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Abstract

Common random string model is a popular model in classical cryptography with many constructions
proposed in this model. We study a quantum analogue of this model called the common Haar state
model, which was also studied in an independent work by Chen, Coladangelo and Sattath (arXiv 2024).
In this model, every party in the cryptographic system receives many copies of one or more i.i.d Haar
states.

Our main result is the construction of a statistically secure PRSG with: (a) the output length of
the PRSG is strictly larger than the key size, (b) the security holds even if the adversary receives
O
(

λ
(log(λ))1.01

)
copies of the pseudorandom state. We show the optimality of our construction by showing

a matching lower bound. Our construction is simple and its analysis uses elementary techniques.
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1 Introduction
In classical cryptography, the common random string and the common reference string models were intro-
duced to tackle cryptographic tasks that were impossible to achieve in the plain model. In the common
reference string model, there is a trusted setup who produces a string that every party has access to. In
the common random string model, the common string available to all the parties is sampled uniformly at
random, thus avoiding the need for a trusted setup. As a result, the common random string model is the
more desirable model of the two. There have been many constructions proposed over the years in these
two models, including non-interactive zero-knowledge [BFM19], secure computation secure under universal
composition [CF01; CLOS02] and two-round secure computation [GS22; BL18].

It is a worthy pursuit to study similar models for quantum cryptographic protocols. In this case, there
is an option to define models that are inherently quantum. For instance, we could define a model wherein a
trusted setup produces a quantum state and every party participating in the cryptographic system receives
one or many copies of this quantum state. Indeed, two works by Morimae, Nehoran and Yamakawa [MNY23]
and Qian [Qia23] consider this model, termed as the common quantum reference string model (CQRS). They
proposed unconditionally secure commitments in this model. Quantum commitments is a foundational notion
in quantum cryptography. In recent years, quantum commitments have been extensively studied [AQY22;
MY21; AGQY22; MY23; BCQ22; Bra23] due to its implication to secure computation [BCKM21; GLSV21].
The fact that information-theoretically secure commitments are impossible in the plain model [LC97; May97;
CLM23] makes the contributions of [MNY23; Qia23] quite interesting.

While CQRS is a quantum analogue of common reference string model, we can ask if there is a quantum
analogue of the common random string model. An independent and concurrent recent work by Chen,
Coladangelo and Sattath [CCS24] (henceforth, referred to as CCS) introduced a model, called the common
Haar random state model (CHRS). In this model, every party in the system receives many copies of many
i.i.d Haar states. They presented constructions of pseudorandomness and commitments in this model. The
goal of our work is to study this model further.

Our Work. We consider a simpler version of the common Haar random state model, wherein every party
receives many copies of one Haar state. Feasibility results in our model are stronger than the model considered
by CCS whereas the negative results would be weaker. We call our model the common Haar state model
(CHS).

Similar to CCS, we present constructions of pseudorandom states and commitments in the CHS model.

Statistical Pseudorandom States (i.e., State Designs): The concept of pseudorandom state gener-
ators (PRSGs) was introduced in a seminal work by Ji, Liu and Song [JLS18]. Roughly speaking, it states
that any computationally bounded adversary cannot distinguish whether it receives many copies of a state
produced using a pseudorandom state generator on a uniform key versus many copies of a single Haar state.
Constructions of pseudorandom states are known from one-way functions [JLS18; BS19; AGQY22; JMW23;
GB23]. It is known that for a broad range of parameters, we need to impose the restriction that the adversary
is computationally bounded [AGQY22]. One such case is when the output length of the state generator is
larger than the length of the key; referred to as stretch PRSGs. In this case, even if the adversary gets one
copy of the state then it can break the pseudorandomness property if it is unbounded.

We consider the possibility of statistically secure stretch PRSGs. We show the following. In the theorem
below, we denote λ to be the key length of the PRSG.

Theorem 1.1 (Informal). There is a statistically secure PRSG in the CHS model satisfying the following: (a)
the output length of PRSG is > λ and, (b) the security holds as long as the adversary receives O

(
λ

(log(λ))1+ε

)
copies, for some constant ε > 0.

This improves upon CCS [CCS24] who only showed 1-copy stretch PRSG exists in their model. Moreover,
our construction and in particular, our analysis, is arguably simpler and elementary compared to CCS.
Another advantage of our work is that we can achieve arbitrary stretch whereas it is unclear whether this is
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also achieved by CCS. As a side contribution, the proof of our PRSG construction also simplifies the proof
of the quantum public-key construction of Coladangelo [Col23]; this is due to the fact the core lemma proven
in [Col23] is a paraphrased version of the above theorem.

Interestingly, both works design PRSGs which only consume one copy of a single Haar state. In this
special case, it is interesting to understand whether we can extend our result to the setting when the adversary
receives O

(
λ

log(λ)

)
copies. We show this is not possible.

Theorem 1.2 (Informal). There does not exist a secure PRSG in the CHS model satisfying the following:
(a) the PRSG uses only one copy of the Haar state in the CHS model, (b) the adversary receives Ω( λ

log(λ) )

copies of the pseudorandom state and, (c) the output length is ω(log(λ)).

CCS also proved a lower bound where they showed that unbounded copy pseudorandom states do not exist.
Their negative result is stronger in the sense that they rule out PRSGs who use up many copies of the Haar
states from the CHRS. On the other hand, for the special case when the PRSG only takes one copy of the
Haar state, we believe our result yields better parameters.

Commitments: We show the following.

Theorem 1.3 (Informal). There is an unconditionally secure bit commitment scheme in the CHS model.

Both our construction and the commitments scheme proposed by CCS are different although they share
strong similarities. Even the proof techniques seem to be similar.

Future Directions. The work by [CCS24] and our work initiates an interesting research direction: to
build cryptography in the common Haar state model. It would be interesting to the feasibility of other
cryptographic constructions in this model. It would also be interesting to understand other variants of this
model. One such variant is the Haar random oracle model, studied by [BFV19; CM21]. We leave open the
question of investigating the relationship between these different models and also developing toolkits that
will aid us in proving (in)feasibility results in these models.

2 Preliminaries
We denote the security parameter by λ. We assume that the reader is familiar with the fundamentals of
quantum computing covered in [NC10].

