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Abstract

Timed cryptography studies primitives that retain their security only for a predetermined
amount of time, such as proofs of sequential work and time-lock puzzles. This feature has
proven to be useful in a large number of practical applications, e.g. randomness generation,
sealed-bid auctions, and fair multi-party computation. However, the current state of affairs
in timed cryptography is unsatisfactory: Virtually all efficient constructions rely on a single
sequentiality assumption, namely that repeated squaring in unknown order groups cannot be
parallelised. This is a single point of failure in the classical setting and is even false against
quantum adversaries.

In this work we put forward a new sequentiality assumption, which essentially says that a
repeated application of the standard lattice-based hash function cannot be parallelised. We
provide concrete evidence of the validity of this assumption and perform some initial cryptanalysis.
We also propose a new template to construct proofs of sequential work, based on lattice techniques.

1 Introduction

Timed cryptography studies a family of cryptographic primitives with diverse functionalities designed
to meet their security goals only for a short (polynomial) amount of time. This includes, for
example, time-lock puzzles [RSW96], timed-commitments [BN00], proofs of sequential work [MMV13],
verifiable delay functions [BBBF18], and delay encryption [BD21]. This branch of cryptography
has important theoretical implications in the context of non-malleable commitments [LPS17] and
in the average-case hardness of the class PPAD [BCH+22], which characterises the complexity
of computing a Nash equilibrium. Furthermore, timed cryptography has attracted significant
interest in the industry (e.g. [vdf19]), in part due to their large number of practical applications
(see [BBBF18, MT19] for a survey of applications).

The Repeated Squaring Assumption. The current state of affairs in timed cryptography is
largely unsatisfactory: Virtually all efficient schemes are based on the hardness of a single problem (or
variants thereof), namely the sequential squaring assumption. Loosely speaking, such an assumption
postulates that the repeated application of the function

fN (x) = x2 mod N

1



where N = pq is an RSA modulus, is the fastest algorithm to compute x2
T
mod N given x. In other

words, there is no better algorithm than T -sequential iterations of fN , provided that the order of
the group is unknown by the evaluator. Unfortunately, this assumption is clearly false if we allow
the attacker to run in quantum polynomial time. At present, there is no valid alternative sequential
function with conjectured post-quantum security. Besides post-quantum security, the lack of other
candidates places the entirety of efficient timed cryptography on thin foundations, and only one
cryptanalytic breakthrough away from being wiped out. The goal of our work is to make progress
on this front, and to establish broader foundations for timed cryptographic primitives.

1.1 Our Contributions

The contributions of this work can be summarised as follows. A more detailed technical overview is
in Section 3.1.

A New Lattice-Based Sequential Function. We put forward a new candidate family of sequential
functions, whose design is closely connected with lattice-based cryptography. Concretely, we define our
new sequential function to be the T -fold repeated application of the binary decomposition operation
followed by the SIS-based collision-resistant hash function [Ajt96, GGH96], with parameters set in
such a way to make the domain and the range of the function coincide. In other words, our base
function fA : Zn

q → Zn
q is defined as

fA(x) := −AG−1(x) mod q

where A← Zn×m
q , for m ≈ n log q, and G−1 : Zn

q → Zm
2 is the binary decomposition operator. Then

we define fT
A to be the T -fold repeated application of fA. Based on the observation that computing

y = fT
A(x) is equivalent to establishing the satisfiability of a linear relation defined by (A,x,y) by a

binary vector u, we conjecture that finding such (y,u) for random (A,x) is hard for (potentially
quantum) circuits of depth less than T by some super-constant function in T .

Evidence of Sequentiality. The design of our new sequential function is motivated by concrete
properties that one can prove about the base function, balanced with enough algebraic structure to
enable advanced cryptographic applications. More specifically, the choice of our sequential function
is based on the following guiding principles:

• Recursive composition: In order to have a succinct description, the sequential function is
defined as the recursive application of a base function with cryptographic properties. There is
evidence that this is a robust design principle: If the base function is modelled as a random
oracle, then one can show that sequentiality holds unconditionally [CP18].

• Collision resistance: The base function must be collision-resistant (and one way). This is a
property that is trivially satisfied by a random oracle and something that we can prove using
standard computational assumptions.

• Uniformity preserving: Similar to a random oracle, the base function must map uniform
distributions to uniform distributions over the specified domains and co-domains. Once again,
we are able to prove that this property holds assuming the intractability of standard problems
over lattices.
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• Post-quantum security: Contrary to the sequential squaring problem, we want to conjecture
that the sequentiality of our function holds also against quantum algorithms.

• Algebraic structure: Unlike a random oracle, we want our base function to have enough
algebraic structure to produce relations that are amenable to efficient proofs.

In particular, we justify our assumption by showing that fA is collision-resistant and uniformity
preserving (for some choice of parameters) based on the standard lattice assumptions, suggesting
other heuristic evidence, and discussing (failed) attack strategies.

Application: Proof of Sequential Work. As an additional contribution, we construct a simple
and efficient proof of sequential work (PoSW), where a prover aims to convince a verifier that it has
performed a T -steps sequential computation. Crucially, the verifier runtime is only logarithmic in
T . Our PoSW is based on a variant of the sequential function family introduced above, with an
important modification:

• (Relaxed Norm Constraints) Instead of checking that each step of the computation is a binary
string, our PoSW will only ensure that is norm is small. This is done for efficiency reasons,
since it is much easier to prove the latter property using lattice techniques.

However, subsequent to the publication of this work, attacks against the assumption were discovered,
which render the security proof vacuous and even cast doubts on the heuristic security of our PoSW.
We discuss in more details the attacks and the current state of affairs of lattice-based sequential
functions in Section 2 and Appendix A.

On the Necessity of New Assumptions. We stress that we can only offer heuristic evidence for the
sequentiality of our function family, and we are not able to reduce it to any “standard” computational
problem. In fact, arguably the only “standard” computational assumption in timed cryptography is
the repeated squaring assumption! Clearly, if we want to obtain a plausibly post-quantum candidate,
new assumptions are necessary.

On the other hand, traditional computational assumptions in cryptography (such as LWE or
DDH) do not make fine-grained distinctions on the parallelism of the attacker: The problem is
assumed to be hard for all polynomial-size circuits, regardless of their depth/parallel runtime. In
other words, such assumptions imply that NP ̸= P but do not imply that NC ̸= P, which is a
necessary condition for sequential functions to exist. Overall, this suggests that new assumptions
may be necessary for timed cryptography, and we view our work as a promising first step towards a
better understanding of this area.

2 History of This Work

The idea of using
fA(x) := −AG−1(x) mod q

or similar as a candidate sequential function was, to the best of our knowledge, first conceived
independently by Bogdanov and Rosen [BR23] but not published. We [LM23] later independently
engineered the same idea, made the first attempt of formalising the sequentiality assumption and
applying it to build a proof of sequential work (PoSW) protocol. We based the security of the
PoSW protocol on a bounded-norm variant of the SIS-sequentiality assumption, which postulates
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that no parallel algorithm can find a short solution (as opposed to a binary solution required by
the exact variant) to the system of equations induced by the T -folded repetition of the function
fA(x) = −AG−1(x) mod q in time o(T ) · poly(λ).

Subsequently to the publication of this work, Attema and Ducas [AD23] and Peikert and
Tang [PT23] independently discovered attacks against the bounded-norm variant (but not the exact
variant) of this assumption, as well as the PoSW protocol. Below and in Appendix A, we discuss
these attacks in more detail.

