
Efficient Permutation Correlations and Batched
Random Access for Two-Party Computation

Stanislav Peceny2⋆, Srinivasan Raghuraman3, Peter Rindal1, and Harshal
Shah1

1 Visa Research
2 Georgia Institute of Technology

3 Visa Research and MIT

Abstract. In this work we define the notion of a permutation correlation
(π,A,B,C) s.t. π(A) = B+C for a random permutation π of n elements
and vectors A,B,C ∈ Fn. We demonstrate the utility of this correlation
for a wide range of applications. The correlation can be derandomized to
obliviously shuffle a secret-shared list, permute a secret-shared list by a
secret-shared permutation, and more. Similar techniques have emerged as
a popular building block for the honest majority protocols when efficient
batched random access is required, e.g. collaborative filtering, sorting,
database joins, graph algorithms, and many more. We present the highly
flexible notion of permutation correlation and argue that it should be
viewed as a first class primitive in the MPC practitioner’s toolbox.

We give two novel protocols for efficiently generating a random per-
mutation correlation. The first makes use of recent advances in MPC-
friendly PRFs to obtain a protocol requiring O(nℓ) OTs/time and con-
stant rounds to permute n ℓ-bit strings. Unlike the modern OT extension
techniques we rely on, this was previously only achievable from relatively
more expensive public-key cryptography, e.g. Paillier or LWE. We im-
plement this protocol and demonstrate that it can generate a correlation
for n = 220, ℓ = 128 in 19 seconds and ∼ 2ℓn communication, a 15 &
1.1× improvement over the LWE solution of Juvekar at al. (CCS 2018).
The second protocol is based on pseudo-random correlation generators
and achieves an overhead that is sublinear in the string length ℓ, i.e. the
communication and number of OTs is O(n log ℓ). The latter protocol is
ideal for the setting when you need to repeatedly permute secret-shared
data by the same permutation, e.g. in graph algorithms.

Finally, we present a suite of highly efficient protocols for performing
various batched random access operations. These include a class of pro-
tocols we refer to as extraction, which allow a user to mark a subset of X
and have this subset obliviously extracted into an output list. Addition-
ally, the parties can specify an arbitrary selection function σ : [n]→ [n]
and obtain shares of σ(X) = (Xσ(1), . . . , Xσ(n)) from X. We implement
these protocols and report on their performance. 4

⋆ Part of this work was done while the author was an intern at Visa Research.
4 The authors grant IACR a non-exclusive and irrevocable license to distribute the
article under the https://creativecommons.org/licenses/by-nc/3.0/.

1 Introduction

Secure multi-party computation (MPC) is increasingly used to perform complex
data intensive tasks while maintaining strong privacy guarantees. Examples in-
clude machine learning & data analytics, database joins, sorting and many more.
A common thread to most of these complex tasks is the need to perform some
type of random access into the processed data. Unfortunately, this is at odds
with how MPC and similar technologies work. Typically, MPC protocols require
the target function to be expressed as a circuit where all memory accesses are
fixed and independent of the input. One line of work that overcomes this is obliv-
ious RAM for MPC [LO13,WCS15,HKO23,PLS23]. However, while very flexible,
this approach introduces a poly log overhead for each access.

Many of the most important applications can be made efficient in a circuit
model with access to permutation gates. In this model, the main part of the
circuit is expressed with addition and multiplication gates. The circuit also has
access to a permutation gate that takes as input a permutation, possibly ex-
pressed as a vector, and a list of values. The output of the permutation gate
is the list permuted according to the input permutation. The most ubiquitous
example of such a gate would be to permute a list of values by the sorting per-
mutation [AHI+22]. We show that it is possible for these permutation gates to
be implemented in concretely efficient linear time and constant depth/round,
sidestepping the poly log overhead of oblivious RAM.

1.1 Applications of Secret-shared Permutation

Secret-shared permutation is an essential building block of many MPC proto-
cols. Thus, reducing the cost of secret-shared permutation will lead to significant
cost reductions in these protocols. We now present a non-exhaustive list of ap-
plications.

Shuffle. Two parties jointly shuffle an array and returns additive secret sharing
of the result. The security guarantee is that no party learns the random permuta-
tion corresponding to the shuffle. This technique has primarily been used in the
three-party setting [AKK+23,BDG+22,AHI+22] but has also been generalized
to n-party shuffle. [FO20] explicates the use of shuffle in MPC.

Merging and Sorting. The most efficient secure sorting algorithms rely on a
shuffle-then-sort paradigm [HKI+13] or Radix Sort[CHI+19]. For the former,
the idea is that after the shuffle, the (comparison base) sorting algorithms can
reveal the result of each comparison and move data based on the result without
compromising security. This is because the comparison bit is independent of
the underlying value after shuffling. Radix sort uses different techniques and
permutes the data several times, once per bit of the sorting key. Due to the lack
of efficient two-party permutation, these protocols have remained costly.

Similarly, permutations are a useful component for secure merging protocols,
where two sorted lists are merged so that the final secret-shared list is ordered.
E.g., [FO20]’s merge relies on secure shuffle in many subprotocols.

2

Graph Algorithms. Our improvement is particularly significant in frameworks
that rely heavily on oblivious permutations. E.g., GraphSC [NWI+15] is a frame-
work that enables efficient secure implementation of graph-based algorithms. It
is inspired by parallelization techniques from Pregel [MAB+10], a programming
model for developing parallel algorithms on large-scale graphs. More specifically,
it securely implements Pregel’s scatter, gather, and apply operations, which can
be used to solve several important parallel data mining and machine learning
algorithms. Without going into the details of the gather and scatter operations,
invoking them requires oblivious permutations on the entire graph. As the graph
is large and the operations are called repeatedly, we can get considerable savings
by using our permutation.

Extraction and Filtering. An immediate application of a permutation protocol is
to extract elements from an array that satisfy some condition. Consider a secret
shared vector where each entry indicates if it has been flagged, e.g. satisfies a
condition or possible in a set intersection. To extract the flagged elements (in
secret-shared form without compromising security), we can obliviously permute
the secret-shared arrays together with their secret-shared flag array. Then parties
can reveal the flag array and discard elements not in the intersection. We note
that many other applications also make use of this functionality, e.g. [FO20].

Database Joins & Private Set Intersection. Secure database joins have now be-
come an active research area [MRR20,BDG+22]. This line of research can be
viewed as a generalization of Private Set Intersection, where the input sets are
secret-shared, have associated values, and can contain duplicates. They are es-
sentially SQL tables. One can then consider various joins between these ta-
bles. [MRR20,BDG+22] demonstrate that one can compute such joins with
O(n log n) overhead given access to efficient permutation protocol, or in O(n)
time if the join keys are unique. As there are were no efficient two-party proto-
cols, [MRR20,BDG+22] focus on the honest majority setting.

Random Access Memory in Secure Multi-party Computation. Com-
monly, MPC frameworks work in the circuit model where the function to be
computed is expressed as a circuit. This is in contrast with the RAM model
where memory accesses can be performed in an input-dependent way. To access
an (encrypted) value at position i in memory, the parties executing the proto-
col must know i. If i is computed as a function of the input, then i can leak
information about the input.

To mitigate this, one can equip a circuit base MPC protocol with a special
“random-access” gate, e.g. via garbled RAM [LO13]. This gate takes as input
the index i and returns the memory value mi, without leaking any informa-
tion about i. A trivial solution for such a gate is linear scan, which reads all
O(n) memory locations and saves mi when it is read. The gate then returns mi

obliviously. However, this solution adds an O(n) factor to the running time. Spe-
cialized garbled RAM protocols are able to obliviously access mi with poly log

3

overhead [LO13,HKO23,PLS23]. Despite significant improvements, they remain
expensive and have not been implemented until recently [YPHK23]. For exam-
ple, the state-of-the-art garbled RAM of [HKO23] requires O(T log3 n · log log n)
time to perform T RAM accesses into a memory of size n.

An alternative, proposed by [DS17], leverages a private information retrieval
(PIR) scheme based on point functions [GI14] to construct a random-access
gate. Their construction requires an amortized O(

√
n) overhead within the MPC

protocol and additionally O(n) work per access that is “outside” the MPC with
small constants. Despite having linear overhead this scheme can perform very
well for some n. Another downside of this approach is that it requires interaction
between the parties, and therefore is not compatible with constant-round garbled
circuit protocols.

Most schemes that support a random-access gate require the memory accesses
to be sequential. Therefore, if the random-access gate is implemented using se-
cret sharing, this introduces a poly log multiplicative overhead to the round
complexity of the protocol. This is always true for [DS17] due to its inherent in-
teractiveness. Garbled RAM schemes, such as [HKO23], are non-interactive due
to their use of garbled circuits as opposed to secret sharing. However, this adds
an additional security parameter overhead to the communication, compared to
some secret-sharing based schemes. One could consider combining parallel gar-
bled RAM [BCP16,LO17] techniques with secret sharing. These techniques allow
for the evaluation of t = O(n) RAM gates in parallel. However, these schemes
thus far have only been proposed for garbled circuit and are not as optimized
as, for example, [HKO23]. Moreover, they still impose a poly log overhead in
communication.

We observe that many of the most important applications for MPC that
require random access can be efficiently implemented in a batched manner. In
particular, instead of reading just one memory location at a time, the circuit
generates a set of indices σ ⊆ [n] with |σ| = O(n) and the batched RAM gate
accesses and returns all memory locations {mσ(i)}. In this amortized setting one
can hope to avoid the poly log overhead lower bounds inherent to the former
schemes. Indeed, when σ is a permutation of size n, our permutation protocols
can implement the batched RAM gate with an amortized O(1) overhead5.

1.2 Our Contributions

In our work, we design and present a comprehensive suite of highly efficient
protocols that make it feasible to use permutations in real-world two-party com-
putation applications. We begin with our permutation protocols:

– We present two new protocols for the FGen-Perm functionality, which generates
a random permutation correlation. In particular, one party learns a permu-
tation π : [n]→ [n] while the other party learns a random list A ∈ Fn

2ℓ . The
parties obtain a secret sharing of π(A) = (Aπ1

, . . . , Aπn
), .i.e., B+C = π(A).

5 We assume the read memory is of size at least κ-bits.

4

• ΠPrf-Perm makes use of recent advances in MPC-friendly PRFs to con-
struct a protocol that requires O(nℓ) OTs (binary OLEs). We implement
this protocol and observe that it can permute a list of size n = 220, ℓ =
128 in less than 20 seconds on a single thread.

• ΠPcg-Perm is the first protocol to achieve “sub-linear” communication with
the help of pseudo-random correlation generators. In particular, for a
chosen π this protocol can generate a random permutation correlation
with O(n log ℓ) communication/OTs. We believe this protocol to be ideal
when a large amount of data needs to be permuted.

We then present various permutation protocols that make use of random per-
mutation correlations. In some cases similar protocols have been previously been
proposed, with our contribution being a systematization of the knowledge.

– Building on the work of [CGP20], we formalize the notation of random per-
mutation correlation and its related protocols. In particular, we consider the
functionality of FBasic-Perm that on input permutation π and list X, outputs
shares of π(X). The protocolΠDerand-Msg allows one to first generate a random
permutation correlation via FGen-Perm and then derandomize the correlation
to output a secret sharing of π(X). ΠDerand-Msg is information-theoretic and
is extremely efficient; it requires one round, nℓ bits of communication and
2n F2ℓ additions to derandomize X.

– Building on the sublinear nature ofΠPcg-Perm, we observe that it is possible to
use a random permutation correlation for ℓ-bit strings to derandomize many
lists X,Y, Z, . . . in an “on-demand” manner given that the string length of
X,Y, Z, . . . adds to at most ℓ bits.

– A natural extension of these protocols also allows the input list X to be
secret-shared between the parties. The FBasic-Perm protocol achieves this with
virtually no overhead as the party with π can locally permute their shares
of X.

– We then generalize FBasic-Perm to the setting where π is secret-shared as the
composition of two random permutations π1, π2 such that π = π2 ◦ π1. The
efficiency of this protocol is essentially two invocations of FBasic-Perm.

– Given a random permutation correlation for π (possibly secret-shared), we
show that it is possible to compute shares of π−1(X) with the same efficiency
as π(X). Moreover, one can generate shares for π−1(X) using the correlated
randomness for π, and vice versa.

– To facilitate the ability to programmatically generate a permutation within
an MPC computation, we give a new protocol ΠA2C that allows converting
between an additive secret sharing of π, e.g. XOR shares π = π1 ⊕ π2,
to a permutation composition sharing π′

1, π
′
2 such that π = π′

1 ◦ π′
2. We

also give the protocol ΠC2A for converting composition shares of π into an
additive share. The efficiency of both protocols is essentially one invocation
of FBasic-Perm of n strings of length ℓ = log n or the derandomization of a
similar-sized correlated randomness.

5

Finally, we build more expressive functionalities such as sorting and general
batched RAM gate using our permutation correlations. In some cases, e.g. sort-
ing, we build on prior art, with our contribution being a systematization of the
techniques.

– We present a class of protocols ΠExt-Ord-Pad, ΠExt-Unord, . . . referred to as ex-
traction. Instead of specifying an input permutation, these protocols allow
the users to input a secret-shared bitvector f ∈ {0, 1}n and a secret-shared
list X ∈ Fn and output a secret-shared list {Xi | fi = 1}. The output can be
padded to a fixed length c and can have the same order as the input. We also
give methods for inverting these transformations to map the output back to
the input. These protocols are linear time and mostly constant round with
one exception requiring O(log n) rounds.

– We then show that our protocols can be used to implement a class of pro-
tocols for sorting, ΠPartition,ΠRadix-Sort,ΠQuick-Sort. In particular, we show that
one can recast most existing honest majority sorting protocols into our two-
party setting with the same asymptotic complexity, i.e. sorting in O(n log n)
time and O(log n) rounds.

