

Integral Attack on the Full FUTURE Block Cipher

Zeyu Xu, Jiamin Cui, Kai Hu*, and Meiqin Wang

SubCell MixColumn ShiftRow AddRoundKey

F24

Abstract: FUTURE is a recently proposed lightweight block cipher that achieved a remarkable hardware

performance due to careful design decisions. FUTURE is an Advanced Encryption Standard (AES)-like

Substitution-Permutation Network (SPN) with 10 rounds, whose round function consists of four components,

i.e., , , , and . Unlike AES, it is a 64-bit-size block cipher with a 128-

bit secret key, and the state can be arranged into 16 cells. Therefore, the operations of FUTURE including its

S-box is defined over . The previous studies have shown that the integral properties of 4-bit S-boxes are

usually weaker than larger-size S-boxes, thus the number of rounds of FUTURE, i.e., 10 rounds only, might be

too aggressive to provide enough resistance against integral cryptanalysis. In this paper, we mount the integral

cryptanalysis on FUTURE. With state-of-the-art detection techniques, we identify several integral distinguishers

of 7 rounds of FUTURE. By extending this 7-round distinguisher by 3 forward rounds, we manage to recover all

the 128 bits secret keys from the full FUTURE cipher without the full codebook for the first time. To further

achieve better time complexity, we also present a key recovery attack on full FUTURE with full codebook. Both

attacks have better time complexity than existing results.

Key words: symmetric-key; integral attack; division property; FUTURE

1　Introduction

10

128 64

FUTURE is a new Substitution-Permutation Network
(SPN)-based lightweight block cipher, recently
proposed by Gupta et al.[1] It consists of rounds and
is an Advanced Encryption Standard (AES)-like cipher
that accepts -bit key and has a block size of -bit.

FUTURE is designed to encrypt data in a single clock
cycle, i.e., an unrolled implementation. Therefore, the
designers are committed to using very low
implementation cost than other block ciphers in
unrolled fashion. These lightweight algorithms, due to
the high implementation cost, tend not to use the
Maximum Distance Separable (MDS) matrix, although
the MDS matrix provides better security under the
same number of rounds. FUTURE overcomes this
challenge by judiciously choosing a very lightweight
MDS matrix. The MDS matrix is a composition of four
sparse matrices, each matrix has very low implement
cost. Meanwhile, the S-box is also obtained by
composing four low-hardware-cost S-boxes. The
authors benchmarked hardware implementations on
Field Programmable Gate Array (FPGA) and
Application Specific Integrated Circuit (ASIC) and
compared FUTURE to several well-known lightweight
ciphers in the literature with respect to size, critical
path, and throughput. FUTURE ended up giving the

 Zeyu Xu, Jiamin Cui, Kai Hu, and Meiqin Wang are with

School of Cyber Science and Technology, Shandong
University, Qingdao 266237, China, and Key Laboratory of
Cryptologic Technology and Information Security, Ministry of
Education, Shandong University, Qingdao 266237, China.
E-mail: xuzeyu@mail.sdu.edu.cn; cuijiamin@mail.sdu.edu.cn;
kai.hu@sdu.edu.cn; mqwang@sdu.edu.cn.

 Kai Hu is also with School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore
639798, Singapore.

 Meiqin Wang is also with Quan Cheng Laboratory, Jinan
250100, China.

* To whom correspondence should be addressed.
 Manuscript received: 2023-11-05; accepted: 2023-12-22

TSINGHUA SCIENCE AND TECHNOLOGY
ISSN 1007-0214 01 /01 pp1−10
DOI: 10 .26599 /TST.2022 .9010007
V o l u m e x , N u m b e r x , x x x x x x x x

© The author(s) 2024. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

mailto:xuzeyu@mail.sdu.edu.cn
mailto:cuijiamin@mail.sdu.edu.cn
mailto:kai.hu@sdu.edu.cn
mailto:mqwang@sdu.edu.cn
https://doi.org/10.26599/TST.2022.9010007
http://creativecommons.org/licenses/by/4.0/

best results among the compared algorithms in many
respects. The designer evaluated the security of
FUTURE in the document. For differential and linear
cryptanalysis, they expected that there would be no
effective 5-round distinguisher. Later, Ilter et al. found
effective 5-round differential and linear distinguishers
in Ref. [2]. However, they did not further utilize
distinguishers for key recovery attacks. Recently,
Schrottenloher et al. utilized the Meet-in-the-Middle
(MitM) technique to present the first full round key
recovery attack of FUTURE[3], breaking the designers’
7-round estimate under this technique.

The idea of integral attack comes from Square attack,
which was first proposed by Daemon et al.[4], and then
formalized by Knudsen and Wagner[5]. It is one of the
most powerful cryptanalysis techniques. Generally, it
consists of an integral distinguisher and a key-recovery
phase. During the construction of the integral
distinguisher, a structure of plaintexts is encrypted to
obtain a state set with integral property (e.g., zero-sum)
in some positions. Then, the attacker guesses the
relevant subkeys and partially decrypts the ciphertexts
to the end of the distinguisher. The key space is
reduced by checking the integral property.

