual cryptanalysis targets. Table 2 shows that
there are no distinguishers for any of the top or the bottom parts with time
complexity 2128. Besides, even if attacks improve, most attacks are not appli-
cable to this setup. For instance, if an adversary wants to attack the bottom
permutations alone, they would need either a chosen tweak known ciphertext
attack (the plaintext is unknown), which is a very restricted model, or an at-
tack on the inverse permutation cascaded with the forward permutation with a
different tweak, which can occur during decryption. However, while this is not
exactly the SKINNY TBC, it requires a distinguisher on 50 rounds of SKINNY
with dependent, but different, tweakeys. On the other hand, breaking the uni-
versality of the UHF requires finding a distinguisher for the top permutations,
while observing the effect through the bottom permutations, each including 25
rounds of SKINNY with two different keys. It also requires at least a distin-
guisher for 25 rounds of SKINNY-128-384 within our security claims in Table 3.
Meet-in-the-Middle (MitM) attacks and other attacks that require both chosen
plaintext and chosen ciphertext queries, simultaneously, are not applicable to
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any of the individual TBC calls in pLLSIV. MitM attacks can be applied on Pt

and Pb, which generically has complexity of O(2128). To beat the generic attack,
the adversary needs a distinguisher on 25 rounds of SKINNY-128-384 within our
security claims.

Pt

Pb

Pt

Pb P
′
b

Pt P
′
t

Pb

Pt P
′
t

Pb P
′
b

Fig. 4. Conceptual minimalist cryptanalysis targets in pLLSIV.

Last but not least, from the theoretical security bounds of LLSIV and the
cryptanalysis of SKINNY-128-384, the security claims are pLLSIV should be lim-
ited to the parameters in Table 3. The security claims of pLLSIV are significantly
conservative compared to what the attacks allow and are based on the require-
ments of the recently concluded NIST lightweight cryptography project [1].

Scheme Max. Length Data Time Key Size

pLLSIV 216 246 2112 2× 128
LLSIV 264 2128/µ 2128 192 + 128

Table 3. Security claims for pLLSIV and LLSIV. µ is the number of nonce repetitions.

We note that given our parameters, pLLSIV requires 37.5 rounds per plaintext
block of 128-bits, which is less than one call of SKINNY (equivalent to 40 rounds).
This makes it not only faster than LLSIV and unpruned MRAE-secure TBC-
based schemes, but also faster than unpruned online AE schemes such as Deoxys-
AE-I or Romulus-N, even using single core implementations.

Domain Separation and Keys In the spirit of being conservative, and given
MRAE security requires extra memory overhead anyway, we restrict our self to
the case where the UHF uses a different key from other TBC calls. We also use
a different domain separator for the TBC calls used to generate the tag and
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ciphertext blocks compared to the ones used in the UHF. We use 192 bits and
128 bits for the UHF key for LLSIV and pLLSIV, respectively. We use 128 bits
for the key of the other calls. On one had, we could use the same key for all
TBC calls, assuming the domain separation removes any dependency between
the calls. On the other hand, the proofs of Theorems 1 and 2 assume that the
UHF and the TBC are completely different functions. Thus, our solution lies
somewhere in the middle. It uses the domain separator to assume that the TBC
calls inside and outside the UHF are independent, while respecting the provable
security result by using different keys. Note that this situation is not uncommon
in TBC-based designs, but in fact appears in the security proof of the theoretical
generalization of SCT-2k: GNSIV [14].