– Lastly, our protocols ΠBatched-RAM-Read, ΠBatched-RAM-Write generalize our per-
mutation protocols to allow the parties to input a sharing of an arbitrary
function σ : [n] → [n]. In particular, when performing a read operation,
multiple output positions may read the same input location. This proto-
col runs in time O(n log n) and O(log n) rounds. Similarly, we also present
ΠBatched-RAM-Write that allows the parties to write to memory in a generalized
manner.

2 Related Work

Few solutions for permuting secret-shared values in the two-party setting ex-
ist. The oldest is the folklore solution using additive homomorphic encryption
(AHE). The core idea is relatively simple, the sender party holds a permutation
π while the other party, the receiver, holds an input list X = (X1, . . . , Xn). The
receiver with X first encrypts each entry Xi with their own AHE key k and
sends the ciphertexts to the sender. The sender then permutes the ciphertexts
by π, randomizes them, and adds a random mask Ci to each ciphertext. The
resulting ciphertexts are then sent back to the receiver who decrypts them to
obtain B1, . . . , Bn. Observe that C+B = π(X), which can be viewed as a secret
sharing of π(X). This basic solution can easily be extended to the setting where
X is secret-shared. The Paillier scheme is an example of such an AHE scheme.
However, it has some disadvantages. The first being that many MPC protocols
work with binary secret sharing or with some other small modulus p. The Paillier
scheme has a large modulus, which necessitates converting between these rep-
resentations and incurs an additional overhead. Moreover, Paillier encryption is
relatively slow resulting is poor practical performance [CGP20].

[JVC18] proposed the Gazelle protocol that makes use of lattice-based (LWE)
AHE to implement permutations. It follows a similar outline as above along

6

with some additional complexities. In particular, LWE AHE schemes support
SIMD/batching operations where many, e.g. n = 2048, plaintext values, modulo
some p, can be packed into a single ciphertext. This results in improved effi-
ciency, i.e. an n× reduction is communication/computes. However, to support
permutations, one must then be able to permute values within and between ci-
phertexts. [JVC18] proposes such techniques. We compare our efficiency to both
Paillier and Gazelle in Section 12.

An alternative is to make use of a Benes permutation network [Ben64] and
any generic MPC protocol, for example GMW or a garbled circuit. The input list
X consists of n strings, each of length ℓ bits. A Benes permutation network is a
circuit of depth log n and consists of ℓn log n swap gates. Each gate takes two ℓ bit
string as inputs and output them in order or in swapped order. The party with
π can program each of the swap gates. Each way to program the ℓn log n switch
gates corresponds to exactly one permutation. This approach benefits from not
making extensive use of public key cryptography but still requires significant
communication.

Recently, Chase et al. proposed a different scheme for permutations [CGP20].
Their scheme makes clever use of a function secret sharing and punctured PRF
to generate small permutations of size T ≤ 256. They show that these can
then be combined using a Benes permutation network where the swap gates are
replaced with small permutation gates with T inputs. Their overall running time
is O(κn log n+ ℓn log n/ log T). In practice this gives a sizable improvement over
the classic Benes network constructions.

Finally, in the honest majority setting there is a very simple and efficient
protocol for implementing permutations. For example, for three parties, each
pair of two parties can jointly hold a random permutation (π1, π2, π3) such that
the overall permutation is π = π3 ◦π2 ◦π1. When using replicated secret sharing
[AFL+16] each pair of two parties also holds a secret sharing of the input X. The
pair of parties holding π1 can locally permute their shares of X by π1 and then
secret share the result. This can be repeated for π2 and π3. The result is then
a secret sharing of π(X). [CHI+19] make use of this well-known construction
to implement sorting. Recently, [AHI+22,AKK+23] extended it to the malicious
honest majority setting.

3 Preliminaries

3.1 Notation

Let {a, b, c} denote the set containing elements a, b, c. Let (a, b, c) denote the
vector with elements a, b, c. The ith element of a set or a vector S is denoted as
Si. For integers a, b, let the notation [a, b] denote the ordered set (a, a+1, . . . , b).
Let [n] be shorthand for [1, n]. We denote κ and λ as the computational and
statistical security parameters, respectively.

7

3.2 Permutations & Injective Functions

We define a permutation π : [n] → [n] of size n as a bijection between the set
[n] and itself, i.e. π(i) returns a distinct value for each i ∈ [n]. There are several
ways to represent such a function. Typically, we consider π to be a vector from
the space [n]n such that π(i) = πi. One can also view π as a matrix Π in the
space {0, 1}n×n where Πi,π(i) = 1 and otherwise is zero. This is referred to
as a permutation matrix and is convenient in the context of linear algebra. In
particular, for a vector X ∈ Fn, let π(X) := Π ·X denote the vector X permuted
by π. Equivalently, π(X) = (Xπ(1), . . . , Xπ(n)).

The set of permutations forms a group under function composition. That is,
for permutations π, ρ : [n]→ [n], the composition π◦ρ is a permutation ϕ : [n]→
[n] such that ϕ(i) = π(ρ(i)). Equivalently, let Π,P, Φ ∈ {0, 1}n×n be the matrix
representations of π, ρ, ϕ respectively; then Φ = Π ·P . A permutation π also has
an inverse π−1 such that π ◦ π−1 = (1, 2, . . . , n) or equivalently Π · Π−1 = I
where I is the identity matrix.

Most of our protocols also work for the case of an injective function ν : [n]→
[m] for some m > n. For ν to be an injection, we require that ν(i) outputs a
distinct value for each i. The vector, matrix representation, and function compo-
sition are defined in the same way. However, as ν is injective, there is no inverse
function/matrix.

3.3 Secret Sharing & Functionalities

We denote a secret sharing of x as JxK. For concreteness, we assume binary
secret sharing where the two parties respectively hold JxK1, JxK2 ∈ F2ℓ such that
x = JxK1⊕JxK2. In some places, our protocols will call for the integer addition of
several shares. We assume this is achieved by converting to secret sharing over
an integer modulus, performing the summation, and switching back to binary
sharing, see [MR18] for the relevant techniques.

We define ideal functionalities with the F notation. One can think of calling
F as sending the inputs to a trusted third party that computes the function and
returns the result to the parties. These functionalities will be securely realized
by cryptographic protocols, which we denote with the Π notation. A protocol
is considered secure if there exists a simulator for it that can only interact with
the functionality, see [Lin16] for details.

3.4 Oblivious PRF with Shared Output

We make use of an oblivious weak PRF functionality with secret-shared output,
FSowprf. The definition of a weak PRF F : K × X → Y states that for a set of
random inputs x1, . . . , xn ∈ X , and for a random key k ∈ K, the distribution of
Fk(x1), . . . , Fk(xn) should be pseudo-random. We formalize in Definition 1.

8

Definition 1 (Weak Pseudo-random Function). A function f : K×X → Y
is a weak pseudo-random function if

{(x1, . . . , xn, Fk(x1), . . . , Fk(xn)) : x1, . . . , xn ← X , k ← K}
≈{(x1, . . . , xn, y1, . . . , yn) : x1, . . . , xn ← X , y1, . . . , yn ← Y}.

The FSowprf functionality evaluates a weak PRF F where the sender inputs
a key k while the receiver inputs one or more x. For each x, the parties out-
put a secret sharing JFk(x)K. This functionality is meant to model the parties
evaluating the PRF within an MPC protocol.

This functionality differs from a traditional OPRF protocol in that the output
Fk(x) is secret-shared between the parties instead of revealed in the clear to
the receiver. To instantiate this building block we make use of recent advances
in so-called MPC-Friendly symmetric key primitives. One of the first popular
examples is the LowMC pseudo-random permutation [ARS+15] by Albrecht et
al. This block cipher is specifically designed to minimize the number of AND
gates in its binary circuit representation.

Another prominent class of MPC-Friendly primitives is referred to as alter-
nating moduli first proposed by Boneh et al. [BIP+18] and later optimized in
[DGH+21,APRR24]. This weak PRF takes a radically different design. The func-
tion can be divided into two phases, one that performs a linear transformation of
the state mod 3. The state is then reinterpreted mod 2 and then another linear
transformation is applied. The security of this construction relies on the assump-
tion that linear options over two different moduli result in a highly non-linear
and unpredictable function. To efficiently implement this in MPC, [APRR24]
designs a custom protocol that performs secret sharing over the two different
moduli and then performs share conversion between the different moduli. This
effectively reduces the number of AND gates per output bit to 2.

In particular, the protocol provided by [APRR24], which implements FSowprf,
must first perform a key-specific setup protocol. By allowing the key to be reused,
we can save on the cost of performing the setup. In this case, the round com-
plexity of the protocol is 2 plus the cost to preprocess 4nκ OTs where κ is the
security parameter. These OTs can be preprocessed and performed in 3 addi-
tional rounds. The total communication complexity is ≈ 16nℓ bits.

Functionality FSowprf :

Parameters: Let F : K × X → Y be a weak pseudo-random function.

FSowprf(Sender : k,Receiver : x) :
Upon input k from the sender and input x from the receiver, return a secret sharing
JFk(x)K to the parties.

Fig. 1. The FSowprf functionality that returns secret shares of a weak PRF with a key
from the sender and input from the receiver.

9

Function Secret Sharing. We will make use of function secret sharing (FSS)
[BGI15] that allows two parties to generate secret shares k0, k1 of a function f in
some class F . Given that the two parties respectively hold (k0, k1)← Gen(1κ, f),
it is possible for them to efficiently and non-interactively generate a secret share
Jf(x)K := (Eval(k0, x),Eval(k1, x)) for any public x. The security guarantee is
that given either k0 or k1, nothing about the function f is revealed, apart from
it being a member of F . Formally,

Definition 2 (Function Secret Sharing). Let F be a class of functions. For
all f ∈ F and p ∈ {0, 1}, a FSS scheme (Gen,Eval) is private if there exists a
PPT simulator sim s.t.:

{(kp,F) : (k0, k1)← Gen(1κ, f,F)}
≈{(kp,F) : kp ← Sim(p, 1κ,F)}.

and for all x and all (k0, k1) ∈ Gen(1κ, f,F) : f(x) = Eval(k0, x) + Eval(k1, x)

A trivial solution would be to simply define k0, k1 to be the secret sharing
of the truth table of f . However, we desire k0, k1 be small, i.e. sublinear in the
truth table size. The most prominent example of this technique has been FSS
for point functions, a function f : [n] → {0, 1}ℓ that is zero for all input but a
for which f(a) = b. [GI14,BGI15] describe an efficient scheme based on a length-
doubling PRG. Their construction has each party expand a binary tree where
the children of a node are defined as the outputs of the length-doubling PRG.
The leaves of the tree are indexed by the inputs to f . I.e., at leaf a, the random
leaf values differ by b, while all other leaves hold the same random values. Each
key k0, k1 consists of a single κ-bit element per level of the tree that assists in its
generation. That is, the size of k0, k1 is O(κ log2(n)+ ℓ). In the event that ℓ = 1,
it is possible to reformulate the problem as n′ = n/κ and ℓ′ = κ by defining b as
a unit vector of length κ. Overall, the same function is computed but at a cost
O(κ log2(n/κ) + κ). Doerner and Shelat [DS17] later gave an efficient two-party
key generation protocol that allows the parties to input secret shares of a, b and
securely generate k0, k1. Their protocol requires O(log n) rounds and makes only
black box calls to the PRG, i.e. does not evaluate it in an MPC circuit.

Functionality FFSS-Gen :

Parameters: Let (Gen,Eval) be a function secret sharing scheme for point functions
fα,β s.t. f(α) = β and otherwise f(∗) = 0 .

FFSS-Gen(JαK, JβK) :
Upon input JαK, JβK, compute (k1, k2) ← Gen(fα,β). Return k1 to the first party and
k2 to the second party.

Fig. 2. Function Secret Sharing key generation protocol FFSS-Gen for point functions.

10

Syndrome Decoding. The syndrome decoding assumption with regular noise
states that for a class of matrices C, one can sample a weight t = O(κ) vector
e ∈ Gn that when compressed by a matrix A ∈ C, results in a shorter pseudo-
random vector r := Ae. Syndrome decoding can be shown to be equivalent to the
Learning Parity with Noise assumption, where e is the error vector. For reasons
of efficiency, we restrict the noise distribution of e to be the concatenation of t
random unit vectors. More formally, the Regular Syndrome Decoding assumption
is stated in Definition 3

Definition 3 (Regular Syndrome Decoding [BCG+19a]). For some ring
G, let R denote the uniform distribution over Gn s.t. the all samples are the
concatenation of t regular-sized unit vectors. Let C be a probabilistic code gener-
ation algorithm such that C→ Gk×n. For weight t = t(κ), dimension k = k(κ),
number of samples (or block length) n = n(κ), and ring G = G(κ), the regular
syndrome decoding assumption (R,C,G)-RSD states that

{(A, b⃗) :A← C, e⃗← R, b⃗ := A · e⃗}

≈ {(A, b⃗) :A← C, b⃗← Gn}.

We refer to [BCG+19a,BCG+22,RRT23] for parameter selection.

Aggregation Trees. [BDG+22] presents a useful functionality called an aggre-
gation tree FAgg. This functionality takes as input a shared list X and a shared
bit vector B. The list is logically divided up into blocks with the start of a block
being denoted by Bi = 0. For each block, the functionality will independently
apply a prefix sum to the block for some associative sum operator ⋆. For ex-
ample, if a block begins at i and is of size 3, then the output X ′ will contain
X ′

i := Xi, X
′
i+1 := Xi ⋆ Xi+1, X

′
i+2 := Xi ⋆ Xi+1 ⋆ Xi+2. The operator ⋆ can be

any associative operator. [BDG+22] give a protocol for implementing this that
takes O(n · ⋆time) time and O(log n · ⋆rounds) rounds, where ⋆time, ⋆rounds are the
time and round complexity of computing the ⋆ circuit. We will make use of a
duplication tree where ⋆ is defined as ⋆(x1, x2) := x1. That is, it simply returns
the first argument.