The Attema-Ducas Attack. Attema and Ducas [AD23] discovered an attack against the SIS-
sequentiality assumption, which runs in depth

√
T log T · poly(λ) and can find solutions of norm at

most m. Their attack exploits the sparsity of the image vector of the sequential-SIS relation.

The Peikert-Tang Attack. Independently and more generally, Peikert and Tang [PT23] discovered
a family of attacks against the SIS-sequentiality assumption, which offers a trade-offs between the
parallel time of the solver and the norm of the solution found. Specifically, their attack has depth
k logk T ·poly(λ), and can find solutions of norm at most m(logk T )/2, for any 1 ≤ k ≤ T . For k =

√
T ,

the Peikert-Tang attack is as performant as that of Attema-Ducas, and has no restriction on the
image vector.

Implications on our PoSW Protocol. Underlying our PoSW protocol is a succinct interactive
argument system which allows the prover to recursively prove knowledge of a short solution to a
sequential-SIS relation. However, for the parameter choices and security proof techniques considered,
the norm bound checked by the verifier is around mlog T times larger than the norm of the sequential-
SIS solution (known as the “completeness gap”), and the witness extracted by the knowledge extractor
in the security proof is yet another mlog T times longer (known as the “soundness gap”). Due to the
large soundness gap, the security proof of the PoSW protocol becomes vacuous, because it relies on
an instantiation of the SIS-sequentiality assumption which is false (for desirable parameters) due to
the above attacks.

In addition to their attack against the SIS-sequentiality assumption, Peikert and Tang [PT23] also
discovered attacks against a variant of our PoSW protocol (but not on the protocol presented in this
work), with similar norm-time trade-offs as their attacks against the SIS-sequentiality assumption.
This casts doubts on the heuristic security of our PoSW protocol, although at present we are not
aware of any attack against the protocol.

The (Almost) Exact Sequentiality Assumption. We remark that both attacks discussed above
allow to find solutions which are short but non-binary. We are currently unaware of any attack
against the exact version of the SIS-sequentiality assumption, where the adversary is required to
find a binary (or in general p-ary) solution, or even against the bounded-norm variant with a very
strict norm bound of m1/2(1−ϵ) where ϵ > 0. This means that the verifiable delay functions proposed
in [CLM23] based on the exact version of the assumption is unaffected by the above attacks.

3 Related Work

Besides works based on the repeated squaring assumption, there are various other approaches for
constructing timed cryptographic primitives from different computational assumptions. In the
following, we discuss the trade-offs when compared with our work.
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Hash-Based Schemes. As alluded at earlier, random oracles are good candidates for constructing
sequential functions, since the sequentiality of their repeated applications can be proven uncondition-
ally. This approach has appealing properties: It offers a clean model to prove concrete statements,
schemes are typically very efficient as they only involve symmetric-key operations, and one can
conjecture (or even prove) post-quantum security. In fact, random oracles have been used to construct
PoSW [MMV13, CP18, DLM19] with high concrete efficiency. However, the construction paradigm
adopted by these hash-based PoSWs restricts them to only offer a weak sequentiality guarantee: For
any constant 0 ≤ α < 1, the soundness of the scheme (parametrised by α) is only guaranteed against
cheating provers who run in parallel time (1−α) ·T , where the verifier runtime is 1

log(1−α) ·O(λ). On
the other hand, constructions based on unknown order groups (e.g. [Pie19]), which we aim to emulate
with lattice-based techniques, seem to resist any adversary running in time at most (1− ω(1)) · T ,
i.e. no adversary can speed up the computation by any additive factor super-constant in T , while
still having the verifier run in a fixed polynomial time.

Isogeny-Based Schemes. Recent works have explored constructions of timed cryptography from
isogenies over elliptic curves [DMPS19, BD21]. This approach allows one to construct verifiable delay
functions (VDF) [BBBF18] and even delay encryption [BD21]. However, such constructions are not
post-quantum secure [DMPS19], or they rely on generic composition with succinct non-interactive
arguments [CSRT22], making them impractical. Furthermore, the underlying assumptions have
received substantially less scrutiny than sequential squaring.

Generic Approaches. Finally, we mention that one can use general-purpose cryptographic
primitives to build timed cryptographic schemes. Assuming only the existence (but not knowledge) of
an (iterative) sequential function, it is possible to provably construct an (iterative) sequential function
from fully homomorphic encryption [JMRR21]. Incremental verifiable computation [Val08] can be
immediately used to construct PoSWs and VDFs given a sequential function [BBBF18, DGMV20],
and indistinguishability obfuscation can be used to construct time-lock puzzles [BGJ+16]. While
theoretically elegant, such generic constructions use heavy cryptographic machinery and result in
schemes that are (concretely) prohibitively inefficient.

3.1 Technical Overview

In the following, we elaborate more on the results summarised in Section 1.1. For simplicity, the
exposition in this technical overview is done over the set of rational integers, i.e. Z. In the technical
sections, we will be working over a ring of integers R of some cyclotomic field, which captures Z as
a special case.

Lattice-based Sequential Function/Relation. We propose a new candidate sequential function
defined as the T -fold repeated application of the binary decomposition operation followed by the
SIS-based collision-resistant hash function [Ajt96, GGH96], with parameters set in such a way to
make the domain and the codomain of the function coincide. Concretely, (a special case of) our base
function fA : Zn

q → Zn
q is defined as

fA(x) := −AG−1(x) mod q

where A ← Zn×m
q , for m ≈ n log q, and G−1 : Zn

q → Zm
2 is the binary decomposition operator.

Below, we assume for simplicity that m = n log q.
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At first glance, it may seem that the function fA is not proof-friendly, since G−1 is a highly
non-linear operation. However, a few simple but crucial observations allow us to express the relations
induced by fA in a proof-friendly form. Specifically, we observe that a pair (x,y) satisfies y = fA(x)
if and only if there exists a binary vector u ∈ Zm

2 such that(
G
A

)
· u =

(
−x
y

)
mod q

where G is the binary reconstruction gadget matrix, which in particular is a linear operator.
Generalising, suppose xT = fT

A(x0) is the T -fold repeated application of fA on x0. Writing
xi = fA(xi−1) and ui = −G−1(xi), we observe the following equivalent relation:

G
A G

A
G
A


︸ ︷︷ ︸

AT :=

·


u0

u1

uT−1


︸ ︷︷ ︸

u:=

=


−x0

0

0
xT

 mod q and


u0

u1

uT−1

 ∈ ZmT
2 . (1)

We conjecture and give evidence that, if the short integer solution problem SISn,m,q,Z2 is hard, then for
any T ∈ N and uniformly random (A,x0), it is infeasible for an adversary to find (u0, . . . ,uT−1,xT )
satisfying the above relation in parallel time (1− ω(1)) · T .

Sequential Relation and Proof of Sequential Work. In the sequential relation (Eq. (1))
proposed above, enforcing u ∈ ZmT

2 ensures that for each instance x0 there exists a unique witness
(u0, . . . ,uT−1,xT ). To construct a verifiable delay function (VDF), it suffices to prove the satisfiability
of Eq. (1) with binary (u0, . . . ,uT−1) using a (preprocessing) succinct non-interactive argument
(SNARG) with a (quasi-)linear-time prover and a sublinear-time verifier (after preprocessing).
Instantiating with a post-quantum-secure SNARG, which exists unconditionally in the quantum
random oracle model [CMS19], we can obtain a candidate post-quantum VDF. For concrete efficiency,
however, it may be beneficial to use a SNARG which natively supports proving lattice relations,
e.g. that of [CLM23].