Several techniques were proposed to optimize the
integral attacks. The division property is the most
efficient and accurate method of detecting integral
distinguishers, which was introduced by Todo[6] at
EUROCRYPT 2015. It is word-oriented and can
exploit the algebraic degree information of the local
components. In particular, it was applied to MISTY1,
and the full MISTY1 was broken for the first time[7].
To better exploit the concrete structure of the ciphers,
Todo and Morii[8] introduced the Bit-based Division
Property (BDP) at FSE 2016. BDP treats the
components of the target primitive at the bit level so
that more information in the structures can be used.
Compared with the word-based division property, the
BDP is more likely to find better integral
characteristics. Later, Wang et al.[9] presented the
automatic methods to search for the three-subset bit-
based division property effectively. In Ref. [10], Hao
et al. introduced the three-subset bit-based division
property without unknown subsets (3SDPwoU). The
monomial prediction, proposed by Hu et al.[12], is
another language of division property from a pure
algebraic perspective.

However, using common programming languages,
the time and memory complexities for searching

O(2n) ndivision property in practice are where is the
block size. To overcome this bottleneck, Xiang et al.
combines the Mixed Integral Linear Programming
(MILP) method and division property to search for the
integral distinguishers at ASIACRYPT 2016[13]. As a
result, they can deal with ciphers of block sizes much
larger than 32 bits efficiently. Subsequently, some
automatic searching tools aided by Boolean
Satisfiability problem (SAT)[14] and Satisfiability
Modulo Theories (SMT)[15] are also proposed[16, 17].

COPY AND XOR

S ZR
H

S
ZR

H

Symmetric cryptographic primitives can be
decomposed into a sequence of local building blocks.
The propagations of division trails through these local
components are modeled and the off-the-shelf solvers
are called to find out whether there is a solution. If
there is no solution, then balanced properties are found.
Components such as S-boxes and basic operations like

, , and have been modeled well in
Ref. [13]. The BDP propagations of the linear layer can
be easily handled thanks to these basic operations.
However, the problem of how to efficiently model a
complex linear layer, e.g., an MDS matrix, has
remained. So far three methods have been proposed to
solve this problem, they are method[18],
method[19], and method[20]. Among the three
methods, method cannot perfectly model the BDP
propagations over a complex linear layer, while
method is only applicable to the so-called binary
matrix. For the MDS matrix used in FUTURE,
method is then the only choice for a perfect model.

Our contributions. In this paper, we take state-of-
the-art techniques for detecting division properties to
give a more fine-grained study of the security strength
of the block cipher FUTURE against the integral
attacks. To find more integral properties, we use the
powerful model proposed by Hu et al.[20] to handle the
linear layer of FUTURE. 7-round integral
distinguishers are established for FUTURE. Based on
the 7-round integral distinguisher, exploring the
relationship between the round key bits in the key
recovery phase, we manage to attack the full FUTURE
without the full codebook for the first time. Futher, to
achieve a better time complexity, we also present a key
recovery attack on full FUTURE with full codebook.
All the results are summarized in Table 1.

Outline. The paper is organized as follow. In Section
2, we briefly recall the automatic search problems of
the BDP and methods to model linear layer. Next, in

 2 Tsinghua Science and Technology, xxxx xxxx, x(x): 1−10

Sections 3 and 4 we introduce the block cipher
FUTURE and propose a integral distinguisher. We
present two key recovery attacks on full FUTURE in
Section 5.

2　Preliminary

2.1　Notations

We list the notations mainly used throughout this
paper.

u,v, x
Fn

2

● Blackened italic lowercase letters (i.e.,):
denote vectors in ;

u[i] ui i u ∈ Fn
2

u = (u0,u1, . . . ,un−1)
● or : denotes the -th bit of a vector ,

where .
u · v

u · v =
⊕n−1

i=0 u[i]× v[i]
● : denotes the inner product operation,

;
u[i : j] (j− i+1) u[i]

u[j] i ⩽ j
● : -bit vector starting from

ending at , ;
M M1 M2 n n● , , : denote by binary matrix;
M[i, j] M i

j
● : denotes the entry of located at the -th

row and -th column;
M[i,∗] M[∗, j] i M

j M
● , : denote the -th row of and the

-th column of .

2.2　(Bit-based) division property and automatic
search models

The word-based division property[6] was proposed by
Todo originally as a generalization of integral attack.
Subsequently, by shifting the propagation of the
division property to the bit level, Todo and Morii[8]

introduced the bit-based division property.
X

Fn
2 K

X Dn
K

u ∈ Fn
2

⊕
x∈X πu(x) =

unknown k ∈ K s.t., u ⪰ k⊕
x∈X πu(x) = 0

Definition 1 (Bit-based division property)[8] Let
be a multiset whose elements belong to . Let be a
set whose elements are n-bit bit vectors. When the
multiset has the division property , it fulfills the
following conditions for any :

 if there exists a , and
 otherwise.

XOR AND COPY
X

Many symmetric primitives are often composed of
bitwise operations like , and . When
these operations are applied to the elements in ,
transformations of the division property should also be

XOR AND
COPY

made following the propagation rules for ,
and which have been proved in Refs. [8, 13].

