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Abstract

In the linear garbling model introduced by Zahur, Rosulek, and Evans (Eurocrypt 2015), garbling an
AND gate requires at least 2κ bits of ciphertext, where κ is the security parameter. Though subsequent
works, including those by Rosulek and Roy (Crypto 2021) and Acharya et al. (ACNS 2023), have advanced
beyond these linear constraints, a more comprehensive design framework is yet to be developed.

Our work offers a novel, unified, and arguably simple perspective on garbled circuits. We introduce a
hierarchy of models that captures all existing practical garbling schemes. By determining the lower bounds
for these models, we elucidate the capabilities and limits of each. Notably, our findings suggest that sim-
ply integrating a nonlinear processing function or probabilistic considerations does not break the 2κ lower
bound by Zahur, Rosulek, and Evans. However, by incorporating column correlations, the bound can be
reduced to (1+1/w)κ, where w ≥ 1. Additionally, we demonstrate that a straightforward extension of Ro-
sulek and Roy’s technique (Crypto 2021) does not yield improved results. We also present a methodology
for crafting new models and for exploring further extensions of both the new and the existing models.

Our new models set the course for future designs. We introduce three innovative garbling schemes
based on a common principle called “majority voting.” The third construction performs on par with the
state-of-the-art.

*We thank Tomer Ashur, Carmit Hazay, and Rahul Satish, for the discussions about their results in [AHS24]. We thank Taechan
Kim for the discussions about his results in [Kim24, BK24]. We remark that, these results [AHS24, Kim24, BK24] and the results in this
writeup are concurrently and independently discovered.
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1 Introduction

Yao’s garbled circuits [Yao86] are well received in both theory and practice. Today, garbled circuits have
become a fundamental tool for constructing constant-round secure multi-party computation. In addition,
garbled circuits have been used for constructing cryptographic primitives such as verifiable computation
[GGP10], zero-knowledge proofs [JKO13], functional encryption [GKP+13], key-dependent message secu-
rity [BHHI10], and many more. Please also refer to the great survey by Applebaum [App17].

New insights have also been developed. For example, Ishai et al. [IK00, AIK04] view garbled circuits
as randomized encodings of functions; later, Bellare et al. [BHR12b] formalize garbled circuits as a cryp-
tographic primitive. Over the years, huge efforts have been made to improve the performance of garbled
circuits. Notably, a long sequence of results (e.g., [BMR90, NPS99, KS08, PSSW09, KMR14, ZRE15, GLNP15,
RR21, AAC+23]) have been developed with the goal of minimizing the concrete size of garbled circuits. The
state-of-the-art construction [RR21] requires only a ciphertext of 1.5κ bits to garble an AND gate, while gar-
bling an XOR gate is “free.”
Zahur et al.’s linear garbling. We must highlight the remarkable work of Zahur, Rosulek and Evans [ZRE15].
Before their contributions, numerous ad hoc but practical solutions to garbled circuits have been constructed
[BMR90, NPS99, KS08, PSSW09]. Zahur et al. for the first time introduced a unified design framework, called
the linear garbling model, aiming to capture all practical garbling schemes at the time using the so-called
“standard techniques”1. Very surprisingly, Zahur et al. were able to establish a lower bound, stating that any
garbling scheme within their linear garbling model must use a ciphertext of at least 2κ bits for garbling an
AND gate. The formulation of such model as well as proving a lower bound are truly signifiant: to achieve
a smaller ciphertext size, novel constructions must transcend the boundaries of this model.
Beyond linear garbling. Indeed, a few subsequent works have moved beyond Zahur et al.’s linear gar-
bling model. For instance, Rosulek and Roy [RR21] provided a construction requiring merely 1.5κ bits to
garble an AND gate. While it preserves most of the “standard techniques” in the linear garbling model, it
introduces an innovative method termed “slicing and dicing.” Acharya et al. offered a markedly different
design approach [AAC+23]. Rather than the conventional row-by-row encryption, it handles the garbling
of each gate as a whole. Although the construction in [AAC+23] does not break the 2κ lower bound, the
insights in their designs carry significant weight.
Searching for classes of practical solutions to garbled circuits. In this paper, we aim to search for practical
solutions to garbled circuits. Our goal is rather ambitious: instead of developing ad hoc constructions, we
attempt to propose a methodology. This includes defining a hierarchy of design models, establishing lower
bounds for these models, and introducing new constructions within them. Specifically, we can develop new
models on top of existing ones and establish a lower bound for each new model. This will arguably enhance
our understanding of the limits and the power of the design techniques in the new model.

We point out that, we are not the first to provide a systematic, instead of an ad hoc, treatment for garbling
schemes; As discussed above, Zahur et al. [ZRE15] have already demonstrated a beautiful example of linear
garbling model. However, we are the first to launch a comprehensive search for many, not just one, design
models. Ultimately, our goal is to craft a (nearly) complete vision for advancing solutions in the realm of
garbled circuits.

1.1 Our Contributions

In Yao’s garbling, we first represent an (efficiently computable) function f as a boolean circuit C, and then
garble each gate Gi of the boolean circuit. It seems that we are taking a detour. However, we remark that
representing a more complex function f as a less complex boolean circuit C is essential: the boolean circuit
can be decomposed into multiple boolean gates {Gi}, and each gate can be enumerated through a constant-
size mapping table between its input and output; this constant-size table can be efficiently “encrypted” or
garbled.2 Is it possible to further “decompose” a boolean gate? If yes, then we may be able to obtain a better
understanding of garbling.