Although we believe that the above generic approach yields a somewhat efficient VDF, especially
when instantiated with a SNARG optimised for proving the sequential relation, in this work we focus
on constructing a tailor-made proof of sequential work (PoSW) which explicitly takes advantage of
the block-bidiagonal structure of AT in Eq. (1). Towards this, we propose a variant of the sequential
relation introduced above with a major change:

• (Bounded-Norm Variant) The binary constraint, i.e. u ∈ ZmT
2 , is relaxed to a bounded-norm

constraint, i.e. u ∈ ZmT
β for some 2 ≤ β ≪ q.

The relation in Eq. (1) is therefore replaced by
G
A G

A
G
A


︸ ︷︷ ︸

AT :=

·


u0

u1

uT−1


︸ ︷︷ ︸

u:=

=


−x
0

0
y

 mod q and u ∈ ZmT
β . (2)
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The main observation which underlies our PoSW construction is the following. When T = 2t+1,
the matrix AT can be partitioned into

AT =


G

A

At

At

.

This structure allows us to construct a PoSW with a O(log T )-time verifier in the random oracle
model following the strategy in the (VDF) construction in [Pie19].

In more detail, we sketch an interactive variant of the PoSW construction. Since the verifier
is public-coin, the non-interactive variant follows from the Fiat-Shamir transform [FS87, AFK22]
in the random oracle model. An instance of our PoSW is set up by sampling a random matrix
A←$Zn×m

q , which defines AT for any T , and a random vector x0←$Zn
q . To convince the verifier

that Eq. (1) holds for some T ∈ N, the prover and the verifier engage in the following interactive
protocol: We focus on the more interesting where T = 2t+ 1 is odd1. The prover sends ut to the
verifier, reducing the linear relation in Eq. (1) to

At ·

 u0 ut+1

ut−1 uT−1

 =


−x −A · ut

0 0

0 0
−G · ut y

 mod q.

The verifier checks that ut ∈ Zm
β . If the check passes, the verifier sends a random challenge r ∈ S ⊆ Z

chosen from challenge set S to the prover. The prover and verifier then engage in the same protocol
but with parameter t for proving

At

 u0 + ut+1r

ut−1 + uT−1r

 =


−(x+Autr)

0

0
yr −Gut

 mod q,

 u0 + ut+1r

ut−1 + uT−1r

 ∈ Zmt
β′

for an appropriately chosen β′ > β. After recursing for O(log T ) times, the prover and the verifier
arrives at a statement of size independent of T for which the prover can simply send the witness to
the verifier.

Using standard techniques for arguing about security of (lattice-based) Σ-protocols (e.g. [BLNS20,
AL21, ACK21]), one could argue that (a parallel repetition [AF22] of) the above protocol allows
to convince the verifier that the prover has knowledge of a witness satisfying Eq. (2) with certain
norm bound β∗ > β. However, for typical choices of parameters, such β∗ is some λω(1) factor larger
than β such that the sequentiality assumption becomes vacuous due to the attacks by Attema and

1If T is even, the prover can reveal the last step of the computation. It then suffices for the prover to prove Eq. (1)
for T − 1, which is odd.

7



Ducas [AD23] and by Peikert and Tang [PT23]. We are therefore unable to prove the security of the
PoSW protocol from any simpler assumption.

Note that even if we start with β = 2, the above protocol can only convince the verifier about
the satisfiability of Eq. (1) with some β∗ > β, where witnesses are not unique. This is the why our
construction of PoSW does not yield a VDF, even though our construction is morally similar to the
VDF construction of [Pie19].

4 Preliminaries

We denote by λ ∈ N the security parameter. A function negl(·) is negligible if it vanishes faster
than any polynomial. The cryptographic definitions in the paper follow the convention of modeling
security against non-uniform adversaries. An efficient adversary A is modeled as a sequence of
circuits A = {Aλ}λ∈N, such that the circuit Aλ is of polynomial size in λ. We define the parallel
runtime of a given algorithm as the depth of the corresponding circuit, whereas the total runtime is
determined by the size of the circuit.

For n ∈ N, denote [n] := {1, 2, . . . , n}. For a finite set S, we write U(S) for the uniform
distribution over S. We will use p, q, s ∈ N to denote moduli.

We use bold capital letters, e.g. A, to denote matrices, and bold lower-case letters, e.g. x, to
denote column vectors. An m-dimensional column vector is denoted by x = (x1, . . . , xm).

Lattice Background. Let R = Z[ζ] be the ring of integers of a cyclotomic field Q(ζ), where
ζ ∈ C is a fixed f-th primitive root of unity for some f = poly(λ). The degree of R is φ = φ(f). An
element x ∈ R is represented by its coefficients encoding x =

∑φ−1
i=0 xiζ

i, and its (infinity) norm is
∥x∥ := maxφ−1

i=0 |xi|, where xi ∈ Z. The norm extends naturally to vectors u = (u1, . . . , um) ∈ Rm,
where ∥u∥ = maxi∈[m]∥ui∥. The expansion factor of R is defined as γR := maxa,b∈R

∥a·b∥
∥a∥·∥b∥ . We will

always assume that f is a prime-power, and in that case it is known that γR ≤ 2φ [AL21]. For q ∈ N,
define Rq := R/qR. By a slight abuse of notation, we identify Rq by{

φ−1∑
i=0

xiζ
i : xi ∈ {−⌈q/2⌉+ 1, . . . , ⌊q/2⌋}

}

and thus ∥x∥ ≤ q/2 for any x ∈ Rq. The sets of units in R and Rq are denoted by R× and R×
q

respectively. A set S ⊆ R is said to be subtractive if (a− b) ∈ R× for any distinct a, b ∈ S.
We recall the following useful fact.

Lemma 4.1 (Adapted from [BJRW20, Lemma 7]). Let n = poly(λ), p, q ∈ N, q prime, and
m ≥ n logp q + ω(log λ). The following distributions are statistically close in λ:(A,v) :

A←$Rn×m
q

u←$Rm
p

v := A · u mod q

 and

{
(A,v) :

A←$Rn×m
q

v←$Rn
q

}
.

Gadget Matrices. For any n, p, q ∈ N, let ℓ =
⌈
logp q

⌉
and m = nℓ. If q < pℓ, write q =

∑ℓ−1
i=0 qi ·pi

in p-ary expansion. If q = pℓ, let q0 = . . . = qℓ−2 = 0 and qℓ−1 = p. Define the generalised “gadget

8



vector” gp,q, generalised “gadget matrix” Gp,q, and “parity-check matrix” Hp,q by

gTp,q :=
(
1 p . . . pℓ−1

)
, Gp,q := In ⊗ gTp,q, Hp,q := In ⊗


p q0
−1 p q1

−1
p
−1 qℓ−1


respectively. Define the operator G−1

p,q : Rn
q → Rm

p which maps v = (vi)
n−1
i=0 ∈ Rn

q to the concatenation

of its p-ary representation
(
(v0,j)

ℓ−1
j=0, . . . , (vn−1,j)

ℓ−1
j=0

)
∈ Rm

p , i.e. vi =
∑ℓ−1

j=0 vi,j · pj . The operator
G−1

p,q is naturally extended to act on any matrix V over Rq with n rows, with Gp,q ·G−1
p,q(V) = V.