FPGA Pipelined Implementation of pLLSIV, LLSIV and SCT-2 In
order to demonstrate the differences between LLSIV, pLLSIV and SCT-2k on par-
allel platforms, we have implemented all three algorithms using a fully pipelined
SKINNY implementation that computes one round per pipeline stage. We have
synthesized the implementations for Xilinx Kintex-7 FPGA using Vivado. The
architecture of the hardware accelerator of LLSIV and pLLSIV is depicted in
Figure 5. The two algorithms differ in the number of rounds, which affects the
number of pipeline stages for the encryption core and the number of cycles for
the decryption circuit. The decryption circuit is a round-based implementation
of the SKINNY decryption algorithm. The implementation of SCT-2k differs from
that of LLSIV in that it does not need the decryption circuit but the tag is always
generated using the encryption pipeline, where only one stage is active at a time.
While the architecture requires to call the decryption circuit during verification
calls to process the tag, this circuit is not the full SKINNY-128-384 decryption
circuit, even for LLSIV. We note that this call to the decryption circuit only uses
0 values for both the domain separator and the counter. Thus, 128 bits of the
TBC tweak are fixed to 0 and can be ignored during the implementation, which
is a property of SKINNY. This gives us a little cost reduction in practice.

Table 4 shows the resource utilization of the FPGA implementations of dif-
ferent schemes. The LLSIV implementation almost the same number of flip flops
and 12.3% more Look Up Tables (LUTs), mainly due to the iterative decryp-
tion circuit. However, it needs 39 less cycles for encryption. Note that in this
implementation, 1 block needs 1.5 cycles. Thus, the LLSIV implementation can
encrypt 26 more blocks (416 bytes) in the same amount of time. pLLSIV is even
faster, being able to encrypt 69 more blocks (736 bytes) compared to SCT-2k.

In order to demonstrate the performance gain, Figure 6(Left) shows the
number of cycles needed to encrypt different numbers of plaintext blocks. Fig-
ure 6(Right) shows the ratio between the number of cycles needed by SCT-2k
vs the proposed schemes. It can be seen that when the number of blocks is less
than 20, pLLSIV is more than twice faster than SCT-2k, while LLSIV is more
than 40% faster.
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Fig. 5. Simplified architecture of a fully pipelined hardware accelerator for LLSIV and
pLLSIV.

Table 4. Synthesis results of the pipelined implementations of SCT-2k, LLSIV and
pLLSIV on the Xilinx Kintex-7 FPGA. a and m are the number of 128-bit blocks of
associated data and plaintext, respectively. The number of cycles is for the encryption
algorithm.

Scheme LUTs Flip Flops # of Cycles

SCT-2k 8230 20581 118 + a/2 + 3m/2
LLSIV 9243 20587 79 + a/2 + 3m/2
pLLSIV 5392 12907 49 + a/2 + 3m/2

4.2 LLSIV-PolyVal-ICE2

In this section, we describe an instantiation of LLSIV based on the PolyVal hash
function and the ICE2 TBC with the ideal cipher replaced with AES. The en-
cryption function of LLSIV-PolyVal-ICE2 is depicted in Figure 7. The instance
uses two 128-bit uniformly random keys, one for PolyVal and one for ICE2. Dur-
ing encryption, the PolyVal hash function is used to absorb A and M , while
in parallel the nonce-based portion of ICE2 (we can refer to it as the KDF) is
executed to calculate L and V . Next, the tag and ciphertext are generated in
parallel as the calls to AES all encrypt the same hash value and differ only in the
exponent i of 2iL and 2iV . Thus, similar to the SKINNY based instantiation, the
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Fig. 6. (Left) The number of cycles needed to encrypt different amounts of plaintext
blocks, with at most 2 associated data blocks. (Right) The ratio between the number
of cycles needed by SCT-2k and our proposed schemes.

encryption consists of two phases that are fully parallelizable. During decryp-
tion, the KDF and tag decryption are executed in parallel in parallel to part of
PolyVal that absorbs A. Then, the message is encrypted followed by the remain-
der of PolyVal. This is again similar to the execution profile of SKINNY based
instantiations. This is faster than AES-GCM-SIV on parallel platforms, since the
encryption of AES-GCM-SIV require four unparalleizable phases instead of two.
First, we have to run the KDF which consists of 4 parallelizable AES calls. Then,
PolyVal is evaluated followed by tag generation, followed by encryption. Besides,
the KDF of AES-GCM-SIV requires 4 calls, while ours requires only two. Thus,
LLSIV-PolyVal-ICE2 is faster than AES-GCM-SIV even on single cores. Note that
while AES-GCM-SIV uses a single-key to generate both the hash and encryption
subkeys, while LLSIV needs two keys, this is a minor issue, since we can use a
separate single-use KDF to extend the master key to two keys. This auxiliary
KDF is called only once per key and not for each query, and similar technique
is used in AES-GCM. However, we leave the design of such KDF out of scope.

