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Abstract. Despite ensuring both consistency and liveness, state machine replication pro-
tocols remain vulnerable to adversaries who manipulate the transaction order. To address
this, researchers have proposed order-fairness techniques that rely either on building depen-
dency graphs between transactions, or on assigning sequence numbers to transactions. Existing
protocols that handle dependency graphs suffer from sub-optimal performance, resilience or
security. On the other hand, Pompē (OSDI ’20) introduced the novel ordering notion of or-
dering linearizability that uses sequence numbers. However, Pompē’s ordering only applies to
committed transactions, opening the door to order-fairness violation when there are network
delays, and vulnerability to performance downgrade when there are Byzantine attackers. A
stronger notion, fair separability, was introduced to require ordering on all observed transac-
tions. However, no implementation of fair separability exists.
In this paper, we introduce a protocol for state machine replication with fair separability
(SMRFS); moreover, our protocol has communication complexity O(nℓ+λn2), where n is the
number of processes, ℓ is the input (transaction) size and λ is the security parameter. This
is optimal when ℓ ≥ λn, while previous works have cubic communication. To the best of our
knowledge, SMRFS is the first protocol to achieve fair separability, and the first implementation
of fair ordering that has optimal communication complexity and optimal Byzantine resilience.

1 Introduction

State machine replication (SMR) is one of the fundamental concepts of distributed systems and has
been studied for decades. SMR enables processes to replicate a set of transactions while ensuring
that each correct process adopts the same order of transactions. In the past decade, the widespread
adoption of blockchains [17] in decentralized applications such as decentralized finance has brought
attention to the underlying technology. It has been observed [8] that malicious users were leveraging
the fact that the SMR specification does not ensure any specific order, and reordering transactions
to steal profits from honest users. For example, front-running attacks (and more broadly, miner
extractable values), which are illegal in centralized exchanges, have been causing users hundreds of
millions of financial loss in decentralized exchange systems [19].

To ensure fair transaction ordering, several recent solutions [11,10,6,12,23] propose extending the
SMR specification with constraints on the ordering of transactions. The first paradigm for achieving
order-fairness [11,10,6], relies on building dependency graphs between transactions based on the
relative order of transactions observed locally by each process. However, this approach requires
handling complex dependency graphs between transactions and can lead to cyclic dependencies,
also known as Condorcet cycles [4], between transactions. It follows that the protocols along these
lines are either sacrificing optimal corruption, (e.g., only handling 1/4 corruption [11,10]), providing
only weaker form of liveness [11,6], or sub-optimal communications (e.g., cubic for [11,6]).

Ordering linearizability and its insufficiencies. A notable alternative solution, Pompē [23],
extends the SMR specification with ordering linearizability (OL). OL requires that if a transaction



tx1 is observed by all correct processes before any correct process observes a transaction tx2, and
that both tx1 and tx2 are committed, then tx1 must be ordered before tx2. Pompē gave up explicit
“identification” of the Condorcet cycles (if exist), and only deals with meaningful and realizable
order fairness among the rest, giving the hope of eliminating the drawbacks mentioned above.

In Pompē [23], time is divided into timeslots (cf. Figure 1), and each timeslot k = [time1, time2),
comprises an ordering phase where processes collect sequence numbers for their transactions (i.e.,
[time1, time2 + ∆)), followed by a consensus phase, starting at time2 + ∆, when processes decide
the transactions output in the timeslot k.
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Fig. 1: The execution flow of Pompē.

Despite its ingenuity and potential, Pompē still presents serious drawbacks, both on security
(fair ordering) and performance.

First, OL is not universally applicable to all the transactions observed by correct processes;
rather, it is limited to the transactions that have been committed. This condition actually opens
the door for fair-ordering violation. Consider a scenario where a transaction tx1 is observed by
all correct processes before any correct process observes another transaction tx2. According to the
Pompē protocol, if the issuer of tx1 is Byzantine, it can abort the protocol prematurely for tx1 so
that tx1 is not committed in this epoch. Consequently, tx2 ends up being committed first, while
tx1 remains uncommitted. Furthermore, as it is also highlighted in [10], even when the issuer of tx1

is correct, the non-synchronous (or adversarial) nature of the network can introduce delays for the
messages from the issuer. This delay may prevent processes from receiving the sequence numbers
collected for tx1 before time2 +∆, thus leading to the expiration of the sequence numbers collected
for tx1. As a result, tx1 is not committed, whereas tx2 is not influenced and can be committed in
the current epoch. Even though the broadcaster of tx1 can collect a new set of sequence numbers
and resubmit tx1, tx1 is ordered after tx2, and thus the fair-ordering of OL simply vanishes. (Or
more precisely, there is an inherent trade-off between OL and standard liveness: if the protocol still
wants to ensure OL, then tx1 has to be dropped, which directly violates the liveness property of
SMR).

The second drawback of Pompē resides in its communication complexity: Pompē has a high
cubic communication complexity. What is worse, there can potentially be a significant blow-up of
communication complexity in adversarial cases. For example, in the ordering phase of Pompē, a
malicious client can send a substantial number of transactions to a malicious process pb, and pb
can consistently abort the protocol after collecting its set of timestamps. Although, the transactions
broadcast by pb have been assigned sequence numbers by all correct processes, these transactions
are not included in the SMR output. It follows that only a few transactions submitted by correct
processes are included in the final output. Such “downgrade attack” leads to a significant increase
in communication complexity for each committed transaction. Consequently, in adversarial cases,
Pompē may incur O(N) communication complexity, where N could be an arbitrarily large number
(poly(n)) induced by the adversary, say n50.

In [12], Kursawe introduced the novel notion of fair separability (FS), which expands upon the
concept of OL by applying the same ordering requirement to all the transactions observed by correct
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processes (rather than just committed transactions). However, implementing FS has remained an
open problem. In this article, we aim to address the following question:

Is it possible to devise an asynchronous SMR protocol that not only achieves FS, but does so with
an optimal communication complexity?

Our contributions: In this paper, we provide an affirmative answer to this question.

• We introduce the first implementation of fair separability in state machine replication. Further-
more, our protocol is resilience optimal and has standard liveness.

• We achieve FS with optimal communication complexity, and our protocol is also resilient to
“downgrade attacks”, and thus has stable performance in all cases.

As shown in Table 1, our protocol not only implements the FS correctness condition for all
transactions, but also achieves an optimal communication complexity of O(nℓ) bits per transaction
when the input size ℓ ≥ nλ. Additionally, it maintains resilience optimality with f < n/3. The key
contributions of our work can be summarized as follows.

Table 1: Average communication complexity (in bits per transaction) of existing protocols for order-
fairness. Here, ℓ denote the size of a transaction, and λ the security parameter.

Protocol Async. Definition Tolerance Liveness
Time 1

Commu.
Optimistic 2 Worst

Pompē [23] × OL n > 3f Weak O(1) O(n) O(n3ℓ+ n3λ)3

Themis [10] × Deferring OF n > 4f Standard O(1) O(n) O(n2ℓ+ n2λ)

Aequitas [11] ✓ Block OF n > 4f Weak O(logn) O(n) O(n4ℓ+ n4λ)

Quick
Order-Fair [6]

✓ Differential OF n > 3f Weak O(1) O(n) O(n2ℓ+ n3λ)

Ours 1, Section 7 ✓ FS n > 3f Standard O(1) O(n) O(nℓ+ n2λ)

Ours 2, Section 9 ✓ FS n > 3f Standard O(1) O(1) O(n2ℓ+ n2λ)

1 We assess this metric when O(n) transactions are input simultaneously, meaning each correct
process inputs O(1) transactions in constant time.
2 It means that the network is synchronous and all processes are correct.
3 In fact, the communication complexity of Pompē can be decided by the adversary.

Technical overview. The gap between FS and OL is subtle, and closing this gap while using only
minimal communications requires special care. As depicted in Figure 2, our protocol comprises the
following concurrent procedures.

1. Sequencing. A continuous transaction sequencing procedure where process collect sets of se-
quence numbers for their transactions and broadcast the collected sets so that they be added
to the mempools of processes. At the same time, each process also FIFO broadcasts the history
and order of the transactions that it observes.

2. Output. A finite consensus/finalization procedure for each epoch where processes try to expand
the set of transactions output by SMR while preserving FS.

For each epoch, the output phase consists of three consecutive phases.

1. Consensus1: a first consensus instance determines a tentative output for the epoch by combining
the mempools of processes.

2. Consensus2: a second consensus instance “extracts” the history of all transactions observed by
2f + 1 processes. This auxiliary data is used in a subsequent finalization step to determine
whether earlier transactions should be included in the output so that FS is not violated.
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3. Finalization: correct processes output a set of transactions that statisfies FS.

Our key addition is Consensus2 (with the help of sequencing) so that Consensus1 prepares proper
data dissemination, while Consensus2 enables processes to find and extract all potentially not-yet-
committed but earlier legitimate transactions, and output them together with the tentative output
from Consensus1. To do this efficiently, we introduce and make use of n concurrent instances of Prov-
able and Notarizable First-in First-out Broadcast (PNFIFO-BC, see Section 5). Our main intuition
is that when FS requires that tx1 be ordered before tx2, then tx1 can be detected by looking at the
history of observed transactions of any set of 2f + 1 processes (see Sec. 6).
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Fig. 2: High level view of SMRFS.

To prevent malicious processes from sending redundant transactions that would blow up com-
munication complexity, we made full use of PNFIFO-BC. This primitive restricts a highly parallel
ordering phase, allowing each sender to initiate the next transaction ordering phase only after com-
pleting the previous one. Furthermore, our protocol ensures that any transaction that completes the
ordering phase is guaranteed to be output. To achieve optimal communication complexity: Firstly, to
ensure that a transaction tx observed by all correct processes is ultimately output despite the pres-
ence of a Byzantine broadcaster, correct processes rebroadcast all the transactions that they observe.
And, we carefully design our protocol by incorporating erasure codes and vector commitments to
reduce communication. Additionally, we share the received transaction history through the sharing
of vector commitments, rather than the actual transactions themselves. These approaches altogether
ensure that our protocol incurs only O(nℓ+λn2) communication complexity per transaction, where
ℓ represents the transaction size.