2.1 Notation
• We use [n] to denote {1, . . . , n} and [0 : n] to denote {0, 1, . . . , n}.

• We denote St to be the symmetric group of degree t.

• For a set A and t ∈ N, we define At := {(a1, . . . , at) : ∀i ∈ [t], ai ∈ A}.

• For σ ∈ St and v = (v1, . . . , vt), we define σ(v) := (vσ(1), . . . , vσ(t)).

• We use D(H) to denote the set of density matrices in the Hilbert space H.

• Let ρAB ∈ D(HA ⊗ HB), by TrB(ρAB) ∈ D(HA) we denote the reduced density matrix by taking
partial trace over B.

• We denote the trace distance between quantum states ρ, ρ′ by TD(ρ, ρ′) := 1
2∥ρ− ρ

′∥1.

• We denote the Haar measure over n qubits by Hn.
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2.2 Pseudorandom State Generators
We recall the definition of statistical pseudorandom state generators (PRS).

Definition 2.1. We say that a QPT algorithm G is an ℓ-copy statistical PRS generator if the following
holds:

• State Generation: For any λ ∈ N and k ∈ {0, 1}λ, the algorithm G is a quantum channel that
satisfies

G(|k⟩) = |ψk⟩⟨ψk|,
for some n(λ)-qubit state |ψk⟩.

• Psuedorandomness: For any computationally unbounded adversary A, there exists a negligible
fuctions negl(·) such that:∣∣∣∣∣ Pr

k←{0,1}λ

[
Aλ
(
G(|k⟩)⊗ℓ

)
= 1
]
− Pr
|φ⟩←Hn

[
Aλ
(
|φ⟩⊗ℓ

)
= 1
]∣∣∣∣∣ ≤ negl(λ).

If G statisfies the above security definition for every polynomial ℓ, we say that G is an unbounded poly-copy
statistical PRS generator.

2.3 Quantum Commitments
We recall the definition of commitment schemes in the CRQS model [MNY23].

Definition 2.2 (Quantum commitments in the Common Reference Quantum State (CRQS) model [MNY23]).
A (non-interactive) quantum commitment scheme in the CRQS model is given by a tuple of the setup algo-
rithm Setup, committer C, and receiver R, all of which are uniform QPT algorithms. The scheme is divided
into three phases, the setup phase, commit phase, and reveal phase as follows:

• Setup phase: Setup takes 1λ as input, uniformly samples a classical key k ← Kλ, generates two copies
of the same pure state |ψk⟩ and sends one copy each to C and R.

• Commit phase: C takes |ψk⟩ given by the setup algorithm and a bit b ∈ {0, 1} to commit as input,
generates a quantum state on registers C and R, and sends the register C to R.

• Reveal phase: C sends b and the register R to R. R takes |ψk⟩ given by the setup algorithm and
(b,C,R) given by C as input, and outputs b if it accepts and otherwise outputs ⊥.

Definition 2.3 (t-copy statistical hiding [MNY23]). A quantum commitment scheme (Setup, C,R) in the
CRQS model satisfies t-copy statistical hiding if for any non-uniform unbounded-time algorithm A,∣∣∣∣∣Pr[A(1λ, |ψk⟩⊗t,TrR(σCR)) = 1 : k←Kλ,

σCR←Ccom(|ψk⟩,0)

]
− Pr

[
A(1λ, |ψk⟩⊗t,TrR(σCR)) = 1 : k←Kλ,

σCR←Ccom(|ψk⟩,1)

]∣∣∣∣∣ ≤ negl(λ),

where Ccom is the commit phase of C.

Definition 2.4 (Statistical sum-binding [MNY23]). A quantum commitment scheme (Setup, C,R) in the
CQRS model satisfies statistical sum-binding if the following holds. For any pair of non-uniform unbounded-
time malicious committers C∗0 and C∗1 that take the classical key k, which is sampled by the setup algorithm,
as input and work in the same way in the commit phase, if we let pb to be the probability that R accepts
the revealed bit b in the interaction with C∗b for b ∈ {0, 1}, then we have

p0 + p1 ≤ 1 + negl(λ).
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2.4 Common Haar State Model
The Common Haar State (CHS) model is a variant of the Common Reference Quantum State (CRQS)
model. In this model, all parties receive polynomially many copies of a qubit state sampled from the Haar
distribution.

2.4.1 Pseudorandom State Generators in the CHS model

Definition 2.5 (ℓ-copy PRS in CHS model). Let |ϑ⟩ denote the n(λ)-qubit common Haar state. We say
that a QPT algorithm G is an ℓ-copy statistical PRS generator in the CHS model if the following holds:

• State Generation: For any λ ∈ N and k ∈ {0, 1}λ, the algorithm Gk (where Gk denotes G(k, ·)) is a
quantum channel such that for every n-qubit state |ϑ⟩,

Gk(|ϑ⟩⟨ϑ|) = |ϑk⟩⟨ϑk|,

for some n-qubit state |ϑk⟩. We sometimes write Gk(|ϑ⟩) for brevity.1

• Pseudorandomness: For any polynomial t(·) and computationally unbounded adversary A, there
exists a negligible function negl(·) such that:∣∣∣∣∣∣∣ Pr

k←{0,1}λ
|ϑ⟩←Hn

[
Aλ
(
Gk(|ϑ⟩)⊗ℓ, |ϑ⟩⊗t

)
= 1
]
− Pr
|φ⟩←Hn

|ϑ⟩←Hn

[
Aλ
(
|φ⟩⊗ℓ, |ϑ⟩⊗t

)
= 1
]∣∣∣∣∣∣∣ ≤ negl(λ).

We define a stronger variant of the above notion called a multi-key ℓ-copy PRS generator. Looking ahead,
our construction of PRS in Section 3.1 satisfies this stronger definition. In addition, we show in Section 4
that multi-key 1-copy stretch PRS generator in the CHS model implies statistically hiding, statistically
sum-binding commitments in the CHS model.

Definition 2.6 (Multi-key ℓ-copy PRS in CHS model). Let |ϑ⟩ denote the n(λ)-qubit common Haar state.
We say that a QPT algorithm G is a multi-key ℓ-copy statistical PRS generator in the CHS model if the
following holds:

• State Generation: For any λ ∈ N and k ∈ {0, 1}λ, the algorithm Gk (where Gk denotes G(k, ·)) is a
quantum channel such that for every n-qubit state |ϑ⟩,

Gk(|ϑ⟩⟨ϑ|) = |ϑk⟩⟨ϑk|,

for some n-qubit state |ϑk⟩. We sometimes write Gk(|ϑ⟩) for brevity.