Note that Gp,q ·Hp,q = 0 mod q. Indeed, Hp,q is a basis of the right-kernel of Gp,q over K. When
the choices of n, p, q are clear from the context, we omit the subscripts and write G := Gp,q.

Computational Assumptions. In the following we define the ring variant of the well-known short
integer solution (SIS) problem [Ajt96].

Assumption 4.2 (Short Integer Solution). Let R, n,m, q, s be parametrised by λ. The SISR,n,m,q,s

assumption states that for any v ∈ Rn
q and any PPT adversary A it holds that

Pr

[
A · u = v mod q ∧ u ∈ Rm

β

∣∣∣∣A←$Rn×m
q

u← A(A,v)

]
≤ negl(λ).

We also recall the learning with errors (LWE) problem [Reg05], and in particular the version
over rings [LPR10].

Assumption 4.3 (Learning with Errors). Let R, n,m, q, χ be parametrised by λ. The (normal
form of the) LWER,n,m,q,χ assumption states that for any PPT adversary A it holds that∣∣∣∣∣∣∣∣∣Pr

A(A,b) = 1

∣∣∣∣∣∣∣∣∣
A←$Rn×m

q

s←$χn

e←$χm

bT := sT ·A+ eT mod q

− Pr

[
A(A,b) = 1

∣∣∣∣∣A←$Rn×m
q

b←$Rm
q

]∣∣∣∣∣∣∣∣∣ ≤ negl(λ).

For convenience, we state here a decisional variant of the SIS problem, which is known to be as
hard as LWE. For completeness, we recall also a proof of this fact.

Assumption 4.4 (Decisional Short Integer Solution). Let R, n,m, q, χ be parametrised by λ. The
dSISR,n,m,q,χ assumption states that for any PPT adversary A it holds that∣∣∣∣∣∣∣Pr

A(A,v) = 1

∣∣∣∣∣∣∣
A←$Rn×m

q

u←$χm

v := A · u mod q

− Pr

[
A(A,v) = 1

∣∣∣∣∣A←$Rn×m
q

v←$Rn
q

]∣∣∣∣∣∣∣ ≤ negl(λ).

Lemma 4.5. If m = n + Ω(λ) and the LWER,n,m,q,χ assumption holds, then the dSISR,n,m,q,χ

assumption holds.

9



Proof. Suppose there exists a PPT algorithm A which solves the dSISR,n,m,q,χ problem. We construct
a PPT algorithm B which solves the LWER,n,m,q,χ problem. On input (Ā, b̄) ∈ Rn×m

q × Rm
q , B

samples A←$Rn×m
q uniformly conditioned on Ā ·AT = 0 mod q. It then computes v := A · b̄ mod q

and outputs b← A(A,v).
We next analyse the distribution of (A,v). First, since Ā is uniformly random over Rn×m

q , so
does A. Furthermore, since m = n+Ω(λ), with overwhelming probability in λ we have that the
columns of A spans Rn

q . Conditioning on this, we show that B is given an LWE sample if and
only if B gives a SIS sample to A. Observe that if (Ā, b̄) is an LWE sample, then b̄ is of the form
b̄
T
= sT · Ā+ eT for some e←$χm. It follows that v is of the form v = A · e mod q. If (Ā, b̄) is a

random sample, then v = A · b̄ mod q is uniformly random.

5 A Lattice-Based Sequential Function/Relation

In what follows we formally define our family of sequential functions and state our conjecture
regarding the sequentiality of the T -fold repetition of such functions. We consider two variants of
the assumptions, that we describe below.

Our Exact Sequential Function. For any A ∈ Rn×m
q , define the function fA : Rm

q → Rm
q as

fA(x) := −AG−1(x) mod q.

For T ∈ N, the T -fold recursive evaluation of fA is defined as:

fT
A,z(x) := fA(. . . fA(fA︸ ︷︷ ︸

T times

(x)) . . .).

We conjecture that for uniformly distributed (A,x), the evaluation of fT
A(x) take sequential time at

least Ω(T ).2

Our Sequential Relation. We also consider a relaxed variant of the assumption as stated above,
that will be useful in the context of our PoSW. Compared to the above function, we introduce one
modification: We only require that the transcript is of small norm. To formally state our conjecture,
it is convenient to define

AT :=


G
A G

A
G
A


︸ ︷︷ ︸

T columns

.

2Note that this exact version of the conjecture is unaffected by known attacks [AD23, PT23].
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Let x0 := x. Observe that if the evaluation of each step of fT
A,z(x) is split into two sub-steps as

ui−1 = −G−1(xi−1) ∈ Rm
p and xi = Aui−1 mod q for all i ∈ [T ], then

AT


u0

u1

uT−1

 =


G
A G

A
G
A




u0

u1

uT−1

 =


−x0

0

0
xT

 mod q and


u0

u1

uT−1

 ∈ RmT
p .

Furthermore, if q = pℓ, we observe that the preimage u :=
(
uT
0 uT

1 . . . uT
T−1

)T, and hence the
evaluation result xT , are unique. Moreover, for any β ≥ p, we see that u ∈ RmT

p implies the relaxed
condition u ∈ RmT

β .
Formally, we state a family of conjectures parametrised by R, n,m, p, q, β, σ as follows.

Assumption 5.1 (SIS-Sequentiality). Let R, n, p, q, β, σ be parametrised by λ, where β : N→ R+

and σ : N→ N are functions, and let m = n
⌈
logp q

⌉
. For any T ∈ N, if the SISR,n,m,q,β,σ assumption

holds for β = β(T ), then for all polynomial-size adversary A it holds that

Pr


AT · u =

(
−xT 0T . . . 0T yT

)T
mod q

∧ u ∈ RmT
β(T )

∧ Depth(A) < σ(T )

∣∣∣∣∣∣∣∣
A←$Rn×m

q

x←$Rn
q

(y,u) = A(A,x)

 ≤ negl(λ).

The security proof of the PoSW of the published version of this work [LM23] relies on the
assumption for β = (2γR)

2 log T · p. However, the attack by Attema and Ducas [AD23] shows that
the assumption is false for β = γRmp/2 and σ = O(

√
T log T ) · poly(λ). More generally, the attack

by Peikert and Tang [PT23] falsifies the assumption in the case where β > (γRm)(logk T )/2 and
σ(T ) > (k logk T ) · poly(λ) for some arity parameter 1 ≤ k ≤ T . In particular, the Peikert-Tang
attack has the same performance as that of Attema-Ducas when k =

√
T and p = 2.

To avoid both attacks, one should set β and σ to fall outside the regime of

β > (γRm)(logk T )/2 and σ(T ) > (k logk T ) · poly(λ).

For example, setting β ≤ (γRm)
1

2(1−ϵ) for some 0 ≤ ϵ = ϵ(λ, T ) < 1 forces the Peikert-Tang attack
to run in depth at least T 1−ϵ

1−ϵ · poly(λ). We refer to Appendix A for more details on the attacks.
By the above discussion, {fT

A,z}A,z induces a family of sequential relations. Although such a
relation has potentially many solutions (y,u) ∈ Rn

q ×RmT
β to an input x, each takes σ(T ) sequential

steps to find under the SIS-sequentiality assumption.

5.1 Evidence of Sequentiality

To substantiate the plausibility of our exact sequentiality assumption, we shall offer some concrete
evidence on the cryptographic properties satisfied by the function fA. First we show that the
function fA is collision resistant.