2 Related work

Ordering linearizability (OL) was introduced in Pompē [23] as a new paradigm for the fair ordering of
transactions in SMR. In Pompē, a sender collects a set of sequence numbers for its transaction, and
then broadcasts the collected set to order its transaction. By assigning a unique sequence number to
each transaction, OL circumvents the potential cyclic dependencies between transactions that may
arise in other paradigms for fair ordering [11,10,6]. However, OL is only ensured conditionally, and
therefore Pompē only implements the weaker liveness of SMR to ensure OL in partial synchrony.
In this paper, we analyze how to achieve standard liveness and unconditional OL (FS), and provide
a protocol that satisfies FS by combining the secure broadcast of each observed transaction with
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additional delivery rules. By leveraging cryptographic and broadcast primitives, we also make our
protocol optimal in terms of communication complexity per transaction. Various works [12,22,21]
also offer implementations of order-fairness derived from FS, but require a synchronous setting.

In the asynchronous setting, several works have been introduced to address order-fairness, in-
cluding Aequitas [11], and a more refined approach known as Quick order-fair [6]. It consists of
agreeing on the local orderings observed by a set of processes, and then ordering transactions using
the relative ordering at a majority of processes. In this paradigm, during the building of dependency
graphs between transactions, cycles may appear between transactions. Furthermore, in the finaliza-
tion step of [6], transactions that are decided may not always be output as processes may have to
wait for additional ordering information to be output by the protocol. In contrast, the finalization
step of our protocol checks for other transactions that should also be output, but enables direct
output of all decided transactions. Finally, current implementations of this paradigm incur at least
O(n3)-bit communication complexity per transaction.

3 Model and Problem Statement

3.1 Processes and Network

We consider a system of n processes P = {p1, p2, . . . , pn}. Processes that follow the prescribed
protocol are denoted correct, whereas Byzantine processes, can deviate from the protocol arbitrarily.
We assume that at any time, the number of Byzantine processes is bounded by f = ⌈n

3 ⌉ − 1. We
also assume a static adversary [5,16] that fully controls corrupted processes. In the static adversary
model, the adversary can select up to f processes prior to the start of the protocol, gain access to
their internal states, and control their behaviors during the execution of the protocol.

We consider an asynchronous network where there are no bounds on message delays, as an
adversary can delay messages arbitrarily. but each message sent by a correct process is eventually
delivered and untampered. Furthermore, communication channels are authenticated, and Byzantine
processes cannot impersonate correct processes.

3.2 Goal: State Machine Replication with Fair Separability

In this paper, our goal is to design an efficient asynchronous state machine replication protocol
[13,20,18] where the ordering of the output transactions satisfies fair separability. In state machine
replication (SMR), two fundamental properties must be satisfied by all correct processes: consistency
and liveness. The former requires that all correct processes must output transactions in the same
order, while the latter ensures that once an honest client submits a transaction, it should be output
within a reasonable amount of time. At a high level, it involves clients continuously sending transac-
tions to the correct processes. These correct processes then submit transactions by SMR-broadcasting
them to all processes, and correct processes must SMR-deliver a subset of the submitted transactions
in the same order within finite steps. Fair separability requires that if all correct processes observe
a transaction tx1 before any of them observe a transaction tx2, then tx1 must be SMR-delivered
before tx2. Formally, we define State Machine Replication (SMR) as follows:

Definition 1 (State Machine Replication Problem). A state machine replication protocol
must ensure the following properties.

• SMR-Consistency. If a correct process pi SMR-delivers transactions {tx1, tx2, · · · , txs} and
another correct process pj SMR-delivers transactions {tx′

1, tx
′
2, · · · , tx′

s′}, then txk = tx′
k for

∀ k = min{s, s′}. Additionally, if a correct process SMR-delivers a transaction tx, then tx is
eventually SMR-delivered by all correct processes.
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• SMR-Liveness. If a correct process SMR-broadcasts a transaction tx, then tx is eventually
SMR-delivered by all correct processes.

The notion of fair separability strengthens the notion of ordering linearizability. Fair separability
requires that if the lowest sequence number assigned by any correct process to a transaction tx2

is greater than the highest sequence number assigned by any correct process to a transaction tx1,
then tx1 is ordered before tx2 by correct processes. In order to achieve this goal, processes need
to assign sequence numbers to the transactions that they observe. Then, fair separability can be
achieved by using for each transaction a sequence number s that is the median value of a set of
2f + 1 sequence numbers, because s is upper bounded and lower bounded by a sequence number
that has been assigned by a correct process [23].

Definition 2 (Partial Order). If a transaction tx1 (resp. tx2) is assigned a sequence number s1
(resp. s2), then tx1 must be SMR-delivered before tx2, if s1 < s2. We say that tx1 is SMR-delivered
before tx2, and denote it tx1 ≺ tx2.

Definition 3 (Fair Separability). If the highest sequence number assigned by a correct process
to a transaction tx1 is lower than the lowest sequence number assigned by any correct process to a
transaction tx2, then tx1 must be SMR-delivered before tx2. More formally, let S1 (resp. S2) denote
the set of sequence numbers assigned to transaction tx1 (resp. tx2) by correct processes, then if

max
s∈S1

(s) < min
s∈S2

(s) ⇒ tx1 ≺ tx2.

Remark: We would like to emphasize that SMR-Liveness alone cannot ensure fair separability
(FS). It only guarantees that a correct process’s input can be output. Therefore, there is an inherent
risk of malicious process input. For instance, even if all correct processes receive some input from
a malicious process, these inputs may never be output, potentially compromising FS. To design
a protocol that achieves FS, we must ensure that a transaction tx that has been observed by all
correct processes is SMR-delivered despite a Byzantine broadcaster that decides to abort the protocol
prematurely. Our SMRFS protocol addresses this issue, as confirmed in Lemma 7. In this paper, we
design a framework that can assemble any underlying Byzantine consensus protocol, and enable
these underlying protocols to implement fair separability.

4 Preliminaries

In this section, we present the building blocks that are used in our protocols. Throughout the paper,
we use ℓ to represent the bit length of each transaction, and λ denotes the cryptographic security
parameter, which includes the size of the (threshold) signatures.

Erasure code scheme. A (k, n)-erasure code scheme [2] consists of a tuple of two deterministic
algorithms Enc and Dec. The Enc algorithm maps any vector v = (v1, · · · , vk) of k data fragments
into a vector m = (m1, · · · ,mn) of n coded fragments, such that any k elements in the code
vector m is enough to reconstruct v with the Dec algorithm. Throughout the paper, we consider a
(f + 1, n)-erasure code scheme where 3f + 1 = n.

Threshold signatures. A (t, n) threshold signature scheme [3] is a protocol involving n processes,
where at most t−1 processes can be corrupted and 0 ≤ t ≤ n. Formally, a (t, n)-threshold signature
scheme consists of the following algorithms: TS.KeyGen, TS.SigSharet, TS.VrfSharet, TS.Combt and
TS.Vfyt. The TS.SigSharet algorithm takes a message m as input and produces a signature share.
The TS.VrfSharet algorithm is then used to verify whether the signature share is valid or not. The
TS.Combt algorithm can generate a complete signature from at least t + 1 valid signature shares.
Finally, the TS.Vfyt algorithm is employed to verify a full signature.
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Digital Signatures. We assume that all processes possess a key pair pk/sk for use in digital
signatures [9]. The algorithm consists of two algorithms: (Sign,Vrf). For any message m, it holds
that Vrf(m,Sign(m, sk), pk) = 1.

Position-binding vector commitment (vc). The n-vector commitment (vc) [7] comprises three
algorithms: (VecCom,Open,VerifyOpen). On input a vector m of any n elements, the algorithm
VecCom produces a commitment vc for the vector m. On input, m and vc, the Open algorithm can
reveal the element mi committed in vc at the i-th position while producing a short proof πi, which
later can be verified by VerifyOpen.
Remark. Throughout the paper, we employ the vector commitment scheme from [7] and we might
omit aux for presentation simplicity. All algorithms are deterministic, and both commitment vc and
openness π are O(λ) bits in size.

Multi-valued validated Byzantine Agreement (MVBA): The MVBA protocol [5,1,15] always
guarantees that the output value v satisfies a predefined external predicate Q, i.e., Q(v) = 1. All
correct processes only input values v to MVBA such that Q(v) = 1. Formally, an MVBA protocol
satisfies the following properties with all but negligible probability.

• MVBA-Termination. If every correct process pi inputs an externally valid value vi, then every
correct process outputs a value.

• MVBA-External-Validity. If a correct process outputs a value v, then Q(v) = 1.
• MVBA-Agreement. Any two distinct correct processes always output the same value.
• MVBA-Quality. If a correct process outputs v, then the probability that v was input by the
adversary is at most 1/2.

Note: In our paper, we utilize the MVBA protocol proposed by Lu et al. in [15]. In this MVBA
protocol, the time complexity is O(1), the message complexity is O(n2), and the communication
complexity is O(nℓ+ λn2).

5 Provable and Notarizable FIFO Broadcast

In this section, we introduce an important broadcast component used in our main protocol.

5.1 First-in First-out Broadcast

In the First-in First-out Broadcast (FIFO-BC) protocol, there exists a process known as the sender,
whose primary objective is to broadcast a sequence of messages to all processes. The crucial guarantee
provided by this protocol is that if the sender ps is correct, then all correct processes will receive
and deliver ps’s messages in the exact order in which ps broadcasts them. Importantly, even if ps is
Byzantine, the protocol guarantees that all correct processes deliver the same message set from ps
and in the same order.

Let FIFO-BCs denote the instance of FIFO-BC initiated by sender process ps. Each process pi
maintains a local log denoted Logs that records the output of the FIFO-BCs instance. To refer to
the kth invocation and to the kth output of FIFO-BCs, we employ the notations FIFO-BCs[k] and
Logs[k], respectively. Formally, FIFO-BCs is defined as follows:

Definition 4 (First-in First-out Broadcast (FIFO-BC) Problem). A First-in First-out
Broadcast protocol with sender ps ensures the following properties.

• FIFO-BC-Liveness. If ps is correct and broadcasts a message m, then every correct process
eventually delivers m.

• FIFO-BC-Integrity. If some correct process delivers a message m, then m was previously
broadcast.
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• FIFO-BC-Total-Order. If some correct process pi delivers {Logs[1], · · · , Logs[k]}, and another
correct process pj delivers {Log′s[1], · · · , Log

′
s[k

′]}, then for every i, where 1 ≤ i ≤ min{k, k′},
Logs[i] = Log′s[i].

• FIFO-BC-Delivery. If the sender is correct and is input a message v before v′, then no correct
process delivers v′ unless it has already delivered v.

Note: FIFO-BC-Total-Order implies that if a correct process pi has delivered Logs[k], then another
correct process pj cannot deliver Logs[k] unless it has already delivered the preceding Logs[k − 1].

