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Abstract: FUTURE  is  a  recently  proposed  lightweight  block  cipher  that  achieved  a  remarkable  hardware

performance  due  to  careful  design  decisions.  FUTURE  is  an  Advanced  Encryption  Standard  (AES)-like

Substitution-Permutation  Network  (SPN)  with  10  rounds,  whose  round  function  consists  of  four  components,

i.e., , , , and . Unlike AES, it is a 64-bit-size block cipher with a 128-

bit secret key, and the state can be arranged into 16 cells. Therefore, the operations of FUTURE including its

S-box is defined over .  The previous studies have shown that the integral  properties of  4-bit  S-boxes are

usually weaker than larger-size S-boxes, thus the number of rounds of FUTURE, i.e., 10 rounds only, might be

too aggressive to provide enough resistance against integral cryptanalysis. In this paper, we mount the integral

cryptanalysis on FUTURE. With state-of-the-art detection techniques, we identify several integral distinguishers

of 7 rounds of FUTURE. By extending this 7-round distinguisher by 3 forward rounds, we manage to recover all

the  128  bits  secret  keys  from  the  full  FUTURE  cipher  without  the  full  codebook  for  the  first  time.  To  further

achieve better time complexity, we also present a key recovery attack on full FUTURE with full codebook. Both

attacks have better time complexity than existing results.
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1　Introduction
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FUTURE  is  a  new  Substitution-Permutation  Network
(SPN)-based  lightweight  block  cipher,  recently
proposed by Gupta et al.[1] It consists of  rounds and
is an Advanced Encryption Standard (AES)-like cipher
that accepts -bit key and has a block size of -bit.

FUTURE is designed to encrypt data in a single clock
cycle,  i.e.,  an  unrolled  implementation.  Therefore,  the
designers  are  committed  to  using  very  low
implementation  cost  than  other  block  ciphers  in
unrolled fashion.  These lightweight  algorithms,  due to
the  high  implementation  cost,  tend  not  to  use  the
Maximum Distance Separable (MDS) matrix, although
the  MDS  matrix  provides  better  security  under  the
same  number  of  rounds.  FUTURE  overcomes  this
challenge  by  judiciously  choosing  a  very  lightweight
MDS matrix. The MDS matrix is a composition of four
sparse  matrices,  each  matrix  has  very  low  implement
cost.  Meanwhile,  the  S-box  is  also  obtained  by
composing  four  low-hardware-cost  S-boxes.  The
authors  benchmarked  hardware  implementations  on
Field  Programmable  Gate  Array  (FPGA)  and
Application  Specific  Integrated  Circuit  (ASIC)  and
compared FUTURE to several well-known lightweight
ciphers  in  the  literature  with  respect  to  size,  critical
path,  and  throughput.  FUTURE  ended  up  giving  the
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best  results  among  the  compared  algorithms  in  many
respects.  The  designer  evaluated  the  security  of
FUTURE  in  the  document.  For  differential  and  linear
cryptanalysis,  they  expected  that  there  would  be  no
effective 5-round distinguisher. Later, Ilter et al. found
effective  5-round  differential  and  linear  distinguishers
in  Ref.  [2].  However,  they  did  not  further  utilize
distinguishers  for  key  recovery  attacks.  Recently,
Schrottenloher  et  al.  utilized  the  Meet-in-the-Middle
(MitM)  technique  to  present  the  first  full  round  key
recovery attack of FUTURE[3], breaking the designers’
7-round estimate under this technique.

The idea of integral attack comes from Square attack,
which was first proposed by Daemon et al.[4], and then
formalized by Knudsen and Wagner[5].  It  is one of the
most  powerful  cryptanalysis  techniques.  Generally,  it
consists of an integral distinguisher and a key-recovery
phase.  During  the  construction  of  the  integral
distinguisher,  a  structure  of  plaintexts  is  encrypted  to
obtain a state set with integral property (e.g., zero-sum)
in  some  positions.  Then,  the  attacker  guesses  the
relevant  subkeys and partially  decrypts  the  ciphertexts
to  the  end  of  the  distinguisher.  The  key  space  is
reduced by checking the integral property.