XOR
y = x0⊕ x1 ∈ F2 x = (x0, x1) ∈ {0,1}2

0 ⩽ k0, k1 ⩽ 1
D2

(k0,k1)

D1
k0+k1

0 ⩽ i ⩽ k

XOR[8] Let the operation create the output
 from the input ,

where . Assume the input multiset has the
division property , then the corresponding
output multiset has the division property , where

.
k = (k0,k1) 0 ⩽ k0, k1 ⩽ 1

k0 = k1 = 0 D2
(0,0)

D1
0

D2
1,0 D2

0,1
D1

1 y
F2 0 ⩽ k0+ k1 ⩽ 1
(k0, k1) = (1, 1)

XOR (x0, x1)
XOR−−−−→ y

For the BDP must satsify . If
, i.e., the input division property is ,

then the output division property is . If the input
division property is or , then the output
division property is . Moreover, takes a value in

, thus must hold, i.e., if
, the division property propagation will

abort. We denote the division property propagation of
 operation as .

COPY
y = (y0,y1) ∈ {0,1}2 x ∈ F1 y0 = x y1 = x

D1
k

D2
(i,k−i) 0 ⩽ i ⩽ k

COPY[8] Let the operation create the output
 from as and .

Assume the input multiset has the division property
, then the corresponding output multiset has the

division property where .
D1

k
0 ⩽ k ⩽ 1 k = 0

D1
(0,0)

D2
(0,1)(1,0)

COPY
x

COPY−−−−−→ (y0,y1)

The input multiset division property must have
. If , the output multiset has the division

property ; otherwise, the output multiset has the
division property . We denote the division
property propagation of the operation as

.

D1n

K0

r
D1n

Kr

I ∈ {0,1, . . . ,n−1}
2|I|

I

D1n

k ki = 1 i ∈ I
ki = 0

D1n

k

The attackers need to determine the division property
of the chosen plaintexts, denoted by . Then the
division property of the output ciphertexts at round ,
denoted by , can be deduced according to the
round function and the propagation rules. Specifically,
the attackers determine an index set
of the bit indices of the plaintext and prepare
chosen plaintexts where the variables indexed by take
all possible values. The division property of such
chosen plaintexts is , where if and

 otherwise. Then, the propagation of the division
property from is evaluated as

Table 1 Results of key-recovery attacks on FUTURE.
Attack Round Time (10 rounds) Memory (bit) Data Reference

MitM
10/10 2126 234 264 [3]
10/10 2124 284 264 [3]

Integral
10/10 2123.7 216 263 Section 5.1
10/10 2112 216.1 264 Section 5.2

 Zeyu Xu et al.: Integral Attack on the Full FUTURE Block Cipher 3

k = K0→ K1→ ·· · → Kr,

DKi i
Kr

ei i r

where is the BDP after the -round propagation. If
the division property does not contain a unit vector

, then the -th bit of the -round ciphertexts is
balanced.

2.3　Propagation of BDP in automatic search
model

Ki

Finding the propagation of BDP is tedious because the
size of increases rapidly. At Asiacrypt 2016, Xiang
et al.[13] showed that the propagation can be efficiently
evaluated by using MILP. Firstly, they introduced the
division trail as follows.

{k} = K0→
K1→ ·· · → Kr k∗i+1 ∈ Ki+1

k∗i ∈ Ki i∗i
k∗i+1

(k0, k1, . . . , kr) ∈ (K0×K1× · · ·×Kr) ki

ki+1 i ∈ {0,1, · · · ,r−1}
(k0→ k1→ ·· · → kr) r

Definition 2 (Division trail)[13] Consider the
propagation of the division property

. Moreover, for any vector ,
there must exist a vector such that can
propagate to by the propagation rule of the BDP
for the current operation. Furthermore, for

, if can propagate
to for all , we call

 an -round division trail.
Ki

Ek

0
Ek−−→ kr = ei ei Kr

i
Kr+1

(r+1) Ek

r

The propagation of set was transformed into the
propagation of the division trails by this definition. Let

 be the target r-round cipher, if there is no division
trail , then there is no unit vector in ,
i.e., the -th bit is balanced. So once all the unit vectors
appear in , there will be no balanced bits at the end
of the -th round of , and the maximum number
of rounds that integral distinguisher based on BDP can
cover is rounds.

2.4　New model for general linear layers

S
ZR

For cipher with a bit-permutation linear layer like
PRESENT, GIFT, etc., after the nonlinear layer, there
is no cost for the BDP. The block cipher FUTURE has
a non-bit-permutation linear layer, i.e., an MDS matrix,
which have been considered by the method[18] an the

 method[19]. In this work, we use the new method
that proposed by Hu et al. to trace the BDP
propagation[20]. This method is accurate and effective
for any type of matrices.

M ∈ Fn×n
2

(u,v) (u,v)
Proposition 1[20]　For a primitive matrix ,

a division trail is valid if and only if meets
the following constraints:

E(i, j) · v j−
n−1∑
k=0

M(i,k) · vi ·uk ·Mexpand′
v,u (k, j) = 0,

0 ⩽ i, j ⩽ n−1 E n×n
Mexpand′

v,u ∈ Fn×n
2 n2

for , where is an identity matrix
and is an auxiliary matrix with
elements.

3　FUTURE

FUTURE is an AES-like block cipher, the block size is
64 bits, and the master key length is 128 bits. It has a
construction of 10 rounds in a fully unrolled fashion.
The S-box and the MDS matrix are designed to be
efficient in hardware.