5.2 Provable and Notarizable First-in First-out Broadcast

In this paper, we present a protocol named Provable and Notarizable First-in First-out Broadcast
(PNFIFO-BC). The output Logs[k] of PNFIFO-BCs[k] is structured as Logs[k] := (vk, σk), where σk

acts as a proof that guarantees the validity of the value vk in the kth output. This property provides
provability, ensuring that each value can be verified, i.e., the value is indeed the kth output of the
instance. Furthermore, we have introduced additional constraints on the output value. Our goal is
for the output to satisfy a predefined predicate Q, which is similar to MVBA-External-Validity, as
outlined in MVBA [5,1].

The paper “Bolt-Dumbo Transformer” by Lu et al. [14] introduced a new primitive known as
notarizable weak atomic broadcast (nw-ABC). This primitive exhibits a notarizability property,
wherein if any correct process outputs a valid Logs[k], then it guarantees the existence of at least
f + 1 correct processes that have either already output Logs[k] or already output Logs[k − 1]. Our
protocol, PNFIFO-BC, was inspired by the notarizability property, and PNFIFO-BC also provides a
similar notarizability property as introduced in nw-ABC.

Compared with FIFO-BC, PNFIFO-BC offers more comprehensive guarantees. PNFIFO-BC not
only fulfills all the properties of FIFO-BC, but it also introduces three additional properties related
to external validity, provability, and notarizability. In PNFIFO-BC, external validity makes sure the
output value is meaningful. Provability ensures that each output can be verified, while notarizability
states that if any process successfully outputs a valid Logs[k], then there are at least f + 1 correct
processes that have already output a valid Logs[k − 1]. Formally,

Definition 5 (PNFIFO-BC). A Provable and Notarizable First-in First-out Broadcast (PNFIFO-
BC) protocol, with sender ps among n processes, ensures the following properties.

• PNFIFO-BC-Liveness. Same as in Definition 4.
• PNFIFO-BC-Integrity. Same as in Definition 4.
• PNFIFO-BC-Total-Order. Same as in Definition 4.
• PNFIFO-BC-Delivery. Same as in Definition 4.
• PNFIFO-BC-Provability. If any correct process delivers a valid Logs[k] := (vk, σk), then

using σk it can verify that the value vk indeed is the kth output of PNFIFO-BCs.
• PNFIFO-BC-Notarizability. If any correct process delivers Logs[k], then there exists at least

f + 1 correct processes that have already deliver Logs[k − 1].
• PNFIFO-BC-External-Validity. If any correct process delivers a valid Logs[k] := (vk, σk),

then Q(vk) = 1.

5.3 Instantiation of PNFIFO-BC

A PNFIFO-BCs protocol can be constructed using sequential multicasts and threshold signatures,
as outlined in Algorithm 1. The PNFIFO-BCs protocol can be divided into four logical phases which
are detailed as follows:
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Algorithm 1 Provable and Notarizable First-in First-out Broadcast with sender ps: PNFIFO-BC, code for
process pi who runs the protocol in consecutive slot number k with predicate Q.

Initialize: k ← 1 ▷ slot number
flags ← 0 ▷ lock flag
Logs ← {} ▷ output

1: function PNFIFO-BCs[k](vk) ▷ for sender
2: multicast Proposal(s, k, vk)

3: upon receiving Proposal(s,k,vk) from ps for the first time do ▷ for all processes
4: wait flags = 0 and Q(vk) = 1 do
5: σk,i ← TS.SigShare2f+1(s, k, h(vk)) ▷ sign with pi’s threshold sk
6: send Vote(s, k, σk,i) to the sender ps ▷ send vote
7: flags ← 1 ▷ lock other slots

8: upon receiving Vote(s, k, σk,j) from pj for the first time do ▷ for sender
9: if TS.VrfShare2f+1(s, k, h(vk), σk,j) = 1 do ▷ verify vote msg
10: Tk ← Tk ∪ (j, σk,j) ▷ collect vote
11: if |Tk| = 2f + 1 do ▷ 2f + 1 valid votes
12: σk ← TS.Comb2f+1(s, k, h(vk), Tk) ▷ generate a proof
13: multicast Final(s, k, σk)

14: upon receiving Final(s, k, σk) from ps for the first time do ▷ for all processes
15: wait flags = 1 do ▷ wait until vk is received
16: if TS.Vfy2f+1(s, k, h(vk), σk) = 1 do ▷ verify message

17: Logs[k]← (vk, σk) ▷ store kth output
18: flags ← 0 and k ← k + 1 ▷ into next slot

• Value broadcast phase: (lines 1-2). The sender process ps invokes PNFIFO-BCs[k](vk) to multicast
Proposal(s, k, vk) to all.

• Vote phase: (lines 3-7). Whenever a correct process pi receives a message Proposal(s, k, vk) from
the sender, and that Logs[k − 1] has been delivered by pi and that vk satisfies the predicate Q,
then pi generates a threshold share signature σk,i for (s, k, h(vk)) and sends back Vote(s, k, σk,i)
to the sender.

• Generate proof phase: (lines 8-13). When the sender has received n−f valid Vote messages, i.e.,
n− f valid threshold signature shares for (s, k, h(vk)), it combines these signature shares into a
full threshold signature σk, and multicasts Final(s, k, σk) to all.

• Output phase: (lines 14-18). When a correct process pi receives a valid message Final(s, k, σk)
from the sender, and that pi has already sent a message Vote(s, k, ∗) back to the sender, i.e.,
flags = 1, then pi delivers Logs[k] := (vk, σk) and proceeds into the next slot k + 1.

5.4 Security and Complexity Analysis

In this section, we conduct an analysis of the security and costs associated with the PNFIFO-BC
protocol presented in Algorithm 1.

Theorem 1. Algorithm 1 implements a Provable and Notarizable First-in First-out Broadcast pro-
tocol (cf. definition 5).

Proof. We prove each property separately.

1. PNFIFO-BC-Liveness. If a correct sender ps broadcasts a message vk by sending a Proposal
message, then all correct processes eventually receive this Proposal message. Since 2f+1 ≤ n−f ,
ps eventually receives a set Tk of 2f + 1 valid Vote messages. As a result, ps multicasts a valid
Final message, and all correct processes eventually receive this Final message, and deliver the
message vk.
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2. PNFIFO-BC-Integrity. If a correct process pi delivers a message m from a correct sender
ps, then it implies that pi has received a valid Final message and the corresponding Proposal
message from ps. Hence, it is trivial that the message m was broadcast by ps.

3. PNFIFO-BC-Total-Order. If a correct process delivers Logs[k] := (vk, σk), it means that it
satisfies the condition TS.Vfy2f+1(s, k, h(vk), σk) = 1. This implies that at least 2f +1 processes
have sent one Vote message in slot k. Since correct processes only send one Vote message in
each slot, if any two distinct processes deliver Logs[k] and Log′s[k] respectively, then Logs[k]
must be equal to Log′s[k]. Furthermore, if a correct process does not deliver in slot k, it will
not deliver in slot k + 1 based on the pseudo-code (line 18). This implies that Logs[k + 1] will
not be delivered unless Logs[k] has been delivered. Therefore, if one correct process pi delivers
{Logs[1], · · · , Logs[k]}, and another correct process pj delivers {Log′s[1], · · · , Log

′
s[k

′]}, it follows
that Logs[i] = Log′s[i] for every i such that 1 ≤ i ≤ min{k, k′}.

4. PNFIFO-BC-Delivery. According to the pseudo-code, a correct process can deliver Logs[k
′]

only if it has already delivered Logs[k], where k′ > k. If the sender is correct and inputs a
message v in slot k and another message v′ in slot k′(> k), it follows that all correct processes
will deliver v before v′.

5. PNFIFO-BC-Provability. If any correct process delivers a valid Logs[k] := (vk, σk), it means
that it satisfied the condition TS.Vfy2f+1(s, k, h(vk), σk) = 1. If there exists another message v′k
that belongs to the kth output, then it will also satisfy TS.Vfy2f+1(s, k, h(v

′
k), σk) = 1. However,

this would require at least one correct process to perform two threshold signature shares for two
distinct messages vk and v′k, which contradicts the code in line 7. Therefore, σk guarantees that
the value vk indeed belongs to the kth output.

6. PNFIFO-BC-Notarizability. If any correct process delivers Logs[k] := (vk, σk), it means that
it satisfies the condition TS.Vfy2f+1(s, k, h(vk), σk) = 1. This implies that at least f + 1 correct
processes participated in the instance for slot k, and that they have already output Logs[k − 1]
as indicated by the pseudo-code (lines 17-18).

7. PNFIFO-BC-External-Validity. When any correct process delivers Logs[k] := (vk, σk), it
indicates that the process has successfully received a valid Final message and the corresponding
Proposal message from the sender ps, then, based on line 4, it follows that vk satisfies the
predicate Q.

Theorem 2. The communication complexity of the PNFIFO-BCs protocol is O(nℓ + λn) bits per
value, where ℓ is the size of the input value and λ the security parameter.

Proof. Based on the pseudo-code of Algorithm 1, the cost breakdown can be summarized into the
following four phases:

1. Value broadcast phase: In this phase, the value vk is broadcasted to all processes by a Proposal
message, resulting in a cost of O(nℓ) bits.

2. Vote phase: This phase involves “n-to-one” n Vote messages, where each process sends a Vote
response to the sender. The cost for this phase is O(λn) bits.

3. Generate proof phase: In this phase, the sender multicasts a Final message to all processes. The
size of the Final message is O(λ), resulting in a communication cost of O(λn) bits for this phase.

4. Output phase: This phase does not incur any additional communication cost.

Therefore, the communication complexity of the PNFIFO-BCs protocol is O(nℓ+λn) bits per value.

6 Fair Separability Conditions

In this section, we present lemmas to give an intuition on how to achieve Fair Separability (FS) (cf.
Definition 3). These lemmas will be used in the analysis of the SMRFS protocol.
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6.1 Ordering Linearizability: Weak Fair Separability

As mentioned earlier, in Pompē [23], a Byzantine process can collect a set of sequence numbers S1

for a transaction tx1, and simply abort the protocol, or collect a new set of sequence numbers at
a later time. It follows that even when the network is synchronous, a transaction tx2 submitted
by a correct process pi, and for which pi has collected a set of sequence numbers S2 such that
maxs1∈S1

(s1) < mins2∈S2
(s2), is output before tx1, thus violating FS. It’s also possible that the

sender of tx1 is correct, but network delays cause the set S1 collected for tx1 to expire, which could
similarly result in a violation of FS. Hence, we refer to the property achieved in [23] by weak fair
separability because it only applies under the condition that both tx1 and tx2 are committed. For
FS, the challenge is to ensure that:

• Requirement 1 : if a transaction is observed by correct processes, then it must be committed.
• Requirement 2 : the final ordering of transactions satisfies FS.