1The term “standard techniques” specifically means that, aside from the non-linear operations of point-permute and calls to the
random oracle, all other operations in the garbling designs are linear. Detailed elaboration is available in Section 3.

2In contrast, without this “detour,” directly garbling the function f is infeasible: an exponential size table is needed for mapping
the input to its output of f ; unfortunately, we cannot deal with this huge table!
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A new perspective. We introduce a new, fine-grained approach to examining garbled circuits: the column-
wise perspective3. This offers a more unified and arguably simpler understanding of garbling schemes.
In the linear garbling model by Zahur et el. [ZRE15], output labels are derived by XORing random oracle
outputs, input labels, and ciphertext. This XOR operation can be further refined. The process of obtaining
the output label breaks down into κ operations, each requiring a sub-ciphertext4 and producing a single
bit of the output label. While this seems redundant in the linear garbling model, it sets the stage for more
complex constructions and for a comprehensive approach to garbled circuits. In Sections 3.1 and 6.1, we
will introduce this perspective in detail.
New models and new lower bounds. We propose several extensible models that cover all known practical
constructions and establish the corresponding lower bounds.

• MODEL-1: By employing the column-wise perspective, we present a redefined linear garbling model.
Building on MODEL-1 for additional extensions, like integrating more non-linear operations, is fairly
straightforward. For a detailed discussion, refer to Section 3.

• MODEL-2: In MODEL-1, every operation producing a single bit of the output label is linear, and can
informally be represented by matrix multiplication, vector inner products, or similar forms. Moving
to MODEL-2, we do not specify the operation, allowing for arbitrary non-linearity. However, we
demonstrate that such flexibility does not break the lower bound of 2κ when garbling an AND gate.
Moreover, MODEL-2 encompasses all constructions that comply with MODEL-1. See Section 4 for
further details.

• MODEL-3: In earlier models, each operation produces one bit of the output label. In MODEL-3, we
relax this, allowing operations to possibly reject, meaning some might not yield an output bit. While
before, κ operations give κ output bits, we might now need more than κ operations. Even so, garbling
an AND gate in MODEL-3 still requires at least 2κ-bit ciphertext. Notably, if an operation employs
just a 1-bit sub-ciphertext, any construction adhering to MODEL-3 will have an operation rejection
probability over 5/8. MODEL-3 covers all constructions fitting MODEL-2 and the construction in
[AAC+23] (where rejection probability is 3/4). For more details, refer to Section 5.

• MODEL-3′: Expanding on MODEL-2 and adding further correlations, we can create more efficient
garbling schemes. Unlike earlier models, MODEL-3′ aims to obtain w bits of the output label from a
single operation, with w ≥ 1. We utilize the connections between different bit positions for a shorter
ciphertext. A favorable lower bound is also established in this model. Specifically, garbling an AND
gate requires at least (2− υ/w) · κ bits, with υ tied to the correlations and υ < w. For the construction
in [RR21], w = 2 and υ = 1. This model offers a broad understanding of the sliced garbling presented
in [RR21]. Moreover, MODEL-3′ covers MODEL-2 and the construction in [RR21]. For a deeper dive,
see Section 6.

• Other variants: Continuing this approach, we extend the aforementioned models and obtain several
intriguing results. For instance, we demonstrate that garbling an AND gate with n inputs and one out-
put necessitates at least nκ bits (where n ≥ 2) in a new model that allows a high fan-in. Additionally,
we investigate potential extensions of the model and outline a methodology for such expansions. A
thorough explanation of these variants is available in Section 7.

In summary, the models mentioned above follow this relationship: MODEL-1 ⊂ MODEL-2 ⊂ MODEL-3,
MODEL-3′. Interestingly, our results indicate that simply adopting the concept from [AAC+23] doesn’t
necessarily lead to a better construction, while it is still important not to overlook its potential. The ideas
in [RR21] seem to offer a more promising path towards enhanced constructions. Moreover, we proof that a
straightforward extension of the technique presented in [RR21], employing 1.5κ bits to garble an AND gate,
is already optimal within a more constrained version of MODEL-3′.
New techniques for establishing lower bounds. Our methods for establishing lower bounds are innovative.
Using our column-wise perspective, we can view each operation as a mapping from some basic inputs (e.g.
bits from random oracle outputs) and a sub-ciphertext, to a single bit of the output label.

In proving the lower bound for MODEL-2, we discover that a succinct mapping table aptly describes the

3The term column-wise will be clarified in Section 3.1.
4A sub-ciphertext can be viewed as a part of the ciphertext used for garbling a gate.
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correctness requirement of the garbing scheme. For the privacy requirement, we interpret it as a need for the
randomness of the mapping’s output distribution. If the sub-ciphertext length is too short, the mapping’s
potential outputs become limited, challenging the desired output randomness. Hence, we derive a lower
bound for the ciphertext length.

In the proof of the lower bound for MODEL-3, we examine the mapping more closely due to the chal-
lenges introduced by rejection. We divide the mapping into three categories: certain to fail, successful in
some cases, and certain to succeed. By evaluating the probabilities for these categories and integrating them
with the desired probability distribution of the output bit, we establish a lower bound.