Functionality FAgg :

FAgg(JXK, JBK, ⋆) :
Upon input vector JXK ∈ Dn and control bits JBK ∈ {0, 1}n and associative operator ⋆
from the parties, define pre-ind(i) ∈ [i] to be the maximum value such that Bpre-ind(i) = 0.
Output JX ′K← share(X ′) where X ′

i := ⋆i
j=pre-ind(i)Xj

Fig. 3. Functionality FAgg for secret-shared aggregation.

11

4 Technical Overview

We are now ready to give a high-level overview of our techniques. We begin
with FBasic-Perm,FGen-Perm, our most foundational functionalities for performing
permutations on secret-shared data. The former, FBasic-Perm, provides the most
natural interface. It takes as input a permutation π : [n] → [n] from a sender
party and vector X ∈ Fn from a receiver party. The parties output a secret
sharing Jπ(X)K = (JXπ(1)K, . . . , JXπ(n)K). However, our most primitive proto-
cols do not implement this functionality. Instead, they are designed to output
random permutation correlations as specified by FGen-Perm. These can then be
derandomized to realize the FBasic-Perm functionality.

For most of our protocols we give two running times which typically differ by
a multiplicative security parameter κ. The first we refer to as in practice. This
one has the additional κ overhead but achieves better concrete performance (at
the time of writing this document). The second setting we refer to as in theory.
The primary cause of the difference is the overhead of generating a bit OT /
binary OLE [BCG+23]. We defer a more detailed discussion to Section 4.7.

4.1 Permutation Correlation Generators

The functionality FGen-Perm generates the random correlation

(A,B), (C, π) s.t. π(A) = B + C.

where the receiver holds A,B, the sender holds C, π, and A,B,C ∈ Fn are
uniform vectors subject to the constraint above. We note that this correlation
is the permutation equivalent to correlated randomness used by multiplication
gates in traditional MPC, i.e. a random OLE correlation (a, b), (c, d) s.t. d · a =
b+ c. Looking forward, we will then use this correlation to realize the FBasic-Perm

functionality.

MPC-Friendly PRF Permutation. ΠPrf-Perm, our first protocol that imple-
ments the FGen-Perm functionality, achieves the best performance for typical use
cases where the strings to be permuted are of small to moderate sizes. The core
building block is MPC-Friendly PRF. In particular, we make use of a weak PRF
F that allows for efficient evaluation in MPC when one party knows the key k
and the other party knows the input x. The output is a secret sharing of Fk(x),
where the secret sharing is over the same group as the permutation correlation.

The protocol can be described as follows. The receiver first samples a key k
for the weak PRF F and defines their A vector as the output of the PRF on
the identity permutation. I.e., Ai = Fk(i). The parties then engage in n PRF
evaluations, where the FGen-Perm receiver acts as the FSowprf sender with key k.
The FGen-Perm sender, which acts as the FSowprf receiver, provides π(i) as his input
to the ith evaluation. FSowprf outputs a secret sharing of Ti := Fk(π(i)).

The first observation is that Ti = Aπ(i), and therefore T = π(A). In other
words, T is A permuted by π. Therefore, what remains is to take the secret share

12

of T and generate the B,C vectors. However, we make the observation that this
step comes for free in the case that the secret sharing output by FSowprf uses the
same group as the permutation correlation. In this case, the receiver defines Bi

as their share of Ti, while the sender defines Ci as theirs. Observe that this is
precisely what we want,

Aπ(i) = Ti = Bi + Ci

π(A) = B + C

One deficit of this description is that the input to the weak PRF are the
integers between 1 and n. However, weak PRFs require the input values to
be sampled uniformly at random. We resolve this issue by first running the
input π(i) through a random oracle H. In particular, the receiver will define
Ai := Fk(H(i)) while the sender will input H(π(i)) to FSowprf. In this way, the
simulator will be able to program H to output the input values associated with
the weak PRF challenge.

As an additional optimization, instead of resampling the k each timeΠPrf-Perm

is invoked, it is possible to reuse it and instead sample a new random oracle H.
This will ensure that the inputs to the PRF will remain unique and random
while amortizing any key-specific cost of FSowprf. Overall, the running time is
O(nℓ′κ) in practice or O(nℓ′) in theory, where ℓ′ := ⌈ℓ/κ⌉κ is the bit length of
the element ℓ rounded up to κ. The communication complexity is ∼ 5nℓ′ bits
[APRR24].

PCG Permutation. As an alternative to our PRF-based construction, we
show that one can build a permutation correlation generator ΠPcg-Perm with
communication that is sublinear in the length of the strings ℓ. Specifically, for
a permutation π of size n, with correlations A,B,C ∈ Fn×ℓ

2 , we give a pro-
tocol with O(nκ2 log ℓ) bits of communication. At the heart of this construc-
tion is the ability to use LPN/syndrome decoding to get a succinct PRG seed
[BCG+19b,BCG+19a]. This seed can then be non-interactively expanded in the
MPC context. At a high level, the construction works by first permuting n seeds,
s1, ..., sn by the permutation π, with the result π(s) secret-shared. Once per-
muted, the parties can non-interactively expand these secret-shared seeds to get
secret shares of PRG(sπ(i)). As before, these shares form the C,B components
of the correlation.

In more detail, let P1 hold permutation π. Let P2 sample a key k for the wPRF
F and define A such that (pi,1, ..., pi,t) := Fk(H(i)) where pi,j ∈ log2(ℓ) + 1. Let
e⃗i ∈ {0, 1}2ℓ be the syndrome decoding weight-t vector such that ei,pi,j

= 1. Let
G ∈ {0, 1}ℓ×2ℓ be a matrix such that syndrome decoding is hard. Then define
Ai := Ge⃗i.

The parties compute Jp′i,1, ..., p′i,tK := FJkK(JH(π(i)K)) for each i ∈ [n], where
JH(π(i)K is input by P1 and JkK is input by P2. For j ∈ [t], use a distributed
point function key generation protocol to generate keys Ki,j,1,Ki,j,2 for point
p′i,j , where P1 learns the former and P2 learns the latter. The parties each expand

13

their key to get shares Je⃗′i,jK. The parties compute JA′K := GJe⃗′i,jK. Define B,C
as the shares of JA′K.

The running time of this protocol consists of generating nt distributed point
functions with bit length σ, where σ = log(ℓ/tκ), t = O(κ). The inputs to the
point functions can be generated with ntσ/κ = O(nσ) invocations of FSowprf,
where each cost O(κ) in theory or O(κ2) in practice. The key generation for
each distributed point function requires O(κσ + ℓ/t) work. Finally, we can in-
stantiate G as a linear time code, or more commonly, an O(ℓ log ℓ) time code.
Overall, the running time is O(nκ2 log(ℓ/κ2) + nℓ) and O(nκ2 log(ℓ/κ2)) bits of
communication.

Generalized Mapping Functions. We note that these protocols do not re-
quire π to be a permutation. The ΠPrf-Perm, ΠPcg-Perm naturally support an arbi-
trary function π : [m]→ [n]. However, when π is not a permutation, the function
over ([n]→ [m]) no longer form a group. This can lead to certain limitations for
secret sharing the permutation itself as we will see later.

4.2 Derandomization

In Section 6, we define the FBasic-Perm functionality, which allows the user to
specify the permutation along with the input vector X to be permuted. We then
present the ΠBasic-Perm protocol in the FGen-Perm-hybrid model, which, given a
random permutation correlation, can derandomize it to give the secret shares of
π(X) as output. More generally, we present several derandomization techniques
that allow the parties to derandomize π, and then generate shares of π(x) and/or
π−1(X) from a single random permutation correlation in an on-demand manner.

ΠDerand-Perm: Choosing π. We begin with our protocol for derandomizing the
permutation for a random permutation correlation (ρ,A,B,C). In particular, the
sender holds a random ρ : [n] → [n] and C, while the receiver holds A,B such
that B + C = ρ(A). The sender party with π computes δ := π−1 ◦ ρ and sends
it to the other party who computes A′ := δ(A). Observe that A = ρ−1(B + C),
and therefore:

A′ = δ(A)

= (π−1 ◦ ρ)(ρ−1(B + C))

π(A′) = B + C

As can be seen by the FGen-Perm functionality, it is also possible to directly gen-
erate a permutation correlation for the desired permutation π. However, in some
cases it is desirable to be able to generate the correlation before π is known,
such as during a prepossessing phase or in a “just in time” manner a few rounds
before π is determined. This allows the parties to not have to pay for the round
complexity associated with the protocol implementing FGen-Perm, since it can be
performed concurrently with other useful work. Moreover, this derandomization

14

is extremely efficient, requiring O(n) time and sending n log n bits in a single
message from the sender to the receiver.

ΠDerand-Msg: Sharing π(X). Now, assume we already hold a permutation cor-
relation (π,A,B,C) for the desired permutation π such that B+C = π(A). The
receiver party with (X,A,B) sends ∆ := A+X and outputs B. The other party
outputs C ′ := C + π(∆). Observe that

B + C ′ = C + π(∆) +B

= C + π(A+X) +B

= C + π(π−1(B + C) +X) +B

= π(X)

This protocol is extremely efficient and requires applying the permutation π to
the input ∆, performing 2n additions, and sending a single message of the same
size asX. This derandomization protocol was first observed by [CGP20]. We pro-
pose a natural extension to this protocol where the A,B,C ∈ Fn×ℓ correlations
are larger than X ∈ Fn×1. One can simply use the first column of the correla-
tion to mask X, saving the rest of the correlation for later use on some other
input X ′. This observation can be very useful in applications, where we wish to
permute by π several times, such as in the GraphSC framework [NWI+15].

ΠDerand-Inv-Msg: Sharing π−1(X). Our last derandomization technique allows
us to also permute by the inverse permutation. Let (π,A,B,C) be the correlated
randomness such that B+C = π(A). The party with (X,A,B) sends∆ := B+X
and outputs A. The other party computes outputs C ′ := π−1(C +∆). Observe
that

B + C ′ = π−1(C +∆) +A

= π−1(π(A) +X) +A

= π−1(X)

To the best of our knowledge, we are the first to observe that one can use the
same correlation for π to permute by both π and π−1. As in ΠDerand-Msg, we can
use a single correlation to permute and unpermute data in an on-demand man-
ner, saving part of the correlation for later. When combined with our sublinear
correlation generator ΠPcg-Perm, this results in high performance if in need to per-
mute by π, π−1 multiple times. A prime example is the aforementioned GraphSC
framework [NWI+15], where for many iterations, the algorithm permutes by π
and then π−1.

Secret-Shared Input X. It is trivial to extend ΠDerand-Msg and ΠDerand-Inv-Msg

to the setting where the X to be permuted is secret-shared over the same group
as the random permutation correlation. In particular, the party with π can
simply permute their own share and add the result to the output share that was
obtained previously in ΠDerand-Msg,ΠDerand-Inv-Msg.

15

4.3 Secret-shared Permutations

Composed Permutations. We now present the relatively standard technique
for allowing π to be secret-shared. We denote a composed sharing of π as ⟨⟨π⟩⟩
and it consists of two permutations ⟨⟨π⟩⟩1, ⟨⟨π⟩⟩2 such that π = ⟨⟨π⟩⟩2 ◦ ⟨⟨π⟩⟩1. Each
party holds exactly one of these permutations. The parties can then generate a
secret sharing of Z = π(X) by first invoking FBasic-Perm on JXK to obtain JY K =
⟨⟨π⟩⟩1(JXK) and then invoking FBasic-Perm again to compute JZK = ⟨⟨π⟩⟩2(JY K).
The cost of this protocol is two invocations of FBasic-Perm and local additions.

This protocol inherits all of the extensions we present to the core protocols
for FBasic-Perm. In particular, one can first generate the correlations for ⟨⟨π⟩⟩1, ⟨⟨π⟩⟩2
and then derandomize these on demand. Similarly, one can apply the invert π−1

to a secret-shared input by first applying ⟨⟨π⟩⟩−1
2 and then ⟨⟨π⟩⟩−1

1 .

Additive Permutations. Finally, we present a new protocol for efficiently
converting the representation of π between a composition format ⟨⟨π⟩⟩ and an
additive secret sharing format JπK where each party holds a share JπK1, JπK2 ∈ Zn

n

such that π = JπK1 + JπK2. If π is additively shared, we can get composed
sharing by having one party sample ⟨⟨π⟩⟩1 at random. We can then permute the
shares of JπK by ⟨⟨π⟩⟩1 to get shares of ⟨⟨π⟩⟩2 which is then revealed to the other
party. When compared to the natural extension of [CHI+19] to the two-party
setting, our construction requires permuting π only once as opposed to twice.
Therefore, our protocol is twice as efficient. Additionally, instead of directly
converting JπK into ⟨⟨π⟩⟩, [CHI+19] converts JπK into ρ, ⟨⟨π′⟩⟩ such that ρ is public
and π = ρ ◦ π′. As such, [CHI+19] requires the parties to perform an additional
plaintext permutation by ρ.

Generalized Mapping Functions. The protocols in this section can be made
to support any injective function π : [m]→ [n] (i.e. π(x) does not duplicate any
of its inputs). The main alteration that is required is to define ⟨⟨π⟩⟩2 : [m]→ [n] as
injective, while ⟨⟨π⟩⟩1 remains a bijective permutation. The conversion protocols
ΠA2C, ΠC2A can then be defined for injective functions in the natural way.