To satisfy FS, the key insight is to make sure that whenever transaction tx2 is delivered with a
sequence number s2, check if processes have observed transaction tx1 as it should be ordered before
tx2, and the histories of transactions observed by 2f + 1 processes enable this verification, as we
prove in claims 1 and 2. Therefore, our solution to satisfy requirements 1 and 2 is to have, on the
one hand, each process submit all received transactions to the PNFIFO-BC protocol, and on the
other hand, require that the final output is determined based on the outcomes of the PNFIFO-BC
instances involving 2f + 1 processes.

6.2 Fair Separability

We now give an intuition of how we achieve FS. Intuitively, a transaction can be safely SMR-delivered
when there is no other transaction that requires prior SMR-delivery according to FS.

Lemma 1. For any two transactions tx1, tx2, let s1, s2 be the median value of any set of 2f + 1
sequence numbers that have been assigned to tx1, tx2, respectively. If tx1 and tx2 satisfy FS, then
s1 < s2.

Proof. Cf. Lemma 4.1 of [23], the median value of a transaction is bounded by the sequence numbers
assigned by correct processes. Hence, if tx1 ≺ tx2 holds, then tx1, tx2 meet the FS condition, thus
maxs1∈S1

(s1) < mins2∈S2
(s2) ⇒ s1 < s2.

Claim 1. Let s1 denote the median value of any set of 2f + 1 sequence numbers that have been
assigned by processes to a transaction tx1. If at least f+1 processes have assigned sequence numbers
to a transaction tx2 that are less than s1, then ordering tx1 after tx2 does not violate FS.

Proof. This results from the fact that s1 is the median of a set of 2f +1 values, s1 is upper bounded
and lower bounded by the sequence numbers assigned to tx1 by correct processes. Therefore, if f+1
processes have assigned to tx2 sequence numbers that are less than s1, then there must be at least
one correct process assigning a sequence number to tx2 that is lower than the sequence number
assigned to tx1 by another correct process, and therefore FS does not require that tx1 ≺ tx2.

Reciprocally, if at most 2f processes observe a transaction tx1 before a transaction tx2, then
ordering tx1 before tx2 does not violate FS.

Claim 2. Let s1 denote the median value of any set of 2f + 1 sequence numbers assigned to a
transaction tx1. If at most 2f processes have assigned sequence numbers to a transaction tx2 that
are less than s1, then ordering tx1 before tx2 does not violate FS.
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Proof. Because s1 is necessarily upper bounded and lower bounded by the sequence numbers as-
signed to tx1 by correct processes, if less than 2f+1 processes have assigned to tx2 sequence numbers
that are less than s1, then there must be at least one correct process assigning a sequence number
to tx2 that is larger than the sequence number assigned to tx1 by another correct process, and
therefore ordering tx1 before tx2 does not violate FS.

By adhering to these observations, we ensure that the ordering of transactions satisfies the desired
FS property. Intuitively, in our protocol, we rely on a first instance of consensus (cf. Consensus1) to
decide on some transactions that are output in the current epoch. Suppose that transaction tx is
output with an order sequence number s. Then, in a second instance of consensus (cf. Consensus2),
we determine the Logs of 2f+1 processes. Finally, we search for potential prior transactions, denoted
as tx′, by examining the 2f + 1 Logs decided by Consensus2. If at least f + 1 sequence numbers
assigned to a transaction tx′ belonging to these 2f +1 Logs are less than s, then tx′ must be output
before tx. The core idea is that if tx1 and tx2 satisfy the FS, and we use s2 to represent the median
value of any set of 2f + 1 sequence numbers assigned to tx2, then at least f + 1 sequence numbers
have been assigned to transaction tx1 from any of the 2f+1 Logs, and these f+1 sequence numbers
must be less than s2. This process helps identify other transactions that may require being output
before tx2, and thus maintain the desired ordering properties.

7 Asynchronous State Machine Replication with Fair Separability

In this section, we present our protocol for State Machine Replication (SMR) with fair separability
(SMRFS) in the asynchronous setting.

7.1 High-level Overview of SMRFS

As illustrated in Figure 2, our protocol comprises three key parts: transaction sequencing, consensus,
and finalization. We first present an overview of the protocol, and then present each part in detail.
In each epoch, correct processes engage in two concurrent phases. The first phase is “transaction
sequencing”, which is a procedure that is continuously running. Simultaneously, the second phase,
composed of two sequential consensus protocols and a “finalization”, is run for each epoch.

First, during transaction sequencing, the goal is to prepare “indexed” transaction mempools and
metadata for received transcripts. Each transaction will have an order sequence number, which is
the median value of a set of 2f +1 sequence numbers assigned to the transaction. Additionally, each
process pi provably disperse all its received transactions with other processes. Furthermore, when
a process pi assigns a sequence number s to transaction tx, it produces a store[s] entry to indicate
that tx is the sth observed transaction.

Then, the consensus phase comprises two consensus protocols. The first one, Consensus1, ensures
that all correct processes agree on which transactions (from the mempools) can be output. After
Consensus1 has generated some tentative output, each process pi shares the order of observed trans-
actions with all participating processes via a corresponding PNFIFO-BC2i instance. Next, the second
consensus protocol, Consensus2, is employed to determine which PNFIFO-BC2 instances’ output can
serve as auxiliary information for identifying potential transactions that should be included in the
current epoch to preserve FS. Finally, during the finalization phase, the main objective is to ensure
that all correct processes deliver the same set of transactions (that maybe the combination of the
candidate outputs of Consensus1 and earlier ones identified by Consensus2).

Note that for any two distinct transactions tx1, tx2, their vector commitments, vctx1 , vctx2 , are
different, i.e., tx1 ̸= tx2 ⇒ vctx1

̸= vctx2
. This uniqueness allows us to use the vector commitment as

a representation of the transaction. Importantly, the size of the vector commitment is smaller than
the size of the transaction. To ensure optimal communication complexity, we utilize the vector com-
mitments of transactions as inputs for both the PNFIFO-BC phase and the consensus phase, rather
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than using the actual transactions. Additionally, output transactions are organized into epochs, and
each epoch is processed sequentially. The protocol does not handle transactions individually but
rather decides which transactions are output in batches for each epoch, where the batch size could
be linear and denoted as K = O(n).

Furthermore, to mitigate the impact of a “downgrade attack”, we cannot solely rely on that a
transaction tx can be output if it has been received by all correct processes. It is possible for a mali-
cious process to selectively send tx to only a few correct processes, thereby inflating communication
complexity again. Consequently, for any correct process that receives a transaction tx, we must relay
it to guarantee that all processes receive it. In our protocol, we leverage vector commitments to help
us maintain O(nℓ) term, where ℓ represents the size of the input. However, if we were to naively
employ vector commitments, it would enable malicious processes to flood the PNFIFO-BC1 instances
and the transaction relay procedure with redundant messages, where no correct process can recover
the actual transactions corresponding to these vector commitments. To address this concern, we
introduce a local vector commitment buffer called buf . In the PNFIFO-BC1 instances, messages
are only processed if they belong to this buffer buf (verified by a predicate Q). Additionally, for
any relayed message from process pi, it is permitted to proceed only if all of pi’s previously sent
messages have been verified, i.e., all actual transactions corresponding to the previously sent vector
commitments have been received. Moreover, for any vector commitments determined through two
consensus protocols, we can ensure that all correct processes will be able to receive these correspond-
ing transactions at the end of the finalization phase without increasing the cost of communication
complexity, regardless of whether the client’s transactions were initially received by just one correct
process or by O(n) correct processes.

7.2 Transaction Sequencing

In this section, we introduce the transaction sequencing algorithm. In the algorithms presented in
this section, statements with blue comments generate Mi, which serves as the input for Consensus1
in Algorithm 3 (the collected Mi is marked with brown color in line 44). Statements with orange
comments generate store, which constitutes part of the input for Consensus2 in Algorithm 3 (the
generated store set is marked with brown color in line 51). Specifically, the input of Consensus2
contains n− f store messages. The statements with red comments serve as a defense against down-
grade attacks. Further details can be found in Algorithm 2. The transaction sequencing protocol
comprises the five following phases.

1. Broadcast transaction: (lines 1-2). When a process pi receives a new transaction tx from a client,
pi submits tx to the SMRFS protocol using the SMRFS-broadcast method (line 1). This allows
pi to request a set of sequence numbers for its transaction tx (line 2).

2. Assign sequence number: (lines 3-14, 24-29). Upon receiving the request (seq-request, tx) for
the first time (line 4), process pi assigns a sequence number s to transaction tx and encodes tx as
a vector {m1,m2, · · · ,mn}. Subsequently, a vector commitment vctx is generated using a vector
commitment primitive. To safeguard against malicious processes sending useless messages in the
PNFIFO-BC1 phase, vctx is added to the local vector commitment buffer buf . After adding vctx
to buf , process pi sends a diffusion message to all processes to ensure that all correct processes
also receive transaction tx. This step is crucial to satisfy the condition in line 57 of Algorithm 3,
which is necessary for the second consensus protocol (see Algorithm 3).
Following this, pi initiates PNFIFO-BC1i[s] with vctx as input. The rationale behind this step
is to defend against malicious processes sending redundant messages to the entire network,
which could result in an excessive increase in communication complexity. Finally, pi multicasts
a seq-response message containing vctx, its signature, sequence number s, and an endorse
message that carries vctx and its threshold signature. If pi is the sender of transaction tx,
it broadcasts S[vctx], which is a set of 2f + 1 sequence numbers collected for median value
computation (lines 24-29).
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Algorithm 2 Transaction Sequencing, (code for process pi)

Initialize: seqi ← 1; buf ← {} ▷ sequence number and local vector commitment buffer
Let: {PNFIFO-BC1j}j∈[n] refer to n instances, the external function Q as follows: Q(x) ≡ 1 if x ∈ buf

1: function SMRFS-broadcast(tx) ▷ once receiving a tx from client
2: multicast (seq-request, tx) ▷ request a sequence number for tx

3: upon receiving (seq-request, tx) do
4: if this transaction tx ( ̸= ⊥) is received for the first time do ▷ perceive tx
5: s← seqi ▷ assign sequence number to tx
6: seqi ← seqi + 1 ▷ increment local sequence
7: {m1, · · · ,mn} ← Enc(tx, n, f + 1) ▷ encode
8: vctx ← VecCom(m1, · · · ,mn); buf ← buf ∪ {vctx} ▷ vector commitment
9: for each k ∈ [n] do
10: πk ← Open(vc,mk, k) ▷ generate proof for fragment
11: send (diffusion, s, vctx,mk, k, πk) to pk ▷ ensure all processes receive tx