Several  techniques  were  proposed  to  optimize  the
integral  attacks.  The  division  property  is  the  most
efficient  and  accurate  method  of  detecting  integral
distinguishers,  which  was  introduced  by  Todo[6] at
EUROCRYPT  2015.  It  is  word-oriented  and  can
exploit  the  algebraic  degree  information  of  the  local
components.  In  particular,  it  was  applied  to  MISTY1,
and  the  full  MISTY1  was  broken  for  the  first  time[7].
To  better  exploit  the  concrete  structure  of  the  ciphers,
Todo  and  Morii[8] introduced  the  Bit-based  Division
Property  (BDP)  at  FSE  2016.  BDP  treats  the
components  of  the  target  primitive  at  the  bit  level  so
that  more  information  in  the  structures  can  be  used.
Compared  with  the  word-based  division  property,  the
BDP  is  more  likely  to  find  better  integral
characteristics.  Later,  Wang  et  al.[9] presented  the
automatic  methods  to  search  for  the  three-subset  bit-
based  division  property  effectively.  In  Ref.  [10],  Hao
et  al.  introduced  the  three-subset  bit-based  division
property  without  unknown  subsets  (3SDPwoU).  The
monomial  prediction,  proposed  by  Hu  et  al.[12],  is
another  language  of  division  property  from  a  pure
algebraic perspective.

However,  using  common  programming  languages,
the  time  and  memory  complexities  for  searching

O(2n) ndivision  property  in  practice  are  where  is  the
block  size.  To  overcome  this  bottleneck,  Xiang  et  al.
combines  the  Mixed  Integral  Linear  Programming
(MILP) method and division property to search for the
integral  distinguishers  at  ASIACRYPT  2016[13].  As  a
result,  they can deal  with  ciphers  of  block sizes  much
larger  than  32  bits  efficiently.  Subsequently,  some
automatic  searching  tools  aided  by  Boolean
Satisfiability  problem  (SAT)[14] and  Satisfiability
Modulo Theories (SMT)[15] are also proposed[16, 17].
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Symmetric  cryptographic  primitives  can  be
decomposed  into  a  sequence  of  local  building  blocks.
The propagations of  division trails  through these local
components  are  modeled  and  the  off-the-shelf  solvers
are  called  to  find  out  whether  there  is  a  solution.  If
there is no solution, then balanced properties are found.
Components such as S-boxes and basic operations like

, ,  and  have  been  modeled  well  in
Ref. [13]. The BDP propagations of the linear layer can
be  easily  handled  thanks  to  these  basic  operations.
However,  the  problem  of  how  to  efficiently  model  a
complex  linear  layer,  e.g.,  an  MDS  matrix,  has
remained. So far three methods have been proposed to
solve  this  problem,  they  are  method[18], 
method[19],  and  method[20].  Among  the  three
methods,  method  cannot  perfectly  model  the  BDP
propagations  over  a  complex  linear  layer,  while 
method  is  only  applicable  to  the  so-called  binary
matrix.  For  the  MDS  matrix  used  in  FUTURE, 
method is then the only choice for a perfect model.

Our  contributions. In  this  paper,  we  take  state-of-
the-art  techniques  for  detecting  division  properties  to
give a more fine-grained study of the security strength
of  the  block  cipher  FUTURE  against  the  integral
attacks.  To  find  more  integral  properties,  we  use  the
powerful model proposed by Hu et al.[20] to handle the
linear  layer  of  FUTURE.  7-round  integral
distinguishers  are  established  for  FUTURE.  Based  on
the  7-round  integral  distinguisher,  exploring  the
relationship  between  the  round  key  bits  in  the  key
recovery phase, we manage to attack the full FUTURE
without  the full  codebook for  the first  time.  Futher,  to
achieve a better time complexity, we also present a key
recovery  attack  on  full  FUTURE  with  full  codebook.
All the results are summarized in Table 1.

Outline. The paper is organized as follow. In Section
2,  we  briefly  recall  the  automatic  search  problems  of
the  BDP  and  methods  to  model  linear  layer.  Next,  in
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Sections  3  and  4  we  introduce  the  block  cipher
FUTURE  and  propose  a  integral  distinguisher.  We
present  two  key  recovery  attacks  on  full  FUTURE  in
Section 5.

2　Preliminary

2.1　Notations

We  list  the  notations  mainly  used  throughout  this
paper.

u,v, x
Fn

2

●  Blackened  italic  lowercase  letters  (i.e., ):
denote vectors in ;

u[i] ui i u ∈ Fn
2

u = (u0,u1, . . . ,un−1)
●  or :  denotes the -th bit  of  a  vector ,

where .
u · v

u · v =
⊕n−1

i=0 u[i]× v[i]
● :  denotes  the  inner  product  operation,

;
u[i : j] ( j− i+1) u[i]

u[ j] i ⩽ j
● : -bit  vector  starting  from 

ending at , ;
M M1 M2 n n● , , : denote  by  binary matrix;
M[i, j] M i

j
● : denotes the entry of  located at  the -th

row and -th column;
M[i,∗] M[∗, j] i M

j M
● , :  denote the -th row of  and the

-th column of .