Unlike XH, PolyVal is not parallelizable, so to quantify the gain on pipeline
hardware implementation, we need to estimate the performance of PolyVal on
FPGA. We implemented an iterative implementation of PolyVal on Kintex-7
FPGA, and our implementation runs at 75 MHz, taking 4 clock cycles per block.
Thus, to hash a blocks of A and m blocks or M we need around 4(a+m) cycles.
In parallel, we need to execute two unparallelizable calls to AES, assuming AES
is implemented in a pipelined fashion with one round per stage, and 10 rounds
in total. Thus, the first phase of encryption requires max(4(a + m), 20) cycles.
The next phase is a simple pipeline implementation of AES that requires m+ 9
cycles. Thus, in total, one query requires max(4(a+m), 20) +m+ 9 cycles.

On the other hand, AES-GCM-SIV encryption consists of 4 phases, as de-
scribed earlier. The first phase is the KDF which is 4 parallelizable calls to AES,
taking 14 cycles. Next, PolyVal takes 4(a+m) cycles, followed by once unparal-
lelizable call to AES (11 cycles) and finally the parallelizable encryption (m+10).
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In total, it needs 4(a+m) +m+ 35 cycles for long messages. If 4(a+m) ≥ 20,
then LLSIV-PolyVal-ICE2 takes 25 cycles less than AES-GCM-SIV. 25 cycles are
enough to encrypt 5 extra blocks of plaintext (5×4+5 cycles). While the gain is
not as large as the case of SKINNY-based instantiations, it is still significant for
latency-critical applications. Besides, the fact that LLSIV-PolyVal-ICE2 is faster
than AES-GCM-SIV even on single cores is a big plus: on single cores that process
one round of AES per cycle, LLSIV-PolyVal-ICE2 takes 22 cycles less.

The security of LLSIV-PolyVal-ICE2 follows for the straigtforward application
of Theorems 3 and 4. It is secure as long as the number of queries is less than
296/µ when the maximum message length is limited to 238 − 1 bytes. Iwata and
Seurin [29] show that AES-GCM-SIV is only secure up to total complexity of 264

in this case. Thus, we consider LLSIV-PolyVal-ICE2 to have similar, but better,
numerical security bounds compared to AES-GCM-SIV.

When it comes to the underlying security assumptions of both constructions,
we note that LLSIV-PolyVal-ICE2 relies on the single-key security of PolyVal and
the ideal cipher model. The latter requires related key security of AES to be
sound. AES-GCM-SIV on the other hand relies on the multi-key security of both
AES and PolyVal. Thus, AES-GCM-SIV relies on a weaker assumption when it
comes to AES, but both schemes cannot rely on the single-key security assump-
tion. However, the ideal cipher model has been established and we believe the
trade-off for the improved performance and better bounds is worth it. Due to
the ideal cipher assumption, we find it inappropriate to instantiate pLLSIV from
LLSIV-PolyVal-ICE2, as reduced-round related key attacks on AES maybe prob-
lematic.
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FPGA Comparison The synthesis results of AES-GCM-SIV and LLSIV-PolyVal-
ICE2 are given in Table 5. AES-GCM-SIV is 25 cycles slower than LLSIV-PolyVal-
ICE2 but also about 1200 LUTs smaller. This mainly due to the iterative AES
decryption round function used in decryption and the masks used in ICE2.

Table 5. Synthesis results of the pipelined implementations of AES-GCM-SIV and
LLSIV-PolyVal-ICE2 on the Xilinx Kintex-7 FPGA. a and m are the number of 128-bit
blocks of associated data and plaintext, respectively. The number of cycles is for the
encryption algorithm.