Composition. We can also achieve composition of permutations. If one per-
mutation is public, then the parties can simply locally permute their shares.
Given two secret-shared permutations ⟨⟨π⟩⟩, JρK, one can compute the composi-
tion θ = π ◦ ρ by invoking FComp-Perm on input permutation ⟨⟨π⟩⟩ and list JρK.

4.4 Extraction

Now that we introduced our permutation protocols, we present a class of pro-
tocols called extractions. In these protocols, the parties input a secret-shared
bitvector f ∈ {0, 1}n and return a permutation that if applied to X, returns the
subset {Xi | fi = 1}.

We further refine this basic idea in two ways:

16

– Ordering. The first concerns the order of elements in the output. ΠExt-Unord

outputs Xi (s.t. fi = 1) in random order; ΠExt-Ord outputs Xi in the original
order within X.

– Padding. The second concerns the size of the output. The output can either
contain only the Xi s.t. fi = 1 (ΠExt-Unord, ΠExt-Ord) or it can be padded to
a fixed length (ΠExt-Unord-Pad, ΠExt-Ord-Pad). In this case, the protocols receive
one additional input c, which specifies the output size. This is especially
useful when the parties do not know the size |{Xi | fi = 1}|. They can
determine the upper bound on the output size to ensure obliviousness in
secure computation.

All of these protocols are based on the same fundamental idea that if we
permute f according to a random permutation π (unknown to parties), then it
is secure to reveal f ′ = π(f), or a padded version of π(f), in the clear. This is
because now we cannot correlate any f ′

i with fj . Once f ′ is revealed we simply
compose the (injective) permutation that returns all JXiK such that f ′

i = 1
with π. This is exactly how ΠExt-Unord is implemented. The remaining extraction
protocols use ΠExt-Unord as a subprotocol, and hence are derived from the same
idea.

To implement ΠExt-Unord-Pad (unordered extraction with padding), we pad f
with c elements. We mark a subset of these elements so that the total number
of marked elements (in X and the c appended elements) is c. Once padded, we
use ΠExt-Unord to extract them.

To implement ΠExt-Ord (i.e. output the marked elements in their original
order), we additionally mark each Xi with the number of elements with fj<i = 1.
This mark stores the original order ofXi with fi = 1 and can be computed locally
via simple additions. Then we invoke ΠExt-Unord to extract all the Xi with fi = 1.
Recall the output is in random order as ΠExt-Unord uses a random permutation.
We place the extracted elements in their original order by opening the additional
mark and ordering the elements based on this mark.

ΠExt-Ord-Pad combines the ideas from ΠExt-Ord and ΠExt-Unord-Pad. The main
difference is that we need to do some extra accounting to ensure the padded
elements are placed at the end of the output list after calling ΠExt-Unord.

4.5 Sorting

Additionally, we show that many of the existing ideas for implementing sorting
in the honest-majority three-party setting [AHI+22,CHI+19,HKI+13] directly
translate to our two-party framework. As with our previous protocols, the output
of these functionalities is a secret-shared permutation ⟨⟨π⟩⟩ that when applied to
the input would sort it. FStable-Sort defines the ideal functionality.

We begin with our ΠPartition protocol that can be viewed as a sorting protocol
for single-bit elements. This protocol takes inspiration from [CHI+19] and makes
the following observation. Let JXK be the input vector. One can generate the
inverse sorting permutation by constructing a 2 × n matrix f , where the first

17

row is ¬X and the second is X. For example, if X = (0, 1, 1, 0, 1) then f will be:

1, 0, 0, 1, 0

0, 1, 1, 0, 1

Now, apply a prefix sum over each element of the first row followed by the second.
We obtain a new 2× n matrix c:

1, 1, 1, 2, 2

2, 3, 4, 4, 5

One can then take the component-wise mutiplication between f and c to obtains:

1, 0, 0, 2, 0

0, 3, 4, 0, 5

Observe that if one sums the two row vectors, we obtain a permutation:

π = (1, 3, 4, 2, 5)

This is precisely the inverse permutation that sorts X. We make the observation
that many advanced protocols make use of similar techniques. I.e., they have a
specialized protocol that allows each share to compute the index of the position
to which it should be mapped, i.e. the inverse permutation. TheΠPartition protocol
concludes by converting Jπ−1K into ⟨⟨π−1⟩⟩ using FA2C. A second benefit of this
approach is that the sorting permutation is stable, meaning that items with
equal values maintain the same order after the sort.

This protocol can be extended to sort inputs with b bits, where b = O(1),
by defining f as having 2b rows, where the ith column has a 1 in the position
Xi. Overall, the time of this protocol is dominated by the cost of generating the
permutation correlation, i.e. O(nκ) time and bits of communication, assuming
FSowprf is computed in O(κ) time [APRR24], otherwise O(nκ2) time.

Additionally, one can extend ΠPartition to implement our radix sort protocol
ΠSort for arbitrary bit length items. The idea is to call ΠPartition for each bit posi-
tion and compose the resulting permutations. I.e., first sort the most significant
bit, then the next most significant bit, and on down to the least significant bit.
After each ΠPartition, one can compose the permutations, apply the result to the
next bit, and recurse. As with ΠPartition, this radix sort returns a stable sorting
permutation. Overall, the protocol requires O(nℓκ) time and communication,
assuming FSowprf is computed in O(κ) time [APRR24], otherwise O(nℓκ2) time.

We also present the (non-stable) sorting protocol ΠSort using the so-called
shuffle-and-reveal model [HKI+13].

4.6 Batched Random Access

Finally, we present the ΠBatched-RAM-Read, which can be viewed as a generalization
of our permutation protocols. In particular, the parties input a list X of length n

18

and an additive secret sharing of an arbitrary function σ : [m]→ [n]. The output
is a secret sharing of Y such that Yi := Xσ(i). This differs from our permutation
functionality in that Xj could be mapped to multiple positions in Y . To support
this functionality the protocol makes use of more sophisticated techniques such
as sorting and aggregation trees. We will model these using the FStable-Sort and
FAgg functionalities that we presented in Section 3. The protocol works by first
calling stable sort FStable-Sort on σ = (σ(1), ..., σ(n)). If σ contains duplicates, they
now each form a group. We mark the first element of each group and map the
corresponding element of X to the marked position. All other positions are given
a dummy value. The parties invoke FAgg on this vector with the markings as the
aggregation tree control bits, resulting is the mapped elements are duplicates
across its group. The final result is obtained by permuting vector by the inverse
of the sorting permutation for σ. The running time of this protocol is dominated
by the cost of sorting. If implemented with the radix sort protocol ΠRadix-Sort,
the overhead is O(n log nκ) time and bits of communication.

4.7 Computational Overheads

Figure 11 in Section 7 summarizes the overheads of our protocols. We present
two sets of asymptotic running times. The first is referred to as Time (theory)
and corresponds to the running time when one can compute FSowprf in O(κ) time
and communication. While not practical as of the time of writing this work, we
note that [APRR24] combined with [BCG+23] gives a theoretical construction
that can achieve the desired overhead. However, it is more practical to assume
FSowprf requires O(κ2) time and O(κ) communication. We denote this setting
as Time (practice). More generally, the overhead of most of our constructions
are proportional to the overhead of invoking FSowprf on an input size that is
proportional to the input being permuted or otherwise manipulated. For radix
sorting, the primary overhead is a permutation for each bit of the key while quick
sort requires one permutation and n log n comparisons. Finally, the overhead of
our batched RAM protocols is essentially proportional to sorting the selection
vector and two permutations of the data.

5 Permutation Correlation Generators

We formally define the ideal functionality FGen-Perm in Figure 4. It is parame-
terized by public inputs n, ℓ,F, which are the permutation size, the correlation
string length, and the group that the correlation is over, respectively. The func-
tionality takes as input a permutation and outputs uniform A,C,D ∈ Fn×ℓ such
that π(A) = C+D. We give two implementations of this functionality, ΠPrf-Perm

and ΠPcg-Perm. The former is based on any weak PRF such as [APRR24]. The
latter additionally makes use of syndrome decoding.

MPC-Friendly PRF-based Permutation Correlation Generator. We
begin with the ΠPrf-Perm protocol and prove that is is secure in the semi-honest
setting. We refer to Section 4.1 for the intuition of the protocol.

19

Functionality FGen-Perm(Sender : π,Receiver) :

Public parameters: Permutation size n, group F and string length ℓ.
Input: The sender party inputs a permutation π : [n]→ [n].
Output: The functionality samples uniformly random A,B,C ∈ Fn×ℓ s.t. π(A) =
B + C. (A,B) are output to the receiver, C is output to the sender.

Fig. 4. The ideal functionality FGen-Perm for generating random permutation correla-
tions.

Protocol ΠPrf-Perm(Sender : π,Receiver) :

1. Let F : K × X → Fw be a weak PRF and H : {0, 1}∗ → X be a random oracle.
2. The receiver samples k ← K and the sender samples t ∈ {0, 1}κ. The sender sends

t to the receiver.
3. Let xi,j := H(t, i, j) for i ∈ [n], j ∈ [m] where m := ⌈ℓ/w⌉.
4. The receiver computes Ai,j := Fk(xi,j) for i ∈ [n], j ∈ [m].
5. The parties invoke FSowprf nm times with the receiver inputting k and sender

inputting π(x). The parties receive shares Jyi,jK where yi,j = Fk(xπ(i),j) for
i ∈ [n], j ∈ [m].

6. The sender sets Ci := JyiKs and the receiver sets Bi := JyiKr.
7. The receiver returns (A,B) and the sender returns C.

Fig. 5. The ΠPrf-Perm protocol that implements the FGen-Perm functionality.

Theorem 1. The ΠPrf-Perm protocol of Figure 5 realizes FGen-Perm functionality
with semi-honest security in the FSowprf-hybrid model, assuming F is weak PRF.

Proof. Corrupt Sender: The view of the sender consists of their shares of JyK,
which are uniformly distributed due to the output distribution of FSowprf, which
evaluates the weak PRF F . Now consider the output distribution of the honest
receiver. B is uniform subject to π(A) = B + C, as required.

To show that A is uniform, consider the weak PRF game of Definition 1.
For sake of a contradiction, let us assume a distinguisher that can distinguish A
from uniform. The simulator first queries the weak PRF challenger to obtain the
instance (x1, ..., xnm, y1, ..., ynm) and programs the random oracle H to output
xin+j on input (t, i, j). Since t is picked at random, the probability that such a
query has previously been made is negligible. Note that the output distribution of
H remains uniformly random. Therefore, A is precisely the elements y1, ..., ynm,
and therefore our distinguisher can also distinguish the weak PRF game.

Corrupt Receiver: The view of the receiver consists of the random nonce
t and the output of FSowprf which is uniformly random. Similarly, the output
distribution of the honest sender is uniform subject to the desired correlation.

PCG-based Permutation Correlation Generator. We now turn our atten-
tion to our permutation correlation generator based on the techniques underlying
the recent developments on pseudo-random correlation generators [BCG+19b].

20

Protocol ΠPcg-Perm(Sender : π,Receiver) :

1. Let F be a weak PRF and H be a random oracle.
2. The receiver samples k ← {0, 1}κ and the sender samples t ∈ {0, 1}κ. The sender

sends t to the receiver.
3. Let xi := H(t, i) for i ∈ [n].
4. The receiver defines (pi,1, ..., pi,t) := Fk(xi) where pi,j ∈ [log2(ℓ/t) + 1).
5. Let e⃗i,j ∈ {0, 1}2ℓ/t be the unit vector such that ei,j,pi,j = 1. Let e⃗i denote the

concatenation of e⃗i,1, ..., e⃗i,t.
6. Let G ∈ {0, 1}ℓ×2ℓ be a matrix such that syndrome decoding is hard with regular

weight t noise.
7. The receiver defines Ai := Ge⃗i.
8. For each i ∈ [n], the parties compute Jp′i,1, ..., p′i,tK := FJkK(JH(π(i)K)) by invoking
FSowprf, where JH(π(i))K is input by the sender and JkK is input by the receiver.

9. For i ∈ [n], j ∈ [t], the parties invoke the distributed point function key generation
functionality FFSS-Gen on input (Jp′i,jK, J1K) to generate keys Ki,j,1,Ki,j,2, where the
sender learns the former and the receiver learns the latter.

10. For i ∈ [n], j ∈ [t], the parties each expand their key to get shares Je⃗′i,jK.
11. For i ∈ [n], the parties compute Je⃗′iK := (Je⃗′i,1K||...||Je⃗′i,tK).
12. For i ∈ [n], the parties compute JA′K := GJe⃗′iK. Define B,C as the shares of JA′K.
13. The receiver returns (A,B) and the sender returns C.

Fig. 6. The ΠPcg-Perm protocol that implements the FGen-Perm functionality.

Theorem 2. The ΠPcg-Perm protocol of Figure 6 realizes the FGen-Perm functional-
ity with semi-honest security in the FSowprf and FFSS-Gen-hybrid model, assuming
F is a weak PRF and RSD is hard.

Proof. Corrupt Sender: The view of the corrupt sender is the output of FSowprf,
which is uniformly random. This is fed as input to FFSS-Gen, which returns Ki,j,1.
By Definition 2, this key can be simulated.

Consider the hybrid model where the weak PRF is replaced by a random
function. Following the same argument as in Theorem 1, the ability of the dis-
tinguisher to distinguish implies a distinguisher for the weak PRF game of Def-
inition 1.