• Multi-key Pseudorandomness: For any polynomial t(·), p(·) and computationally unbounded ad-
versary A, there exists a negligible function negl(·) such that:∣∣∣∣∣∣∣ Pr
k1,...,kp←{0,1}λ
|ϑ⟩←Hn

[
Aλ
(
⊗pi=1Gki(|ϑ⟩)

⊗ℓ, |ϑ⟩⊗t
)
= 1
]
− Pr
|φ1⟩,...,|φp⟩←Hn

|ϑ⟩←Hn

[
Aλ
(
⊗pi=1|φi⟩

⊗ℓ, |ϑ⟩⊗t
)
= 1
]∣∣∣∣∣∣∣ ≤ negl(λ).

Remark 2.7. Note that in the plain model, PRS implies multi-key PRS because the PRS does not share
randomness for different keys. This is not trivially true in CHS model as the generator for all keys shares
the same common Haar state.

1More generally, the generation algorithm could take multiple copies of the common Haar state as input or output a state
of size different from the CHS but we focus on generation algorithms taking only one copy of the Haar state and the output of
the generator is the same size as the CHS.
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2.4.2 Quantum Commitments in the CHS model

Definition 2.8 (Quantum commitments in the Common Haar State (CHS) model). A (non-interactive)
quantum commitment scheme in the CHS model is given by a tuple of the committer C and receiver R, all
of which are uniform QPT algorithms. Let |ϑ⟩ be the n(λ)-qubit common Haar state. The scheme is divided
into two phases, commit phase, and reveal phase as follows:

• Commit phase: C takes |ϑ⟩⊗p for some polynomial p(·) and a bit b ∈ {0, 1} to commit as input,
generates a quantum state on registers C and R, and sends the register C to R.

• Reveal phase: C sends b and the register R to R. R takes |ϑ⟩⊗p and (b,C,R) given by C as input, and
outputs b if it accepts and otherwise outputs ⊥.

Definition 2.9 (Poly-copy statistical hiding). A quantum commitment scheme (C,R) in the CHS model
satisfies poly-copy statistical hiding if for any non-uniform unbounded-time algorithm A, and any polynomial
t(·), there exists a negligible function negl(·) such that∣∣∣∣∣Pr[A(1λ, |ϑ⟩⊗t,TrR(σCR)) = 1 :

|ϑ⟩←Hn,

σCR←Ccom(|ϑ⟩⊗p,0)

]
− Pr

[
A(1λ, |ϑ⟩⊗t,TrR(σCR)) = 1 :

|ϑ⟩←Hn,

σCR←Ccom(|ϑ⟩⊗p,1)

]∣∣∣∣∣ ≤ negl(λ),

where Ccom is the commit phase of C.

Definition 2.10 (Statistical sum-binding). A quantum commitment scheme (C,R) in the CHS model sat-
isfies statistical sum-binding if the following holds. For any pair of non-uniform unbounded-time malicious
committers C∗0 and C∗1 that take |ϑ⟩⊗T for arbitrary large T (·) as input and work in the same way in the
commit phase, if we let pb to be the probability that R accepts the revealed bit b in the interaction with C∗b
for b ∈ {0, 1}, then we have

p0 + p1 ≤ 1 + negl(λ).

2.5 Symmetric Subspaces, Type States, and Haar States
The proof of facts and lemmas in this subsection can be found in [Har13]. Let v = (v1, . . . , vt) ∈ At for some
finite set A. Let |A| = N . Define type(v) ∈ [0 : t]N to be the type vector such that the ith entry of type(v)
equals the number of occurrences of i ∈ [N ] in v.2 In this work, by T ∈ [0 : t]N we implicitly assume that∑
i∈[N ] Ti = t. For T ∈ [0 : t]N , we denote by mset(T ) the multiset uniquely determined by T . That is, the

multiplicity of i ∈ mset(T ) equals Ti for all i ∈ [N ]. We write T ← [0 : t]N to mean sampling T uniformly
from [0 : t]N conditioned on

∑
i∈[N ] Ti = t. We write v ∈ T to mean v ∈ At satisfies type(v) = T .

In this work, we will focus on collision-free types T which satisfy Ti ∈ {0, 1} for all i ∈ [N ]. A collision-
free type T can be naturally treated as a set and we write v← T to mean sampling a uniform v conditioned
on type(v) = T .

Definition 2.11 (Type states). Let T ∈ [0 : t]N , we define the type states:

|T ⟩ :=

√∏
i∈[N ] Ti!

t!

∑
v∈T
|v⟩.

If T is collision-free, then it can be simplified to

|T ⟩ = 1√
t!

∑
v∈T
|v⟩.

2We identify [0 : t]N as [0 : t]A.
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Furthermore, it has the following useful expression

|T ⟩⟨T | = 1

t!

∑
v,u∈T

|v⟩⟨u| = E
v←T

[∑
σ∈St

|v⟩⟨σ(v)|

]
. (1)

Lemma 2.12 (Average of copies of Haar-random states). For all N, t ∈ N, we have

E
|ϑ⟩←H(CN )

|ϑ⟩⟨ϑ|⊗t = E
T←[0:t]N

|T ⟩⟨T |.

Definition 2.13 (ℓ-fold n-prefix collision-free types). Let n,m, t, ℓ ∈ N such that t ≥ ℓ and T ∈ [0 : t]2
n+m

.
We say T is ℓ-fold n-prefix collision-free if for all pairs of ℓ-subsets S, T ⊆ mset(T ), the first n bits of⊕

x∈S x ∈ {0, 1}n+m is identical to that of
⊕

y∈T y ∈ {0, 1}n+m if and only if S = T . We define I(ℓ)n,m(t) :=

{T ∈ [0 : t]2
n+m

: T is ℓ-fold n-prefix collision-free}.

For a fixed t, one can easily verify that ℓ-fold n-prefix collision-freeness implies ℓ′-fold n-prefix collision-
freeness for ℓ > ℓ′, and 1-fold n-prefix collision-freeness is equivalent to the standard collision-freeness.