SubCell SC MixColumn MC
ShiftRow SR AddRoundKey ARK MC

4×4 S
si ∈ F4

2 0 ⩽ i ⩽ 15

Round function. The basic operations of each round
of FUTURE are (), (),

 (), and ().
operation is removed in the final round. The state of the
cipher is denoted by a matrix where each entry
is a nibble; i.e., for ,

X =


s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

 .
The round function is presented in Fig. 1.

SubCell
S

S

SubCell. is a nonlinear transformation in
which 4-bits S-box is applied to every nibble of the
state. is a concatenation of four low hardware cost S-
boxes. The hexadecimal notation are given by the
following Table 2.

MixColumn

M1

GF(24) = GF(2)/⟨x4+ x+1⟩ α

x4+ x+1

MixColumn. The is a linear operation
that operates separately on each column of the four
column of the state. FUTURE use an MDS matrix
for this operation. The multiplication is over finite field

. Assert is a root of
, we have

M1 =


α3 α3+1 1 α3

α+1 α α3+1 α3+1
α α+1 α3 α3+1
α3+1 α3+1 α3 1

 ,
and

SC MC SR ARK

Fig. 1 Round function.

Table 2 S-box of FUTURE.
x 0 1 2 3 4 5 6 7 8 9 a b c d e f

SC (x) 1 3 0 2 7 e 4 d 9 a c 6 f 5 8 b

 4 Tsinghua Science and Technology, xxxx xxxx, x(x): 1−10

 
si

si+1
si+2
si+3

 = M1×


si

si+1
si+2
si+3

,
i = 0,4,8,12for .

ShiftRow i iShiftRow. rotates row of the array state
nibble positions to the right,
 

s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

 SR−−→


s0 s4 s8 s12
s13 s1 s5 s9
s10 s14 s2 s6
s7 s11 s15 s3

 .
64 RKi

i
64 WK

AddRoundKey. The -bit round key is
XORed to the state at round of the cipher. And the

-bit whitening key is XORed to the plaintext of
the cipher.

128 K
K 64

K =WK||RK1

RKi (2 ⩽ i ⩽ 10)

Key scheduling. Future uses -bit master key .
It splits into two -bit parts for whitening key and
the first round key, i.e., . Then the round
key generation is as follow:

RKi =


WK <<<

(
5× i

2

)
, if 2 | i;

RK1 <<<
(
5×

⌊ i
2

⌋)
, if 2 ∤ i.

RKi 64 WK
RK1

Obviously, is a -bit permutation in or
 without any bit operations.

MC SR ARK
MC

EKi

SR
MC EKi =MC−1 ◦SR−1(RKi)

64
M2 EKi = M2×RKi

Round function (Equivalent key). Note that both
 and are invertible linear operations, so the

operation can be moved before the operation. The
new round key is the equivalent round key, which
is obtained by performing the inverse operation of
and in turn, i.e., .
Therefore, there exists a order binary invertible
matrix such that . The equivalent
round function is shown in Fig. 2.

4　Distinguisher

By choosing a proper initial BDP, we find 7-round
integral distinguisher. The distinguisher with 63 active
bits in the plaintexts and full balanced bits in the
ciphertexts, is given as below
 

caaa A A A
A A A A
A A A A
A A A A

 7−round−−−−−−→


B B B B
B B B B
B B B B
B B B B

 .

{1||A | A = F63
2 }

{0||A | A = F63
2 }

For example, if the plaintext set is or
, then the ciphertext set obtained by

encrypting 7 rounds is balanced on 64 bits.

5　Key-Recovery Attack on Full FUTURE

5.1　Key-recovery attack on full future without full
data

7
10

EK8,

EK9 EK10 K8, K9 K10

EKi =MC−1 ◦SR−1(Ki) i ∈ {7,8,9}

In this subsection, we propose a key recovery attack on
full FUTURE without full data. By adding three rounds
after the -round distinguisher in Section 4, we can
give a key recovery attack on full (-round)
FUTURE, which is presented in Fig. 3. In our attack,
we guess round keys’ cells in equivalent keys

, and instead of , and , where
, .

C1A63 X8

X8[0]

C X8[0 : 3]
EK8, EK9 EK10

X8[0 : 3]

As shown in Fig. 3, when encrypting a plaintext set
with the form of , each cell in is balanced
(). Therefore, the whole attack includes a data
collection phase and a key recovery phase. During the
data collection phase, we remain the ciphertext set
obtained by encrypting the plaintext set mentioned
above During the key recovery phase, we decrypt each
ciphertext in the set to by guessing some
cells in , and , and then filter out the
wrong key based on the balance of . Detailed
steps of attack are given as follows.

C1A63

263

10
C 263

263 10

Data collection. According to the distinguisher, the
plaintext set has the form , which means the size
of set is . After accessing all plaintext in the set to
the -round encryption machine, we remain the
returned ciphertext in set with the size of . In this
phase, the time complexity is -round
encryptions.

X8[0 : 3] C X8[0 : 3]

EK10, EK9[0, 5, 10, 15] EK8[0 : 3]

Key recovery. We focus on checking the balance of
. In order to decrypt ciphertext to ,

we need to know all the gray cells in Fig. 3, that is, we
need to guess , and .
However, according to the key scheduling, we have

EK10
SR−1◦MC−1

−−−−−−−−−→ K10
≫5−−−→ K8

MC◦SR−−−−−−→ EK8,

EK8 EK10which indicates that can be deduced from .
Algorithm 1 provides a brief description of the key
recovery procedure. The detailed attack procedure is as
follows.