12: PNFIFO-BC1i[s](vctx) ▷ see algorithm 1, vctx of tx is the input
13: σtx,s ← Sign(vctx || s, ski); multicast (seq-response, vctx, s, σtx,s) ▷ send signed sequence
14: σtx ← TS.SigSharef+1(vctx, tski); multicast (endorse, vctx, σtx) ▷ send endorse of vctx

15: upon receiving (diffusion, s, vc,mi, i, πi) from pj for the first time do ▷ diffusion message
16: if VerifyOpen(vc,mi, i, πi) = 1 do ▷ verify message
17: wait Log1j [s− 1]=(vc′, σ′) do ▷ avoid downgrade attack
18: wait the corresponding tx′ has received s.t. vc′=VecCom(Enc(tx′, n, f + 1)) do
19: multicast (spread, vc,mi, i, πi) if (spread, vc, ∗, ∗, ∗) has not been sent yet ▷ spread

20: upon receiving (spread, vc,mj , j, πj) from process pj with vc for the first time do ▷ spread
21: if VerifyOpen(vc,mj , j, πj) = 1 do F [vc]← F [vc] ∪ (j,mj)
22: if |F [vc]| = f + 1 and vc = VecCom(Enc(Dec(F [vc]), n, f + 1)) do
23: return (seq-request,Dec(F [vc])) ▷ if Dec(F [vc]) := tx, invoke line 6

24: if Pi is the sender of (seq-request, tx) do ▷ Pi is the sender of tx
25: upon receiving (seq-response, vctx, s, σtx,s) from pj do
26: if Vrf(vctx || s, σtx,s, pkj )=1 do ▷ verify signature is valid
27: S[vctx]← S[vctx] ∪ (j, s, σtx,s) ▷ collect sequence numbers for tx
28: if |S[vctx]| = 2f + 1 do ▷ collected 2f + 1 sequences for tx
29: multicast (order-request, vctx, S[vctx]) ▷ multicast S[vctx]

30: upon receiving (order-request, vctx, S[vctx]) from pj do
31: if |S[vctx]| = 2f + 1 ∧ ∀ (j, s, σtx,s) ∈ S[vctx],Vrf(vctx || s, σtx,s, pkj ) = 1 do
32: stx ← Median(S[vctx]) ▷ pick up the median value of S[vctx]
33: σseqtx ← TS.SigSharef+1(vctx, stx, tski) ▷ sign stx with pi’s threshold sk
34: send (seq-median, vctx, stx, σseqtx) to pj

35: if Pi is the sender of (seq-request, tx) do ▷ Pi is the sender of tx
36: upon receiving (seq-median, vctx, stx, σseqtx) from pj do
37: if TS.VrfShare2f+1(vctx, stx, (j, σseqtx))=1 do ▷ verify threshold sign
38: S[stx]← S[stx] ∪ (j, σseqtx) ▷ collect threshold sign for median of tx
39: if |S[stx]| = f + 1 do ▷ collected f + 1 threshold sign for median of tx
40: Σ ← TS.Combf+1(vctx, stx, S[stx]) ▷ Σ can verify the median stx
41: multicast (final, vctx, stx, Σ) ▷ send median proof to all

42: upon receiving (final, vctx, stx, Σ) and TS.Vfyf+1(vctx, stx, Σ) = 1 do
43: if vctx /∈ VCLedger do
44: Mi ←Mi ∪ (vctx, stx, Σ) ▷ add into Mi, to be input in line 54 in Alg.2

45: upon receiving (endorse, vctx, σtx) from process pj and TS.VrfSharef+1(vctx, (j, σtx))=1 do
46: if pi has assigned a sequence number s to tx s.t. vctx = VecCom(Enc(tx, n, f + 1)) do
47: E[vctx]← E[vctx] ∪ (j, σtx) ▷ collect threshold sign for vctx
48: if |E[vctx]| = f + 1 do ▷ collected f + 1 threshold sign for vctx
49: σ ← TS.Combf+1(vctx, E[vctx]) ▷ σ can verify the vctx
50: if store[s] = ⊥ do ▷ s is sequence number
51: store[s]← (vctx, σ) ▷ generate store[s] (to be input in line 59 in Alg.2)
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3. Diffusion phase: (lines 15-23). Upon receiving a (diffusion, s, vc,mi, i, πi) message from process
pj (line 15), process pi checks the validity of the message. If the message is valid, and pi has
received the Log1j [s − 1] = (vc′, σ′) from PNFIFO-BC1j , along with one transaction tx′ that
corresponds to vc′, then pi forwards the message to all processes using a spread message, but
only if pi has not done so before. This step is important to ensure that communication complexity
does not increase. The reason is as follows:

First, we ensure that when any correct process receives a transaction, all other correct processes
also receive it. This assurance is based on the fact that correct processes broadcast their received
transactions to all other processes.

Second, it is possible for malicious processes to attempt to send an unlimited number of transac-
tions. However, even if up to f correct processes forward invalid transactions, these transactions
do not affect the final output of the protocol. The lines 17-18 prevent the communication com-
plexity from blowing up.

4. Decide median: (line 30-41). Upon receiving a valid set S[vctx] (line 30), processes send back a
threshold signature share of the median value of S[vctx] to the sender ps. Once pi (if pi is the
sender) has collected at least f + 1 threshold signature shares for the median value s of S[vctx]
(line 39), it combines these shares into a full proof Σ and broadcasts (final, vctx, s, Σ) to all
processes.

5. Add ordered transaction to submission buffer and generate store[s] for sequence number s: (line
42-51). When a correct process pi receives a valid message (final, vctx, s, Σ), if the corresponding
transaction has not yet been delivered, it appends (vctx, s, Σ) to its submission buffer Mi only
if (vctx, ∗, ∗) has not been added to Mi previously (line 44). Additionally, whenever a correct
process pi receives f +1 valid messages (endorse, vctx, σ) from distinct processes, and if it has
assigned a sequence number s for the corresponding tx of vctx, it generates store[s] for sequence
number s.

For any given (vctx, stx, Σ), the size of (vctx, stx, Σ) isO(λ). A valid Σ signifies that (vctx, stx) has
been signed by at least one correct process, which, in turn, implies that at least f+1 correct processes
have sent (seq-response, vctx, s, σtx,s). Consequently, at least one correct process, denoted as pi,
must possess a sequence number s ≥ stx (cf. Lemma 4.1 of [23]). Furthermore, the diffusion
operation is always invoked when a new transaction is received (lines 9-11), ensuring that all correct
processes can receive at least stx transactions (lines 15-23). Consequently, all correct processes will
multicast an endorse message for vctx. Therefore, for any correct process pi, once pi receives tx
and assigns a sequence number s to it, it is guaranteed to obtain a non-null store[s].

Remark: In our protocol, we can also add one step to ensure that the input transaction always
satisfies “external validity” as defined in MVBA [1,15]. If a process sends an invalid transaction (as
detected in lines 4 and 18), it is possible to reject any future message from that process.

7.3 Transaction Consensus

In this section, we introduce the construction of the consensus phase, which is further elaborated
in Algorithm 3. For simplicity, we represent the set {Logj [1 : st − 1]}j∈Te as Logs[st − 1, Te], where
Logj [a : b] := {Logj [a], Logj [a + 1], · · · , Logj [b]}. Additionally, we use store[a : b] to represent the
set {store[a], store[a+ 1], · · · , store[b]}. Furthermore, we use FinalLedger to represent the delivered
transactions, and VCLedger to represent the vector commitments of the corresponding delivered
transactions. The consensus protocol is composed of the five following phases.

1. Consensus1: (lines 52-54). When the submission buffer Mi of a process pi reaches size K, which
means pi has received K undelivered transactions with order sequence numbers, and if pi has
not yet submitted in the current epoch, it inputs Mi,e to Consensus1[e].
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Algorithm 3 Consensus for epoch e, (code for process pi)

Initialize: epoch e← 1 ▷ consensus epochs
{PNFIFO-BC2j}j∈[n] refers to n instances of PNFIFO-BC ▷ PNFIFO-BC instances
∀ x, the predicate Q1(x) for Consensus1[e] holds if all of the following conditions hold: ▷
predicate Q

(1): |x| = K and x := {(vctx, stx, Σ)}K and vctx /∈ VCLedger
(2): ∀(vctx, stx, Σ) ∈ x,TS.Vfy2f+1(vctx, stx, Σ) = 1
(3): no two distinct (vctx, stx, Σ) ∈ x share the same vctx

∀ x, the predicate Q2 for Consensus2[e] holds if all of the following conditions hold:
(1): |x| = 2f + 1 and x := {(j, e,Hj,e,Proofj,e)}2f+1

(2): (j, e,Hj,e,Proofj,e) is valid for ∀ (j, e,Hj,e,Proofj,e) ∈ x
the validation of (j, e,Hj,e,Proofj,e) is true if all of the following conditions hold:

(1): TS.Vfy2f+1(j, e, h(Hj,e),Proofj,e) = 1
(2): |Hj,e| = he − he−1 − 1 and parse Hj,e := store[he−1 + 1 : he]
(3): for ∀ store[s] := (vctx, σ) ∈ Hj,e: TS.Vfyf+1(vctx, σ) = 1
(4): no two distinct store[s] := (vctx, σ) ∈ Hj,e share the same vctx

52: upon |Mi| ≥ K and pi has not submitted in epoch e do ▷ with K = O(n)
53: Mi,e ← argminM⊂Mi,|M|=K

∑
(vc,s,Σ)∈M

(s) ▷ K elements in Mi with lowest sequence numbers

54: invoke Consensus1[e] with Mi,e as input ▷ invoke Consensus1[e]

55: wait Consensus1[e] outputs Me do ▷ Me is the output of Consensus1: Me is utilized in line 77 in
Alg.4

56: let he := MAX{stx} in all (vctx, stx, Σ) ∈Me ▷ max order seq number in Me

57: upon store[k] ̸= ⊥ for ∀ he−1 + 1 ≤ k ≤ he do
58: let Hi,e := store[he−1 + 1 : he]
59: PNFIFO-BC2i[e](Hi,e) ▷ invoke PNFIFO-BC2 to feed Consensus2 below

60: wait PNFIFO-BC2j [e] outputs (Hj,e,Proofj,e) for any j ∈ P do ▷ prepare the input for
consensus2

61: if (j, e,Hj,e,Proofj,e) is valid do
62: Si,e ← Si,e ∪ (j, e,Hj,e,Proofj,e)
63: if |Si,e| = 2f + 1 do ▷ 2f + 1 outputs from PNFIFO-BC2
64: invoke Consensus2[e] with Si,e as input ▷ invoke Consensus2[e]