Lemma 2.14. If ℓ = o(2n), then PrT←[0:t]2n+m [T ∈ I(ℓ)n,m(t)] = 1−O(t2ℓ/2n).

Proof. First, sampling T ← [0 : t]2
n+m

uniformly is O(t2/2n+m)-close to sampling a uniform collision-free
T from [0 : t]2

n+m

by collision bound. Furthermore, sampling a uniform collision-free T from [0 : t]2
n+m

is equivalent to sampling t elements x1, x2, . . . , xt one by one from {0, 1}n+m conditioned on them being
distinct and setting T such that mset(T ) = {x1, . . . , xt}. Hence, it suffices to show that sampling t elements
x1, x2, . . . , xt one by one from {0, 1}n+m conditioned on them being distinct results in an ℓ-fold n-prefix
collision-free set with probability 1−O(t2ℓ/2n).

For any two distinct ℓ-subsets of indices S ≠ T ⊆ [t], let BadS,T denote the event that the first n bits
of
⊕

i∈S xi is the same as that of
⊕

j∈T xj . Then Pr
[
BadS,T : x1,x2,...,xt←{0,1}n+m

x1,x2,...,xt are distinct

]
= O(1/2n − 2ℓ). This is

because we can first sample |S ∪ T | − 1 elements (in S ∪ T ) except one with indices in S \ T . Then BadS,T
occurs only if the first n bits of the last sample is equal to the first n bits of the bitwise XOR of all other
elements in S with all elements in T , which happens with probability at most O(1/(2n − 2ℓ)). By a union
bound, we have T ∈ I(ℓ)n,m(t) with probability one but O(t2/2n+m) +

(
t
ℓ

)2 ·O(1/(2n − 2ℓ)) = O(t2ℓ/2n).

Lemma 2.15. For any v ∈ {0, 1}(n+m)t such that type(v) ∈ I(ℓ)n,m(t) and σ ∈ St, define

Av,σ := E
k∈{0,1}n

[((
Zk ⊗ Im

)⊗ℓ ⊗ I⊗t−ℓn+m

)
|v⟩⟨σ(v)|

((
Zk ⊗ Im

)⊗ℓ ⊗ I⊗t−ℓn+m

)]
.

Then Av,σ = |v⟩⟨σ(v)| if σ maps [ℓ] to [ℓ]; otherwise, Av,σ = 0.

Proof. Suppose v = (v1||w1, . . . , vt||wt) ∈ {0, 1}(n+m)t with vi ∈ {0, 1}n and wi ∈ {0, 1}m for all i ∈ [t].
First, a direct calculation yields((

Zk ⊗ Im
)⊗ℓ ⊗ I⊗t−ℓn+m

)
|v⟩⟨σ(v)|

((
Zk ⊗ Im

)⊗ℓ ⊗ I⊗t−ℓn+m

)
= (−1)⟨k,⊕

ℓ
i=1(vi⊕vσ(i))⟩|v⟩⟨σ(v)|.

Therefore, after averaging over k,

Av,σ = E
k∈{0,1}n

[
(−1)⟨k,⊕

ℓ
i=1(vi⊕vσ(i))⟩

]
|v⟩⟨σ(v)| =

{
|v⟩⟨σ(v)| if ⊕ℓi=1 (vi ⊕ vσ(i)) = 0

0 otherwise.

Since type(v) ∈ I(ℓ)n,m(t), the condition ⊕ℓi=1vi = ⊕ℓi=1vσ(i) holds if and only if the two sets {1, 2, . . . , ℓ} and
{σ(1), σ(2), . . . , σ(ℓ)} are identical.
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The following lemma lies in the technical heart of this work. It says that the action of applying random Zk

on ℓ-fold n-prefix collision-free types T has the following “classical” probabilistic interpretation: the output
is identically distributed to first uniformly sampling an ℓ-subset X ⊂ T and then outputting |X⟩⟨X| ⊗ |T \
X⟩⟨T \X|.

Lemma 2.16. For any T ∈ I(ℓ)n,m(t),

E
k∈{0,1}n

[((
Zk ⊗ Im

)⊗ℓ ⊗ I⊗t−ℓn+m

)
|T ⟩⟨T |

((
Zk ⊗ Im

)⊗ℓ ⊗ I⊗t−ℓn+m

)]
= E
X⊂T

[|X⟩⟨X| ⊗ |T \X⟩⟨T \X|] ,

where X is a uniform ℓ-subset of T .3

Proof. We first use the expression in Equation (1) on the left-hand side:

LHS = E
v←T

[∑
σ∈St

E
k∈{0,1}n

[((
Zk ⊗ Im

)⊗ℓ ⊗ I⊗t−ℓn+m

)
|v⟩⟨σ(v)|

((
Zk ⊗ Im

)⊗ℓ ⊗ I⊗t−ℓn+m

)]]
. (2)

Then from the previous lemma (Lemma 2.15)

(2) = E
v←T

 ∑
σ1∈Sℓ,σ2∈St−ℓ

|v⟩⟨σ1 ◦ σ2(v)|


= E

v←T

 ∑
σ1∈Sℓ

|v[1:ℓ]⟩⟨σ1(v[1:ℓ])| ⊗
∑

σ2∈St−ℓ

|v[ℓ+1:t]⟩⟨σ2(v[ℓ+1:t])|


= E

 ∑
σ1∈Sℓ

|v1⟩⟨σ1(v1)| ⊗
∑

σ2∈St−ℓ

|v2⟩⟨σ2(v2)| :
X⊂T,
v1←X,

v2←T\X


= E
X⊂T

[|X⟩⟨X| ⊗ |T \X⟩⟨T \X|] .

For the first equality, we use Lemma 2.15 and decompose σ = σ1 ◦σ2 for some σ1, σ2 such that σ1(x) = x for
all x ∈ {ℓ+ 1, ℓ+ 2, · · · , t} and σ2(y) = y for all y ∈ {1, 2, · · · , ℓ}, which uniquely correspond to elements in
Sℓ and St−ℓ. The second equality follows by denoting the first ℓ part of v by v[1:ℓ] and the last t− ℓ part of
v by v[ℓ+1:t]. The third equality holds because sampling v from T is equivalent to sampling X ⊂ T followed
by assigning order to elements in X and T \X.