Scheme LUTs Flip Flops # of Cycles

AES-GCM-SIV 12780 3017 4(a+m) + 35 +m
LLSIV-PolyVal-ICE2 13965 3401 4(a+m) + 10 +m

5 Low Latency DFV

Minematsu [34] proposed the decryption fast SIV (DFV) framework as a way
to optimize the speed of DAE, where the decryption function can be done as
a rate-1 function, using an auxiliary tag, and the encryption part of SIV is re-
placed by a pNAE scheme. He, then, proposed two generic constructions and
two dedicated designs. Minematsu [34] discussed several potential methods to
optimize his proposed framework to improve their efficiency, and demonstrated
that all the considered ideas lead to either insecure constructions or intractable
security proofs. However, Minematsu focused mainly on black-box construction
where a PRF/MAC is used and its output is used as part of the nonce for the
pNAE scheme. Naturally, our proposed technique to construct LLSIV is not part
of the ideas considered by Minematsu. In this section, we consider an optimiza-
tion of the DFV3 scheme by Minematsu that requires one less primitive call. The
proposed construction is depicted in Figure 3 and Algorithm 6.

Algorithm 6 The LLDFV Scheme.

1: EncKp,K,Kh(A,M)
2: IVa ← XH1(Kh, A)
3: IVm ← XH2(Kh,M)
4: IVe ← IVa ⊕ IVm

5: T ← Ẽ0
K(IVe)

6: (C, V )← pNAE.EncKp
(IVa∥IVe,M)

7: return (C, T∥V )

8: DecKp,K,Kh(A,C, T
′
)

9: T, V
n←− T

′

10: IVd ← (Ẽ0
K)−1(T )

11: IVa ← XH1(Kh, A)
12: M ← pNAE.DecKp

(IVa∥IVd, C, V )
13: return M
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5.1 Security of Low Latency DFV

Instead of using the output of two PRFs as the nonce for a pNAE scheme, we
use the output of two universal hash functions. The two hash functions are the
XOR-Hash (Algorithm 1), and the same hash function ignoring M . Thus, we
know that

XH(A,M) ≡ XH1(A)⊕ XH2(M)

which is a ϵ-AU hash function. However, we also need an assumption on XH1(A)
on its own and how it interacts with XH(A,M) when the outputs of both func-
tions are concatenated. An obvious approach is to assume the hash function
defined by

XH
′
(X, i) ≡ XHi(X)

where the type (associated data (1) or plaintext (2)) is part of the input. The
type input corresponds to the domain separation values in XH. Since the analysis

of XH directly applies to XH
′
(X, i), we know that XH

′
(X, i) is both ϵ-AU and

ϵ-AXU. Next, we define the overall UHF:

ConcatXH(A,M)← XH1(A)∥XH(A,M).

We can show that this function is a (2ϵ)-AU hash function.

Lemma 3. Given XH
′
(X, i) is ϵ-AU and ϵ-AXU, then ConcatXH(A,M) is (2ϵ)-

AU.

Proof. Given two pairs (A1,M1) ̸= (A2,M2), the proof uses the conditional
probability on whether A1 = A2

Pr[ConcatXH(A1,M1) = ConcatXH(A2,M2)|(A1,M1) ̸= (A2,M2)] ≤

Pr[XH1(A1) = XH1(A2)|A1 ̸= A2] + Pr[XH2(M1) = XH2(M2)|A1 = A2] ≤ 2ϵ.

Using Lemma 3, we can then show the d− priv security of LLDFV.

Theorem 3. Let A be a (qe, t)-adversary against the NM privacy of LLDFV as
a deterministic AE scheme (µ = qe). Then, there exists a (qe, t

′
)-adversary A

′

and a (qe, t
′
)-adversary A” for t

′
= O(qe + t) and t” = O(qe + t), such that

Advd−priv
LLDFV (A) ≤ Advtprp

Ẽ
(A

′
) + Advnr−priv

pNAE (A”) +
0.5q2e
2n

+ 3

(
qe
2

)
ϵ

where XHi(X) is an ϵ-AU and ϵ-AXU hash function.