The output distribution of the honest receiver consists of A,B. Fixing A, then
B is fully determined by π,C. For the sake of a contradiction, let us assume the
distinguisher can distinguish A (and therefore B) from uniformly random, i.e. the
simulator replaces A,B such that A is uniform. Given that each ei was sampled
as specified by Definition 3, this implies that the distinguisher can distinguish
Ge⃗i from uniformly random. However, this contradicts that RSD is hard.

Corrupt Receiver: The view of the corrupt receiver includes the random
nonce t, the output of FSowprf and FFSS-Gen. These can all be simulated in a
straightforward way. Finally, the output distribution of the honest sender is
correct, i.e. C such that C = B − π(A).

21

6 Derandomization

We are now ready to present our derandomization protocols. The final goal of
these protocols is to efficiently implement the FBasic-Perm functionality in various
settings. In particular, our goal is to enable the parties to call FGen-Perm either
during a preprocessing phase or in the online phase, and then derandomize the
correlation to generate a secret sharing of π(X) where both JXK and π are chosen
by the parties. FBasic-Perm functionality is relatively straightforward. It takes as
input a permutation of size n from the sender and a shared input list X ∈ Fn×ℓ;
the output is a secret sharing JY K of the rows of X permuted by the permutation
π, i.e. Y = π(X).

Functionality FBasic-Perm(JXK,Sender : π) :

Public parameters: Permutation of size n, group F, and string length ℓ.
Input: The parties input a sharing of X ∈ Fn×ℓ and the sender party inputs a permu-
tation π : [n]→ [n].
Output: The functionality samples uniformly random sharing JY K s.t. Y = π(X).

Fig. 7. The FBasic-Perm functionality.

We begin with our protocolΠDerand-Perm in Figure 8 for transforming a random
permutation correlation (A,B,C, ρ) into a correlation (A′, B,C, π), where π is
chosen by the sender. Given that ρ is uniformly distributed in the view of the
receiver, the resulting correlation (A′, B,C, π) is indistinguishable from the one
returned by FGen-Perm on input π.

Protocol ΠDerand-Perm(Sender : π, (ρ,C),Receiver(A,B)) :

1. The sender sends δ := π−1 ◦ ρ to the receiver.
2. The receiver computes A′ := δ(A).
3. The sender outputs (π,C) and the receiver outputs (A′, B).

Fig. 8. The ΠDerand-Perm protocol that derandomizes a random permutation correlation
to a chosen permutation correlation.

Theorem 3. The composition of FGen-Perm for random ρ and ΠDerand-Perm for
arbitrary π securely realizes FBasic-Perm for input π in the semi-honest setting.

Proof. Observe that the protocol is correct. Moreover, the only message sent is
δ = π−1 ◦ ρ. Given that permutations under composition form a group and that
ρ is uniformly distributed, it is straightforward to see the distribution of δ is
uniform.

22

Protocol ΠDerand-Msg in Figure 9 takes as input a list X ∈ Fn×ℓ and a per-
mutation correlation (A,B,C, π). The protocol derandomizes the correlation to
return secret shares of X permuted by π. Given that (A,B,C, π) is a uniformly
distributed permutation correlation, the result is indistinguishable from the par-
ties calling FBasic-Perm on input π and X.

Protocol ΠDerand-Msg(Sender : (π,C),Receiver : X, (A,B)) :

1. The receiver sends ∆ := A+X to the sender.
2. The sender computes C′ := π(∆) + C.
3. The sender outputs C′ and the receiver outputs B.

Fig. 9. The ΠDerand-Msg protocol that derandomizes a permutation correlation to gen-
erate shares of X permuted by π.

Theorem 4. The composition of FGen-Perm for arbitrary π and ΠDerand-Msg for
input JXK securely realizes FBasic-Perm on input JXK, π in the semi-honest setting.

Proof. The only message sent is ∆ = A + X. Given that A is uniformly dis-
tributed, so is ∆.

Protocol ΠDerand-Inv-Msg in Figure 10 takes as input a list X ∈ Fn×ℓ and a
permutation correlation (A,B,C, π). The protocol derandomizes the correlation
to return secret shares of X permuted by π−1. Given that (A,B,C, π) is a
uniformly distributed permutation correlation, the result is indistinguishable
from the parties calling FBasic-Perm on input π−1 and X.

Protocol ΠDerand-Inv-Msg(Sender : (π,C),Receiver : X, (A,B)) :

1. The receiver sends ∆ := B +X to the sender.
2. The sender computes C′ := π−1(∆+ C).
3. The sender outputs C′ and the receiver outputs A.

Fig. 10. The ΠDerand-Inv-Msg protocol that derandomizes a permutation correlation to
generate shares of X permuted by π−1.

Theorem 5. The composition of FGen-Perm for arbitrary π and ΠDerand-Inv-Msg for
input JXK securely realizes FBasic-Perm on input JXK and π−1 in the semi-honest
setting.

Proof. Similar to Theorem 4.

Definition 4. Let ΠBasic-Perm(π, JXK) be defined as the composition of FGen-Perm(π)
and ΠDerand-Msg.

23

7 Protocol Asymptotics

Figure 11 summarizes the overheads of our protocols. Time (theory) refers to the
running time when one can compute FSowprf in O(κ) time and communication.
While not practical as of the time of writing this work, we note that [APRR24]
combined with [BCG+23] gives a theoretical construction that can achieve the
desired overhead. However, it is more practical to assume FSowprf requires O(κ2)
time and O(κ) communication. We denote this setting as Time (practice).

Protocol
Time Time Comm. Rounds

(theory) (practice) (bits)

ΠPrf-Perm nℓ′ nℓ′κ nℓ′ 2

ΠPcg-Perm nκ2 log(ℓ/κ2) + nℓ nκ2 log(ℓ/κ2) + nℓ log ℓ nκ2 log(ℓ/κ2) + nℓ log(ℓ/κ2)

ΠDerand-Perm n n n logn 1

ΠDerand-Msg nℓ nℓ nℓ 1

ΠDerand-Inv-Msg nℓ nℓ nℓ 1

ΠBasic-Perm nℓ′ nℓ′κ nℓ′ 1

ΠComp-Perm nℓ′ nℓ′κ nℓ′ 2

ΠA2C nκ nκ2 nκ 1

ΠC2A nκ nκ2 nκ 1

ΠExt-Unord nκ nκ2 nκ 3

ΠExt-Ord nκ nκ2 nκ 3

ΠExt-Unord-Pad nκ nκ2 nκ 3 + logn

ΠExt-Ord-Pad nκ nκ2 nκ 3 + logn

ΠPartition nκ nκ2 nκ 3

ΠRadix-Sort nℓκ nℓκ2 nκ 3ℓ

ΠQuick-Sort nℓ∗ logn · log ℓ∗ + nκ nℓ∗κ logn · log ℓ∗ + nκ2 nℓ∗ logn · log ℓ∗ + nκ 3 + logn log ℓ∗

ΠBatched-RAM-Read n logn log log n+ nκ nκ logn log log n+ nκ2 n logn log log n+ nκ 3 + logn

Fig. 11. Performance metrics of our various protocols. n is the input length, ℓ is the
element bit length, κ is the security parameter, ℓ′ := ⌈ℓ/κ⌉κ is the element bit length
rounded up to κ, and ℓ∗ := ℓ + logn. For round complexity, we do not count any
rounds that can be preprocessed. (theory) refers to the time required if [APRR24] is
implemented in O(κ) time and we make use of O(1) time amortized bit OTs[BCG+23].
For the extraction protocols, we omit the cost of permuting the data, which can be
done seperately via ΠBasic-Perm.

24

8 Secret-Shared Permutations

In functionalities FComp-Perm and FAdd-Perm, we extend the core FBasic-Perm permu-
tations functionality to allow the permutation to be secret-shared. The former
FComp-Perm allows the parties to input a composed permutation ⟨⟨π⟩⟩ and a secret-
shared list JXK, and then receive secret shares of π(X). This is achieved by each
party holding a permutation, which when composed together, equals π. In par-
ticular, we denote the two permutations ⟨⟨π⟩⟩1, ⟨⟨π⟩⟩2 (the first party holds ⟨⟨π⟩⟩1,
the second ⟨⟨π⟩⟩2). The latter functionality FAdd-Perm achieves the same result,
but allows the permutation π to be additively secret-shared, i.e. π = JπK1+JπK2.

Functionality FComp-Perm (⟨⟨π⟩⟩, JXK) :

Input: Composed permutation ⟨⟨π⟩⟩ and secret-shared list JXK.
Output: Secret-shared list JY K such that Y := π(X).

Protocol ΠComp-Perm(⟨⟨π⟩⟩, JXK) :

1. The parties invoke FBasic-Perm on ⟨⟨π⟩⟩1 and JXK, and receive JY K as the result.
2. The parties invoke FBasic-Perm on ⟨⟨π⟩⟩2 and JY K, and receive JZK as the result.
3. The parties output JZK.

Fig. 12. The FComp-Perm functionality and ΠComp-Perm protocol that permute a secret
shared list JXK by a composed permutation ⟨⟨π⟩⟩.

We implement FComp-Perm with the ΠComp-Perm protocol in the FBasic-Perm-hybrid
model. We note that one can permute by π−1 simply by running the protocol in
reverse.

Theorem 6. Protocol ΠComp-Perm securely realizes the FComp-Perm functionality
in the semi-honest setting.

Proof. The protocol is trivial to simulate given that only FBasic-Perm is invoked
and the parties do not directly send messages to each other.

Functionality FAdd-Perm (JπK, JXK) :

Input: Additively shared permutation JπK and secret-shared list JXK.
Output: Secret-shared list JY K such that Y := π(X).

Fig. 13. The FAdd-Perm functionality that permutes a secret-shared list JXK by an ad-
ditively shared permutation JπK.

To implement FAdd-Perm, we must first convert JπK into ⟨⟨π⟩⟩. We achieve this
with the FA2C functionality, which is realized by the ΠA2C protocol. Once the

25

parties hold ⟨⟨π⟩⟩, they can simply invoke FComp-Perm to realize the FAdd-Perm

functionality. We also present the FC2A functionality for converting ⟨⟨π⟩⟩ into an
additive sharing JπK. FC2A is realized by the ΠC2A protocol.

Functionality FA2C (JπK) :

Input: Additively shared permutation JπK.
Output: Composed permutation ⟨⟨π⟩⟩.

Protocol ΠA2C(JπK) :

1. The second party samples a random permutation ⟨⟨π⟩⟩2.
2. The parties invoke FBasic-Perm on permutation ⟨⟨π⟩⟩−1

2 and input JπK. They receive
JρK as the result.

3. The parties reveal JρK to the first party who computes ⟨⟨π⟩⟩1 := ρ.
4. The parties output ⟨⟨π⟩⟩.

Fig. 14. The FA2C functionality and ΠA2C protocol that converts an additively secret-
shared permutation JπK into a composed permutation ⟨⟨π⟩⟩.

Theorem 7. Protocol ΠA2C securely realizes the FA2C functionality in the semi-
honest setting.

Proof. Observe that permutation composition γ := θ ◦ ω can be computed by
considering the vector representation and computing γ := θ(ω), where γ, ω are

vectors. Therefore ΠA2C computes shares of ρ = ⟨⟨π⟩⟩−1
2 ◦ π. If we multiply from

the left by ⟨⟨π⟩⟩2 we obtain
⟨⟨π⟩⟩2 ◦ ⟨⟨π⟩⟩1 = π

as desired. Therefore, the protocol is correct. Privacy follows from a straightfor-
ward simulation of FBasic-Perm.

Theorem 8. Protocol ΠC2A securely realizes the FC2A functionality in the semi-
honest setting.

Proof. As detailed in the proof of Theorem 7, JπK is correctly computed due
to π = ⟨⟨π⟩⟩2 ◦ ⟨⟨π⟩⟩1 = ⟨⟨π⟩⟩2(⟨⟨π⟩⟩1). Therefore, the protocol is correct. Privacy
follows from a straightforward simulation of FBasic-Perm.

Corollary 1. As implied in the proof of Theorem 7, the parties can compute
composition of two permutations when the first is shared in the permutation
group and the second is additively shared.

Theorem 9. The composition of FA2C and FComp-Perm realizes the FAdd-Perm

functionality in the semi-honest setting.

Proof. Correctness follows by inspection. Similarly, privacy can be demonstrated
via straightforward simulation.

26

Functionality FC2A (⟨⟨π⟩⟩) :

Input: Composed permutation ⟨⟨π⟩⟩.
Output: Additively shared permutation JpiK.

Protocol ΠC2A(⟨⟨π⟩⟩) :

1. The parties invoke FBasic-Perm on permutation ⟨⟨π⟩⟩2 and for input a sharing of ⟨⟨π⟩⟩1
a.

They receive JπK as the result.
2. The parties output JπK.

a ⟨⟨π⟩⟩1 can be considered an additive sharing by defining the first share as ⟨⟨π⟩⟩1 and
the second share as 0. We also note that FBasic-Perm can trivially be extended to accept
a plaintext input list.

Fig. 15. The FC2A functionality andΠC2A protocol that converts composed permutation
⟨⟨π⟩⟩ into an additively secret-shared permutation JπK.

9 Extraction Protocols

We present our extraction protocols at a high level in Section 4.4. We now present
them in formal detail:

9.1 Extract Unordered

FExt-Unord (Figure 16) receives as input JXK and a bitvector JfK such that |X| =
|f | = n. fi indicates if Xi is marked. Then it extracts and outputs all marked
elements JY K = {JXiK|fi = 1} in a uniform order. Additionally, it outputs the
permutation π and size c such that Y = π(X)[c]. Therefore, one can unextract
by simply computing π−1(Y ||0n−c).