3 ℓ-copy statistical PRS in the CHS model

In this section, we discuss the construction of ℓ-copy statistical PRS in the CHS model for ℓ = O(λ/ log(λ)
1+ϵ

)
(for any constant ϵ > 0) and length of the common Haar state n ≥ λ. We also show that the construction
satisfies multikey security for the same parameters. Further, we complement our result by showing that for
n = ω(log(λ)), achieving an ℓ-copy statistical PRS in the CHS model for ℓ = Ω(λ/ log(λ)) is impossible
(similarly for the multikey case), this shows that our construction is optimal (best one can hope for) for
n ≥ λ.

Theorem 3.1. For all constants ϵ > 0, there exists multi-key O(λ/ log(λ)
1+ϵ

)-copy statistical stretch PRS
in the CHS model.

3Since T is collision-free, we can interpret it as a set.
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3.1 Construction
In this section, we assume that n(λ) ≥ λ. We define the construction as follows: on input k ∈ {0, 1}λ of the
n-qubit common Haar state |ϑ⟩,

Gk(|ϑ⟩) := (Zk ⊗ In−λ)|ϑ⟩.

Note that when n(λ) > λ, our construction is a stretch PRS.

Lemma 3.2 (Pseudorandomness). Let G be as defined above. Let

ρ := E
k←{0,1}λ
|ϑ⟩←Hn

[
Gk(|ϑ⟩)⊗ℓ ⊗ |ϑ⟩⟨ϑ|⊗t

]
and σ := E

|φ⟩←Hn

|ϑ⟩←Hn

[
|φ⟩⟨φ|⊗ℓ ⊗ |ϑ⟩⟨ϑ|⊗t

]
.

Then TD (ρ, σ) = O
(

(ℓ+t)2ℓ

2λ

)
.

Proof. We prove this using hybrid arguments:

Hybrid 1. Sample T ← [0 : ℓ+ t]2
n

. Sample k ← {0, 1}λ. Output ((Zk ⊗ In−λ)⊗ℓ ⊗ I⊗tn )|T ⟩.

Hybrid 2. Sample T ← [0 : ℓ + t]2
n

uniformly conditioned on T ∈ I(ℓ)λ,n−λ(ℓ + t). Sample k ← {0, 1}λ.
Output ((Zk ⊗ In−λ)⊗ℓ ⊗ I⊗tn )|T ⟩.

Hybrid 3: Sample T ← [0 : ℓ+ t]2
n

uniformly conditioned on T ∈ I(ℓ)λ,n−λ(ℓ+ t). Sample a uniform ℓ-subset
T1 from T . Output |T1⟩ ⊗ |T \ T1⟩.

Hybrid 4. Sample T ← [0 : ℓ+ t]2
n

. Sample a uniform ℓ-subset T1 from T .4 Output |T1⟩ ⊗ |T \ T1⟩.

Hybrid 5. Sample a collision-free T from [0 : ℓ + t]2
n

. Sample a uniform ℓ-subset T1 from T . Output
|T1⟩ ⊗ |T \ T1⟩.

Hybrid 6. Sample a uniform collision-free T1 from [0 : ℓ]2
n

. Sample a uniform collision-free T2 from [0 : t]2
n

conditioned on T1 and T2 have no common elements. Output |T1⟩ ⊗ |T2⟩.

Hybrid 7. Sample a uniform collision-free T1 from [0 : ℓ]2
n

. Sample a uniform collision-free T2 from
[0 : t]2

n

. Output |T1⟩ ⊗ |T2⟩.

Hybrid 8. Sample T1 ← [0 : ℓ]2
n

. Sample T2 ← [0 : t]2
n

. Output |T1⟩ ⊗ |T2⟩.
By Lemma 2.14, the trace distance between Hybrid 1 and Hybrid 2 is O((t + ℓ)2ℓ/2λ). From Lemma 2.16,
the output of Hybrid 2 is

E
T←[0:ℓ+t]2

n
:

T∈I(ℓ)λ,n−λ(ℓ+t)

E
T1⊂T

[|T1⟩⟨T1| ⊗ |T \ T1⟩⟨T \ T1|] .

Hence, Hybrid 2 is equivalent to Hybrid 3. From now on, we will prove the closeness of the remaining
hybrids by classical arguments. Again by Lemma 2.14, the trace distance between Hybrid 3 and Hybrid 4
is O((t+ ℓ)2ℓ/2λ). The trace distance between Hybrid 4 and Hybrid 5 is O((t+ ℓ)2/2n) by collision bound.
Hybrid 5 and Hybrid 6 are equivalent. The trace distance between Hybrid 6 and Hybrid 7 is O(tℓ/2n).
Finally, the trace distance between Hybrid 7 and Hybrid 8 is O((t2 + ℓ2)/2n) by collision bound. Collecting
the probabilities completes the proof.

4Since T might have collision, T1 is a multiset of size ℓ.
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Remark 3.3. From Lemma 3.2, we conclude that the construction given above is an ℓ-copy statistical PRS
in the CRHS model for ℓ = O(λ/ log(λ)

1+ϵ
) (for any constant ϵ > 0).

By the following lemma, we can also show that the above construction is a multi-key ℓ-copy statistical PRS
in the CRHS model for ℓ = O(λ/ log(λ)

1+ϵ
) (for any constant ϵ > 0):

Lemma 3.4 (Multi-key pseudorandomness). Let G be as defined above. Let

ρ :=

p⊗
i=1

E
|φi⟩←Hn

[
|φi⟩⟨φi|⊗ℓ

]
⊗ E
|ϑ⟩←Hn

[
|ϑ⟩⟨ϑ|⊗t

]
and σ := E

|ϑ⟩←Hn

[
p⊗
i=1

E
ki←{0,1}λ

[
Gki(|ϑ⟩)⊗ℓ

]
⊗ |ϑ⟩⟨ϑ|⊗t

]
.

Then TD (ρ, σ) = O
(
p·(pℓ+t)2ℓ

2λ

)
.