(1) EK10

Z9[0, 5, 10, 15] 263 C
 Steps 1 to 6. Guess and compute

 under plaintexts . According to
Fig. 3,

SC AREK MC SR

Fig. 2 Equivalent round function.

 Zeyu Xu et al.: Integral Attack on the Full FUTURE Block Cipher 5

W9 = SR−1(MC−1 ◦SR−1(C)⊕EK10),

Z9[0]←MC−1(W9[0 : 3]),

Z9[5]←MC−1(W9[4 : 7]),

Z9[10]←MC−1(W9[8 : 11]),

Z9[15]←MC−1(W9[12 : 15]).

Z9[0, 5, 10, 15] V1

V1

Z9[0, 5, 10, 15]
0 1

Remain the value of in for the
next decryption step. Note that in , only the even and
odd of the occurrence number of is
recorded (refers to even, refers to odd), because
even times of a value will not affect the balance. This
step requires

264×263× 1
10
≈ 2123.7

10
216

-round encryptions. And the memory complexity of
this part is bits.

(2) EK9[0, 5, 10, 15]
X8[0 : 3] Z9[0, 5, 10, 15]

V1[Z9[0, 5, 10, 15]] == 1 EK8

EK10 sum
X8[0 : 3]

 Steps 6 to 13. Guess and
compute under with

. Note that can be
deduced from . Compute by operating bit-
based XOR for all . This step requires

264×216×216×
(

4
16
+

4
16

)
× 1

10
≈ 291.7

10-round encryptions.
(3)

264×216×2−16 = 264 (EK10, EK9[0, 5, 10, 15])
sum = 0

EK9[1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13,
14] K (EK10,

 Steps 13 to 17. From a random perspective, there
are that
satisfy , and the correct key must be among
them. Then guess

 and deduce master key under each

7-round distinguisher

EK8 X8 Y8 Z8 W8 X9

RSCMCS

RSCMCS

C

RSCMCS

sllecdecnalaBsllecnwonKsllecelbigilgeN

EK9 X9 Y9

EK10 X10 Y10

Z9 W9

Z10 W10

X10

Fig. 3 10-round key recovery attack.

Algorithm 1　10-round key recovery attack
EK10 1 for each do

V1[x] |x| = 16 2　　Allocate and initialize the arrays with ;
EK8 EK10 3　　Deduce from ;

C C 4　　for in do
Z9[0, 5, 10, 15] 5　　　Compute ;

x = Z9[0, 5, 10, 15] V1[x] = V1[x]⊕1 6　　　Let and ;

216 EK9[0, 5, 10, 15] 7　　for do
16 sum 8　　　Allocate and initialize the -bit variable ;

x = 0; x < 216; x++ 9　　　　for do
V1[x] == 110　　　　if then

X8[0 : 3] Z9[0, 5, 10, 15] = x11　　　　　Compute from ;
sum = sum⊕X8[0 : 3]12　　　　　 ;

sum == 013　　　if then
14　　　　for

248 EK9[1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14]　　　　

　　　　do
K15　　　　　Deduce master key ;

E(K, p) == c16　　　　　if then
K17　　　　　　return ;

 6 Tsinghua Science and Technology, xxxx xxxx, x(x): 1−10

EK9[0, 5, 10, 15])
(p,c)

E(K, p) c
264×248 = 2112 10

. Extract plaintext-ciphertext pair
 from the data and obtain the correct key by

verifying whether is equal to . This step
requires -round encryptions.

10
263

263+2123.7+291.7+2112 ≈ 2123.7 10
216

Complexity. The -round attack requires a data
complexity of chosen plaintexts. The time
complexity is -round
encryptions. The memory complexity is bits.

5.2　Key-recovery attack on full FUTURE with full
data

In this subsection, we propose a key recovery attack on
full FUTURE with full data. By adding one round
before and two rounds after the 7-round distinguisher
in Section 4, we can give a key recovery attack on full
(10-round) FUTURE. The time complexity of this
attack is currently the lowest.

Z1

C1A63 X9

X9[0]

As shown in Fig. 4, assuming we have a plaintext set,
when the set obtained by encrypting the plaintext set
has the form , each nibble in is balanced (i.e.,

). Therefore, the whole attack includes a data

C
X9[0 : 3] EK9 EK10

X9[0 : 3]

collection phase and a key recovery phase. During the
data collection phase, we remain the ciphertext set
obtained by encrypting full plaintext. During the key
recovery phase, we choose the corresponding
ciphertext set based on guessing the whitening key.
Then we decrypt each ciphertext in the set to

 by guessing some bits in and , and
then filter out the wrong key based on the balance of

. Detailed steps of attack are given as follows.

264 10
264×64 =

270 216

248 S
P

S [P[0 : 3]] = {E(K, P[0 : 3]||x)|x ∈ F48
2 }

Data collection. All ciphertext are used in this
attack. The time complexity is -round
encryptions, and the memory complexity is

 bits. Note that the ciphertext are stored in a by
 two-dimensional list , The index of the first

dimension corresponds to some cells of the plaintext ,
this is, .