The protocol ΠExt-Unord first associates each Xi with its corresponding fi
and permutes them by a random π. (step 2). Given the output size c =

∑
i fi,

observe that the f ′ = π(f) is a uniformly random weight c vector. We can
thus safely reveal the permuted f ′. Then we select all elements of the permuted
JXK′ = π(JXK) where f ′

i = 1 (step 4,5) and output them (step 6). The resulting
permutation is also returned by computing the “selection” permutation ρ with
π.

Theorem 10. Protocol ΠExt-Unord realizes the FExt-Unord functionality in the semi-
honest setting.

Proof. Correctness can be verified by inspection. The simulation of FComp-Perm

is straightforward. To simulate f ′, observe that the ideal output includes the
weight c of f . Therefore, the simulator can simulate f ′ by sampling a uniformly
random f ′ with weight c and then sampling a consistent π. This distribution is
identical, and therefore f ′ reveals no information beyond the desired output.

27

Functionality FExt-Unord(JXK, JfK) :

Input: Secret-shared list JXK ∈ Fn, flags JfK ∈ {0, 1}n.
Output: (JY K, ⟨⟨π⟩⟩, c). Count c :=

∑
i fi, permutation ⟨⟨π⟩⟩ where π : [n] → [n] is

random subject to π(f) = 1∗||0∗, and Y = π(X), i.e. the first c items of Y are
{Xi | fi = 1} and are in random order.

Protocol ΠExt-Unord(JXK, JfK) :

1. Locally sample random ⟨⟨π⟩⟩.
2. JX ′K ▷◁ Jf ′K := FComp-Perm(⟨⟨π⟩⟩, JXK ▷◁ JfK)
3. f ′ := FOpen(Jf ′K), c :=

∑
i f

′
i

4. Sample an arbitrary permutation ρ s.t. ρ(f ′) = 1c0n−c

5. JY K := ρ(JX ′
iK)

6. return (JY K, ρ ◦ ⟨⟨π⟩⟩, c)

Fig. 16. ΠExt-Unord implements FExt-Unord. It outputs the extracted elements in random
order. ΠExt-Unord runs in O(n) time & communication and O(1) rounds.

9.2 Extract Ordered

FExt-Ord (Figure 17) is also similar to FExt-Unord, but outputs the extracted Xi in
the order they appear in X.

The protocol ΠExt-Ord uses ΠExt-Unord as a subprotocol. As the output of
ΠExt-Unord is in random order, we mark X with additional information that will
enable to place the extracted Xi in their original order in X. I.e., we compute
JρK, the number of marked elements before each Xi, via simple local additions
(step 1), mark X with ρ and invoke ΠExt-Unord (step 2), open the extracted ρ′ to
both parties (step 3), and permute the extracted X ′ according to ρ′ (step 4). We
then output the resulting list (step 5) along with the shared permutation and
output size c.

Functionality FExt-Ord (JXK, JfK) :

Input: Secret-shared list JXK ∈ Fn, JfK ∈ {0, 1}n of size n.
Output: (JY K, ⟨⟨π⟩⟩, c). Count c :=

∑
i fi, permutation ⟨⟨π⟩⟩ where π : [n] → [n] is

subject to π(f) = 1c||0∗ and π(i) < π(i′) for 0 ≤ i < i′ < c, and Y = π(X), i.e. the
first c items of Y are {Xi | fi = 1} and are in order.

Protocol ΠExt-Ord(JXK, JfK) :

1. JρiK := Σj≤iJfjK
2. (JX ′K ▷◁ Jρ′K, ⟨⟨π′⟩⟩) := FExt-Unord(JXK ▷◁ JρK, JfK, c)
3. ρ′ := FOpen(Jρ′K[c])||[c, n]
4. JY K := ρ′−1(JX ′K)
5. return (JY K, ρ′−1 ◦ ⟨⟨π′⟩⟩, c)

Fig. 17. ΠExt-Ord implements FExt-Ord. It outputs the extracted elements in the original
order they appear in the input list X. ΠExt-Unord runs in O(n) time & communication
and O(1) rounds.

28

Theorem 11. Protocol ΠExt-Ord realizes the FExt-Ord functionality in the semi-
honest setting.

Proof. Correctness can be verified by inspection. Simulating FExt-Unord is straight-
forward. For simulating ρ′, observe that ρ contains [c] in monotonically increasing
order. Moreover, for i with fi = 1, ρi is one larger than its predecessor. There-
fore, FExt-Unord will return the ρi for fi = 1 in a random order and these ρi will
all be unique. This can be simulated simply by returning a random permutation
of [c].

9.3 Extract Unordered Padded

FExt-Unord-Pad (Figure 18) is similar to FExt-Unord but pads the output to fixed
length t. If fewer than t flags are one, then the output will include padding
elements from a second input JP K. Let c := Σi<nfi denote the number of flagged
inputs. The protocol ΠExt-Unord-Pad first invokes ΠIndexToOneHot (step 1), which
returns a one-hot vector JhK of size t. If c ≤ t, then hc = 1 and otherwise is
zero. In step 2, we extend f with the prefix sum of h. Note that after this step
|{i | fi = 1}| = n + t. In step 3, we extend JXK with the padding elements
and then invoke FExt-Unord to extract Xi|fi = 1 (step 4) along with any padding
elements.

Now that we explained ΠExt-Unord-Pad, we look more closely at ΠIndexToOneHot

invoked in step 1. ΠIndexToOneHot constructs a complete binary tree of depth w :=
⌈log2(c)⌉ (step 1). Our invariant is that the node values at each level represent a
one-hot vector. At the root we have a size 1 one-hot vector. At the next levels i,
we have size 2i one-hot vectors. This results in the last level having c leaves, all
zeros but at one point. Our technique carefully arranges that the nonzero value
is at point I. The values at the leaves represent the output of ΠIndexToOneHot. We
denote each node as ti,j , where i is the current level of the tree and j is the node
index at that level (from the left). We bit decompose I into Iw−1, . . . , I0 (Iw−1

is the MSB), which represents the path to tw−1,I = 1 (step 2).
To maintain our invariant, we set the root of the tree t0,0 := 1 (step 3) and

next proceed with setting the remaining ti,j . We iterate over each level i and
over each node j in that level (step 4). In step a we compute the position (i, j)
of the current parent p and the position of its children c0, c1.

In steps b-c, we set the node values of the children tc0 and tc1 . We set them
such that the one-hot position at the children’s level is in exactly one of the
children of the one-hot position in the parent’s level. We use Iw−1−i to determine
if the left child is 1 (Iw−1−i = 0) or the right child (Iw−1−i = 1). This ensures
that we hold 1 on the path to position I in the leaf level. More specifically, we
look at all the right children of a given level. It will be 1 if and only if the parent
tp = 1 AND Iw−1−i = 1 (step b). Then we look at all the left children of a given
level. It will be 1 if and only if the parent tp = 1 AND Iw−1−i = 0. We can
optimize this logic. We know that tc0 ⊕ tc1 ⊕ tp = 0. I.e., if the parent tp = 0,
then both children tc0 = tc1 = 0. If the parent tp = 1, then at most one child tc0
or tc1 is 1. Hence, we can simply define the right child as tc0 ⊕ tp (step c). Now
that we computed all ti,j , we output the leaves tw−1 (step 5).

29

Functionality FExt-Unord-Pad(JfK, JXK, JP K) :

Input: Secret-shared flags JfK ∈ {0, 1}n. Optionally, shared list JXK ∈ Fn, padding
list JP K ∈ Ft.
Output: (JY K, ⟨⟨π⟩⟩, c). Count c := max(f∗, t) where f∗ =

∑
i fi. Shared permutation

⟨⟨π⟩⟩ where π : [n + t] → [n + t] is random subject to π(f ||1r||0t−r) = 1∗||0∗ where
r := c − f∗. Additionally, if the optional JXK, JP K are provided, output a sharing of
Y = π(X||P); the first c positions of Y contain {Xi | fi = 1} ∪ {Pi | i ∈ [r]} in a
random order.

Protocol ΠExt-Unord-Pad(JfK, JXK, JP K) :

1. JhK := ΠIndexToOneHot(Σi<nJfiK, t)
2. Jfn+iK :=

⊕
j≤i JhjK for i ∈ [t].

3. JXK := JXK||JP K
4. return FExt-Unord(JXK, JfK)

Protocol ΠIndexToOneHot(JIK, t) :

1. w := ⌈log2(t)⌉
2. JIw−1K, . . . , JI0K := FBit-Decomp(JIK, w).
3. Jt0,0K := 1
4. for i = [w − 1] and parallel for j ∈ [2i]:

a. p := (i, j), c0 := (i+ 1, 2j), c1 := (i+ 1, 2j + 1)
b. Jtc0K := Jtp K ∧ JIw−1−iK
c. Jtc1K := Jtc0K⊕ JIw−1−iK

5. return Jtw−1K

Fig. 18. ΠExt-Unord-Pad implements FExt-Unord-Pad. Like ΠExt-Unord, it extracts elements in
random order. Additionally, the output list is padded to size c so that the number of
non-dummies c′ ≤ c stays private. The dummies are interspersed with the output. It
runs in O(n) time & communication and O(1) rounds.

Theorem 12. Protocol ΠExt-Unord-Pad realizes the FExt-Unord-Pad functionality in
the semi-honest setting.

Proof. Correctness can be verified by inspection. Privacy can be demonstrated
by invoking the simulator for ideal functionalities and that of a generic MPC
protocol.

9.4 Extract Ordered Padded

FExt-Ord-Pad (Figure 19) is the equivalent of FExt-Unord-Pad, but outputs extracted
elements {Xi | fi = 1} in their original order (followed by dummies to pad to size
t). The protocol ΠExt-Ord-Pad combines the ideas from ΠExt-Ord and ΠExt-Unord-Pad.
Like ΠExt-Ord, ΠExt-Ord-Pad computes JtK in step 1 to remember the original order
in X. But since our protocol also pads (similarly to ΠExt-Unord-Pad), it additionally
computes JtK for the c appended elements so that after extraction they are placed

30

at the end of the list (step 4). Steps 2-3 are equivalent to those in ΠExt-Unord-Pad,
and output a bitvector of size c that is non-zero only for the number of elements
that should be padded. This ensures that the extracted output is of size c. This
bitvector is then used in step 4 to extend t for the padded elements. Step 5 sets
all values of X in the c appended elements to zeros (to mark them as dummies).
Now X contains c elements with fi = 1 and their associated order t. Hence,
we are ready to extract JX ′K ▷◁ Jt′K (step 6). The remaining steps 7-9 are now
identical to ΠExt-Unord-Pad. We open t, permute JX ′K based on t, and output.

Functionality FExt-Ord-Pad(JfK, JXK, JP K) :

Input: Secret-shared flags JfK ∈ {0, 1}n. Optionally, shared list JXK ∈ Fn, padding
list JP K ∈ Ft.
Output: (JY K, ⟨⟨π⟩⟩, c). Count c := max(f∗, t) where f∗ =

∑
i fi. Shared permutation

⟨⟨π⟩⟩ where π : [n + t] → [n + t] is random subject to π(f ||1r||0t−r) = 1∗||0∗ where
r := c − f∗. Additionally, if the optional JXK, JP K are provided, output a sharing of
Y = π(X||P); the first c positions of Y contain {Xi | fi = 1} ∪ {Pi | i ∈ [r]} in their
original order.

Protocol ΠExt-Ord-Pad(JfK, JXK, JP K) :

1. JdiK := Σj<iJfjK for i ∈ [n]
2. JhK := ΠIndexToOneHot(Σi<nJfiK, t)
3. Jfn+iK :=

⊕
j≤i JhjK for i ∈ [c]

4. Jdn+iK := Jfn+iK · i for i ∈ [t]
5. JXK := JXK||JP K
6. (JX ′K ▷◁ Jd′K, JπK, c) := FExt-Unord(JXK ▷◁ JdK, JfK)
7. ρ := FOpen(Jd′K[c])||[c, n+ t]

8. JY K := ρ(JX ′
iK)

9. return (JY K, ρ ◦ ⟨⟨π⟩⟩, c).

Fig. 19. ΠExt-Ord-Pad implements FExt-Ord-Pad. Like ΠExt-Ord, it extracts elements in the
order they appear in X. Additionally, the output list is padded to size c so that the
number of non-dummies c′ ≤ c stays private. The dummies are (obliviously) placed at
the end of the output list. It runs in O(n) time & communication and O(1) rounds.

Theorem 13. Protocol ΠExt-Ord-Pad realizes the FExt-Ord-Pad functionality in the
semi-honest setting.

Proof. Correctness can be verified by inspection. The simulation ofΠIndexToOneHot

and FExt-Unord directly follows from their simulators. For simulating ρ, observe
that ρ contains [c] in monotonically increasing order. Moreover, for i with fi = 1,
ρi is one larger than its predecessor. Any missing ρi values up to t are then
manually included in step 4. Therefore, FExt-Unord will return the ρi for fi = 1 in
a random order and these ρi will all be unique. This can be simulated simply by
returning a random permutation of [c].

31

10 Sorting

We demonstrate that several prior works [CHI+19,AHI+22,HKI+13] can be ef-
ficiently implemented in our framework. The ideal functionality FStable-Sort is
presented in Figure 20. FStable-Sort is stable, and hence ensures that equal values
maintain their order. It outputs a permutation that sorts the inputs.

Functionality FStable-Sort :

FStable-Sort(JXK) :
Upon input JXK, compute stable sorting permutation π of X. Return ⟨⟨π⟩⟩.

Fig. 20. The random and stable sorting functionality FStable-Sort. We note that one could
consider outputting π in additive format JπK.

10.1 Partition

Most prior works were presented in the three-party honest-majority setting due
to the existence of efficient permutations. [CHI+19,AHI+22] implement radix
sort and generate a sorting permutation of a single bit using a circuit. In par-
ticular, they consider a subprotocol, which we denote as ΠPartition. It takes as
input a bit vector X and returns the stable sorting permutation. We refer to
4.5 for the intuition of this protocol. We note that compared to [CHI+19], we
optimize this protocol with the use of ΠIndexToOneHot which requires significantly
less communication.