65: wait Consensus2[e] outputs Se do ▷ 2f + 1 Logk
66: for ∀ (j, e,Hj,e,Proofj,e) ∈ Se do
67: Te ← Te ∪ j ▷ indexes set
68: if the newest output PNFIFO-BC2j is (Hj,sr ,Proofj,sr ) and sr < e− 1 do
69: Shelp ← Shelp ∪ (j, sr + 1)

70: CallHelp(e, Shelp , e− 1) ▷ see algorithm 5

71: for ∀ j ∈ Te do
72: wait until Log2j [1 : e] := {Hj,1, Hj,2, · · · , Hj,e} have been received do
73: for ∀ k ∈ [e]: ∀ store[s] := (vctx, σ) ∈ Hj,k do
74: Logj [s]← vctx ▷ Logj is a part of Logs: Logs is utilized in line 82 in Alg.4
75: if vctx /∈ VCLedger do
76: Pendinge ← Pendinge ∪ vctx ▷ add into Pendinge

2. Wait for enough outputs from distinct PNFIFO-BC2[e] instances: (lines 55-59). Upon receiv-
ing the output Me from Consensus1, the process checks the maximum order sequence number,
denoted as he, among {stx}, where (vctx, stx, Σ) ∈ Me.
Afterward, pi waits for all store[k] to be received, where 1 ≤ k ≤ he. Once these are all received,
pi invokes PNFIFO-BC2i to disseminate this received transaction history to all processes. The
underlying motivation for this step is to efficiently distribute its received transaction history
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throughout the entire network. This particular step plays a critical role in the finalized output
phase when identifying potential transactions that should be included in the output.

3. Consensus2: (lines 60-64). Once at least n − f distinct PNFIFO-BC2[e] instances have output,
Consensus2 is invoked to decide which Logs will be used to determine the potential transactions.

4. Recover missed Log blocks: (lines 65-70). When Consensus2[e] outputs Se, the indexes are denoted
as Te (lines 65-67). Process pi iterates through each index k of Te. If the newest output of
PNFIFO-BC2k is (Hk,sr ,Proofk,sr ) and sr < e − 1, the process adds (k, sr + 1) to Shelp (lines
68-69). The process then invokes the CallHelp function to recover all missed Log2 values (line
70).

5. Generate Logj and Pendinge: (lines 71-76). Once all values have been received, pi initiates the
generation of Logj based on the corresponding store value (line 74). Subsequently, any values
that do not belong to VCLedger are included in Pendinge (lines 75-76).

For any Log2k[e] := (Hk,e,Proofk,e), based on the PNFIFO-BC-Notarizability property, at least
f + 1 correct processes have received Log2k[e − 1] := (Hk,e−1,Proofk,e−1). As a result, all correct
processes receive Log2k[1 : e− 1] via CallHelp function in Algorithm 5.

Algorithm 4 Output Finalization for epoch e, (code for process pi)

77: parse Me := {(vctx′
i
, stx′

i
, Σ)}; for ∀ (vctx′

i
, stx′

i
, Σ) ∈Me: S

′ ← S′ ∪ stx′
i

▷ Me is the output of
Consensus1

78: let S′ = {stx′
1
, stx′

2
, · · · , stx′

e
}, where stx′

i
is the i-th smallest value in the set S′ and stx′

e
= he

79: let M ′
e =: {vctx′

1
, vctx′

2
, · · · , vctx′

e
}

80: for vctx′
i
∈M ′

e and vctx′
i
picks in order do ▷ first vctx′

1
, then vctx′

2
, and so on

81: for vctx′ ∈ Pendinge and vctx′ /∈M ′
e do ▷ selecting vct

82: if vctx′ appears at least f + 1 times in Logs[s̄tx′
i
− 1, Te] do ▷ Logs were decided by

Consensus2
83: for j ∈ Te do
84: if Logj [k] := vctx′ and k < s̄tx′

i
do

85: seq[vctx′ ]← seq[vctx′ ] ∪ k

86: seq[vctx′ ]← Sort(seq[vctx′ ]) ▷ sort in ascending order
87: let the (f + 1)-th element of seq[vctx′ ] as the median value, and denote stx′

88: S[vctx′
i
]← S[vctx′

i
] ∪ (vctx′ , stx′)

89: S[vctx′
i
]← Sort(S[vctx′

i
]) ▷ sort in ascending order of stx′

90: Value[vctx′
i
][i]← vctx′ if S[vctx′

i
][i] = (vctx′ , stx′)

91: M ′
e ← {vctx′

1
, vctx′

2
, · · · , vctx′

i−1
,Value[vctx′

i
], vctx′

i
, . . . , vctx′

e
} ▷ insert Value[vctx′

i
]

92: for ∀ vctxi ∈M ′
e do ▷ extract the corresponding tx

93: wait until txi has been received such that vctxi = VecCom(Enc(txi, n, f + 1)) do
94: FinalLedger[e][i]← txi if M

′
e[i] = vctxi ▷ extract tx

95: Mi ←Mi \ (vctxi , ∗, ∗) for any vctxi ∈M ′
e ▷ update Mi

96: VCLedger← VCLedger ∪M ′
e ▷ update VCLedger

97: SMRFS-delivery(FinalLedger[e]) ▷ delivery
98: e← e+ 1 ▷ increment epoch

7.4 Transaction Finalised Output

In this section, we present the finalization protocol, depicted in Algorithm 4. The finalization phase
consists of the four following phases.
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1. Sorting Me: (line 77-79). Process pi sorts the output Me of Consensus1 based on the correspond-
ing stx in ascending order, resulting in the sorted set M ′

e = {vctx′
1
, vctx′

2
, · · · , vctx′

e
}.

2. Find potential transactions: (lines 80-91). Process pi iterates through the elements of M ′
e. For

each vctx′
i
∈ M ′

e, it checks if vctx′ ∈ Pendinge and vctx′ /∈ M ′
e. If these conditions are met, it

looks for vctx′ in Logs[s̄tx′
i
− 1, Te] and counts how many times it appears. If vctx′ appears f +1

times, it records the sequence numbers in seq[vctx′ ] and orders them from smallest to largest.
The (f + 1)th element of seq[vctx′ ] is taken as the median value of tx′, and it is denoted as
stx′ , which becomes the order sequence number of vctx′ . Afterwards, process pi adds (vctx′ , stx′)
into S[vctx′

i
] (lines 80-88). If all potential values before vctx′

i
have been thoroughly searched, the

operation Sort(S[vctx′
i
]) is executed to arrange S[vctx′

i
] in ascending order based on stx′ . Last,

the new values vctx′ are inserted into M ′
e (lines 89-91).

3. Extract the corresponding transaction: (lines 92-94). For any element (vector commitment)
vctxi

∈ M ′
e, if the transaction txi corresponding to vctxi

has been received, then it is recorded
in FinalLedger[e][i].

4. Deliver transaction: (lines 95-98). After extracting all corresponding transactions, the process
updates its submission buffer Mi and the VCLedger (lines 95-96). Then, it delivers the finalized
output FinalLedger[e] for epoch e (line 97) and proceeds to the next epoch (line 98).

Algorithm 5 CallHelp daemon and Help daemon, code for process pi

/* CallHelp daemon */
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
external function CallHelp(e, Shelp, sd) ▷ recovery Log

99: multicast CallHelp(e, Shelp, sd)
100: upon receiving message Help(e, Sj) from process pj for the first time do
101: for any (k, sr + 1) ∈ Shelp do
102: if Sj [k] := (vck,mj , j, πj) ̸= ⊥ do
103: if VerifyOpen(vck,mj , j, πj) = 1 do
104: F [vck]← F [vck] ∪ (j,mj)
105: if |F [vck]| = f + 1 do
106: Blocksk ← Dec(F [vck]); parse Blocksk := Logk[sr + 1 : sd]
107: return Logk[sr + 1 : sd]

/* Help daemon */
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Help: It is a daemon process that can read the output Log of PNFIFO-BC, and it listens to the down
below event:

for any (k, sr + 1) ∈ Shelp, at least f + 1 correct processes have already delivered Logk[sd].
108: upon receiving CallHelp(e, Shelp, sd) from process pj for the first time do
109: for any (k, sr + 1) ∈ Shelp do
110: if PNFIFO-BC2k[sd] outputs (vsd , σsd) do ▷ Log2k[sd] ̸= ∅
111: let Blocksk ← Logk[sr + 1 : sd]
112: {m1, · · · ,mn} ← Enc(Blocksk, n, f + 1) ▷ encode
113: vck ← VecCom(m1, · · · ,mn) ▷ vector commitment
114: πi ← Open(vck,mi, i) ▷ generate proof for fragment
115: Let Si ← {⊥, · · · ,⊥} and |Si| = n
116: Si[k]← (vck,mi, i, πi) ▷ record the corresponding value

117: send Help(e, Si) to pj

For any vctx ∈ M ′
e, at least one correct process has received the corresponding transaction,

ensuring that all processes receive the corresponding tx (with the help of diffusion procedure).
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8 Protocol Analysis

In this section, we first examine the security of SMRFS and follow by a discussion on its communi-
cation complexity.

8.1 Security Analysis

In this section, we first prove that the SMRFS protocol satisfies all the properties of state machine
replication protocol (cf. Definition 1), and then that its output satisfies OL (cf. Definition 3).

Lemma 2. If a correct process pi receives a message (seq-request, tx), then all correct processes
eventually receive transaction tx.

Proof. Whenever a correct process pi receives a message (seq-request, tx) (line 3), it assigns a
sequence number s to tx. Subsequently, it divides tx into fragments using an erasure code scheme and
creates a vector commitment vctx for these fragments. Process pi subsequently creates n openings
πk for each fragment and sends its respective fragment mk along with an opening πk to each process
pk using a diffusion message (line 11). Finally, pi submits vctx to PNFIFO-BC1[s]. Moreover, for
any correct process, it invokes PNFIFO-BC1 with input vctx only if it has already received the
corresponding tx.

Consequently, when a correct process pj receives a diffusion message (line 15) from another
correct process, it proceeds to multicast a spread message containing the fragment mj that it has
received. This occurs because all previously sent vector commitments corresponding to transactions
can be received. As a result, each correct process is ensured to receive at least n − f fragments of
tx. This enables each process to reconstruct tx and locally generate a (seq-request, tx) message.

Lemma 3. If a correct process pi receives a message (seq-request, tx), then pi will assign a
sequence number s to tx and store[s] will eventually become non-null.