X9[0 : 3] X2

C1A63 X2

C1A63

Key recovery. We focus on checking the balance of
 under the assumption that the set of has the

form . Therefore, we need to ensure that the
set obtained by encrypting the plaintext set has form

, then decrypt the corresponding ciphertext set to

7-round distinguisher

WK P

MC(EK1) X1 Y1 Z1 W1 X2

RSCMCS

EK9 X9 Y9 Z9 W9

EK10 X10 Y10 Z10 W10

X10

RSCMCS

C

RSCMCS

Known cells Negligible cells Traverse cells Balanced cells
Fig. 4 10-round key recovery attack.

 Zeyu Xu et al.: Integral Attack on the Full FUTURE Block Cipher 7

X9 Z1 =MC(EK1)⊕SR−1(X2)
SR−1 X2

MC(EK1) Z1

C1A63

get the set. Note that ,
where does not affect the first block of and

 is a constant. Thus, the set also has the
form , denoted by

{0||A||B | A = F15
2 ,B = F48

2 }.
Furthermore, we obtain the plaintext set

{(WK[0 : 3]⊕SC−1 ◦MC−1(0||A))||B}.
Z1

WK[0 : 3] WK[0 : 3]
P[0 : 3] P[0 : 3]

248 P[4 : 15] P[0 : 3]
S

This indicates that given the set, the plaintext set
is determined by . And only
denotes , and each corresponds to

. The ciphertext set under each can
be obtained by using the list obtained during the data
collection phase.

EK10[0, 5, 10, 15] EK9[0 : 3]
X9[0 : 3]

64 M
EK10 = M×WK EK9 WK

WK WK[4 : 15]
x = [x1, x2, . . . , x48]T [ML|MR]

After obtaining the ciphertext set, we guess
 and to obtain the set of

. According to the key scheduling, there exists
a th order full rank binary matrix such that

, while is independent of . Set
the unknown bit in () to 48 variables

, and use to record the
following matrix:
 

M0,0 · · · M0,15 M0,16 · · · M0,63
...

. . .
...

...
. . .

...
M3,0 · · · M3,15 M3,16 · · · M3,63
M20,0 · · · M20,15 M20,16 · · · M20,63
...

. . .
...

...
. . .

...
M23,0 · · · M23,15 M23,16 · · · M23,63
M40,0 · · · M40,15 M40,16 · · · M40,63
...

. . .
...

...
. . .

...
M43,0 · · · M43,15 M43,16 · · · M43,63
M60,0 · · · M60,15 M60,16 · · · M60,63
...

. . .
...

...
. . .

...
M63,0 · · · M63,15 M63,16 · · · M63,63


16×64

,

we can get the following system of linear equations
containing 16 equations and 48 variables:

[ML|MR]×


WK[0]
WK[1]
WK[2]
WK[3]

x


64×1

=


EK10[0]
EK10[5]

EK10[10]
EK10[15]


16×1

,

Then, we have

MR× x =


EK10[0]
EK10[5]

EK10[10]
EK10[15]

⊕ML ×


EK10[0]
EK10[5]

EK10[10]
EK10[15]

 = b.

rank(MR) = rank([MR|b])

248−rank(MR)

According to the theory of nonhomogeneous linear
equations, only when , the
equations have solutions, and the size of the solution
space is .

ML =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0
0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0
1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0
0 1 1 0 0 1 0 0 0 0 1 0 0 1 1 0
0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


,

and

MR =



1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 1 032

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 032

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 032

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 032

1 1 0 1 1 1 0 1 0 0 0 1 1 0 0 0 032

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 032

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 032

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 032

1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 032

1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 032

0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 032

0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 032

017 0 0 1 1 0 0 0 1 0 0 1 1 0 0 1 016

0 0 1 0 0 1 1 0 1 1 0 0 1 0 0 0 032

0 0 0 1 0 0 1 1 0 1 1 0 0 1 0 0 032

1 0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 032



,

0i i rank(ML) = 6
rank(MR) = 10 6 MR

b[i] = 0 i = 1,2,3,5,6,7
WK[0 : 3] EK10[0, 5, 10, 15]

210 EK10[0, 5, 10, 15]
x

248−10 = 238

where is -bit zero vector. Obviously,
and . There are zero lines in , which
means , . Therefore, given

, has 6 bits constraints,
then satisfy the equation with
solutions. And the solution space size of is

. Based on the key relationship obtained
above, we briefly introduced the key recovery
procedure in Algorithm 2. The detailed attack
procedure is as follows.

(1) WK[0 : 3]
P[0 : 3] 215 Z1[0 : 3] P[0 : 3]

S 1 S

 Steps 1 to 5. Guess and compute
 under . Remain the value of

in as indexes for ciphertext list . This step requires

216×215× 4
16
× 1

10
≈ 225.7

10
215×16 = 219

-round encryptions. And the memory complexity of
this part is bits.

(2) EK10[0, 5, 10, 15]

216×216×6×16 = 241.6.