The proof of the lower bound for MODEL-3′ is more complicated because it introduces certain cor-
relations in the garbling scheme design, not formally discussed before. Therefore, for the first time, we
introduce a new concept, column correlation, to describe these potential correlations. We find that using
column correlation can reduce uncertainty in the mapping, and we obtain a more favorable lower bound.

Our proof techniques are completely different from those in [ZRE15]. We also remark that, in some
recent and concurrent work [AHS24, Kim24, BK24], the authors also showed some interesting lower bounds
for garbled circuits employing different techniques. More details can be found in Section 6.3.2. Moreover,
the techniques used in our proofs can inspire new constructions, due to the “visibility” of the correctness
and privacy requirements.
New constructions. Along the way, we construct several new garbling schemes. Note that, new ideas have
been introduced: we develop a strategy, termed majority voting; with a simple “bit-flipping” mechanism,
we can obtain efficient garbling schemes; details can be found in Sections 4.3 and 6.4. All our constructions
are summarized in Table 1.

Table 1: Our new constructions using majority voting.

Constructions Ciphertext length
for garbling an AND gate

Compatibility
with free-XOR

Corresponding
model

Construction #1 2κ × MODEL-2
Construction #2 2κ ✓ MODEL-2
Construction #3 1.5κ ✓ MODEL-3′

To the best of our knowledge, our Construction #1 and Construction #2 are the only garbling schemes
that are under MODEL-2, but not MODEL-1. Further, Construction #2 is compatible with free-XOR tech-
nique. Interestingly, we discover a mechanism to make non-free-XOR-compatible constructions support
free-XOR. Finally, our Construction #3, has the same performance as [RR21], but utilizing more non-linear
operations. We remark that, while our constructions might not outperform the state-of-the-art results (e.g.,
[RR21]), they utilize different ideas. This may allow us to find novel pathways for future optimization and
applications of garbled circuits.

Organization. In Section 2, we present the preliminaries. In Section 3, we introduce the column-wise
perspective and redefine the linear garbling model as MODEL-1. In Section 4, we define MODEL-2 and
explore the role of non-linear mappings. In Section 5, we introduce MODEL-3 and examine the potential
of mapping with rejection for better constructions. In Section 6, we define MODEL-3′ and demonstrate the
power of introducing correlations. In Section 7, we discuss more variants and potential extensions. Related
works can be found in Section 8. Finally, supplemental materials for Sections 3, 4, 5, 6, and 7 can be found
in Appendices A, B, C, D, and E respectively.

2 Preliminaries

Notations. In this paper, the security parameter is denoted by κ. The set {1, 2, ..., n} is represented by [n].
Vectors are shown in bold, like A, while matrices are in calligraphic bold, such as P . The inner product
of two vectors is given by ⟨·, ·⟩, and matrix multiplication is indicated by ×. Logarithms default to base 2

3



unless stated otherwise. The term αβ, for α, β ∈ {0, 1}, means the concatenation of two bits, not multiplica-
tion. The symbol← indicates uniform random sampling. For instance, R ← GF(2κ) means R is randomly
chosen from the field GF(2κ).

2.1 Garbling Schemes

In the realm of garbled circuits, two primary roles exist: the garbler and the evaluator. The garbler encrypts
the circuit gate-by-gate and sends the resulting ciphertext to the evaluator. Armed with the input labels
of the circuit and each gate’s ciphertext, the evaluator decrypts the circuit following its topological order.
When dealing with two-party computation, the evaluator obtains the labels corresponding to her inputs
through the oblivious transfer protocol.

We use the garbling scheme definition from [RR21], which represents a slight modification of the defi-
nitions found in [BHR12b].

Definition 1. A garbling scheme, denoted as GC = (Gb,En,Ev,De), is composed of four polynomial time algorithms:

• Garbling algorithm Gb: On input (1κ, f), outputs (F, e, d), where f is a circuit, F is a garbled circuit, e is an
input encoding set, and d is an output decoding set.

• Encoding algorithm En: On input (e, x), outputs X , where x is an input for f , and X is a garbled input.

• Evaluation algorithm Ev: On input (F,X), outputs Y , where Y is a garbled output.

• Decoding algorithm De: On input (d, Y ), outputs y, where y is a plain output.

Furthermore, these four algorithms need to satisfy the following properties:

• Correctness: For any circuit f and any input x, if we obtain (F, e, d)← Gb(1κ, f), then
De(d,Ev(F,En(e, x))) = f(x) with overwhelming probability.

• Privacy: For any circuit f and any input x, a simulator Sim must exist which takes as input (1κ, f, f(x))
and produces an output (F,X, d) that is indistinguishable from the set generated in the usual manner.

• Obliviousness: For any circuit f and any input x, a simulator Sim must exist which takes as input
(1κ, f) and produces an output (F,X) that is indistinguishable from the set generated in the usual
manner.

• Authenticity: For any PPT adversary, given the input (F,X, d), it should be infeasible to generate a Ỹ

distinct from Ev(F,X) such that De(d, Ỹ ) ̸= ⊥, except with negligible probability.

3 Column-wise Garbling: A New Perspective

In this section, we present a column-wise perspective on garbling schemes. Based on this new perspective,
we redefine the linear garbling model by Zahur et al. [ZRE15] as MODEL-1. This redefinition is pivotal for
understanding our new design models and constructions in following sections.