2.2　(Bit-based)  division  property  and  automatic
search models

The  word-based  division  property[6] was  proposed  by
Todo  originally  as  a  generalization  of  integral  attack.
Subsequently,  by  shifting  the  propagation  of  the
division  property  to  the  bit  level,  Todo  and  Morii[8]

introduced the bit-based division property.
X

Fn
2 K

X Dn
K

u ∈ Fn
2

⊕
x∈X πu(x) =

unknown k ∈ K s.t., u ⪰ k⊕
x∈X πu(x) = 0

Definition  1 (Bit-based  division  property)[8] Let 
be a multiset whose elements belong to . Let  be a
set  whose  elements  are  n-bit  bit  vectors.  When  the
multiset  has the division property , it fulfills the
following  conditions  for  any : 

 if  there  exists  a ,  and
 otherwise.

XOR AND COPY
X

Many  symmetric  primitives  are  often  composed  of
bitwise  operations  like ,  and .  When
these  operations  are  applied  to  the  elements  in ,
transformations of the division property should also be

XOR AND
COPY

made  following  the  propagation  rules  for , 
and  which have been proved in Refs. [8, 13].

XOR
y = x0⊕ x1 ∈ F2 x = (x0, x1) ∈ {0,1}2

0 ⩽ k0, k1 ⩽ 1
D2

(k0,k1)

D1
k0+k1

0 ⩽ i ⩽ k

XOR[8] Let  the  operation  create  the  output
 from  the  input ,

where . Assume the input multiset has the
division  property ,  then  the  corresponding
output multiset has the division property , where

.
k = (k0,k1) 0 ⩽ k0, k1 ⩽ 1

k0 = k1 = 0 D2
(0,0)

D1
0

D2
1,0 D2

0,1
D1

1 y
F2 0 ⩽ k0+ k1 ⩽ 1
(k0, k1) = (1, 1)

XOR (x0, x1)
XOR−−−−→ y

For the BDP  must satsify . If
,  i.e.,  the  input  division  property  is ,

then  the  output  division  property  is .  If  the  input
division  property  is  or ,  then  the  output
division  property  is .  Moreover,  takes  a  value  in

,  thus  must  hold,  i.e.,  if
,  the  division  property  propagation  will

abort.  We denote  the  division  property  propagation  of
 operation as .

COPY
y = (y0,y1) ∈ {0,1}2 x ∈ F1 y0 = x y1 = x

D1
k

D2
(i,k−i) 0 ⩽ i ⩽ k

COPY[8] Let  the  operation  create  the  output
 from  as  and .

Assume  the  input  multiset  has  the  division  property
,  then  the  corresponding  output  multiset  has  the

division property  where .
D1

k
0 ⩽ k ⩽ 1 k = 0

D1
(0,0)

D2
(0,1)(1,0)

COPY
x

COPY−−−−−→ (y0,y1)

The  input  multiset  division  property  must  have
.  If ,  the  output  multiset  has  the  division

property ;  otherwise,  the  output  multiset  has  the
division  property .  We  denote  the  division
property  propagation  of  the  operation  as

.

D1n

K0

r
D1n

Kr

I ∈ {0,1, . . . ,n−1}
2|I|

I

D1n

k ki = 1 i ∈ I
ki = 0

D1n

k

The attackers need to determine the division property
of  the  chosen  plaintexts,  denoted  by .  Then  the
division  property  of  the  output  ciphertexts  at  round ,
denoted  by ,  can  be  deduced  according  to  the
round function and the propagation rules. Specifically,
the  attackers  determine  an  index  set 
of  the  bit  indices  of  the  plaintext  and  prepare 
chosen plaintexts where the variables indexed by  take
all  possible  values.  The  division  property  of  such
chosen  plaintexts  is ,  where  if  and

 otherwise. Then, the propagation of the division
property from  is evaluated as

 

Table 1    Results of key-recovery attacks on FUTURE.
Attack Round Time (10 rounds) Memory (bit) Data Reference

MitM
10/10 2126 234 264 [3]
10/10 2124 284 264 [3]

Integral
10/10 2123.7 216 263 Section 5.1
10/10 2112 216.1 264 Section 5.2
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k = K0→ K1→ ·· · → Kr,

DKi i
Kr

ei i r

where  is the BDP after the -round propagation. If
the division property  does not contain a unit vector

,  then  the -th  bit  of  the -round  ciphertexts  is
balanced.

2.3　Propagation  of  BDP  in  automatic  search
model

Ki

Finding the propagation of BDP is tedious because the
size of  increases rapidly. At Asiacrypt 2016, Xiang
et al.[13] showed that the propagation can be efficiently
evaluated  by  using  MILP.  Firstly,  they  introduced  the
division trail as follows.