Protocol ΠPartition :

ΠPartition-Add(JXK) :

1. i ∈ [n] : (Jf1,iK, ..., Jf2ℓ,iK) := ΠIndexToOneHot(JXiK, 2ℓ)
2. j ∈ [2ℓ], i ∈ [n] : Jsj,iK =

∑
i′,j′ s.t. j′<j∨(j′=j∧i′≤i) Jfi′,j′K

3. i ∈ [n] : JπiK =
∑

j∈[2ℓ] Jsi,jK
4. return JπK

ΠPartition(JXK) :

1. return FA2C(ΠPartition-Add(JXK))

Fig. 21. Protocol ΠPartition that implements the FStable-Sort functionality. Let n be the
length ofX and ℓ be the bit-length of the elements ofX. It makes use of the subprotocol
ΠPartition-Add, which implements FStable-Sort with additive secret-shared output.

32

Theorem 14. Protocol ΠPartition realizes the FStable-Sort functionality in the semi-
honest setting.

Proof. Correctness can be verified by inspection. Simulation follows from only
making use of generic computation for circuits and the simulator for FA2C.

10.2 Radix Sort

To sort multiple bits, one can invoke ΠPartition multiple times, starting with the
most significant bit and then compose the resulting permutations to get the
overall sorting permutation. Given access to O(n) time permutation gates, the
radix sort protocol ΠRadix-Sort of Figure 22 requires O(nℓ log ℓ) communication
and O(ℓ) rounds to stable sort n items of length ℓ.

Protocol ΠRadix-Sort :

Parameter: Let t ∈ N be a hyperparameter with default value 2.

ΠRadix-Sort(JXK) :

1. Let JX ′
iK := JXi,[ℓ−t,ℓ]K be the t most significant bits of JXiK for i ∈ [n]

2. ⟨⟨π⟩⟩ := ΠPartition(JX ′K)
3. For j ∈ [1, ⌈ℓ/t⌉] :

(a) ℓ′ := ℓ− jt
(b) JX ′

iK := JXi,[ℓ′−t,ℓ′]K for i ∈ [n]
(c) JρK := ΠPartition-Add(JX ′K)
(d) JπK := FComp-Perm(⟨⟨π⟩⟩, JρK)
(e) ⟨⟨π⟩⟩ := FA2C(JπK)

4. return ⟨⟨π⟩⟩

Fig. 22. Protocol ΠRadix-Sort implements the FStable-Sort functionality.

Theorem 15. Protocol ΠRadix-Sort realizes the FStable-Sort functionality in the semi-
honest setting.

Proof. Correctness can be verified by inspection. Simulation follows from the
simulators for ΠPartition,FComp-Perm,FA2C.

10.3 Quick Sort

The latter, [HKI+13], take a different approach in the so-called shuffle-reveal
model. The idea is that if the input lists are first shuffled, one can run most
insecure comparison-based sorting algorithms, e.g. quick sort, where each com-
parison is replaced by a protocol that only reveals the result of the comparison.
This protocol makes use of O(n log n) comparisons over O(log n) steps. The run-
ning time of this protocol is O(nℓ log n log ℓ) and O(log nℓ log ℓ) rounds assuming
a comparison requires O(ℓ log ℓ) time and O(ℓ) rounds.

33

However, one shortcoming of a direct implementation of this paradigm is
that the inputs must be totally ordered, i.e. with no duplicate values. Let us
consider quick sort and consider the view of the parties if all elements are the
same or all are different. If they are the same, the result of the comparisons
will all be the same, while different values implies that the comparisons will be
uniformly random. [HKI+13] proposed a simple solution to make any input list
totally ordered by appending the index of the item as its least significant bit,
e.g. X ′

i := Xi ·n+ i. Then it is possible to invoke the shuffle-reveal compiler and
get secure sort. One benefit of this approach is that the resulting sort is stable
while quick sort is usually unstable. We present this protocol as ΠQuick-Sort in
Figure 23. The overall running time is O(nℓ′ log n log ℓ′) and O(log n + log ℓ′)
rounds where ℓ′ := ℓ+ log n.

Protocol ΠQuick-Sort :

ΠQuick-Sort-Impl(JXK) :

1. The parties jointly sample i← [n]
2. JpK := JXiK and ci := 1
3. for j ∈ [n]\{i} : cj := FOpen((JXjK ·2+ JtK) < (JpK ·2+ JsK)) ·2 where JtK is sampled

as a uniform bit and JsK := 1− JtK = 1⊕ JtK.
4. Let ρ be the sorting permutation for c
5. JX ′K := ρ(JXK)
6. i′ := ρ−1(i)
7. JZK := JX ′

[i′−1]K
8. JY K := JX ′

[i′+1,n]K
9. (θ, γ) := (ΠQuick-Sort-Impl(JZK), ΠQuick-Sort-Impl(JY K))

10. return (θ||i′||γ + i′) ◦ ρ

ΠQuick-Sort(JXK) :

1. The parties sample ⟨⟨π⟩⟩ uniformly at random
2. JX ′K := FComp-Perm(⟨⟨π⟩⟩, JXK)
3. return ΠQuick-Sort-Impl(JX ′K, [n]) ◦ ⟨⟨π⟩⟩

Fig. 23. Protocol ΠQuick-Sort that implements the FStable-Sort functionality.

Theorem 16. Protocol ΠQuick-Sort realizes the FStable-Sort functionality in the
semi-honest setting.

Proof. Correctness can be verified by inspection. The simulator works by sam-
pling a random permutation θ : [n]→ [n]. For the first invocation ofΠQuick-Sort-Impl,
the cj values are computed as

cj := θ−1(i) < θ−1(j)

Subsequent recursions of ΠQuick-Sort-Impl are computed the same way with the
indices appropriately updated based on the subrange in question.

34

Observe that this perfectly simulates the protocol. The cj collectively specify
θ exactly. In the real protocol, the overall sorting permutation is ρ = θ◦π where π
is uniformly distributed. Therefore, θ := ρ◦π−1 is also uniformly distributed.

11 Batched Random Access Memory

We now present a generalization of our permutation functionalities to allow the
parties to input an arbitrary selection vector σ and list X. The protocol results
in the parties performing batched random access into X based on σ. I.e. it
returns the sharing JY K := (JXσ(1)K, ..., JXσ(m)K). This protocol makes use of
the aggregation tree technique first presented by [BDG+22] in the three-party
honest majority setting and summarized in Section 3.4.

The protocol begins by applying a stable sort to the set of indices [n] extended
with the selection vector σ to obtain the sorting permutation π. Intuitively, we
will use π to place each Xi before the “output” positions that want to access
Xi. More specifically, π is used to permute both the values X concatenated
with m dummy elements to obtain X ′. Additionally, the parties compute flags
b = π(0n||1m) to denote which items are dummies, i.e. X ′

i is a dummy if bi = 1.
The critical property of X ′ is that each non-dummy X ′

i is followed by t dummies
where t is the number of times it is being selected.

The parties then invoke the aggregation tree functionality FAgg with the flag
bits b and the permuted list X ′. FAgg will duplicate each non-dummy X ′

i into the
next set of contiguous dummy positions [BDG+22]. We refer to Section 3.4 or
[BDG+22] for more details on how this is achieved but overall it requires O(nℓ)
time and O(log n) rounds. Let Z denote the result of FAgg. The parties can then
unpermute the aggregated vector Z to Y . The first n positions of Z will be X
while the last m positions will be the desired output Y .

Functionality FBatched-RAM-Read(JσK, JXK) :

Input: A shared selection JσK where σ ∈ [n]m and shared list JXK where X ∈ Fn×ℓ

Output: A shared vector JY K such that Yi = Xσ(i)

Protocol ΠBatched-RAM-Read(JσK, JXK) :

1. ⟨⟨π⟩⟩ := FStable-Sort([n]||JσK)
2. JbK := FComp-Perm(⟨⟨π⟩⟩, 0n||1m)
3. JX ′K := FComp-Perm(⟨⟨π⟩⟩, JXK||0m)
4. JZK := FAgg(JbK, JX ′K, dup) where dup(x, y) := x.
5. JY K := FComp-Perm(⟨⟨π⟩⟩−1, JY K)
6. return JY K[n,n+m]

Fig. 24. Protocol ΠBatched-RAM-Read that implements the FBatched-RAM-Read functionality.

35

Theorem 17. The protocol ΠBatched-RAM-Read realizes the functionality FBatched-RAM-Read

in the semi-honest setting.

Proof. Correctness can be verified by inspection. Simulation follows from a sim-
ple composition argument.

We note that the inverse write operation ofΠBatched-RAM-Read has the following
challenges. First, we need to define what happens when multiple inputs are
written to the same output position. We consider several options, the output
could take the first or the last value to be written. More generally, the caller
can define their own associative operator ⋆(x, y) and the values mapped to an
output position j are computed as ⋆i∈{i|σj=i}Xi.

Lastly, we need to define the value of output position j for which σ has no
mapping, i.e. |{i | σj = i}| = 0. The most natural option is to provide a default
value Dj . Overall, the jth output position will be the summation of the jth
default value and the input values written to it, i.e. Yj := Dj ⋆ ⋆i∈{i|σj=i}Xi.
We note that simple modifications of the protocol can select the default only
if no Xi are mapped to it. The full protocol ΠBatched-RAM-Write is presented in
Figure 25. It follows a similar logic as ΠBatched-RAM-Read.

Functionality FBatched-RAM-Write(JσK, JXK, JDK, ⋆) :

Input: A shared selection JσK where σ ∈ [n]m and shared list JXK, JDK where
X ∈ Fn×ℓ, D ∈ Fm×ℓ and associative operator ⋆ : Fℓ × Fℓ → Fℓ.
Output: A shared vector JY K such that Yj = Dj ⋆⋆i∈{i|σj=i}Xi for j ∈ [m].

Protocol ΠBatched-RAM-Write(JσK, JXK, JDK, ⋆) :

1. ⟨⟨π⟩⟩ := FStable-Sort([n]||JσK)
2. JbK := FComp-Perm(⟨⟨π⟩⟩, 1n||0m)
3. JX ′K := FComp-Perm(⟨⟨π⟩⟩, JDK||JXK)
4. JZK := FAgg(JbK, JX ′K, ⋆).
5. JY K := FComp-Perm(⟨⟨π⟩⟩−1, JY K)
6. return JY K[n]

Fig. 25. Protocol ΠBatched-RAM-Write that implements the FBatched-RAM-Write functionality.

Theorem 18. The ΠBatched-RAM-Write protocol realizes the functionality FBatched-RAM-Write

in the semi-honest setting.

Proof. Correctness can be verified by inspection. Simulation follows from a sim-
ple composition argument.

12 Evaluation

We implement several of our protocols and report on their performance. The
implementation is written in C++ and primarily focuses on binary secret shar-

36

Time (ms) Comm. (MB)

Protocol
n

212 216 220 212 216 220

⋆ Gazelle [JVC18] (ΠBasic-Perm) 2,135 19,846 303,219 0.8 13.4 215
Paillier Permutations (ΠBasic-Perm) 143,030 572,120 2,288,480 4.2 67 1,075
ΠBasic-Perm + ΠPrf-Perm w/ [ARS+15] 970 13,498 250,689 3.8 61 975
ΠBasic-Perm + ΠPrf-Perm w/ [APRR24] 77 1,117 19,622 0.7 11.4 182

ΠPartition 86 1,396 24,242 8.0 20 324
ΠRadix-Sort ℓ = 32 1,208 17,890 299,702 16.9 270 4,333
ΠBatched-RAM-Read 592 10,846 221,214 7.9 163 3,183

Fig. 26. Performance metrics for running our protocols on lists of size n. The string
length is ℓ = 128 bits (except for sort). Time is measured in milliseconds and com-
munication in MB. ⋆ Gazelle numbers are taken from [JVC18] and do not account for
ciphertext privacy.

ing. We intend to open source the implementation. Where more efficient, e.g.
ΠPartition, the protocols switch to arithmetic secret sharing and then back to bi-
nary. We employ the binary GMW [GMW87] protocol to evaluate circuits with
correlated randomness generated using Silent OT [BCG+19b] with optimization
provided by [RRT23]. Each AND gate requires 4 bits of communication. We con-
sider two implementations of a weak PRF. The first is LowMC PRP [ARS+15]
and the second is alternating moduli-based PRF [APRR24]. For the latter, we
make use of their implementation.

All performance numbers for our protocols and Paillier were obtained by
running the protocol on a laptop computer with 8GB of RAM. Both parties run
on a single shared thread. As such, real deployments with each party running
on a separate machine could see up to a 2x improvement in running time, plus
network latency. More generally, most of the protocols can be parallelized and we
would expect a new linear speedup (at least for a moderate number of threads).
Communication is performed by directly passing in memory buffers between
the parties. Our core permutation protocol ΠBasic-Perm + ΠPrf-Perm is constant-
round, and therefore one can estimate the additional cost of sending the data by
dividing the total communication by the bandwidth. For the non-constant round
protocols ΠRadix-Sort,ΠBatched-RAM-Read, we note that they require only a relatively
small number of rounds, and therefore are well-approximated by the bandwidth.