Theorem 5.2 (Collision Resistance). If the SISR,n,m,q,p problem is hard for m = n ·
⌈
logp q

⌉
, then

fA is collision resistant.

11



Proof. The proof is a trivial reduction from the SISR,n,m,q,2p−1 problem. Let A be an instance of
SISR,n,m,q,2p−1. If x,x′ ∈ Rn

q are distinct vectors such that fA(x) = fA(x
′), write u = −G−1(x)

and u′ = −G−1(x′), we have A · u = A · u′ mod q. In other words, we have A · (u− u′) = 0 mod q
and u− u′ ∈ Rm

2p−1.

Note that the same proof shows that fA is one-way. Next, we show that the function fA provably
maps uniform distributions to distributions statistically or computationally close to uniform for
certain parameter settings. It then follows from a standard hybrid argument that fT

A also maps
uniform distributions to near-uniform distributions for any polynomial T . First, we show that if q
is super-polynomial and is smaller than a sufficiently large power of p by an additive polynomial
factor, then the above claim holds statistically.

Theorem 5.3 (Uniformity Preserving for Large q ⪅ pk). Let q be a prime of the form q = pk − r
where k > logp q + 2λ/n, r = poly(λ), 0 < r < pk − pk−1, and 1/q = negl(λ). The following
distributions are statistically close in λ:{

y : y←$Rn
q

}
≈
{
fA(x) : A←$Rn×m

q ,x←$Rn
q

}
.

Proof. We first show that the distributions{
u←$Rm

p

}
≈
{
G−1(x) : x←$Rn

q

}
are statistically close in λ. Let d = poly(λ) be the degree of the ring R. The statistical distance of
the two distributions is given by

∆ :=
1

2
·
(
qdn ·

∣∣∣∣ 1

pdm
− 1

qdn

∣∣∣∣+ (pdm − qdn) · 1

pdm

)
=

1

2
·
(
1− qdn

pdm
+ 1− qdn

pdm

)
= 1−

(
qn

pm

)d

.

Note that m = n ·
⌈
logp q

⌉
= nk. Since pk > q and (1 + x)n ≥ 1 + nx for all n ∈ N and x ≥ −1, we

have (
qn

pm

)d

=

(
qn

qnk

)d

=

(
q

pk

)dn

=

(
pk − r

pk

)dn

=

(
1− r

pk

)dn

>

(
1− r

q

)dn

≥ 1− rdn

q
≥ 1− negl(λ).

In other words, we have ∆ ≤ negl(λ). Since k > logp q + 2λ/n, we have m = nk > n logp q + 2λ.
The result then follows from the leftover hash lemma (Lemma 4.1).

Next, we show that if q is a power of p and an LWE assumption with uniform noise holds, then
the claim holds computationally.

Theorem 5.4 (Uniformity Preserving for q = pk). Let q = pk for some k ∈ N. If the LWER,n,m,q,U(Rp)

assumption holds for m = nk, then the following distributions are computationally indistinguishable:{
y : y←$Rn

q

}
≈
{
fA(x) : A←$Rn×m

q ,x←$Rn
q

}
.
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Proof. Since q = pk is a power of p, G−1 is a bijection and thus the following distributions are
identical: {

u←$Rm
p

}
≡
{
G−1(x) : x←$Rn

q

}
.

The result then follows from the LWER,n,m,q,U(Rp) assumption.

We remark that the above proof would still go through for other choices of q, by making an LWE
assumption with skewed uniform noise, i.e. U((gT)−1(Rq)).

More Heuristic Evidence. We offer more heuristic evidence that the function is indeed sequential.
First, it was shown in [JMRR21] that a fully homomorphic encryption scheme (FHE) can be used to
show the existence of a universal sequential function, i.e. a function that is sequential if and only if
sequential functions exist at all. The evaluation algorithm of this construction consists of running
an empty circuit homomorphically. Looking at a specific instantiation of an FHE scheme [GSW13],
the homomorphic evaluation algorithm consists exclusively of linear operations (over some ring),
interleaved with binary decomposition. This bears strong resemblance with our candidate function,
which also interleaves linear operations with p-ary decomposition, albeit with a fixed matrix A. In
this sense, our candidate can be seen as the minimal non-trivial operation that is performed in the
FHE evaluation, which we conjecture to be already secure.

Another evidence for the cryptographic usefulness of binary decomposition is the recent work
of Chen et al. [CLMQ21] which shows that the binary decomposition operator can in some cases
be used as a sound alternative to the Fiat-Shamir transformation, which is normally instantiated
using a random oracle.3 Here the heuristic argument that we propose is that binary decomposition
bears similarities with random oracles (in the sense that they can be both used for Fiat-Shamir) and
random oracles are known to be sequential. Thus, we can conjecture that binary decomposition also
bears sequentiality properties.

5.2 Cryptanalysis

We discuss some attack strategies and why they do not apply to our candidate sequential function.
In Appendix A, we summarise attacks discovered by other authors.

Finding Associative Structure. One simple approach to attack the sequentiality of our scheme
would be to find some associative structure in the computation. For example, say we omitted the
decomposition operator G−1 from the definition of fA (adjusting the parameters suitably), then one
could use the associativity of matrix multiplication to parallelise the computation, since the function

gTA(x) = A ·A · · ·A︸ ︷︷ ︸
T -times

·x mod q

can be computed in parallel time O(log(T )) by computing the matrix products in a tree fashion.
However, the same attack does not appear to be viable once we interleave each multiplication with
the operator G−1, since the composition of these two operations is not associative.

3Although the signature scheme presented in [CLMQ21] actually relies on random oracles, it is only used to upgrade
random-message unforgeability to existential unforgeability, while the use of random oracles for the Fiat-Shamir
transformation is eliminated.
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Gluing Parallel Threads. Another (related) attack strategy is to glue together two parallel
computation transcripts. For example, suppose T = 2t+ 1, the adversary may sample a random
x∗←$Rn

q declare it to be output of the function at time t+ 1. Then it would spawn two parallel
threads computing xt ← f t

A(x) and y← f t
A(x

∗). To obtain a consistent transcript, the adversary
must now find a vector ut ∈ Rm such that:(

G
A

)
· ut =

(
−xt

x∗

)
mod q and ut ∈ Rm

β ,

which is not easier than solving SISR,n,m,q,β . Note that this attack is only plausible when the solution
to the sequential relation is not unique, e.g. when β > p/2.

5.3 Verifiable Delay Functions

We shall remark that our sequential function can be combined with a succinct non-interactive
argument with a (quasi-)linear-time prover to obtain a verifiable delay function. While this is a
known implication [DGMV20], we explicitly mention this here since the statement to be proven has
a particularly simple form. Specifically, for an input instance x and an output y the prover only
needs to show the existence of a vector u such that:

G
A G

A
G
A

 · u =


−x
0

0
y

 mod q and u ∈ RmT
p .

In other words, the statement to be proven consists of a highly structured linear relation and a
bounded-norm or set-membership constraint. For small p, e.g. p = 2, and ring R of low degree,
e.g. R = Z, the latter can be viewed as a simple low-degree relation (

∏
a∈Rp

(ui − a) = 0)mT
i=1 which

reduces to (ui · (ui − 1) = 0)mT
i=1 for (p,R) = (2,Z). We expect that recent constructions of efficient

succinct arguments for structured relations, e.g. [BSCG+19, CLM23], can efficiently prove statements
of this form without too much overhead needed to manipulate the statement. We leave exploring
the concrete efficiency of this approach as future work.