We focus on garbling an AND gate, which has two inputs and one output. As depicted in Figure 1, each
wire is associated with two labels. The two input wires carry labels (A0, A1) and (B0, B1), while the output
wire has labels (C0, C1). All these labels are κ-bit strings.

xa

xb

xc = xa ∧ xb

A0, A1

B0, B1

C0, C1

Figure 1: An AND gate and its garbled version.

As stressed by Zahur et al. [ZRE15], constructions in the linear garbling model use “standard tech-
niques.” Specifically, these constructions utilize the point-permute optimization and make calls to the ran-
dom oracle, while other operations are linear.
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In the point-permute optimization, the garbler secretly selects a “permute bit” for each wire. To eluci-
date, the garbler chooses two random bits, a and b, as the permute bits for two input wires. In this context,
Aa and Bb correspond to the actual input value of FALSE. The subscript of each label denotes the “color
bit,” disclosed to the evaluator. However, the evaluator cannot determine the permute bit for each wire.
That is, when given the input labels Aα and Bβ , the evaluator is aware of α and β but not a and b. As a
result, the evaluator cannot identify the actual input values xa = α⊕ a and xb = β ⊕ b.

Another non-linear “standard technique” is the use of the random oracle. All constructions under the
linear garbling model utilize queries to H, regarded as a random oracle5. This oracle accepts arbitrary input
and outputs a κ-bit random string. In practice, block ciphers like AES can be used to instantiate the random
oracle, ensuring fast computation.

Apart from these, “standard techniques” operations are linear, typically appearing as bit-wise XOR.

3.1 A Column-wise View of Garbling Schemes

Starting with the “standard techniques,” we provide a fresh perspective on garbled circuits.
Classical Yao Scheme. We first examine the classical Yao scheme that now includes the point-permute
optimization. Using the input labels A0, A1, B0, B1 and the random oracle, the garbler generates a base for
garbling an AND gate, ordered by color bits:

base︷ ︸︸ ︷
H(A0, B0)
H(A0, B1)
H(A1, B0)
H(A1, B1)

=
=
=
=

in total, κ columns︷ ︸︸ ︷
1 1 · · · 1 · · ·
0 0 · · · 0 · · ·
1 0 · · · 0 · · ·
0 0 · · · 1 · · ·︸︷︷︸

t-th column

The base consists of four rows, each κ bits long. Considering these bits column-wise, the t-th column
comprises four bits, where 1 ≤ t ≤ κ. Next, the garbler randomly generates two κ-bit output labels, C0 and
C1, with C0 corresponding to FALSE. We assume, without loss of generality, that the third row of the base,
where the color bits are (1, 0), yields the output label C1 (this convention persists in subsequent examples).
The garbler’s task is to map each column on the left to its corresponding column on the right, as illustrated
below:

H(A0, B0)
H(A0, B1)
H(A1, B0)
H(A1, B1)

=
=
=
=

1 1 · · · 1 · · ·
0 0 · · · 0 · · ·
1 0 · · · 0 · · ·
0 0 · · · 1 · · ·

−→

0 0 · · · 1 · · ·
0 0 · · · 1 · · ·
1 0 · · · 0 · · ·
0 0 · · · 1 · · ·

=
=
=
=

C0

C0

C1

C0︸︷︷︸
t-th column

︸︷︷︸
t-th column

The four bits in the t-th column on the left side are denoted as M [t] = (M00[t],M01[t],M10[t],M11[t]) and
those in the t-th column on the right side as Z[t] = (Z00[t], Z01[t], Z10[t], Z11[t]). In the classical Yao scheme,
the garbler uses a 4-bit sub-ciphertext G[t] = (G00[t], G01[t], G10[t], G11[t]) to achieve the mapping function
MAP shown below:

MAP(M [t],G[t]) =


M00[t]⊕G00[t]
M01[t]⊕G01[t]
M10[t]⊕G10[t]
M11[t]⊕G11[t]

 =


Z00[t]
Z01[t]
Z10[t]
Z11[t]

 = Z[t], where Z00[t] = Z01[t] = Z11[t].

Since each column requires a 4-bit sub-ciphertext and there are κ columns, the total ciphertext length is
4κ.

For the evaluator, given input labels Aα and Bβ , she can reconstruct the (2α+ β + 1)-th row of the base.
Utilizing ciphertext G, the t-th bit of the output label can be calculated as Mαβ [t]⊕Gαβ [t].

5We view H as a random oracle for now. In later discussions about ensuring the security of our constructions, H can be treated as a
certain circular hash function.
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Several observations arise from the aforementioned process. Firstly, the structure of the base doesn’t
depend on which row corresponds to the output label C1. Secondly, the function MAP used to complete
the mapping is also independent of which row yields C1. Moreover, MAP operates on a single column of
the base, generating one bit of the output label per operation. While the classical Yao scheme uses row-
wise XOR operations, our view may initially appear redundant. However, we will later show that it offers
substantial flexibility.
Row Reduction (GRR3). In the classical scheme above, the garbler first chooses output labels and then
determines the ciphertext for each column to finalize the mapping. Randomly selecting two output labels
introduces two degrees of freedom. GRR3 removes one, reducing the ciphertext length to 3κ.