Proof. First, Ẽ is replaced with a TURP. Then, using the PRP-PRF switching
lemma, it is replaced with a uniformly random function R. Next, we observe
that as long as the nonce of the underlying pNAE scheme and the input to R
are never repeated, then T is uniformly sampled and all the queries to the pNAE
scheme are nonce respecting. Finally, the pNAE scheme is replaced with an ideal
NAE scheme that outputs random strings of length |M |+ n.
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Theorem 4. Let B be a (qe, qd, t)-adversary against the authenticity of LLDFV
as a deterministic AE scheme (µ = qe). Then, there exists a (qe + qd, t

′
)-

adversary B
′
and a (qe, qd, t

′
)-adversary B” for t

′
= O(qe + qd + t) and t” =

O(qe + qd + t), such that

Advd−auth
LLDFV (B) ≤ Advstprp

Ẽ
(B

′
) + Advnr−auth

pNAE (B”) + 2

(
qe
2

)
ϵ+ qeqdϵ

where XHi(X) is an ϵ-AU and ϵ-AXU hash function.

Proof. In order to proof this theorem, we construct a series of a hybrid games.
Let Ei be the event that the adversary wins in game Gi. G0: The oracles are
the real world oracles. G1: First, Ẽ is replaced with a TURP.

|Pr[E0]− Pr[E1]| ≤ Adv
stprp

Ẽ
(B

′
).

G2: The game terminates if during any two encryption queries (Ai,Mi) ̸=
(Aj ,Mj), ConcatXH(Ai,Mi) = ConcatXH(Aj ,Mj).

|Pr[E1]− Pr[E2]| ≤ 2

(
qe
2

)
ϵ.

G3: The game terminates if there exists a decryption query (A⋆, C⋆, T ⋆) and an
encryption query (Ai,Mi) such that

(A⋆, T ⋆) ̸= (Ai, π̃(XH(Ai,Mi)))

and
ConcatXH(Ai,Mi) = XH1(A

⋆)∥ω̃(T ⋆).

Since π̃ is bijective, T ⋆ ̸= Ti implies this condition cannot happen. Thus, we only
need to look at when T ⋆ = Ti, in which case the condition can only be satisfied
if A⋆ ̸= Ai and XH1(A

⋆) = XH1(Ai). Since there are at more qeqd such pairs,
then

|Pr[E2]− Pr[E3]| ≤ qeqdϵ.

G4: We now consider an adversary B” that has oracle access to the underlying
pNAE scheme, π̃, XH1 and XH2. B

” simulates the oracles of G3. From B point
of view, games G3 and G4 are indistinguishable.

|Pr[E3]− Pr[E4]| = 0.

Besides, if G4 does not terminate, then all the queries made to pNAE.Enc
use unique nonces, and all the queries made to pNAE.Dec are non-trivial: non-
repeating and were not generated by queries to pNAE.Enc.
G5: We replace the pNAE oracles with ideal NAE oracles: all calls to pNAE.Enc
return uniformly random strings and all calls to pNAE.Dec return ⊥. Thus,

|Pr[E4]− Pr[E5]| ≤ Advnr−auth
pNAE (B”).

Besides, if G5 does not terminate, B cannot distinguish the oracles from ideal
oracles. Thus,

Pr[E5] = 0.
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5.2 Performance of LLDFV