{k} = K0→
K1→ ·· · → Kr k∗i+1 ∈ Ki+1

k∗i ∈ Ki i∗i
k∗i+1

(k0, k1, . . . , kr) ∈ (K0×K1× · · ·×Kr) ki

ki+1 i ∈ {0,1, · · · ,r−1}
(k0→ k1→ ·· · → kr) r

Definition  2 (Division  trail)[13] Consider  the
propagation  of  the  division  property 

.  Moreover,  for  any  vector ,
there  must  exist  a  vector  such  that  can
propagate  to  by  the  propagation  rule  of  the  BDP
for  the  current  operation.  Furthermore,  for

,  if  can  propagate
to  for  all ,  we  call

 an -round division trail.
Ki

Ek

0
Ek−−→ kr = ei ei Kr

i
Kr+1

(r+1) Ek

r

The  propagation  of  set  was  transformed  into  the
propagation of the division trails by this definition. Let

 be the target r-round cipher,  if  there is  no division
trail , then there is no unit vector  in ,
i.e., the -th bit is balanced. So once all the unit vectors
appear in , there will be no balanced bits at the end
of the -th round of , and the maximum number
of rounds that integral distinguisher based on BDP can
cover is  rounds.

2.4　New model for general linear layers

S
ZR

For  cipher  with  a  bit-permutation  linear  layer  like
PRESENT,  GIFT,  etc.,  after  the  nonlinear  layer,  there
is no cost for the BDP. The block cipher FUTURE has
a non-bit-permutation linear layer, i.e., an MDS matrix,
which have been considered by the  method[18] an the

 method[19].  In  this  work,  we  use  the  new  method
that  proposed  by  Hu  et  al.  to  trace  the  BDP
propagation[20].  This  method  is  accurate  and  effective
for any type of matrices.

M ∈ Fn×n
2

(u,v) (u,v)
Proposition 1[20]　For a primitive matrix ,

a division trail  is valid if and only if  meets
the following constraints:

 

E(i, j) · v j−
n−1∑
k=0

M(i,k) · vi ·uk ·Mexpand′
v,u (k, j) = 0,

0 ⩽ i, j ⩽ n−1 E n×n
Mexpand′

v,u ∈ Fn×n
2 n2

for ,  where  is  an  identity  matrix
and  is  an  auxiliary  matrix  with 
elements.

3　FUTURE

FUTURE is an AES-like block cipher, the block size is
64 bits,  and the master key length is  128 bits.  It  has a
construction  of  10  rounds  in  a  fully  unrolled  fashion.
The  S-box  and  the  MDS  matrix  are  designed  to  be
efficient in hardware.

SubCell SC MixColumn MC
ShiftRow SR AddRoundKey ARK MC

4×4 S
si ∈ F4

2 0 ⩽ i ⩽ 15

Round function. The basic operations of each round
of  FUTURE  are  ( ),  ( ),

 ( ),  and  ( ). 
operation is removed in the final round. The state of the
cipher is denoted by a  matrix  where each entry
is a nibble; i.e.,  for ,
 

X =


s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

 .
The round function is presented in Fig. 1.

SubCell
S

S

SubCell.  is  a  nonlinear  transformation  in
which 4-bits S-box  is applied to every nibble of the
state.  is a concatenation of four low hardware cost S-
boxes.  The  hexadecimal  notation  are  given  by  the
following Table 2.

MixColumn

M1

GF(24) = GF(2)/⟨x4+ x+1⟩ α

x4+ x+1

MixColumn. The  is  a  linear  operation
that  operates  separately  on  each  column  of  the  four
column of the state. FUTURE use an MDS matrix 
for this operation. The multiplication is over finite field

.  Assert  is  a  root  of
, we have

 

M1 =


α3 α3+1 1 α3

α+1 α α3+1 α3+1
α α+1 α3 α3+1
α3+1 α3+1 α3 1

 ,
and
 

SC MC SR ARK

 
Fig. 1    Round function.

 

Table 2    S-box of FUTURE.
x 0 1 2 3 4 5 6 7 8 9 a b c d e f

SC (x) 1 3 0 2 7 e 4 d 9 a c 6 f 5 8 b
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  
si

si+1
si+2
si+3

 = M1×


si

si+1
si+2
si+3

,
i = 0,4,8,12for .

ShiftRow i iShiftRow.  rotates row  of the array state 
nibble positions to the right,
  

s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

 SR−−→


s0 s4 s8 s12
s13 s1 s5 s9
s10 s14 s2 s6
s7 s11 s15 s3

 .
64 RKi

i
64 WK

AddRoundKey. The -bit  round  key  is
XORed  to  the  state  at  round  of  the  cipher.  And  the

-bit whitening key  is XORed to the plaintext of
the cipher.