Initially, the garbler creates a base (identical to the previous one). Consistent with the previous example,
we assume the third row of the base yields C1. However, this time, the garbler does not randomly select C0.
Instead, the t-th bit from the first row of the base becomes the t-th bit of C0. Specifically, for the t-th column,
the garbler selects a 4-bit sub-ciphertext G[t] = (0, G01[t], G10[t], G11[t]) to finalize the mapping as follows:

MAP(M [t],G[t]) =


M00[t]⊕ 0
M01[t]⊕G01[t]
M10[t]⊕G10[t]
M11[t]⊕G11[t]

 =


Z00[t]
Z01[t]
Z10[t]
Z11[t]

 = Z[t], where Z00[t] = Z01[t] = Z11[t].

Since the first bit of G[t] is always 0, it need not be transmitted, reducing the ciphertext to 3κ bits.
Half Gates. The half-gates garbling scheme further exploits the degrees of freedom in the output labels.
First, the garbler generates a base as follows:

H(A0)⊕ H(B0)
H(A0)⊕ H(B1)⊕A0

H(A1)⊕ H(B0)
H(A1)⊕ H(B1)⊕A1

For the t-th column, the garbler purposefully chooses a sub-ciphertext G[t] = (0, G01[t], G10[t], G01[t] ⊕
G10[t]) to meet the equation below:

MAP(M [t],G[t]) =


M00[t]⊕ 0
M01[t]⊕G01[t]
M10[t]⊕G10[t]
M11[t]⊕G01[t]⊕G10[t]

 =


Z00[t]
Z01[t]
Z10[t]
Z11[t]

 = Z[t], where Z00[t] = Z01[t] = Z11[t].

3.2 MODEL-1: Column-wise Garbling with Linear Mapping

In our perspective, as outlined in the previous section, the essence of constructing a garbling scheme lies
in identifying a suitable base and a mapping function MAP. Each operation both generates one bit of the
output label and ensures the scheme’s correctness and privacy.

Considering the original linear garbling model, from the evaluator’s viewpoint, obtaining the output
label entails computing a linear combination of ciphertext, input labels, and some random oracle outputs,
based on the color bits. The combined input labels and random oracle outputs can be regarded as the base.
Performing a bit-wise XOR between the base and the ciphertext can be thoroughly reduced to a column-
wise XOR operation, which we term the mapping function MAP.

Our goal is to reshape the linear garbling model through our lens. Building on the original definition, a
detailed understanding of it is pivotal before moving forward. While we provide brief explanations here,
for further details, readers are encouraged to refer to Appendix A.1. The linear garbling model, serving as
a framework, possesses numerous parameters. Any particular construction within this framework instan-
tiates these parameters. The linear combination of input labels and random oracle outputs can be depicted
as a vector inner product.

We redefine the linear garbling model as MODEL-1, a starting point for exploring more advanced mod-
els.
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• Garbling algorithm Gb:
Parameterized by integers m, r, q, vectors A0, A1, B0, B1, {Mij | i, j ∈ {0, 1}}, matrices {P [u] | u ∈
[κ]}, random oracle RO and mapping function MAP. Each vector is of length r + q with entries in
GF(2κ). Each matrix is 4 ×m in size with entries in GF(2). The RO is mapped as {0, 1}∗ → GF(2κ).
The MAP breaks down into two linear sub-functions: (MAP1,MAP2), where MAP1 performs matrix
multiplication in GF(2), while MAP2 carries out a bit-wise XOR operation.

1. For i ∈ [r], choose Ri ← GF(2κ).
2. Make q distinct queries to the RO, which can be determined based on the Ri values. Let Q1, . . . , Qq

denote the responses to these queries, and define S := (R1, . . . , Rr, Q1, . . . , Qq).
3. Choose random permute bits a, b← {0, 1} for the two input wires.
4. Compute A0 := ⟨A0,S⟩, A1 := ⟨A1,S⟩, B0 := ⟨B0,S⟩, B1 := ⟨B1,S⟩. Then A0||0 and A1||1 are

labels for one input wire, and B0||0 and B1||1 for the other. Subscripts indicate the color bits,
with Aa and Bb representing FALSE.

5. For i, j ∈ {0, 1}, compute Mij := ⟨Mij ,S⟩. Then (M00,M01,M10,M11)
⊤ is the base. The t-

th column of the base, represented by M [t], is composed of 4 bits and can be interpreted as
(M00[t],M01[t],M10[t],M11[t]).

6. For t ∈ [κ], find m-bit sub-ciphertext G[t] (which can be considered as a m-dimensional vector,
with entries in GF(2)), such that the following three conditions are satisfied:
(a) MAP1(P [t],G[t]) = P [t]×G[t]⊤ = G̃[t]⊤;

(b) MAP2(M [t], G̃[t]) =


M00[t]⊕ G̃00[t]

M01[t]⊕ G̃01[t]

M10[t]⊕ G̃10[t]

M11[t]⊕ G̃11[t]

 =


Z00[t]
Z01[t]
Z10[t]
Z11[t]

;

(c) Zab[t] = Z(a⊕1)b[t] = Za(b⊕1)[t]
6.

Then use Zab[t] as the t-th bit of the output label C0, and Z(a⊕1)(b⊕1)[t] as the t-th bit of the output
label C1. Here, C0 corresponds to FALSE. The sub-ciphertext G[t], with a length of m, represents
the t-th part of the whole ciphertext G.

• Encoding algorithm En:
Given inputs xa, xb ∈ {0, 1}, compute α := xa ⊕ a and β := xb ⊕ b, where a and b are previously
selected permute bits. Then, output Aα∥α and Bβ∥β.