Proof. According to lemma 2, if a correct process pi receives a message (seq-request, tx), then all
correct processes will be able to receive tx. Based on the code, once a correct process pi receives tx,
it will assign a sequence number s to tx and multicast an endorse message for vctx. Therefore, for
any correct process pi, upon receiving tx, it can receive at least f +1 valid endorse messages from
distinct processes. Consequently, it is guaranteed that pi will obtain a non-null store[s].

Lemma 4. The order sequence number stx decided for a transaction tx by the SMRFS protocol is
upper bounded and lower bounded by the sequence numbers assigned to tx by correct processes.

Proof. The order sequence number stx decided for a transaction tx in the SMRFS protocol is de-
termined using the median value of a set Stx of signed sequence numbers assigned to tx by 2f + 1
distinct processes. Since there can be at most f Byzantine processes, the value of stx is guaranteed
to be within the range of the sequence numbers assigned to tx by correct processes. Additionally,
the threshold of f + 1 used when building a threshold signature for stx ensures that at least one
correct process has verified the correctness of the signatures in Stx and confirmed that stx is indeed
the median of Stx.

Lemma 5. For any valid tuple (vctx, stx, Σ), all correct processes can receive stx number of trans-
actions.

Proof. Based on the code of Algorithm 2, a valid Σ implies that (vctx, stx) has been signed by at
least one correct process. This, in turn, signifies that stx is the median value among the set of 2f +1
sequence numbers that distinct processes assigned to tx. Consequently, it follows that at least one
correct process pi must possess a sequence number s such that s ≥ stx (cf. Lemma 4.1 of [23] and
lemma 4).

As a result, it also means that pi has received at least stx distinct transactions. Following
Lemma 2, all correct processes can also receive stx number of transactions.

19



Lemma 6. For any valid tuple (vctx, stx, Σ), all correct processes store[k] ̸= ⊥ for ∀ k ∈ [stx].

Proof. If the tuple (vctx, stx, Σ) is valid, then according to Lemma 5, all correct processes can
receive stx number of transactions. Additionally, based on Lemma 3, for each received tx, all correct
processes will assign a sequence number s to tx, and store[s] will eventually become non-null.
Therefore, with this assumption, all correct processes have store[k] ̸= ⊥ for all k ∈ [stx].

Lemma 7. If a correct process pi receives a message (seq-request, tx), then tx is SMRFS-delivered
by all correct processes.

Proof. If a correct process pi receives a message (seq-request, tx), then, based on Lemma 2 and
Lemma 3, all correct processes will assign a sequence number s to tx, and store[s] ̸= ⊥ will eventually
hold for all processes. We can consider the following two cases:

1. If vctx along with a median value is added to the submission buffers and output in Consensus1,
then following the consensus agreement, all correct processes will output vctx.

2. Otherwise, since each correct process has received tx and assigned a sequence number s to it,
all correct processes will have a store[s] = (vctx, σ). Consequently, once the maximum order
sequence number determined by Consensus1 surpasses the maximum sequence numbers assigned
by all correct processes, then the output of Consensus2 must include at least f + 1 correct
processes’ Log2s, and all of these Log2s will contain vctx. According to the code of Algorithm 4,
vctx will then be output.

In both cases, once vctx is determined to be output, it is guaranteed that the corresponding tx
will be received by all correct processes. This is because both cases imply that at least one correct
process possesses vctx. When at least one correct process has vctx, it implies that at least one correct
process has received tx. Then, according to Lemma 2, it is ensured that this transaction is received
by all correct processes. As a result, all correct processes can SMRFS-deliver tx.

Theorem 3. The SMRFS protocol (Algorithm 2, Algorithm 3 and Algorithm 4) implements a State
Machine Replication protocol (cf. Definition 1).

Proof. We prove each property separately.

1. SMR-Consistency. During each epoch, the Consensus-Agreement property ensures that correct
processes output the same submission buffer from Consensus1. Additionally, in accordance with
Lemma 6, all correct processes will have input into Consensus2, and Consensus-Termination
ensures that all correct processes have an output. Moreover, the PNFIFO-BC-Total-order and
Consensus-Agreement properties guarantee that each correct process outputs the same set of
transactions during the finalization phase following Consensus2. Consequently, in each epoch,
each correct process SMRFS-delivers the same set of transactions associated with the same
order sequence numbers, ordering these transactions in ascending order based on these order
sequence numbers. These transactions are deterministically sorted using a lexicographical order
in the case of a tie. As a result, all correct processes can SMR-deliver the same set in the same
epoch. Furthermore, according to the code, they will SMR-deliver in epoch e only if SMR-delivery
occurred in epoch e− 1. The ordering rule also determines that if a transaction tx1 is SMRFS-
delivered by a correct process before a transaction tx2, then all other correct processes will also
SMRFS-deliver tx1 before tx2.
When a correct process SMRFS-delivers a transaction tx, based on the previous analysis, all
correct processes also SMRFS-deliver the same transaction tx.

2. SMR-Liveness. If a correct process pi SMRFS-broadcasts a transaction tx, then according to
the code in Algorithm 2, pi multicasts a message (seq-request, tx) to all processes. Given the
network model assumption, all correct processes can receive (seq-request, tx) within a single
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step and then separately multicast a signed sequence number s for tx and a threshold signature
share of vctx to all processes. As 2f+1 ≤ n−f , pi will collect a set Stx of 2f+1 signed sequence
numbers for tx. After broadcasting a commitment vctx and a set Stx, process pi can collect f+1
shares for the median value stx of Stx. Process pi then broadcasts a final message.
If tx has not been SMRFS-delivered, then the communication channel ensures that (vctx, stx, Σ)
is eventually added to the submission buffers of all correct processes; in other words, all correct
processes will add (vctx, stx, Σ) to their submission buffers. Following the consensus validity
property, vctx is eventually output by Consensus1 if vctx has not been output in the finalization
phase. According to the code, all correct processes will receive a unique tx corresponding to vctx
at the end of the finalization phase.

Theorem 4. Our SMRFS protocol satisfy fair separability (Definition 3).

Proof. Let tx1 and tx2 be two transactions that are observed by correct processes with the sets of
sequence numbers S1 and S2, respectively, with maxs∈S1(s) < mins∈S2(s). First, note that due to
Lemma 4, and because maxs∈S1(s) < mins∈S2(s), for any order sequence numbers s1 and s2 output
by the protocol for tx1 and tx2, respectively, we have s1 < s2.

Considering the following scenarios: (1) if tx1 is output during the same epoch as tx2, or during
an earlier epoch, then we trivially have tx1 ≺ tx2; (2) tx1 has not yet been output when tx2 is
output by Consensus1. We thus only need to consider the case (2).

Recall that for a transaction tx, the sequence number s assigned to tx by a correct process
pi corresponds to pi has store[s] ̸= ⊥. Let e denote the epoch where tx2 is output with order
sequence number s2 ∈ S2 by Consensus1[e], and let he denote the highest sequence number among
the transactions output by Consensus1[e]. Before starting Consensus2[e], a correct process pi waits
until at least n − f processes have completed their eth instances of PNFIFO-BC2 (line 64). Then,
Consensus2[e] outputs a set Te of 2f + 1 processes whose respective instances have he store output.
Because there are at least f + 1 correct processes in Te, Te contains the Logs of at least f + 1
correct processes that have assigned to tx1 a sequence number that is less than s2. As a result,
when checking for transactions that should be delivered before tx2 (line 82), each correct process
sees that transaction tx1 should be added to the delivered set in epoch e, and order tx1 before tx2.
Furthermore, considering claims 1 and 2, the SMRFS ensures the preservation of FS when both tx1

and tx2 adhere to the FS conditions.

8.2 Complexity Analysis

In this section, we provide a comprehensive breakdown of the costs associated with our construction.

Theorem 5. The communication complexity is O(nℓ+ λn2) bits per transaction, which is optimal
when ℓ ≥ λn, where ℓ is the size of the transaction and λ is the security parameter.

Proof. Based on the pseudo-code for SMRFS, the cost breakdown can be summarized into the
following three phases:

1. Sequencing phase: This phase involves three main parts. Firstly, the broadcasting of a transaction
tx to all processes to assign a sequence number incurs a communication cost of O(nℓ) bits.
Secondly, according to Theorem 2, the n concurrent executions of the PNFIFO-BC instances with
the vector commitment vc of tx (|vc| = λ) as input incurs a communication cost of O(n2λ) bits.
Thirdly, when a transaction tx is received for the first time, a correct process sends a diffusion
message to all other processes. Meanwhile, all correct processes also multicast an endorse
message to generate a store for tx. If a correct process receives a valid diffusion message
and the previous transactions of the sender have also been received, the process forwards it by
multicasting a spread message once for tx. The size of the diffusion and spread messages
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both are O(ℓ/n+λ), while the size of the endorse is O(λ), so the cost of this part is O(nℓ+n2λ).
Besides, we ensure that any output in PNFIFO-BC corresponds to a valid transaction that will
eventually be included in the final output. This prevents any wasted communication in the
PNFIFO-BC instances. As a result, the communication cost in the sequencing phase isO(nℓ+n2λ)
bits per transaction tx.

2. Consensus phase: In this phase, two Consensus instances and one CallHelp module are involved.
The first Consensus instance has an input size of O(Kλ) = O(nλ), and the second Consensus
instance has an input size of O(nkλ), where k = he−he−1−1. Since the Consensus protocol has
O(n|m|+λn2) communication complexity, where |m| is the size of the input value of Consensus,
the total cost of the Consensus instances isO(λn2k) for n distinct vector commitments. Regarding
the CallHelp module, for a single correct process invoking it, the size of Shelp is at most O(n). For
each element j in Shelp, suppose that k distinct vector commitments must be recovered, resulting
in a communication cost of O(kλ+nλ). Thus, the total cost per process is O(knλ+n2λ). If O(n)
processes need to invoke this CallHelp module, the total cost for at least k vector commitments
would be O(kn2λ+ n3λ) for the current epoch.
The k distinct vector commitments correspond to k distinct transactions and these transactions
will eventually be delivered. If k < n, then the communication cost of the n distinct vector
commitments is O(λn3), resulting in O(λn2) for each vector commitment. If k ≥ n, then the
communication cost of the k distinct vector commitments is O(kn2λ), which still results in
O(λn2) for each vector commitment. In summary, for any single transaction (vector commit-
ment), the communication cost in this phase is O(n2λ).

3. Finalization: During this phase, no further communication between processes is required.

Summing up the communication complexity of all three phases, the communication complexity
per transaction for the entire protocol is O(nℓ+ λn2) bits.