216−6 = 210 EK10[0, 5, 10, 15]
Z9[0 : 3]

S 1 S V1

Z9[0 : 3]

 Steps 7 to 13. Guess and
check whether satisfy the constraint. The complexity of
matrix-vector multiplication is
This step will remain .
Then compute under ciphertext set obtained
by and . As in Algorithm 2, record the parity
of the number of occurrences of . Meanwhile,

 8 Tsinghua Science and Technology, xxxx xxxx, x(x): 1−10

S 2 238 WK contains possible values of , which are
obtained by solving the equation system. This step
requires

216×210×215×248× 4
16
× 1

10
≈ 283.7

10
O(216×210×103) = O(236)

|V1|+ |S 2| = 216+

39×48 = 216.1

-round encryptions. The complexity of Gaussian
Elimination is . And the
memory complexity of this part is

 bits.
(3) EK9[0 : 3]

X9[0 : 3] Z9[0 : 3] V1[Z9[0 : 3]] == 1
sum

X9[0 : 3]

 Steps 14 to 19. Guess and compute
 under with .

Compute by operating bit-based XOR for all
. This step requires

216×216×216×216× 4
16
× 1

10
≈ 258.7

10-round encryptions.

(4)
216×2−16 = 1 EK9[0 : 3] sum = 0

EK9[4 : 15] K WK
S 2

(p,c)
E(K, p)

c

 Steps 20 to 25. From a random perspective, there
are , that satisfy , and
the correct key must be among them. Then guess

 and deduce master key under each
generated by the basic solutions in . Extract
plaintext-ciphertext pair from the data and obtain
the correct key by verifying whether is equal to

. This step requires

216×210×216×2−16×248×238 = 2112

10-round encryptions.
10

264 2112 10
216.1

Complexity. This -round attack requires a data
complexity of . The time complexity is -
round encryptions. The memory complexity is
bits.

Acknowledgment

This work was supported by the National Natural Science
Foundation of China (No. 62032014), the National Key
Research and Development Program of China (No.
2018YFA0704702), and the Major Basic Research Project
of Natural Science Foundation of Shandong Province,
China (No. ZR202010220025).

References

 K. C. Gupta, S. K. Pandey, and S. Samanta, FUTURE: A
lightweight block Cipher using an optimal diffusion
matrix, in Progress in Cryptology - AFRICACRYPT 2022,
L. Batina and J. Daemen, eds. Cham, Switzerland:
Springer, vol. 13503, 2022, pp. 28–52.

[1]

 M. B. İlter and A. A. Selçuk, MILP-aided cryptanalysis of
the FUTURE block cipher, in Innovative Security
Solutions for Information Technology and
Communications, G. Bella, M. Doinea, and H. Janicke,
eds. Cham, Switzerland: Springer Nature, 2023, pp.
153–167.

[2]

 A. Schrottenloher and M. Stevens, Simplified modeling of
MITM attacks for block ciphers: New (quantum) attacks,
IACR Trans. Symmetric Cryptol., pp. 146–183, 2023.

[3]

 J. Daemen, L. Knudsen, and V. Rijmen, The block cipher
Square, in Fast Software Encryption, E. Biham, ed. Haifa,
Israel: Springer, vol. 1267, 1997.

[4]

 L. R. Knudsen and D. A. Wanger, Integral Cryptanalysis,
in Fast Software Encryption, J. Daemen and V. Rijmen,
eds. leuven, Belgium: Springer, vol. 2365, 2002.

[5]

 Y. Todo, Structural evaluation by generalized integral
property, in Advances in Cryptology -- EUROCRYPT
2015, E. Oswald and M. Fischlin, eds. Sofia, Bulgaria:
Springer, 2015, pp. 287–314.

[6]

 Y. Todo, Integral Cryptanalysis on Full MISTY1, J.
Cryptol., vol. 30, pp. 920–959, 2017.

[7]

 Y. Todo and M. Morii, Bit-based division property and
application to Simon family, in Fast Software Encryption,
T. Peyrin, ed. Bochum, Germany: Springer, vol. 9783,

[8]

Algorithm 2　10-round key recovery attack with full data

216 WK[0 : 3] 1 for do
S 1 2　Allocate and initialize the set ;

215 Z1[0 : 3] 3　for do

P[0 : 3] =WK[0 : 3]⊕SC−1 ◦MC−1(Z1[0 : 3]) 4　　Compute ;
P[0 : 3] S 1 5　　Append to ;

216 EK10[0, 5, 10, 15] 6　for do
EK10[0, 5, 10, 15] WK[0 : 3] 7　　if and satisfy the

　　　　 constraints then
S 2

238 WK[4 : 15] WK[0 : 3]
EK10[0, 5, 10, 15]

 8　　　Allocate the set containing the basic solutions of
　　　　　 deduced by and
　　　　　 ;

V1[x] |x| = 16 9　　　Allocate and initialize the arrays with ;

215 P[0 : 3] S 110　　　for in do
248 C P[0 : 3]11　　　　for related to do

Z9[0 : 3]12　　　　　Compute ;
x = Z9[0 : 3] V1[x] = V1[x]⊕113　　　　　Let and ;

216 EK9[0 : 3]14　　　for do
16 sum15　　　　Allocate and initialize the -bit variable ;

x = 0; x < 216; x++16　　　　for do
V1[x] == 117　　　　　if then

X9[0 : 3] Z9[0 : 3] = x18　　　　　　　Compute from ;
sum = sum⊕X9[0 : 3]19　　　　　　　 ;

sum == 020　　　　if then

248 EK9[4 : 15]21　　　　　for do
232 WK[4 : 15]

S 2

22　　　　　　for generated by the basic
　　　　　　　　solutions in do

K23　　　　　　　Deduce master key ;
E(K, p) == c24　　　　　　　if then

K25　　　　　　　　return ;

 Zeyu Xu et al.: Integral Attack on the Full FUTURE Block Cipher 9

https://doi.org/10.1007/s00145-016-9240-x
https://doi.org/10.1007/s00145-016-9240-x

2016.
 Q. Wang, Y. Hao, Y. Todo, C. Li, T. Isobe, and W. Meier,
Improved division property based cube attacks exploiting
algebraic properties of superpoly, in Advances in
Cryptology – CRYPTO 2018, H. Shacham and A.
Boldyreva, eds. Cham, Switzerland: Springer, 2018, pp.
275–305.