• Evaluation algorithm Ev:
Parameterized by integers q, vectors {Vαβ | α, β ∈ {0, 1}}, matrices {P [u] | u ∈ [κ]}, random oracle
RO and mapping function MAP. The length of each Vαβ is 2 + q, with entries in GF(2κ).

1. The inputs are wire labels Aα||α, Bβ ||β and the ciphertext G.
2. Make q distinct queries to the RO, which can be determined based on the input wire labels. Let

Q′1, . . . , Q
′
q denote the responses to these queries, and define T := (Aα, Bβ , Q

′
1, . . . , Q

′
q).

3. Compute Vαβ := ⟨Vαβ ,T ⟩, and let Vαβ [t] denote the t-th bit of Vαβ .

4. For t ∈ [κ], compute (G̃00[t], G̃01[t], G̃10[t], G̃11[t])
⊤ := MAP1(P [t],G[t]), then use Zαβ [t] :=

Vαβ [t]⊕ G̃αβ [t] as the t-th bit of the output label.

3.3 Reflection and Discussion

Our MODEL-1, compared to Zahur et al.’s [ZRE15] original definition of the linear garbling model, is a bit
more complex. This intricacy arises from our endeavor to capture the “linear” constraints required of the
mapping function MAP. But when certain constraint is relaxed, we arrive at a more elegant model, detailed
in the succeeding section.

6Recall that the subscript denotes the concatenation of two bits, rather than multiplication. In addition, in this paper, we study the
garbling of an AND gate, so the output of MAP2 needs to satisfy this equation. Indeed, we can take the gate type as a parameter to
generalize the model’s definition, rather than hardcoding it into the model.
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From the evaluator’s execution of the Ev algorithm, we can clearly see the connection between our
MODEL-1 and the original linear garbling model. As noted earlier, the evaluator derives the output label
from a linear combination of input labels, random oracle outputs, and ciphertext. In MODEL-1, this com-
putation can be divided into two steps. First, the evaluator forms a linear combination of input labels and
random oracle outputs, effectively equating to a row in the base. Then, for the t-th bit of this row, an XOR
operation with a linear transformation (dictated by P [t]) of the sub-ciphertext G[t] yields the corresponding
bit of the output label.

In our MODEL-1, we can consider G[t] as a combination of the t-th bits from G1, . . . , Gm in the original
definition. However, we do not claim our MODEL-1 captures the linear garbling model, or vice versa. More
explicitly, if the coefficient multiplied by the ciphertext in the linear garbling model during evaluation
belongs to GF(2), then our MODEL-1 includes the linear garbling model. Among all known constructions,
only the scheme in [PSSW09] fails to meet this criterion, due to the coefficient belonging to GF(2κ), a result
of the polynomial interpolation method7. This minor flaw will be addressed and in Section 6.1. Notably,
all existing schemes under the linear garbling model, except for [PSSW09], find their counterparts in our
MODEL-1.

In the linear garbling model, garbling an AND gate requires a 2κ-bit ciphertext. This lower bound also
holds for our MODEL-1, which will naturally emerge in the next section.

As can be seen, our MODEL-1 effectively “slices” the linear garbling model, transforming its row-wise
processing into single-bit operations. This detailed design model provides more opportunities for further
extensions:

1. In MODEL-1, the mapping function MAP blends matrix multiplication with bitwise XOR, giving MAP
a somewhat “linear” character. However, it’s possible to design a garbling scheme that introduces
non-linear operations on each column. This leads us to the question:

Without constraints on the mapping function MAP, could we achieve shorter ciphertext?

2. In MODEL-1, the goal is to determine a sub-ciphertext for each column that, when processed through
the function MAP, yields one bit of the output label. However, schemes such as [AAC+23] offer the
flexibility to bypass certain columns that do not have a suitable sub-ciphertext for successful mapping.
This prompts the question:

Is a better construction possible if the mapping function MAP allows rejection?

3. In MODEL-1, an initial base is generated. Within this base, any two columns are independent, which
makes it challenging to leverage correlations between columns. Indeed, [RR21] circumvents this limi-
tation by introducing two bases and exploiting the correlations between them. This approach reduces
the ciphertext length for an AND gate to 1.5κ. Therefore, the question arises:

How much improvement can be achieved by introducing additional bases?

In the following Sections 4, 5 and 6, we will answer these three questions.

4 Column-wise Garbling: Dealing with Non-linear Mapping

In this section, we will address the first question:

Without constraints on the mapping function MAP, could we achieve shorter ciphertext?
7Indeed, polynomial interpolation is impractical. [GLNP15] introduced another GRR2 method, which primarily uses XOR opera-

tions and is simple to implement.
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4.1 MODEL-2: Column-wise Garbling with Unconstraint Mapping

In MODEL-1, the mapping function MAP for each column is “linear.” When we remove this constraint and
place no restrictions on the MAP, we introduce a more refined model, MODEL-2. It’s important to note that
MODEL-2 encompasses MODEL-1. Therefore, constructions under MODEL-1 are also included in MODEL-2.
This encompasses classical schemes like Yao’s (with point-permute optimization), GRR3 [NPS99], free-
XOR [KS08], GRR2 [GLNP15], half-gates [ZRE15], among others. In subsequent sections, we will introduce
some new constructions exclusive to MODEL-2 and not part of MODEL-1.