We compare our protocols implementing FGen-Perm to the lattice AHE based
Gazelle protocol [JVC18] and the folklore Paillier AHE protocol. Both of these
protocols follow the same outline. The receiver holds an input vector A and
the sender holds a permutation π. The receiver encrypts the components of
A using AHE, i.e. JAiK = AHE.enck(Ai), sends JAK to the sender who sends
JCK = π(JAK) − B back where B is a random vector. The receiver can decrypt
the result as C such that B + C = π(A). Unlike our binary correlation, Gazelle
uses a 20-bit integer modulus and Paillier requires a larger modulus, e.g. a 2000-
bit integer. Although we do not report this overhead, one can convert such

37

correlations to binary with additional overhead, e.g. b log b OTs and log b rounds
for a b-bit modulus.

The Gazelle protocol presents various optimizations such as lattice-based
AHE packing/SIMD where the multiplied plaintexts are packed into a single ci-
phertext. This results in better communication and encryption times, but adds
additional complexity due to the need to permute values within a single cipher-
text. We refer to [JVC18] for details but note that ciphertexts must be decom-
posed, permuted, masked and then recombined. We do not include the time to
mask or recombine. Moreover, to prevent leaking information about π via the
distribution of LWE ciphertext noise, one must use an LWE/AHE scheme with
circuit privacy [Klu22]. However, Gazelle does not consider this, and therefore
the overhead of a fully secure scheme will be noticeably higher, e.g. due to the
need to perform noise flooding. In particular, in Figure 26 we only report the
times provided by [JVC18] to encrypt, decrypt, decompose and permute values
within single ciphertext without circuit privacy.

Our protocolΠBasic-Perm +ΠPrf-Perm with the alternating moduli PRF [APRR24]
outperforms the alternative of using Paillier additive homomorphic encryption
by 100× in terms of running time and 5× for communication. We also report
the performance metrics of our permutation protocol with the LowMC PRF
[ARS+15] and observe that is is about an order of magnitude slower than
[APRR24] and requires 7× more rounds. The lattice based AHE scheme of
Gazelle [JVC18] requires only slightly more communication6 but noticable more
computation time, e.g. 15× more for n = 220, ℓ = 128. We do not compare to
Chase et al. [CGP20] due to no implementation and that they require O(n log n)
overhead.

We additionally implement the ΠPartition protocol and observe that the main
overhead is generating the permutation correlation. We report the performance
of our radix sorting protocol ΠRadix-Sort for 32-bit strings. We observe that the
majority of the overhead comes from the generation of the 16 permutation corre-
lations that the protocol requires. This suggests that quick sort ΠQuick-Sort would
likely result in better performance (more comparisons but only 1 permutation).

Lastly, we implement our batched RAM protocol and report the performance
of reading n memory locations out of a list of size n. The elements being read are
of size ℓ = 128. The vast majority of the overhead associated with this protocol
is the invocation of FStable-Sort on n elements of size log(n) bits. We implement
FStable-Sort using ΠRadix-Sort. As discussed before, we suspect that we could get
improved performance by replacing ΠRadix-Sort with ΠQuick-Sort. We leave this to
future work.

References

AFL+16. Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma
Ohara. High-throughput semi-honest secure three-party computation with

6 Although, the Gazzelle parameters do not target ciphertext privacy and therefore
may have some leakage on π.

38

an honest majority. CCS ’16, page 805–817, New York, NY, USA, 2016.
Association for Computing Machinery.

AHI+22. Gilad Asharov, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Ariel Nof, Benny
Pinkas, Katsumi Takahashi, and Junichi Tomida. Efficient secure three-
party sorting with applications to data analysis and heavy hitters. In
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’22, page 125–138, New York, NY, USA, 2022.
Association for Computing Machinery.

AKK+23. Pranav Shriram A, Nishat Koti, Varsha Bhat Kukkala, Arpita Patra,
Bhavish Raj Gopal, and Somya Sangal. Ruffle: Rapid 3-party shuffle
protocols. Cryptology ePrint Archive, Paper 2023/431, 2023. https:

//eprint.iacr.org/2023/431.
APRR24. Navid Alamati, Guru Vamsi Policharla, Srinivasan Raghuraman, and Peter

Rindal. Improved alternating moduli prfs and post-quantum signatures,
2024. Avaiable upon request.

ARS+15. Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge
Tiessen, and Michael Zohner. Ciphers for MPC and FHE. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume
9056 of LNCS, pages 430–454. Springer, Heidelberg, April 2015.

BCG+19a. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter
Rindal, and Peter Scholl. Efficient two-round ot extension and silent non-
interactive secure computation. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’19, page
291–308, New York, NY, USA, 2019. Association for Computing Machin-
ery.

BCG+19b. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Efficient pseudorandom correlation generators: Silent ot ex-
tension and more. In Alexandra Boldyreva and Daniele Micciancio, editors,
Advances in Cryptology – CRYPTO 2019, pages 489–518, Cham, 2019.
Springer International Publishing.

BCG+22. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Nico-
las Resch, and Peter Scholl. Correlated pseudorandomness from expand-
accumulate codes. In Yevgeniy Dodis and Thomas Shrimpton, editors,
Advances in Cryptology – CRYPTO 2022, pages 603–633, Cham, 2022.
Springer Nature Switzerland.

BCG+23. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Nicolas
Resch, and Peter Scholl. Oblivious transfer with constant computational
overhead. In Carmit Hazay and Martijn Stam, editors, Advances in Cryp-
tology – EUROCRYPT 2023, pages 271–302, Cham, 2023. Springer Nature
Switzerland.

BCP16. Elette Boyle, Kai-Min Chung, and Rafael Pass. Oblivious parallel ram
and applications. In Eyal Kushilevitz and Tal Malkin, editors, Theory
of Cryptography, pages 175–204, Berlin, Heidelberg, 2016. Springer Berlin
Heidelberg.

BDG+22. Saikrishna Badrinarayanan, Sourav Das, Gayathri Garimella, Srinivasan
Raghuraman, and Peter Rindal. Secret-shared joins with multiplicity from
aggregation trees. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’22, page 209–222, New
York, NY, USA, 2022. Association for Computing Machinery.

Ben64. V. E. Benes. Optimal rearrangeable multistage connecting networks. The
Bell System Technical Journal, 43(4):1641–1656, 1964.

39

https://eprint.iacr.org/2023/431
https://eprint.iacr.org/2023/431

BGI15. Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In Elis-
abeth Oswald and Marc Fischlin, editors, Advances in Cryptology - EU-
ROCRYPT 2015, pages 337–367, Berlin, Heidelberg, 2015. Springer Berlin
Heidelberg.

BIP+18. Dan Boneh, Yuval Ishai, Alain Passelègue, Amit Sahai, and David J. Wu.
Exploring crypto dark matter: New simple PRF candidates and their ap-
plications. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018,
Part II, volume 11240 of LNCS, pages 699–729. Springer, Heidelberg,
November 2018.

CGP20. Melissa Chase, Esha Ghosh, and Oxana Poburinnaya. Secret-shared shuf-
fle. In Advances in Cryptology – ASIACRYPT 2020: 26th International
Conference on the Theory and Application of Cryptology and Information
Security, Daejeon, South Korea, December 7–11, 2020, Proceedings, Part
III, page 342–372, Berlin, Heidelberg, 2020. Springer-Verlag.

CHI+19. Koji Chida, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Naoto Kiribuchi,
and Benny Pinkas. An efficient secure three-party sorting protocol with
an honest majority. Cryptology ePrint Archive, Paper 2019/695, 2019.
https://eprint.iacr.org/2019/695.

DGH+21. Itai Dinur, Steven Goldfeder, Tzipora Halevi, Yuval Ishai, Mahimna
Kelkar, Vivek Sharma, and Greg Zaverucha. MPC-friendly symmetric
cryptography from alternating moduli: Candidates, protocols, and ap-
plications. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part IV, volume 12828 of LNCS, pages 517–547, Virtual Event, August
2021. Springer, Heidelberg.

DS17. Jack Doerner and Abhi Shelat. Scaling oram for secure computation. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’17, page 523–535, New York, NY, USA, 2017.
Association for Computing Machinery.

FO20. Brett Hemenway Falk and Rafail Ostrovsky. Secure merge with
O(n log log n) secure operation. Cryptology ePrint Archive, Report
2020/807, 2020. https://eprint.iacr.org/2020/807.

GI14. Niv Gilboa and Yuval Ishai. Distributed point functions and their appli-
cations. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in
Cryptology – EUROCRYPT 2014, pages 640–658, Berlin, Heidelberg, 2014.
Springer Berlin Heidelberg.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to prove all NP-
statements in zero-knowledge, and a methodology of cryptographic proto-
col design. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of
LNCS, pages 171–185. Springer, Heidelberg, August 1987.

HKI+13. Koki Hamada, Ryo Kikuchi, Dai Ikarashi, Koji Chida, and Katsumi Taka-
hashi. Practically efficient multi-party sorting protocols from comparison
sort algorithms. In Taekyoung Kwon, Mun-Kyu Lee, and Daesung Kwon,
editors, Information Security and Cryptology – ICISC 2012, pages 202–216,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

HKO23. David Heath, Vladimir Kolesnikov, and Rafail Ostrovsky. Tri-state circuits
- A circuit model that captures RAM. In Helena Handschuh and Anna
Lysyanskaya, editors, Advances in Cryptology - CRYPTO 2023 - 43rd An-
nual International Cryptology Conference, CRYPTO 2023, Santa Barbara,
CA, USA, August 20-24, 2023, Proceedings, Part IV, volume 14084 of Lec-
ture Notes in Computer Science, pages 128–160. Springer, 2023.

40

https://eprint.iacr.org/2019/695
https://eprint.iacr.org/2020/807

JVC18. Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha P. Chandrakasan.
GAZELLE: A low latency framework for secure neural network inference.
In William Enck and Adrienne Porter Felt, editors, 27th USENIX Security
Symposium, USENIX Security 2018, Baltimore, MD, USA, August 15-17,
2018, pages 1651–1669. USENIX Association, 2018.

Klu22. Kamil Kluczniak. Circuit privacy for fhew/tfhe-style fully homomorphic
encryption in practice. Cryptology ePrint Archive, Paper 2022/1459, 2022.
https://eprint.iacr.org/2022/1459.

Lin16. Yehuda Lindell. How to simulate it - a tutorial on the simulation proof
technique. Cryptology ePrint Archive, Paper 2016/046, 2016. https://

eprint.iacr.org/2016/046.
LO13. Steve Lu and Rafail Ostrovsky. How to garble ram programs? In Thomas

Johansson and Phong Q. Nguyen, editors, Advances in Cryptology – EU-
ROCRYPT 2013, pages 719–734, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

LO17. Steve Lu and Rafail Ostrovsky. Black-box parallel garbled ram. In
Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology –
CRYPTO 2017, pages 66–92, Cham, 2017. Springer International Publish-
ing.

MAB+10. Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehn-
ert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: A system
for large-scale graph processing. In Proceedings of the 2010 ACM SIG-
MOD International Conference on Management of Data, SIGMOD ’10,
page 135–146, New York, NY, USA, 2010. Association for Computing Ma-
chinery.

MR18. Payman Mohassel and Peter Rindal. Aby3: A mixed protocol framework for
machine learning. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’18, page 35–52, New York,
NY, USA, 2018. Association for Computing Machinery.

MRR20. Payman Mohassel, Peter Rindal, and Mike Rosulek. Fast database joins
and PSI for secret shared data. In Jay Ligatti, Xinming Ou, Jonathan
Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 1271–1287.
ACM Press, November 2020.

NWI+15. Kartik Nayak, Xiao Shaun Wang, Stratis Ioannidis, Udi Weinsberg, Nina
Taft, and Elaine Shi. GraphSC: Parallel secure computation made easy.
In 2015 IEEE Symposium on Security and Privacy, pages 377–394. IEEE
Computer Society Press, May 2015.

PLS23. Andrew Park, Wei-Kai Lin, and Elaine Shi. Nanogram: Garbled ram with
o(log n) overhead. page 456–486, Berlin, Heidelberg, 2023. Springer-Verlag.

RRT23. Srinivasan Raghuraman, Peter Rindal, and Titouan Tanguy. Expand-
convolute codes for pseudorandom correlation generators from lpn. In He-
lena Handschuh and Anna Lysyanskaya, editors, Advances in Cryptology –
CRYPTO 2023, pages 602–632, Cham, 2023. Springer Nature Switzerland.

WCS15. Xiao Wang, Hubert Chan, and Elaine Shi. Circuit oram: On tightness
of the goldreich-ostrovsky lower bound. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, CCS ’15,
page 850–861, New York, NY, USA, 2015. Association for Computing Ma-
chinery.

YPHK23. Yibin Yang, Stanislav Peceny, David Heath, and Vladimir Kolesnikov.
Towards generic mpc compilers via variable instruction set architectures

41

https://eprint.iacr.org/2022/1459
https://eprint.iacr.org/2016/046
https://eprint.iacr.org/2016/046

(visas). In Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’23, page 2516–2530, New York, NY,
USA, 2023. Association for Computing Machinery.

Disclaimer

Case studies, comparisons, statistics, research and recommendations are pro-
vided “AS IS” and intended for informational purposes only and should not be
relied upon for operational, marketing, legal, technical, tax, financial or other
advice. Visa Inc. neither makes any warranty or representation as to the com-
pleteness or accuracy of the information within this document, nor assumes any
liability or responsibility that may result from reliance on such information. The
Information contained herein is not intended as investment or legal advice, and
readers are encouraged to seek the advice of a competent professional where such
advice is required.

These materials and best practice recommendations are provided for infor-
mational purposes only and should not be relied upon for marketing, legal, reg-
ulatory or other advice. Recommended marketing materials should be indepen-
dently evaluated in light of your specific business needs and any applicable laws
and regulations. Visa is not responsible for your use of the marketing materials,
best practice recommendations, or other information, including errors of any
kind, contained in this document.

42

	Efficient Permutation Correlations and Batched Random Access for Two-Party Computation