9 Constant Time State Machine Replication with Ordering
Linearizability

From section 7, we observe that the communication complexity is O(nℓ + λn2) per transaction.
However, even if O(n) transactions are input in constant time (each correct process inputs O(1)
transactions in constant time), the time complexity reaches up to O(n) in the worst case, unless in
the optimistic scenario, where the network is synchronous and all processes are correct, the time
complexity is reduced to O(1). The primary reason is that line 57 in algorithm 3 can be influenced
by malicious processes. As an illustration, consider a scenario where one malicious process sends
a transaction tx to a correct process pi, and pi assigns a sequence number n to tx. Following
this, all malicious processes go into an offline state. The execution of lines 15-23 would necessitate
O(n) steps to ensure that all correct processes receive the transaction tx. This is due to correct
processes accepting the forwarded transaction from pi only if a correct process has already received
the output of PNFIFO-BC1i[n − 1]. Subsequently, each correct process assigns a sequence number
and broadcasts an endorse message for tx. As a result, pi requires O(n) steps to generate the
corresponding store[n]. Consequently, pi needs O(n) steps to initialize PNFIFO-BC2i, resulting in
the entire protocol requiring O(n) steps to produce the output.

In this section, we ensure that the time complexity consistently remains in O(1) in any case
where O(n) transactions are input in constant time. However, it is important to note that this
improvement in time complexity comes at the cost of an increased communication complexity, which
rises to O(n2ℓ+ λn2) per transaction.

The core idea is to utilize the actual transactions instead of involving any vector commitments.
For any received transactions, every correct process consistently forwards them to all other processes.
Nevertheless, we also provide a modified algorithm for SMRFS that has a constant time complexity.
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The constant-time SMRFS protocol can be found in Appendix A and is composed of the three
algorithms detailed in Algorithm 6, Algorithm 7, and Algorithm 8. The protocol analysis follows a
similar approach to the SMRFS protocol discussed in section 7. The communication complexity of the
protocol is O(n2ℓ+ λn2) per transaction, and the time complexity is O(1) when O(n) transactions
are input in constant time.

A Instantiation of Constant Time SMRFS

Algorithm 6 Transaction Sequencing, code for process pi

Initialize: seqi ← 1; buf ← {} ▷ sequence number and local vector commitment buffer
1: function SMRFS-broadcast(tx)
2: multicast (seq-request, tx) ▷ request a sequence number for tx

3: upon receiving (seq-request, tx) do
4: if this transaction tx ( ̸= ⊥) is received for the first time do ▷ perceive tx
5: s← seqi ▷ assign sequence number to tx
6: seqi ← seqi + 1 ▷ increment local sequence
7: multicast (seq-request, tx) ▷ diffusion tx
8: σtx,s ← Sign(tx || s, ski); multicast (seq-response, tx, s, σtx,s)
9: σtx ← TS.SigSharef+1(tx, tski); multicast (endorse, tx, σtx)

10: if Pi initials SMRFS-broadcast(tx) do
11: upon receiving (seq-response, tx, s, σtx,s) from pj do
12: if Vrf(tx || s, σtx,s, pkj )=1 do ▷ verify signature is valid
13: S[tx]← S[tx] ∪ (j, s, σtx,s) ▷ collect sequence numbers for tx
14: if |S[tx]| = 2f + 1 do ▷ collected 2f + 1 sequences for tx
15: multicast(order-request, tx, S[tx]) ▷ multicast S[tx]

16: upon receiving (order-request, tx, S[tx]) from pj do
17: if |S[tx]| = 2f + 1 ∧ ∀ (j, s, σtx,s) ∈ S[tx],Vrf(tx || s, σtx,s, pkj ) = 1 do
18: stx ← Median(S[tx]) ▷ pick up the median value of S[tx]
19: σseqtx ← TS.SigSharef+1(tx, stx, tski) ▷ sign stx with pi’s threshold sk
20: send (seq-median, tx, stx, σseqtx) to pj

21: if Pi initials SMRFS-broadcast(tx) do
22: upon receiving (seq-median, tx, stx, σseqtx) from pj do
23: if TS.VrfShare2f+1(tx, stx, (j, σseqtx))=1 do ▷ verify threshold sign
24: S[stx]← S[stx] ∪ (j, σseqtx) ▷ collect threshold sign for median of tx
25: if |S[stx]| = f + 1 do ▷ collected f + 1 threshold sign for median of tx
26: Σ ← TS.Combf+1(tx, stx, S[stx]) ▷ Σ can verify the median stx
27: multicast(final, tx, stx, Σ) ▷ send median proof to all

28: upon receiving (final, tx, stx, Σ) and TS.Vfyf+1(tx, stx, Σ) = 1 do
29: if tx /∈ Ledger do
30: Mi ←Mi ∪ (tx, stx, Σ) ▷ add into Mi

31: upon receiving (endorse, tx, σtx) from process pj and TS.VrfSharef+1(tx, (j, σtx))=1 do
32: if assigned a sequence number s for tx do
33: E[tx]← E[tx] ∪ (j, σtx) ▷ collect threshold sign for tx
34: if |E[tx]| = f + 1 do ▷ collected f + 1 threshold sign for tx
35: σ ← TS.Combf+1(tx, E[tx]) ▷ Σ can verify the tx
36: if store[s] = ⊥ do ▷ s is sequence number
37: store[s]← (tx, σ) ▷ generate store[s]
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Algorithm 7 Consensus with epoch number e, code for process pi

Initialize: epoch e← 1 ▷ consensus epochs
{PNFIFO-BCj}j∈[n] refer to n instances ▷ initial n PNFIFO-BC instances
the validation of input x in Consensus1[e] is as follows if x satisfies the following conditions:

(1): |x| = K and x := {(tx, stx, Σ)}K and tx /∈ Ledger
(2): TS.Vfy2f+1(tx, stx, Σ) = 1 for ∀ (tx, stx, Σ) ∈ x
(3): no two distinct (tx, stx, Σ) ∈ x share the same tx

the validation of input x in Consensus2[e] is as follows if x satisfies the following conditions:
(1): |x| = 2f + 1 and x := {(j, e,Hj,e,Proofj,e)}2f+1

(2): (j, e,Hj,e,Proofj,e) is valid for ∀ (j, e,Hj,e,Proofj,e) ∈ x
the validation of (j, e,Hj,e,Proofj,e) is as follows:

(1): TS.Vfy2f+1(j, e, h(Hj,e),Proofj,e) = 1
(2): |Hj,e| = he − he−1 − 1 and Hj,e := store[he−1 + 1 : he]
(3): for ∀ store[s] := (tx, σ) ∈ Hj,e: TS.Vfyf+1(tx, σ) = 1
(4): no two distinct store[s] := (tx, σ) ∈ Hj,e share the same tx

38: upon |Mi| ≥ K and pi has not submitted in epoch e do ▷ with K = O(n)
39: pick K elements with smallest order sequence number in Mi as Mi,e

40: invoke Consensus1[e] with Mi,e as input ▷ invoke Consensus1[e]

41: wait Consensus1[e] outputs Me do
42: let he := MAX{stx} in all (tx, stx, Σ) ∈Me ▷ max order seq number in Me

43: upon store[k] ̸= ⊥ for ∀ he−1 + 1 ≤ k ≤ he do
44: let Hi,e := store[he−1 + 1 : he]
45: PNFIFO-BCi[e](Hi,e)

46: wait PNFIFO-BCj [e] outputs (Hj,e,Proofj,e) for any j ∈ P do
47: if (j, e,Hj,e,Proofj,e) is valid do
48: Si,e ← Si,e ∪ (j, e,Hj,e,Proofj,e)
49: if |Si,e| = 2f + 1 do
50: invoke Consensus2[e] with Si,e as input ▷ invoke Consensus2[e]

51: wait Consensus2[e] outputs Se do ▷ 2f + 1 Logk
52: for ∀ (j, e,Hj,e,Proofj,e) ∈ Se do
53: Te ← Te ∪ j ▷ indexes set
54: if the newest output PNFIFO-BCj is (Hj,sr ,Proofj,sr ) and sr < e− 1 do
55: Shelp ← Shelp ∪ (j, sr + 1)

56: CallHelp(e, Shelp, e− 1) ▷ see algorithm 5

57: for ∀ j ∈ Te do
58: wait until Logj [1 : e] := {Hj,1, Hj,2, · · · , Hj,e} have been received do
59: for ∀ k ∈ [e]: ∀ store[s] := (tx, σ) ∈ Hj,k do
60: Logj [s]← tx ▷ pj received transactions history
61: if tx /∈ Ledger do
62: Pendinge ← Pendinge ∪ tx ▷ add into Pendinge
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Algorithm 8 Finalized Output with epoch number e, code for process pi

63: parse Me := {(vctx′
i
, stx′

i
, Σ)}; for ∀ (vctx′

i
, stx′

i
, Σ) ∈Me: S

′ ← S′ ∪ stx′
i

▷ Me is the output of
consensus1

64: let S′ = {stx′
1
, stx′

2
, · · · , stx′

e
}, where stx′

i
is the i-th smallest value in the set S′ and stx′

e
= he

65: let M ′
e =: {vctx′

1
, vctx′

2
, · · · , vctx′

e
}

66: for tx′
i ∈M ′

e and tx′
i picks in order do ▷ first tx′

1, then tx′
2, and so on

67: for tx′ ∈ Pendinge and tx′ /∈M ′
e do ▷ selecting t

68: if tx′ appears at least f + 1 times in Logs[s̄tx′
i
− 1, Te] do

69: for j ∈ Te do
70: if Logj [k] := tx′ and k < s̄tx′

i
do

71: seq[tx′]← seq[tx′] ∪ k

72: seq[tx′]← Sort(seq[tx′]) ▷ sort in ascending order
73: let the f + 1-th element of seq[tx′] as the median value, and denote stx′

74: S[tx′
i]← S[tx′

i] ∪ (tx′, stx′)

75: S[tx′
i]← Sort(S[tx′

i]) ▷ sort in ascending order of stx′

76: Value[tx′
i][i]← tx′ if S[tx′

i][i] = (tx′, stx′)
77: M ′

e ← {tx′
1, tx

′
2, · · · , tx′

i−1,Value[tx
′
i], tx

′
i, . . . , tx

′
e} ▷ insert Value[tx′

i]

78: for ∀ txi ∈M ′
e do

79: Ledger[e][i]← txi if M
′
e[i] = txi

80: Mi ←Mi \ (txi, ∗, ∗) for any txi ∈M ′
e ▷ update Mi

81: SMRFS-delivery(Ledger[e]) ▷ delivery
82: e← e+ 1 ▷ increment epoch
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