128 K
K 64

K =WK||RK1

RKi (2 ⩽ i ⩽ 10)

Key scheduling. Future  uses -bit  master  key .
It splits  into two -bit parts for whitening key and
the first round key, i.e., .  Then the round
key  generation is as follow:
 

RKi =


WK <<<

(
5× i

2

)
, if 2 | i;

RK1 <<<
(
5×

⌊ i
2

⌋)
, if 2 ∤ i.

RKi 64 WK
RK1

Obviously,  is  a -bit  permutation  in  or
 without any bit operations.

MC SR ARK
MC

EKi

SR
MC EKi =MC−1 ◦SR−1(RKi)

64
M2 EKi = M2×RKi

Round  function  (Equivalent  key). Note  that  both
 and  are invertible linear operations, so the 

operation can be moved before the  operation. The
new round key  is the equivalent round key, which
is  obtained by performing the inverse operation of 
and  in  turn,  i.e., .
Therefore,  there  exists  a  order  binary  invertible
matrix  such  that .  The  equivalent
round function is shown in Fig. 2.

4　Distinguisher

By  choosing  a  proper  initial  BDP,  we  find  7-round
integral distinguisher. The distinguisher with 63 active
bits  in  the  plaintexts  and  full  balanced  bits  in  the
ciphertexts, is given as below
  

caaa A A A
A A A A
A A A A
A A A A

 7−round−−−−−−→


B B B B
B B B B
B B B B
B B B B

 .

{1||A | A = F63
2 }

{0||A | A = F63
2 }

For example, if the plaintext set is  or
,  then  the  ciphertext  set  obtained  by

encrypting 7 rounds is balanced on 64 bits.

5　Key-Recovery Attack on Full FUTURE

5.1　Key-recovery attack on full future without full
data

7
10

EK8,

EK9 EK10 K8, K9 K10

EKi =MC−1 ◦SR−1(Ki) i ∈ {7,8,9}

In this subsection, we propose a key recovery attack on
full FUTURE without full data. By adding three rounds
after  the -round  distinguisher  in  Section  4,  we  can
give  a  key  recovery  attack  on  full  ( -round)
FUTURE,  which  is  presented  in Fig.  3.  In  our  attack,
we  guess  round  keys’ cells  in  equivalent  keys 

,  and  instead  of ,  and ,  where
, .

C1A63 X8

X8[0]

C X8[0 : 3]
EK8, EK9 EK10

X8[0 : 3]

As shown in Fig.  3,  when encrypting a  plaintext  set
with  the  form  of ,  each  cell  in  is  balanced
( ).  Therefore,  the  whole  attack  includes  a  data
collection phase and a key recovery phase. During the
data  collection  phase,  we  remain  the  ciphertext  set
obtained  by  encrypting  the  plaintext  set  mentioned
above During the key recovery phase, we decrypt each
ciphertext  in  the  set  to  by  guessing  some
cells  in ,  and ,  and  then  filter  out  the
wrong  key  based  on  the  balance  of .  Detailed
steps of attack are given as follows.

C1A63

263

10
C 263

263 10

Data  collection. According  to  the  distinguisher,  the
plaintext set has the form , which means the size
of  set  is .  After  accessing all  plaintext  in the set  to
the -round  encryption  machine,  we  remain  the
returned ciphertext in set  with the size of . In this
phase,  the  time  complexity  is  -round
encryptions.

X8[0 : 3] C X8[0 : 3]

EK10, EK9[0, 5, 10, 15] EK8[0 : 3]

Key recovery. We focus on checking the balance of
.  In  order  to  decrypt  ciphertext  to ,

we need to know all the gray cells in Fig. 3, that is, we
need  to  guess ,  and .
However, according to the key scheduling, we have
 

EK10
SR−1◦MC−1

−−−−−−−−−→ K10
≫5−−−→ K8

MC◦SR−−−−−−→ EK8,

EK8 EK10which  indicates  that  can  be  deduced  from .
Algorithm  1  provides  a  brief  description  of  the  key
recovery procedure. The detailed attack procedure is as
follows.

(1) EK10

Z9[0, 5, 10, 15] 263 C
 Steps  1  to  6. Guess  and  compute

 under  plaintexts .  According  to
Fig. 3,

 

SC AREK MC SR

 
Fig. 2    Equivalent round function.
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W9 = SR−1(MC−1 ◦SR−1(C)⊕EK10),
 

Z9[0]←MC−1(W9[0 : 3]),
 

Z9[5]←MC−1(W9[4 : 7]),

 

Z9[10]←MC−1(W9[8 : 11]),
 

Z9[15]←MC−1(W9[12 : 15]).