The key difference between MODEL-2 and MODEL-1 is in the 6-th step of the Gb algorithm and the 4-th
step of the Ev algorithm. In MODEL-2, MAP is not confined to linear operations such as matrix multipli-
cation or bitwise XOR; it can be arbitrary function. Specifically, for the t-th column of the base, the gabrler
needs to find a m-bit sub-ciphertext G[t] such that the following two conditions are satisfied:

1. MAP(M [t],G[t]) =


MAP00(M00[t],G[t])
MAP01(M01[t],G[t])
MAP10(M10[t],G[t])
MAP11(M11[t],G[t])

 =


Z00[t]
Z01[t]
Z10[t]
Z11[t]

;

2. Zab[t] = Z(a⊕1)b[t] = Za(b⊕1)[t].

We decompose the mapping function MAP into four sub-functions: (MAP00,MAP01,MAP10,MAP11). In
MODEL-1, these four sub-functions simply perform bit-wise XOR to some extent. There are no constraints
on the MAP here, making MODEL-2 more concise than MODEL-1. The formal definition of MODEL-2 is
provided in Appendix B.1.

4.2 A Lower Bound

In the work by Zahur et al. [ZRE15], they established an intriguing lower bound: any garbling scheme
conforming to the linear garbling model must have at least 2κ-bit ciphertext to garble an AND gate. We aim
to establish a similar lower bound for schemes under MODEL-2.

As already noted by Zahur et al. [ZRE15], to derive a meaningful bound, a fundamental methodology is
imperative. We make the assumption that the design of a garbling scheme is solely based on symmetric-key
primitives. Moreover, we do not limit the computational resources of the participating parties, assuming
only that they will make polynomial queries to the random oracle. In other words, we derive the lower
bound in the world of Minicrypt [Imp95]. We also adopt the definition of ideal security from [ZRE15], which
states that if a garbling scheme has ideal security, then no adversary can win the security game with an
advantage greater than poly(κ)/2κ.

Now, we formally state the following theorem:

Theorem 1. Any ideally secure garbling scheme for an AND gate conforming to MODEL-2 must satisfy |G| ≥ 2κ.

In other words, the use of non-linear operations for each column in MODEL-2 does not break the lower
bound set by the linear garbling model.

Proof Sketch. Each operation maps a column from the base to four bits using the function MAP. For a fixed
M [t], the number of potential values that (Z00[t], Z01[t], Z10[t], Z11[t]) = MAP(M [t],G[t]) can assume is
limited by 2|G[t]| = 2m, where m is the length of G[t]. Out of these four bits, at least three must be the same,
depending on the selected permute bits. For instance, with permute bits (a, b) = (0, 0), the fourth row of
the base will correspond to the output TRUE, making the first three of the four bits identical. According to
the permute bits (a, b), the four following conditions must each be met:

Z00[t] = Z01[t] = Z10[t], when (a, b) = (0, 0)
Z00[t] = Z01[t] = Z11[t], when (a, b) = (0, 1)
Z00[t] = Z10[t] = Z11[t], when (a, b) = (1, 0)
Z01[t] = Z10[t] = Z11[t], when (a, b) = (1, 1).

Using a proof by contradiction, we assume m = 1. Given this, for a fixed M [t], the vector (Z00[t], Z01[t],
Z10[t], Z11[t]) can only take two distinct values. However, these values must cover the four cases where
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permute bits (a, b) take different values. This means that one of the two values must be either (0, 0, 0, 0) or
(1, 1, 1, 1) which is suitable for all the cases. This results in an increased probability that the bits at the same
position in C0 and C1 are identical, violating privacy. Therefore, we conclude that m ≥ 2.

A complete proof can be found in Appendix B.2.

Remark 1. The proof for the lower bound in MODEL-1 can be viewed as a special case of the aforemen-
tioned proof. We note that merely incorporating non-linearity in column-wise operations does not lead to
a construction with a reduced ciphertext length. This observation suggests us to define later models. It is
also crucial to underline that our proof technique serves as a strong inspiration for designing new schemes.
While it is easy to ensure correctness, the main challenge is to find a mapping function MAP whose output
distribution meets the privacy requirement.

4.3 New Constructions

To the best of our knowledge, there currently exists no construction that belongs to MODEL-2 but not to
MODEL-1. Here, we introduce two novel constructions that employ a non-linear function MAP for each
column’s processing. Both constructions pivot around a core principle, which we term as majority voting.
The first construction necessitates a 2κ-bit ciphertext to garble an AND gate and does not support free-
XOR. The second construction is not only compatible with free-XOR but also requires a ciphertext length of
merely 2κ bits, matching the efficiency of half gates.

Throughout this section, we maintain the assumption that labels A0, B1, and C0 correspond to FALSE.

4.3.1 Construction #1: 2κ without Free-XOR

We now start from the definition of MODEL-2 and aim to obtain a succinct scheme. In the Gb algorithm,
the first step is to construct a base. We won’t go into depth about the base here, postponing that discussion
until the next construction. Currently, we assume it takes the following straightforward form:

H(A0, B0)
H(A0, B1)
H(A1, B0)
H(A1, B1)

We need to devise a function MAP to map each column of this base to a vector Z[t]. To ensure correctness,
the vector Z[t] = (Z00[t], Z01[t], Z10[t], Z11[t]) obtained from MAP(M [t],G[t]) must satisfy Z00[t] = Z01[t] =
Z11[t]. For each column M [t] = (M00[t],M01[t],M10[t],M11[t]), if M00[t] = M01[t] = M11[t] already holds,
then there’s no need for ciphertext and MAP can be an identity mapping from M [t] to Z[t]. However, the
probability that H(A0, B0) = H(A0, B1) = H(A1, B1) is negligible, so a simple identity map is evidently
insufficient.