Proof. For j = 0, 1, . . . , p, we define the following (hybrid) density matrices:5

ξj :=

j⊗
i=1

E
|φi⟩←Hn

[
|φi⟩⟨φi|⊗ℓ

]
⊗ E
|ϑ⟩←Hn

 p⊗
i=j+1

E
ki←{0,1}λ

[
Gki(|ϑ⟩)⊗ℓ

]
⊗ |ϑ⟩⟨ϑ|⊗t

 .
We will complete the poof by showing that TD(ξj , ξj+1) = O

(
((p−j)·ℓ+t)2ℓ

2λ

)
for j = 0, 1, . . . , p − 1. By the

property that TD(A⊗X,A⊗ Y ) = TD(X,Y ), the trace distance between ξj and ξj+1 is identical to that of

ξ′j := E
|ϑ⟩←Hn

 p⊗
i=j+1

E
ki←{0,1}λ

[Gki(|ϑ⟩)⊗ℓ]⊗ |ϑ⟩⟨ϑ|⊗t


and

ξ′j+1 := E
|φj+1⟩←Hn

[
|φj+1⟩⟨φj+1|⊗ℓ

]
⊗ E
|ϑ⟩←Hn

 p⊗
i=j+2

E
ki←{0,1}λ

[Gki(|ϑ⟩)⊗ℓ]⊗ |ϑ⟩⟨ϑ|⊗t
 .

By the monotonicity of trace distance (i.e., TD(E(X), E(Y )) ≤ TD(X,Y ) for any quantum channel E) and
setting E :=

⊗p
i=j+2 Eki←{0,1}λ [Gki(·)⊗ℓ],6 we have

TD(ξ′j , ξ
′
j+1) ≤

TD

 E
kj+1←{0,1}λ,
|ϑ⟩←Hn

[
Gkj+1

(|ϑ⟩)⊗ℓ ⊗ |ϑ⟩⟨ϑ|⊗(p−j−1)ℓ+t
]
, E
|φj+1⟩←Hn,
|ϑ⟩←Hn

[
|φj+1⟩⟨φj+1|⊗ℓ ⊗ |ϑ⟩⟨ϑ|⊗(p−j−1)ℓ+t

]
= O

(
((p− j) · ℓ+ t)

2ℓ

2λ

)
,

where the last equality follows from Lemma 3.2. Applying the triangle inequality completes the proof.

As a remark, note that Lemma 3.2 gives a simpler proof of the following theorem in [Col23]:

Lemma 3.5 ([Col23, Lemma 5]). Consider the ensemble of states:

{ρx}x∈{0,1}n =

{
E

|ψ⟩←Hn

[
(Zx ⊗ I⊗m)|ψ⟩⟨ψ|⊗m+1(Zx ⊗ I⊗m)

]}
x∈{0,1}n

.

5Similar to proving the output of a classical PRG on polynomial i.i.d uniform keys is computationally indistinguishable from
polynomial i.i.d uniform strings, we can construct a security reduction to simulate these hybrids. However, since we are in the
information-theoretic setting, we instead calculate their trace distances directly.

6The channel E acts as the identity on unspecified registers.
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Then, there is a constant C > 0, such that, for any POVM {Mx}x∈{0,1}n ,

E
x←{0,1}n

Tr(Mxρx) = C ·
(
m

2n
+
m7

23n

) 1
2

.

By setting ℓ = 1, t = m,n = λ in Lemma 3.2 and a hybrid, the success probability is at most O(m2/2n) plus
the probability of inverting x when the input is σ, which is at most 1/2n since σ is independent of x.

In Appendix A, we further give another proof by simplifying the calculation in Lemma 3.5, which may
be of independent interest. Moreover, we eliminate the m7/23n term.

3.2 Impossibility of a special class of PRS in CHS model
In this subsection, if the PRS generation algorithm uses only one copy of the common Haar state, we show
that ℓ-copy statistical PRS and multi-key ℓ-copy statistical PRS are impossible for ℓ = Ω(λ/ log(λ)) and
n = ω(log(λ)).

Theorem 3.6. ℓ-copy statistical PRS is impossible in the CHS model if (a) the generation algorithm uses
only one copy of the common Haar state, (b) ℓ = Ω(λ/ log(λ)) and (c) the length of the common Haar state
is ω(log(λ)).

Proof. We prove this by showing that for t(λ) := λ3 and ℓ(λ) := λ/ log(λ), there exists a (computationally
unbounded) adversary A such that∣∣∣∣∣∣∣ Pr

k←{0,1}λ
|ϑ⟩←Hn

[A(|ϑ⟩⟨ϑ|⊗t ⊗G(k, |ϑ⟩⟨ϑ|)⊗ℓ) = 1]− Pr
|φ⟩←Hn

|ϑ⟩←Hn

[A(|ϑ⟩⟨ϑ|⊗t ⊗ |φ⟩⟨φ|⊗ℓ) = 1]

∣∣∣∣∣∣∣
is non-negligible. For short, we use the following notation:

ρ0 := E
k←{0,1}λ,|ϑ⟩←Hn

[
|ϑ⟩⟨ϑ|⊗t ⊗G(k, |ϑ⟩⟨ϑ|)⊗ℓ

]
and

ρ1 := E
|φ⟩←Hn,|ϑ⟩←Hn

[
|ϑ⟩⟨ϑ|⊗t ⊗ |φ⟩⟨φ|⊗ℓ

]
.

The adversary A is simple: it performs a binary measurement {Π, I − Π} on input ρb for b ∈ {0, 1}, where
Π is the projection onto the eigenspace of ρ0. The rank of ρ0 and ρ1 satisfies

rank(ρ0) ≤ 2λ ·
(
2n + ℓ+ t− 1

ℓ+ t

)
and rank(ρ1) =

(
2n + ℓ− 1

ℓ

)
·
(
2n + t− 1

t

)
.

Now, by construction, we have

Pr
k←{0,1}λ
|ϑ⟩←Hn

[A(|ϑ⟩⟨ϑ|⊗t ⊗G(k, |ϑ⟩⟨ϑ|)⊗ℓ) = 1] = Tr(Πρ0) = Tr(ρ0) = 1.

On the other hand, suppose Π =
∑rank(ρ0)
i=1 |ui⟩⟨ui|, then

Pr
|φ⟩←Hn

|ϑ⟩←Hn

[A(|ϑ⟩⟨ϑ|⊗t ⊗ |φ⟩⟨φ|⊗ℓ) = 1] = Tr(Πρ1)

≤
rank(ρ0)∑
i=1

1(
2n+ℓ−1

ℓ

)(
2n+t−1

t

) · ∑
T1∈[0:ℓ]2n ,T2∈[0:t]2n

|(⟨T1| ⊗ ⟨T2|)|ui⟩|2
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≤ rank(ρ0)(
2n+ℓ−1

ℓ

)(
2n+t−1

t

) =
rank(ρ0)

rank(ρ1)
.