Z9[0, 5, 10, 15] V1

V1

Z9[0, 5, 10, 15]
0 1

Remain  the  value  of  in  for  the
next decryption step. Note that in , only the even and
odd  of  the  occurrence  number  of  is
recorded  (  refers  to  even,  refers  to  odd),  because
even times of a value will  not affect  the balance.  This
step requires
 

264×263× 1
10
≈ 2123.7

10
216

-round encryptions.  And the memory complexity of
this part is  bits.

(2) EK9[0, 5, 10, 15]
X8[0 : 3] Z9[0, 5, 10, 15]

V1[Z9[0, 5, 10, 15]] == 1 EK8

EK10 sum
X8[0 : 3]

 Steps  6  to  13. Guess  and
compute  under  with

.  Note  that  can  be
deduced  from .  Compute  by  operating  bit-
based XOR for all . This step requires
 

264×216×216×
(

4
16
+

4
16

)
× 1

10
≈ 291.7

10-round encryptions.
(3)

264×216×2−16 = 264 (EK10, EK9[0, 5, 10, 15])
sum = 0

EK9[1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13,
14] K (EK10,

 Steps 13 to 17. From a random perspective, there
are   that
satisfy ,  and  the  correct  key  must  be  among
them.  Then  guess 

 and  deduce  master  key  under  each 

 

7-round distinguisher

EK8 X8 Y8 Z8 W8 X9

RSCMCS

RSCMCS

C

RSCMCS

sllecdecnalaBsllecnwonKsllecelbigilgeN

EK9 X9 Y9

EK10 X10 Y10

Z9 W9

Z10 W10

X10

 
Fig. 3    10-round key recovery attack.

 

Algorithm 1　10-round key recovery attack
EK10  1 for each  do

V1[x] |x| = 16  2　　Allocate and initialize the arrays  with ;
EK8 EK10  3　　Deduce  from ;

C C  4　　for  in  do
Z9[0, 5, 10, 15]  5　　　Compute ;

x = Z9[0, 5, 10, 15] V1[x] = V1[x]⊕1  6　　　Let  and ;

216 EK9[0, 5, 10, 15]  7　　for  do
16 sum  8　　　Allocate and initialize the -bit variable ;

x = 0; x < 216; x++  9　　　　for  do
V1[x] == 110　　　　if  then

X8[0 : 3] Z9[0, 5, 10, 15] = x11　　　　　Compute  from ;
sum = sum⊕X8[0 : 3]12　　　　　 ;

sum == 013　　　if  then
14　　　　for

248 EK9[1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14]　　　　

　　　　do
K15　　　　　Deduce master key ;

E(K, p) == c16　　　　　if  then
K17　　　　　　return ;
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EK9[0, 5, 10, 15])
(p,c)

E(K, p) c
264×248 = 2112 10

.  Extract  plaintext-ciphertext  pair
 from  the  data  and  obtain  the  correct  key  by

verifying  whether  is  equal  to .  This  step
requires  -round encryptions.

10
263

263+2123.7+291.7+2112 ≈ 2123.7 10
216

Complexity. The -round  attack  requires  a  data
complexity  of  chosen  plaintexts.  The  time
complexity is  -round
encryptions. The memory complexity is  bits.

5.2　Key-recovery attack on full FUTURE with full
data

In this subsection, we propose a key recovery attack on
full  FUTURE  with  full  data.  By  adding  one  round
before  and  two  rounds  after  the  7-round  distinguisher
in Section 4, we can give a key recovery attack on full
(10-round)  FUTURE.  The  time  complexity  of  this
attack is currently the lowest.

Z1

C1A63 X9

X9[0]

As shown in Fig. 4, assuming we have a plaintext set,
when the  set obtained by encrypting the plaintext set
has the form , each nibble in  is balanced (i.e.,

).  Therefore,  the  whole  attack  includes  a  data

C
X9[0 : 3] EK9 EK10

X9[0 : 3]

collection phase and a key recovery phase. During the
data  collection  phase,  we  remain  the  ciphertext  set
obtained  by  encrypting  full  plaintext.  During  the  key
recovery  phase,  we  choose  the  corresponding
ciphertext  set  based  on  guessing  the  whitening  key.
Then  we  decrypt  each  ciphertext  in  the  set  to

 by guessing some bits  in  and ,  and
then  filter  out  the  wrong  key  based  on  the  balance  of

. Detailed steps of attack are given as follows.

264 10
264×64 =

270 216

248 S
P

S [P[0 : 3]] = {E(K, P[0 : 3]||x)|x ∈ F48
2 }

Data  collection. All  ciphertext  are  used  in  this
attack.  The  time  complexity  is  -round
encryptions,  and  the  memory  complexity  is 

 bits. Note that the ciphertext are stored in a  by
 two-dimensional  list ,  The  index  of  the  first

dimension corresponds to some cells of the plaintext ,
this is, .