[9]

 Y. Hao, G. Leander, W. Meier, Y. Todo, and Q. J. Wang,
Modeling for three-subset division property without
unknown subset, J. Cryptol., vol. 34, no. 22, 2021.

[10]

 P. Hebborn, B. Lambin, G. Leander, and Y. Todo, Lower
bounds on the degree of block ciphers, in Advances in
Cryptology – ASIACRYPT 2020, S. Moriai and H. Wang,
eds. Cham, Switzerland: Springer, 2020, pp. 537–566.

[11]

 K. Hu, S. Sun, M. Wang, and Q. Wang, An algebraic
formulation of the division property: Revisiting degree
evaluations, cube attacks, and key-independent sums, in
Advances in Cryptology – ASIACRYPT 2020, S. Moriai
and H. Wang, eds. Cham, Switzerland: Springer, 2020, pp.
446–476.

[12]

 Z. Xiang, W. Zhang, Z. Bao, and D. Lin, Applying MILP
method to searching integral distinguishers based on
division property for 6 lightweight block ciphers, in
Advances in Cryptology – ASIACRYPT 2016, J. Cheon and
T. Takagi, eds. Berlin, Germany: Springer, 2016, pp.
648–678.

[13]

 S. A. Cook, M. A. Harrison, R. B. Banerji, J. D. Ullman,[14]

The complexity of theorem-proving procedure, in Proc.
3rd Annual ACM Symposium on Theory of Computing,
Shaker Heights, New York, NY, USA, pp. 151–158, 1971.
 C. W. Barrett, R. Sebastiani, S. A. Seshia, C. Tinelli,
Satisfiability modulo theories, in Handbook of Model
Checking, E. Clarke, T. Henzinger, H. Veith, and R.
Bloem, eds. Cham, Switzerland: Springer, vol. 185, pp.
825–885

[15]

 K. Hu and M. Wang, Automatic search for a variant of
division property using three subsets, in Topics in
Cryptology – CT-RSA 2019, M. Matsui, ed. Cham,
Switzerland: Springer, 2019, pp. 412–432.

[16]

 L. Sun, W. Wang, and M. Wang, Automatic search of bit-
based division property for ARX ciphers and word-based
division property, in Advances in Cryptology –
ASIACRYPT 2017, T. Takagi and T. Peyrin, eds. Cham,
Switzerland: Springer, 2017, pp. 128–157.

[17]

 L. Sun, W. Wang, and M. Q. Wang, MILP-aided bit-based
division property for primitives with non-bit-permutation
linear layers, IET Inf. Secur., vol. 14, no. 1, pp. 12–20,
2020.

[18]

 W. Zhang and V. Rijmen, Division cryptanalysis of block
ciphers with a binary diffusion layer, IET Inf. Secur., vol.
13, no. 2, pp. 87–95, 2019.

[19]

 K. Hu, Q. Wang, and M. Wang, Finding bit-based division
property for ciphers with complex linear layers, IACR
Trans. Symmetric Cryptol., pp. 396–424, 2020.

[20]

Zeyu Xu received the BS and MS degrees
from Shandong University, in 2017 and
2020, respectively. He is working toward
the PhD degree in cyberspace security. His
current research focuses on analysis of
symmetric-key algorithms.

Jiamin Cui received the BS degree from
Shandong University in information
security, in 2019. She is working toward
the PhD degree in cyberspace security. Her
current research focuses on design and
analysis of symmetric-key algorithms.

Kai Hu received the BS and PhD degrees
from in cyberspace security from
Shandong University, China, in 2016 and
2021, respectively. He was a postdoctoral
researcher at Nanyang Technological
University from 2021 to 2023. He is
currently a researcher with School of
Cyber Science and Technology, Shandong

University. His research interest is cryptography, including the
design and analysis of symmetric-key algorithms.

Meiqin Wang received the BS and MS
degrees from Xi’an Jiaotong University, in
1996 and 1999, respectively, and the PhD
degree from Shandong University, in 2007.
She was a guest researcher of The
University of Hong Kong, in 2005 and
2008, the and guest researcher of KU
Leuven, Belgium from 2010 to 2011. She

is currently a professor with School of Cyber Science and
Technology, Shandong University. She has coauthored more
than 100 research peer reviewed journal and conference papers.
She was the general co-chair of FSE 2023. Her research interest
is cryptography, including the design and analysis of symmetric-
key algorithms.

 10 Tsinghua Science and Technology, xxxx xxxx, x(x): 1−10

https://doi.org/10.1049/iet-ifs.2018.5283
https://doi.org/10.1049/iet-ifs.2018.5151