A direct calculation yields:

rank(ρ0)

rank(ρ1)
=

2λ(
ℓ+t
ℓ

) · ℓ−1∏
i=0

(
1 +

t

2n + i

)
≤ 2λ

(1 + t
ℓ )
ℓ
·
ℓ−1∏
i=0

(
1 +

t

2n + i

)

= 2λ ·
ℓ−1∏
i=0

(
1 + t

2n+i

1 + t
ℓ

)
≤ 2λ ·

(
1 + t

2n

1 + t
ℓ

)ℓ
,

where the first inequality follows from
(
ℓ+t
ℓ

)
≥ ( ℓ+tℓ )ℓ. For n = ω(log(λ)), t = λ3 and ℓ = λ/ log(λ), we have

2λ ·
(
1 + t

2n

1 + t
ℓ

)ℓ
=

(
λ · (1 + λ3

λω(1) )

1 + λ2 log(λ)

)λ/ log(λ)
≤
(

λ · 2
λ2 log(λ)

)λ/ log(λ)
≤ 2−λ

for sufficiently large λ. Hence, the distinguishing advantage (1 − 2λ) is non-negligible. This completes the
proof.

Note that since ℓ-copy statistical PRS in the CHS model implies multi-key ℓ-copy statistical PRS in the CHS
model, we also have the following:

Theorem 3.7. Multi-key ℓ-copy statistical PRS is impossible in the CHS model if (a) the generation algo-
rithm uses only one copy of the common Haar state, (b) ℓ = Ω(λ/ log(λ)) and (c) the length of the common
Haar state is ω(log(λ)).

Proof. Since ℓ-copy statistical PRS in the CHS model implies multi-key ℓ-copy statistical PRS in the CHS
model, by Theorem 3.6, multi-key ℓ-copy statistical PRS is impossible in CHS model for ℓ = Ω(λ/ log(λ)).

4 Quantum commitments in CHS model
In this section, we construct a commitment scheme that satisfies poly-copy statistical hiding and statistical
sum-biding in the CHS model. The scheme is inspired by the quantum commitment scheme proposed
in [MY21], adapting it to the CHS model and providing a formal proof of its security. In contrast to the
scheme in [MY21], our construction is not in the canonical form [Yan22]. Hence, we need SWAP tests to
verify rather than uncomputing, this makes the proof of binding more involved. Our scheme relies on the
multi-key pseudorandomness property of the construction giving in Section 3.1 for hiding.

4.1 Construction
We assume that n(λ) ≥ λ+ 1 for all λ ∈ N. Our construction is shown in Figure 1.

4.2 Proof of Correctness, Hiding, and Binding
Clearly, the construction given in Figure 1 has perfect correctness.

Theorem 4.1. The construction given in Figure 1 satisfies poly-copy statistical hiding and statistical sum
binding.

Proof of Theorem 4.1.

Poly-copy statistical hiding. It follows immediately from Lemma 3.4 by setting ℓ = 1.
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Commit phase: The committer Cλ on input b ∈ {0, 1} does the following:

• Use p(λ) = λ copies of the common Haar state |ϑ⟩ to prepare the state |Ψb⟩CR :=
⊗p

i=1|ψb⟩CiRi ,
where

|ψ0⟩CiRi
:=

1√
2λ

∑
k∈{0,1}λ

(Zk ⊗ In−λ)|ϑ⟩Ci
|k||0n−λ⟩Ri

and
|ψ1⟩CiRi

:=
1√
2n

∑
j∈{0,1}n

|j⟩Ci
|j⟩Ri

,

and C := (C1,C2, . . . ,Cp) and R := (R1,R2, . . . ,Rp).

• Send the register C to the receiver.

Reveal phase:

• The committer sends b and the register R to the receiver.

• The receiver prepares the state |Ψb⟩C′R′ =
⊗p

i=1|ψb⟩C′
iR

′
i

by using p copies of the common Haar
state |ϑ⟩, where C′ := (C′1,C

′
2, . . . ,C

′
p) and R′ := (R′1,R

′
2, . . . ,R

′
p) are receiver’s registers.

• For i ∈ [p], the receiver performs the SWAP test between registers (Ci,Ri) and (C′i,R
′
i).

• The receiver outputs b if all SWAP tests accept; otherwise, outputs ⊥.

Figure 1: Commitment scheme in the CHS model

Statistical sum binding. For any (fixed) common Haar state |ϑ⟩ and i ∈ [p], it holds that

F (TrRi
(|ψ0⟩⟨ψ0|CiRi

),TrRi
(|ψ1⟩⟨ψ1|CiRi

))

=F


1

2λ

∑
k∈{0,1}λ

(Zk ⊗ In−λ)|ϑ⟩⟨ϑ|Ci
(Zk ⊗ In−λ)︸ ︷︷ ︸

ρ0

,
ICi

2n


=2−n · Tr(√ρ0)2

≤2−n · rank(√ρ0) · Tr(ρ0)
≤2−n · 2λ · 1 = 2−(n−λ), (3)

where the second equality is by the definition of fidelity F (ρ, σ) =
(
Tr
(√√

ρσ
√
ρ
))2; the first inequality

follows from Tr(ρ)
2 ≤ rank(ρ) · Tr

(
ρ2
)

for ρ ⪰ 0; the second inequality is because rank(
√
ρ) = rank(ρ) for

ρ ⪰ 0 and rank(X + Y ) ≤ rank(X) + rank(Y ).
Let M (b)

CR be the POVM operator corresponding to that the receiver outputs b (i.e., all the SWAP tests
accept),

M
(b)
CR :=

⊗
i∈[p]

(
ICiRi + |ψb⟩⟨ψb|CiRi)

2

)
= E
S⊆[p]

[⊗
i∈S
|ψb⟩⟨ψb|CiRi

⊗
⊗
i/∈S

ICiRi

]
,
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where S is a uniformly random subset of [p]. Then the probability that the receiver outputs b is

pb := Tr

M (b)
CR TrE(U

(b)
RE |Φ⟩⟨Φ|CREU

(b)†
RE︸ ︷︷ ︸

ρ
(b)
CR

)