X9[0 : 3] X2

C1A63 X2

C1A63

Key recovery. We focus on checking the balance of
 under the assumption that the set of  has the

form . Therefore, we need to ensure that the 
set  obtained  by  encrypting  the  plaintext  set  has  form

, then decrypt the corresponding ciphertext set to
 

7-round distinguisher

WK P

MC(EK1) X1 Y1 Z1 W1 X2

RSCMCS

EK9 X9 Y9 Z9 W9

EK10 X10 Y10 Z10 W10

X10

RSCMCS

C

RSCMCS

Known cells Negligible cells Traverse cells Balanced cells 
Fig. 4    10-round key recovery attack.
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X9 Z1 =MC(EK1)⊕SR−1(X2)
SR−1 X2

MC(EK1) Z1

C1A63

get  the  set.  Note  that ,
where  does  not  affect  the  first  block  of  and

 is  a  constant.  Thus,  the  set  also  has  the
form , denoted by
 

{0||A||B | A = F15
2 ,B = F48

2 }.
Furthermore, we obtain the plaintext set

 

{(WK[0 : 3]⊕SC−1 ◦MC−1(0||A))||B}.
Z1

WK[0 : 3] WK[0 : 3]
P[0 : 3] P[0 : 3]

248 P[4 : 15] P[0 : 3]
S

This indicates that given the  set,  the plaintext set
is  determined  by .  And  only
denotes ,  and  each  corresponds  to

. The ciphertext set under each  can
be obtained by using the list  obtained during the data
collection phase.

EK10[0, 5, 10, 15] EK9[0 : 3]
X9[0 : 3]

64 M
EK10 = M×WK EK9 WK

WK WK[4 : 15]
x = [x1, x2, . . . , x48]T [ML|MR]

After  obtaining  the  ciphertext  set,  we  guess
 and  to  obtain  the  set  of

. According to the key scheduling, there exists
a th  order  full  rank  binary  matrix  such  that

, while  is independent of . Set
the  unknown  bit  in ( )  to  48  variables

,  and  use  to  record  the
following matrix:
  

M0,0 · · · M0,15 M0,16 · · · M0,63
...

. . .
...

...
. . .

...
M3,0 · · · M3,15 M3,16 · · · M3,63
M20,0 · · · M20,15 M20,16 · · · M20,63
...

. . .
...

...
. . .

...
M23,0 · · · M23,15 M23,16 · · · M23,63
M40,0 · · · M40,15 M40,16 · · · M40,63
...

. . .
...

...
. . .

...
M43,0 · · · M43,15 M43,16 · · · M43,63
M60,0 · · · M60,15 M60,16 · · · M60,63
...

. . .
...

...
. . .

...
M63,0 · · · M63,15 M63,16 · · · M63,63


16×64

,

we  can  get  the  following  system  of  linear  equations
containing 16 equations and 48 variables:
 

[ML|MR]×


WK[0]
WK[1]
WK[2]
WK[3]

x


64×1

=


EK10[0]
EK10[5]

EK10[10]
EK10[15]


16×1

,

Then, we have
 

MR× x =


EK10[0]
EK10[5]

EK10[10]
EK10[15]

⊕ML ×


EK10[0]
EK10[5]

EK10[10]
EK10[15]

 = b.

rank(MR) = rank([MR|b])

248−rank(MR)

According  to  the  theory  of  nonhomogeneous  linear
equations,  only  when ,  the
equations  have  solutions,  and  the  size  of  the  solution
space is .
 

ML =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0
0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0
1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 0 0 0 0 1 0 0 1 1 0 0
0 1 1 0 0 1 0 0 0 0 1 0 0 1 1 0
0 0 1 1 0 0 1 0 0 0 0 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


,

and
 

MR =



1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 1 032

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 032

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 032

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 032

1 1 0 1 1 1 0 1 0 0 0 1 1 0 0 0 032

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 032

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 032

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 032

1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 032

1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 032

0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 032

0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 032

017 0 0 1 1 0 0 0 1 0 0 1 1 0 0 1 016

0 0 1 0 0 1 1 0 1 1 0 0 1 0 0 0 032

0 0 0 1 0 0 1 1 0 1 1 0 0 1 0 0 032

1 0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 032



,

0i i rank(ML) = 6
rank(MR) = 10 6 MR

b[i] = 0 i = 1,2,3,5,6,7
WK[0 : 3] EK10[0, 5, 10, 15]

210 EK10[0, 5, 10, 15]
x

248−10 = 238

where  is -bit  zero  vector.  Obviously, 
and . There are  zero lines in , which
means , .  Therefore,  given

,  has  6  bits  constraints,
then   satisfy  the  equation  with
solutions.  And  the  solution  space  size  of  is

.  Based  on  the  key  relationship  obtained
above,  we  briefly  introduced  the  key  recovery
procedure  in  Algorithm  2.  The  detailed  attack
procedure is as follows.