6 Proof of Sequential Work

We recall the definition of proofs of sequential work (PoSW) and present a construction based on
the new lattice-based sequential relation. Due to the attacks by Attema and Ducas [AD23] and by
Peikert and Tang [PT23] against the SIS-sequentiality assumption, the construction is not known to
be provably secure against any simpler assumption. Moreover, we warn that due to another attack
of Peikert and Tang [PT23] against a close variant of the PoSW, whatever security the construction
below has might be fragile.

6.1 Definitions

We recall the definition of a proof of sequential work (PoSW).
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Gen(pp)

A←$Rn×m
q

x←$Rn
q

x := (A,x)

return x

⟨Eval(x, 1T ),Verify(x, T )⟩
Eval :

x0 := x

for i ∈ {0, . . . , T − 1} do

ui := −G−1(xi)

xi+1 := A · ui mod q

wit := (ui)
T−1
i=0 send y := xT

⟨Eval,Verify⟩ :
params := A

stmt := (x,y, p, T )

for j ∈ [λ/ log λ] do

bj ← ⟨P(params, stmt,wit),V(params, stmt)⟩
Verify : return (b1 ∧ . . . ∧ bλ/ log λ)

Figure 1: Construction of proof of sequential work.

Definition 6.1 ((Interactive) Proof of Sequential Work (PoSW)). An (interactive) proof of sequential
work (PoSW) is a tuple of PPT algorithms/protocols (Gen, ⟨Eval,Verify⟩) with the following syntax:

• x ← Gen(1λ): The instance generation algorithm inputs the security parameter λ ∈ N and
generates a problem instance x.

• b ← ⟨Eval(x, 1T ),Verify(x, T )⟩: The evaluation-verification protocol is run between the the
interactive evaluation and verification algorithms. Both algorithms input an instance x. The
evaluation algorithm further inputs a time parameter 1T in unary while the verification
algorithm inputs T in binary. The protocol terminates when the verification algorithm returns
a bit b ∈ {0, 1}.

A PoSW is required to satisfy the following properties:

Efficiency. For any x ∈ Gen(1λ), the circuit-depth of Eval (as a function of (λ, T )) satisfies

Depth(Eval(·, 1T )) = T · poly(λ).

Completeness. For any λ ∈ N, x ∈ Gen(1λ), and T ∈ N, it holds that

⟨Eval(x, 1T ),Verify(x, T )⟩ = 1.

Sequential Soundness. Let σ : N→ N be parametrised by λ. The PoSW is said to be sequential-
sound with sequentiality σ if, for any pair of PPT adversaries (A0,A1), it holds that

Pr

[
⟨A1(x),Verify(x, T )⟩ = 1

∧ Depth(A1) < σ(T ))

∣∣∣∣∣ x← Gen(1λ)

(st, T )← A0(1
λ)

]
≤ negl(λ).
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6.2 Construction

Let S ⊆ R be a subtractive set where ∥r∥ = 1 for all r ∈ S. We first construct a core pro-
tocol ⟨P(params, stmt,wit),V(params, stmt)⟩, where params, stmt,wit are respectively parameters,
statements, and witnesses of the form

params = A, stmt = (x,y, β, T ), wit = (ui)
T−1
i=0 ,

for proving the relation

ATu = (−x,0, . . . ,0,y) mod q and u ∈ RmT
β

recursively as follows:

• If T = 1, P sends u0 and V returns 1 if(
G
A

)
· u0 =

(
−x
y

)
mod q and u0 ∈ Rm

β .

• If T = 2t > 1:

– P sends uT−1.
– V checks that

A · uT−1 = y mod q and uT−1 ∈ Rm
β

and returns 0 if not.
– P and V compute y′ = −G · uT−1 and set stmt′ := (x,y′, β, T − 1).
– P sets wit′ := (ui)

T−2
i=0 .

– Run ⟨P(params, stmt′,wit′),V(params, stmt′)⟩.

• If T = 2t+ 1 > 1:

– P sends ut.
– V checks that ut ∈ Rm

β , returns 0 if not.
– V samples r←$S and sends r to P.
– P and V compute the following:

∗ x′ := −x0 −A · ut · r mod q.
∗ y′ := xT · r −G · ut mod q.
∗ β′ := 2 γR β.
∗ stmt′ := (x′,y′, β′, t).

– P computes
∗ u′

i := ui + ut+i+1 · r for all i ∈ {0, . . . , t− 1}.
∗ wit′ := (u′

i)
t−1
i=0.

– Run ⟨P(params, stmt′,wit′),V(params, stmt′)⟩.

The PoSW protocol is then specified in Fig. 1.
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Completeness. We show that the above core protocol and therefore the PoSW are complete.
It is easy to check that, given an instance (A,x), the evaluator produces an output y and a

witness u = (ui)
T−1
i=0 satisfying

ATu = (−x,0, . . . ,0,y) mod q and u ∈ RmT
p .

Indeed, by construction, we have for i ∈ {0, . . . , T − 1},

ui ∈ −G−1(xi) ∈ Rm
2 ,

Gui = −xi mod q,

Aui = xi+1 mod q.

Therefore, for i ∈ {0, . . . , T − 2},

Aui +Gui+1 = 0 mod q.

Finally, by construction, we have

y = xT = AuT−1 mod q.

It remains to check that the core protocol is complete for the relation

ATu = (−x,0, . . . ,0,y) mod q and u ∈ RmT
β

for any β.
The cases T = 1 and T = 2t > 1 are obvious. For the case T = 2t+ 1 > 1, observe the relations

At

 u0 ut−1
...

...
ut+1 u2t

 =

 −x0 −A · ut
...

...
−Gut xT

 mod q,

At

u0 + ut−1 · r
...

ut+1 + u2t · r

 =

−x0 −A · ut · r
...

−Gut + xT · r

 mod q

where the folded witness (ui + ut+i+1 · r) is of norm at most 2γRβ. The claim thus follows by
induction.

Soundness. As mentioned in the beginning of Section 6, our security proof of the PoSW is vacuous
since it relies on an instantiation of the SIS-sequentiality assumption with parameters vulnerable to
known attacks. We keep the original soundness analysis below for completeness.

In the following we show that the core protocol is (2, 2, . . . , 2)-special sound. First, we recall the
definition of special soundness and a useful fact from [AL21].

Definition 6.2 ((k1, . . . , kµ)-out-of-(N1, . . . , Nµ)-Special Soundness [AF22]). Let k1, . . . , kµ, N1, . . . ,
Nµ ∈ N. A (2µ + 1)-round public-coin protocol (P,V) for relation Φ, where V samples the i-th
challenge from a set of cardinality Ni ≥ ki for i ∈ [µ], is (k1, . . . , kµ)-out-of-(N1, . . . , Nµ)-special-sound
if there exists a polynomial-time algorithm that, on input a statement stmt and a (k1, . . . , kµ)-tree
of accepting transcripts, outputs a witness wit such that (stmt;wit) ∈ Φ. We also say (P,V) is
(k1, . . . , kµ)-special-sound.

17



For the (standard) definitions of public-coin protocol and trees of accepting transcripts we refer
to [AF22].