= E
S⊆[p]

[
Tr

(⊗
i∈S
|ψb⟩⟨ψb|CiRi ⊗

⊗
i/∈S

ICiRi · ρ
(b)
CR

)]

= E
S⊆[p]

F
(⊗
i∈S
|ψb⟩⟨ψb|CiRi

,TrCiRi:i/∈S(ρ
(b)
CR)

)
︸ ︷︷ ︸

pb,S

 ,

where E is the committer’s internal register, |Φ⟩CRE is the malicious committer’s initial state that might
depend on |ϑ⟩ (we omit the dependence for simplicity), and U

(b)
RE is the malicious committer’s attacking

unitary for b; we plug in the definition of M (b)
CR and use the short-hand notation ρ

(b)
CR to obtain the second

equality.
For any fixed S ⊆ [p], we have

p0,S + p1,S

= F

(⊗
i∈S
|ψ0⟩⟨ψ0|CiRi ,TrCiRi:i/∈S(ρ

(0)
CR )

)
+ F

(⊗
i∈S
|ψ1⟩⟨ψ1|CiRi ,TrCiRi:i/∈S(ρ

(1)
CR )

)

≤ F

(⊗
i∈S

TrRi
(|ψ0⟩⟨ψ0|CiRi

),TrCi:i/∈S TrR(ρ
(0)
CR )

)
+ F

(⊗
i∈S

TrRi
(|ψ1⟩⟨ψ1|CiRi

),TrCi:i/∈S TrR(ρ
(1)
CR )

)

≤ 1 + F

(⊗
i∈S

TrRi(|ψ0⟩⟨ψ0|CiRi),
⊗
i∈S

TrRi(|ψ1⟩⟨ψ1|CiRi)

)1/2

= 1 +
⊗
i∈S

F (TrRi
(|ψ0⟩⟨ψ0|CiRi

),TrRi
(|ψ1⟩⟨ψ1|CiRi

))
1/2 ≤ 1 + 2

−|S|(n−λ)
2 ,

where the first inequality follows from the fact that taking a partial trace won’t decrease the fidelity; the
second inequality is because TrR(ρ

(0)
CR ) = TrR(ρ

(1)
CR ) and F (ρ, ξ)+F (σ, ξ) ≤ 1+

√
F (ρ, σ) [NS03]; the last equal-

ity follows from the fact that F (
⊗

i ρi,
⊗

i σi) =
∏
i F (ρi, σi); the last inequality follows from Equation (3).

Finally, we bound the probability p0 + p1 as follows:

p0 + p1 = E
S∈[p]

[p0,S + p1,S ] ≤ 1 + E
S∈[p]

[
2

−|S|(n−λ)
2

]
= 1 + 2−p ·

t∑
s=0

(
p

s

)
2

−s(n−λ)
2

= 1 +

(
1 + 2

−(n−λ)
2

2

)p
= 1 + negl(λ).
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A Alternative proof of Lemma 3.5
Proof sketch of Lemma 3.5. The first part of the proof is the same as in [Col23]. Here we introduce the
required notations and omit the details. Let d := 2n and

σ :=
∑

x∈{0,1}n
ρx =

∑
x∈{0,1}n

E
|ψ⟩←H(2n)

[
(Zx ⊗ I⊗m)|ψ⟩⟨ψ|⊗m+1(Zx ⊗ I⊗m)

]
= E
t⃗∈Id,m+1

∑
x∈{0,1}n

[
(Zx ⊗ I⊗m)|s(⃗t)⟩⟨s(⃗t)|(Zx ⊗ I⊗m)

]
=

d(
d+m
m+1

) · ∑
t⃗∈Id,m+1

∑
j∈{0,1}n

(|j⟩⟨j| ⊗ I⊗m)|s(⃗t)⟩⟨s(⃗t)|(|j⟩⟨j| ⊗ I⊗m)

=
d(

d+m
m+1

) · ∑
j∈{0,1}n

∑
0≤r≤m

∑
t⃗∈Tm

j,r

r + 1

m+ 1
|j⟩⟨j| ⊗ |s(⃗t)⟩⟨s(⃗t)|.

So we have

σ−1/2 =

√(
d+m
m+1

)
d
·
∑

j∈{0,1}n

∑
0≤r≤m

∑
t⃗∈Tm

j,r

√
m+ 1

r + 1
|j⟩⟨j| ⊗ |s(⃗t)⟩⟨s(⃗t)|.

Note that σ−1/2 is PSD with the largest eigenvalue
∥∥σ−1/2∥∥ =

√(
d+m
m+1

)
(m+ 1)/d (when r = 0). In [Col23],

the main technicality is to show Equation (28):

E
x←{0,1}n

Tr
(
ρxσ

−1/2ρxσ
−1/2

)
≤ C ′ ·

(
m

d
+
m7

d3

)
,

where C ′ > 0 is some constant. Here, we provide an alternative and simpler proof. Since σ−1/2 and ρx are
both PSD, the matrix σ−1/2ρxσ−1/2 is PSD as well. As ρx is a density matrix, we have

Tr
(
ρx · σ−1/2ρxσ−1/2

)
≤
∥∥∥σ−1/2ρxσ−1/2∥∥∥.

Then we use the submultiplicativity of the operator norm to obtain∥∥∥σ−1/2ρxσ−1/2∥∥∥
≤
∥∥∥σ−1/2∥∥∥ · ∥∥Zx ⊗ I⊗m∥∥ · ∥∥∥∥∥ E

t⃗∈Id,m+1

|s(⃗t)⟩⟨s(⃗t)|

∥∥∥∥∥ · ∥∥Zx ⊗ I⊗m∥∥ · ∥∥∥σ−1/2∥∥∥
=
∥∥∥σ−1/2∥∥∥2 · ∥∥∥∥∥ E

t⃗∈Id,m+1

|s(⃗t)⟩⟨s(⃗t)|

∥∥∥∥∥ (unitaries have a unit operator norm)

=

(
d+m
m+1

)
· (m+ 1)

d
· 1(

d+m
m+1

) =
m+ 1

d
.

Hence, it holds that

E
x←{0,1}n

Tr
(
ρxσ

−1/2ρxσ
−1/2

)
≤ m+ 1

d
.
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