(1) WK[0 : 3]
P[0 : 3] 215 Z1[0 : 3] P[0 : 3]

S 1 S

 Steps  1  to  5. Guess  and  compute
 under . Remain the value of 

in  as indexes for ciphertext list . This step requires
 

216×215× 4
16
× 1

10
≈ 225.7

10
215×16 = 219

-round encryptions.  And the memory complexity of
this part is  bits.

(2) EK10[0, 5, 10, 15]

216×216×6×16 = 241.6.

216−6 = 210 EK10[0, 5, 10, 15]
Z9[0 : 3]

S 1 S V1

Z9[0 : 3]

 Steps  7  to  13. Guess  and
check whether satisfy the constraint. The complexity of
matrix-vector multiplication is 
This  step  will  remain  .
Then  compute  under  ciphertext  set  obtained
by  and .  As in Algorithm 2,  record the parity
of  the  number  of  occurrences  of .  Meanwhile,
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S 2 238 WK contains  possible  values  of ,  which  are
obtained  by  solving  the  equation  system.  This  step
requires
 

216×210×215×248× 4
16
× 1

10
≈ 283.7

10
O(216×210×103) = O(236)

|V1|+ |S 2| = 216+

39×48 = 216.1

-round  encryptions.  The  complexity  of  Gaussian
Elimination  is .  And  the
memory  complexity  of  this  part  is 

 bits.
(3) EK9[0 : 3]

X9[0 : 3] Z9[0 : 3] V1[Z9[0 : 3]] == 1
sum

X9[0 : 3]

 Steps  14  to  19. Guess  and  compute
 under  with .

Compute  by  operating  bit-based  XOR  for  all
. This step requires

 

216×216×216×216× 4
16
× 1

10
≈ 258.7

10-round encryptions.

(4)
216×2−16 = 1 EK9[0 : 3] sum = 0

EK9[4 : 15] K WK
S 2

(p,c)
E(K, p)

c

 Steps 20 to 25. From a random perspective, there
are ,  that  satisfy ,  and
the  correct  key  must  be  among  them.  Then  guess

 and deduce  master  key  under  each 
generated  by  the  basic  solutions  in .  Extract
plaintext-ciphertext pair  from the data and obtain
the correct key by verifying whether  is equal to

. This step requires
 

216×210×216×2−16×248×238 = 2112

10-round encryptions.
10

264 2112 10
216.1

Complexity. This -round  attack  requires  a  data
complexity  of .  The  time  complexity  is  -
round  encryptions.  The  memory  complexity  is 
bits.
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Algorithm 2　10-round key recovery attack with full data

216 WK[0 : 3]  1 for  do
S 1  2　Allocate and initialize the set ;

215 Z1[0 : 3]  3　for  do

P[0 : 3] =WK[0 : 3]⊕SC−1 ◦MC−1(Z1[0 : 3])  4　　Compute ;
P[0 : 3] S 1  5　　Append  to ;

216 EK10[0, 5, 10, 15]  6　for  do
EK10[0, 5, 10, 15] WK[0 : 3]  7　　if  and  satisfy the

　　　　 constraints then
S 2

238 WK[4 : 15] WK[0 : 3]
EK10[0, 5, 10, 15]

  8　　　Allocate the set  containing the basic solutions of
　　　　　  deduced by  and
　　　　　 ;

V1[x] |x| = 16  9　　　Allocate and initialize the arrays  with ;

215 P[0 : 3] S 110　　　for  in  do
248 C P[0 : 3]11　　　　for  related to  do

Z9[0 : 3]12　　　　　Compute ;
x = Z9[0 : 3] V1[x] = V1[x]⊕113　　　　　Let  and ;

216 EK9[0 : 3]14　　　for  do
16 sum15　　　　Allocate and initialize the -bit variable ;

x = 0; x < 216; x++16　　　　for  do
V1[x] == 117　　　　　if  then

X9[0 : 3] Z9[0 : 3] = x18　　　　　　　Compute  from ;
sum = sum⊕X9[0 : 3]19　　　　　　　 ;

sum == 020　　　　if  then

248 EK9[4 : 15]21　　　　　for  do
232 WK[4 : 15]

S 2

22　　　　　　for  generated by the basic
　　　　　　　　solutions in  do

K23　　　　　　　Deduce master key ;
E(K, p) == c24　　　　　　　if  then

K25　　　　　　　　return ;
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