Lemma 6.3 ([AL21]). Let R = Z[ζd+1] be the (d+ 1)-th cyclotomic ring where (d+ 1) is prime.
The set S = {µ1, . . . , µd} ⊆ R× where µi = (ζi − 1)/(ζ − 1) is subtractive, i.e. for any r0, r1 ∈ S it
holds that (r1 − r0)

−1 ∈ R. Furthermore, for any r0, r1 ∈ S, we have r0
r1−r0

, r1
r1−r0

, 1
r1−r0

∈ R2.

Lemma 6.4 (Special Soundness). The above folding argument is (2, 2, . . . , 2)-special sound for the
relation {

((A,x0,xT );u) : ATu = (−x0,0, . . . ,0,xT ) mod q ∧ u ∈ RmT
(2 γR)2 log T β

}
.

Proof. In this proof, we focus on the (more interesting) special case where T = 2µ+1 − 1 for some
µ ∈ N, so that T−1

2 = 2µ − 1 is also an odd integer. It is clear that for such T the above folding
argument is (2µ+ 1)-round. The general case can be dealt with analogously.

In the following, we construct an extractor E which extracts a witness u given a (2, . . . , 2)-tree
of accepting transcripts recursively from depth i = µ to depth i = 1. Let Ti := 2µ−i+1 − 1 for
i ∈ {0, . . . , µ} so that T0 = T and Tµ = 1. Note that Ti−1 = 2Ti + 1 for all i ∈ [µ]. Let node0 and
node1 be siblings at depth-i associated with the challenges r0 and r1 respectively, and let nodeϵ be
the parent node of node0 and node1. From the tree of accepting transcripts, E fetches the vectors
x
(node)
0 ,x

(node)
Tdepth(node)

,u
(node)
t associated to each node node ∈ {nodeϵ, node0, node1} recursively defined

such that xroot
0 = x0, xroot

T0
= xT , and(

x
(nodeb)
0

x
(nodeb)
Ti

)
=

(
x
(nodeϵ)
0

−G · u(nodeϵ)
Ti

)
+

(
A · u(nodeϵ)

Ti

x
(nodeϵ)
Ti−1

)
· rb mod q.

Suppose the vector (unodeb
0 , . . . ,unodeb

Ti−1 ) extracted at nodeb for b ∈ {0, 1} satisfies

ATi ·

unodeb
0

unodeb
Ti−1

 =


−x(nodeb)

0

0

0

x
(nodeb)
Ti

 mod q and

unodeb
0

unodeb
Ti−1

 ∈ RmTi

(2 γR)2µ−i·β.

Expanding the expressions, the L.H.S. becomes

ATi ·

unodeb
0

unodeb
Ti−1

 =


−x(nodeϵ)

0

0

0

−G · u(nodeϵ)
Ti

+


−A · u(nodeϵ)

Ti

0

0

x
(nodeϵ)
T

 · rb mod q.

Let  u0 ut+1

uTi−1 uTi−1−1

 =

unode0
0 unode1

0

unode0
Ti−1 unode1

Ti−1

 · ( r1
r1−r0

−1
r1−r0−r0

r1−r0
1

r1−r0

)
.
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It follows that

ATi ·

 u0 ut+1

uTi−1 uTi−1−1

 =


−x(nodeϵ)

0 −A · u(nodeϵ)
t

0 0

0 0

−G · u(nodeϵ)
Ti

x
(nodeϵ)
Ti−1

 mod q,

or equivalently

ATi−1 ·

 u0

uTi−1−1

 =


−x(nodeϵ)

0

0

0

x
(nodeϵ)
Ti−1

 mod q,

and (u0, . . . ,uT−1) ∈ R(2 γR)2µ−i+1·β , where the inclusion is due to Lemma 6.3.
By recursion, E extracts at the root node a vector (u0, . . . ,uT−1) satisfying

AT

 u0

uT−1

 =


−x0

0

0
xT

 mod q,

 u0

uT−1

 ∈ RmT
(2 γR)2µβ ⊂ R

mT
(2 γR)2 log T β

as desired.

Finally, we are ready to show that the construction is sound, which follows by invoking the
extractor of the above protocol, which returns a valid computation transcript. Since the extractor
runs in time sublinear in T , this contradicts the sequentiality of our function.

Theorem 6.5 (Soundness (Vacuous due to [PT23])). There exists p(λ) ∈ poly(λ) and σ′(T ) =
σ(T )·p(λ) such that if SISR,n,m,q,β assumption and the SIS-sequentiality assumption with sequentiality
σ′ hold, then the PoSW constructed in Fig. 1 is sequentially sound with sequentiality σ.

Sketch. The theorem follows from Lemma 6.4 and standard techniques. We provide a proof sketch.
Since the above folding argument is (2, 2, . . . , 2)-special-sound with a challenge set size of Ω(λ),
it follows from [AF22] that the (λ/ log λ)-fold parallel repetition of it is knowledge-sound with
negligible knowledge error. Furthermore, we observe that the extractor constructed in [AF22] is
depth-preserving, i.e. there exists a polynomial p(λ) ∈ poly(λ) such that the knowledge extractor EA
has depth Depth(EA) ≤ p(λ) · Depth(A). Suppose there exists a polynomial-size adversary A which
breaks the sequential-soundness of the PoSW with sequentiality σ, then the above shows that EA is
a polynomial-size adversary which breaks the SIS-sequentiality assumption with sequentiality σ′.

In Appendix B, we discuss challenges of formally proving the security of our PoSW against
quantum adversaries.
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A Attacks against SIS-Sequentiality

In [LM23], it was implicitly assumed that the SIS-sequentiality assumption (Assumption 5.1) holds
for any choice of β and σ with σ(T ) = (1−ω(1)) ·T · poly(λ). In particular, the sequential-soundness
of the PoSW was proven in [LM23] based on the assumption with β = (2γR)

2 log T · p. Below, we
discuss attacks against the SIS-sequentiality assumption and its “offline” variant.

Offline Preprocessing Attack. This attack is suggested to us by anonymous reviewers. Let us start
with the simplified settings where we fix the matrix A, instead of sampling it as part of the instance
(A,x). The idea of the attack is to precompute a witness for (A, pi · ej), for i = 0, . . . ,

⌈
logp q

⌉
− 1

and j = 1, . . . , n and where ej ∈ {0, 1}n denotes the j-th unit vector. Let us denote the (i, j)-th
precomputed witness by (u

(i,j)
0 , . . . ,u

(i,j)
T−1,y

(i,j)). Note that u
(i,j)
k ∈ Rm

p . Upon receiving x ∈ Rn
q ,

decompose x into

x =

⌈logp q⌉−1∑
i=0

n∑
j=1

x(i,j) · pi · ej

where x(i,j) ∈ Rp. Set the witness to

(u0, . . . ,uT−1,y) :=

⌈logp q⌉−1∑
i=0

n∑
j=1

x(i,j) · (u(i,j)
0 , . . . ,u

(i,j)
T−1,y

(i,j)).

Note that uk ∈ Rm
γRmp, and furthermore the parallel runtime of the attack (after the preprocessing

phase) is log T · poly(λ). This would break a hypothetical version of our sequentiality assumption,
where we fix A for all instances, for β = γRmp and σ = log T · poly(λ).

Online Preprocessing Attack. Next, we describe an online attack by Attema and Ducas [AD23]
which, given an instance (A,x), finds a solution (y,u) with u ∈ RmT

γRmp in depth
√
T log T · poly(λ).