When instantiating DFV3 using the XOR-Hash function, LLDFV costs one prim-
itive call less. The reduced number of calls makes the scheme faster than DFV3
on any platform (including single-core performance). At the same time, it has
the same level of parallelism as LLSIV. In particular, if the underlying pNAE is
implemented using the ΘCB3 scheme [33], DFV3 requires two hash functions and
m+3 TBC calls. On the other hand, LLDFV requires 2 hash functions and m+2
TBC calls. On a pipelined architecture of the SKINNY-128-384 TBC, similar to
the one used for LLSIV, DFV3 suffers from the same issue as SIV, where there is
a call to the TBC during encryption that cannot be parallelized with any other
call. Similarly to LLSIV, LLDFV encrypts data in two fully parallelizable phases,
where the hash functions can be computed in parallel, while the TBC call used to
generate T and the encryption are performed in parallel. Thus, LLDFV requires
only 1 extra cycle compared to LLSIV. On the negative side, this implementation
of LLDFV requires a pipelined implementation of the decryption circuit. Thus,
it requires almost double the area of LLSIV. However, this limitation is inherent
from the use of ΘCB3 and is applicable to a similar instantiation of DFV3, as
well. In other words, a paralleizable, yet efficient, instantiation of DFV3 already
requires both encryption and decryption circuits.

Another alternative is to use an Encrypt-then-MAC scheme as the underly-
ing pNAE scheme. Since we only need the underlying scheme to be secure in
the nonce respecting setting, we can use a simple inverse-free scheme, such as
counter mode, followed by the Wegman-Carter MAC. Such design would need
only encryption calls for the parallelizable functions and would need only an
iterative decryption core for the inverse permutation of T . However, this also
comes at a similar area cost, since the pipeline depth for encryption function
would correspond to two calls instead of one. In other words, we would only
need the forward pipelined implementation but its area would almost double.

That being said, in terms of latency, LLDFV offers significantly lower latency
in terms of decryption compared to both LLSIV and DFV3, and significantly
lower latency than DFV3 in terms of encryption while being only marginally
worse than LLSIV.

Last but not least, another limitation of LLDFV is that, unlike LLSIV, is not
pruning friendly, since instantiations based on ΘCB3 and Encrypt-then-MAC
provide the adversary with access to all the inputs and outputs of the underlying
primitive.

5.3 Security Comparison

The security bound of LLDFV is different from DFV3. It is slightly better when
the pNAE scheme is only secure upBB, while they are essentially equivalent if the
pNAE scheme is secure BBB. Minematsu [34] gave a dedicated design that has
the fast decryption property while also being a BBB DAE based on a variant of
ΘCB3 and ZMAC. We note that LLDFV is not inherently upBB secure. We can
use a different hash function UH with ϵ = O(1/22n) and use a BBB-secure pNAE.
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However, such hash function would lead, mostly likely, to a concatenated hash
ConcatUH that has 4n-bit output, requiring a TBC with a significantly large
tweak. For instance, if the pNAE is a variant of ΘCB3, we need a TBC with at
least 4.5n-bit tweak. While this is possible, it may not be very efficient. Since the
main goal of this paper is to introduce LLSIV and LLDFV in comparison to SCT-
2k and DFV3, respectively, we leave providing an efficient BBB instantiation of
LLDFV for a future work.

6 Conclusion

In this paper, we presented three variants of the SIV framework for designing
MRAE-secure AEAD. LLSIV is proposed to outperform SCT-2k [14] on paral-
lel platforms. pLLSIV outperfoms LLSIV, SCT-2k, and even online AE schemes
based on similar primitives, at the cost of a lower security margin, since it uses
a carefully pruned TBC. LLDFV is an optimization of the DFV framework that,
not only is more efficient on parallel platforms, but also outperforms DFV3 on
any platform as it uses one less TBC call. LLSIV and LLDFV use black-box prim-
itives with compositional security proofs based on hybrid games, while pLLSIV
combines the result from LLSIV with the prove-then-prune methodology. We also
provide implementation results for a pipelined implementation of LLSIV, pLLSIV
and SCT-2k to show the speed up and trade-offs, showing that our new designs
on such architecture can encrypt significantly more blocks in the same amount
of time, making them excellent for short and medium messages in applications
where latency and MRAE security are the primary concerns more than hard-
ware area. We also provided an AES-based instantiation of LLSIV that performs
better that AES-GCM-SIV.
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