The attack consists of a preprocessing phase and an iterative phase. Upon receiving (A,x)
and denoting x0 := x, perform the above preprocessing on A for

√
T steps to compute witnesses

(u
(i,j)
0 , . . . ,u

(i,j)√
T−1

,y(i,j)) for i = 0, . . . ,
⌈
logp q

⌉
− 1 and j = 1, . . . , n. Then, in the iterative phase,

for ℓ = 1, . . . ,
√
T , decompose

x(ℓ−1)
√
T =

⌈logp q⌉−1∑
i=0

n∑
j=1

x
(i,j)

(ℓ−1)
√
T
· pi · ej

and compute

(u(ℓ−1)
√
T , . . . ,uℓ

√
T−1,xℓ

√
T ) :=

⌈logp q⌉−1∑
i=0

n∑
j=1

x
(i,j)

(ℓ−1)
√
T
· (u(i,j)

0 , . . . ,u
(i,j)√
T−1

,y(i,j)).

Finally, output (xT ,u), where uT := (uT
0, . . . ,u

T
T−1).

Clearly, for each k = 1, . . . , T , we have uk ∈ Rm
γRmp as in the preprocessing attack. For the

runtime, note that the preprocessing of A for
√
T steps takes takes depth

√
T ·poly(λ). Then, each of
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the
√
T iterative steps takes log T ·poly(λ) depth. The entire attack therefore takes

√
T log T ·poly(λ)

depth.
We remark that the above attack seems to rely on the sparsity of the image(

−xT0 0T . . . 0T xTT
)T

and in particular that it can be decomposed into
√
T∑

ℓ=1

(
0T . . . 0T −xT

(ℓ−1)
√
T

0T . . . 0T xT
ℓ
√
T

0T . . . 0T
)T

.

Preimage Sampling Attack. We summarise a family of preimage sampling attacks by Peikert
and Tang [PT23] which, given an instance (A,x), finds a solution (y,u) with u ∈ RmT

(γRm)(logk T )/2 in
depth k logk T · poly(λ), for any 1 ≤ k ≤ T . Note that the family of attacks is parametrised by a
parameter k which describes a tradeoff between the parallel runtime and the norm of the solution.
In particular, when k =

√
T , this attack has the same performance as that of Attema and Ducas.

In essence, the attack works by first computing a trapdoor of the matrix

BT :=


G
A G

A G


︸ ︷︷ ︸

T columns

and then using the trapdoor to sample a short preimage uT = (uT
0, . . . ,u

T
T−1) such that

BTu = (−xT0,0T, . . . ,0T)T mod q.

The output is then (y,u) where y := AuT−1 mod q.
The computation of a trapdoor of BT is based on the following observation. For i ∈ [k], let

Ci ∈ Rnti×mti
q be matrices with trapdoors Ri ∈ Rmti×mti so that CiRi = Iti ⊗G mod q. For

i, j ∈ [k] with i > j, let Wi,j ∈ R
nti×mtj
q be arbitrary matrices. Define

C :=


C1

W2,1 C2

Wk,1 Wk,2 Ck

.

Observe that the matrix

R :=


R1

R2

Rk



Imt1

S2,1 Imt2

Sk,1 Sk,2 Imtk

 =


R1

R2S2,1 R2

RkSk,1 RkSk,2 Rk


where

Si,j := −(Iti ⊗G)−1(Wi,jRj +
∑

j<j′<i

Wi,j′Rj′Sj′,j)
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is a trapdoor of C, i.e. CR = I∑k
i=1 ti

⊗G mod q.
Given the above observation, the idea is to recursively decompose BT into k-by-k block matrices

until arriving at the block matrix

Bk =


G
A G

A G


︸ ︷︷ ︸

k columns

whose diagonal blocks admit trivial trapdoors, i.e. GIm = G.
We remark that the above attack, as pointed out by Peikert and Tang [PT23], is oblivious (up

to minor optimisation) to the form of the image(
−xT 0T . . . 0T

)T
.

B On Post-Quantum Security of our PoSW

Formally showing that our PoSW is secure against quantum adversaries requires more work than
what is presented in Section 6.2. A recent work [LMS22] shows that protocols that satisfy special
soundness and a particular notion of binding for the hash function (called collapsing) can be proven
secure against quantum adversary (when sequentially repeated). Unfortunately, their result is not
sufficient for our purposes, since the depth of the extractor scales with the size of the extraction tree,
which in particular means that it is polynomial in T . Thus, we cannot hope to use this extractor
to derive a contradiction against the sequentiality of our function. We leave proving a precise
statement in the quantum settings as a fascinating open question. As a first step towards this, in
the following we show that the hash function used at each round of our protocol is collapsing. Here
we assume familiarity with the basics of quantum information and we refer the reader to [LMS22]
for precise definitions of the notions used here. First we recall below the notion of collapsing for
hash functions [Unr16].

Definition B.1 (Collapsing). Let H be a (keyed) hash function. We say that H is collapsing if for
any efficient (quantum) adversary A∣∣∣Pr[Collapsing0A(1λ) = 1

]
− Pr

[
Collapsing1A(1

λ) = 1
]∣∣∣ ≤ negl(λ),

where the experiment CollapsingbA is defined as follows:

CollapsingbA(1
λ):

• Sample a key k and send it over to A.

• A replies with a classical bitstring y and a quantum state on a register X .

• Let Uk,y be the unitary that acts on X and a fresh ancilla, and CNOTs into the fresh ancilla
the bit that determines whether the output of Hk(·) equals y and the input belongs to the
appropriate domain. Apply Uk,y, measure the ancilla, and apply U †

k,y.
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• If the output of the measurement is 0, then abort the experiment. Else proceed.

• If b = 0 do nothing.

• If b = 1 measure the register X in the computational basis, discard the result.

• Return to A all registers and output whichever bit A outputs.

In [LMS22] it is shown that the SIS-based hash function is collapsing, assuming the hardness of
the LWE problem.

Lemma B.2 ([LMS22]). If the LWE problem is hard, then the function HA defined as

HA(u) = A · u mod q

where A←$Rn×m
q , is collapsing.

We are now ready to prove that the hash function used in our folding argument is collapsing.

Lemma B.3 (Collapsing). Let t be a polynomial in the security parameter. If the LWE problem is
hard, then the function HA defined as

HA(u) =


G
A G

A
G
A


︸ ︷︷ ︸

t columns

·u mod q

where A←$Rn×m
q , is collapsing.

Proof. The proof follows by a standard hybrid argument. Let us split the input u ∈ Rtm
p in t blocks

(u1, . . . ,ut) where ui ∈ Rm
p and let X1 ⊗ · · · ⊗ Xt be the corresponding registers. In the last hybrid,

the challenger does not measure any of the registers (this corresponds to Collapsing1A). The i-th
hybrid is defined as the previous one, except that the challenger only measures registers X1⊗· · ·⊗Xi

in the computational basis. Note that the 0-th hybrid corresponds to the experiment Collapsing0A.
What is left to be shown is that consequent hybrids are computationally indistinguishable.

For hybrids t and t− 1, indistinguishability follows directly from the collapsing property of A
(Lemma B.2). For other hybrids, it suffices to observe that the i-th block of the output y = (y1, . . . ,yt)
is computed as:

yi = A · ui +G · ui+1 mod q

yi −G · ui+1 = A · ui mod q

and therefore indistinguishability follows one again by Lemma B.2, since ui+1 can be computed as
the result of the measurement on register Xi+1 (which we assume it is measured).
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