In fact, among M00[t], M01[t] and M11[t], at least two bits are the same. Therefore, the garbler can simply
flip the differing bit to obtain three identical bits. Below is a detailed description of the operation to be
performed by the garbler and the evaluator.

Garbled Circuit Generation. For the t-th column, the garbler expects that M00[t], M01[t], and M11[t] can
be flipped, or corrected to the same value. Using an idea similar to majority voting, correction can be
achieved using just two bits per column. Specifically, for the t-th column, the garbler will find that at least
two of the bits in (M00[t],M01[t],M11[t]) are the same. If there is a bit different from the majority, then
the garbler simply points out the position of that bit using the corresponding color bits. For example, if
(M00[t],M01[t],M11[t]) = (0, 1, 0), then the garbler uses ciphertext (0, 1) to indicate that M01[t] should be
flipped. After this correction, the garbler has M00[t] = M01[t] ⊕ 1 = M11[t], and he uses this value as the
t-th bit of C0. If all three bits are the same, then the garbler chooses to flip the bit M10[t], i.e. using color bits
(1, 0) to indicate this position - doing so is meaningless in terms of correctness, but privacy is ensured.

In summary, the garbler uses two bits per column to denote which position requires flipping. These
two bits are part of the ciphertext G that should be sent to the evaluator. Since there are κ columns in total,
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the length of G is 2κ. Table 2 details how the garbler constructs the sub-ciphertext based on the value of
M [t] = (M00[t],M01[t],M10[t],M11[t])

8.

Table 2: Sub-ciphertext generation for the t-th column when garbling an AND gate and (a, b) = (0, 1).

M00[t] 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
M01[t] 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
M10[t] 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
M11[t] 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

G[t] 10 11 10 11 01 00 01 00 00 01 00 01 11 10 11 10

Garbled Circuit Evaluation. Next, we turn our attention to the evaluator. For an AND gate, assume the
evaluator possesses the ciphertext G, input labels Aα and Bβ , and is aware of their subscripts (the color
bits of input labels). Then, the evaluator makes a random oracle query H(Aα, Bβ). For each position, if
G[t] = (α, β), then the evaluator uses Mαβ [t]⊕ 1 as the t-th bit of the output label Cα∧(β⊕1). Otherwise, she
directly adopts Mαβ [t] as the t-th bit of Cα∧(β⊕1).

Informally, the function MAP(M [t],G[t]) flips a bit in M [t] as indicated by G[t]. If G[t] = (α, β), then the
(2α+ β + 1)-th bit of M [t] should be flipped. It’s evident that MAP is a non-linear operation, which cannot
be expressed as a fixed matrix multiplication, vector inner product, or bit-wise XOR. Consequently, this
construction falls outside the scope of MODEL-1. Indeed, our majority voting method is only barely non-
linear since it can be represented by a quadratic function. However, MODEL-2 is significantly more general
than MODEL-1, as it accommodates any required mapping function MAP, whereas MAP in MODEL-1 must
be linear.

A notable advantage of our approach is its scalability, allowing it to be applied to garble gates of any
type, including those with multiple inputs and outputs. In Appendix B.3, we provide a brief introduction
on how to garble an XOR gate using the bit-flipping method.

4.3.2 Construction #2: 2κ with Free-XOR

In the free-XOR setting [KS08], every wire has a global secret offset ∆ between its two labels, such as A0 ⊕
A1 = ∆. In this setting, it becomes evident that the previous construction doesn’t meet the requirements,
as there is no inherent relationship between C0 and C1 when they are obtained by flipping bits. Recall that
in the previous construction, we generated the base in a straightforward manner. However, by designing a
more intricate base, we can achieve compatibility with free-XOR.

In the majority voting method, we perform a bit flip for each column. Specifically, given M [t] =
(M00[t],M01[t],M10[t],M11[t]), after undergoing a particular bit flip, the resulting Z[t] = (Z00[t], Z01[t], Z10[t],
Z11[t]) will satisfy the following relationship:

Z00[t]⊕ Z01[t]⊕ Z10[t]⊕ Z11[t] = M00[t]⊕M01[t]⊕M10[t]⊕M11[t]⊕ 1.

Considering all κ columns together and perform a bitwise XOR on the four rows of the base, we arrive at
the following equation:

C0 ⊕ C0 ⊕ C1 ⊕ C0 = C0 ⊕ C1 = M00 ⊕M01 ⊕M10 ⊕M11 ⊕ 1κ.

Therefore, our task is to find a base with four rows that satisfy M00 ⊕M01 ⊕M10 ⊕M11 = ∆ ⊕ 1κ. By
achieving this, we ensure that C0 ⊕ C1 = ∆. Locating such a base is relatively trivial. For instance, it can

8For brevity, in Table 2, G[t] is denoted as xy, signifying (x, y).
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take the following form9:
H(A0)⊕ H(B0)⊕A0 ⊕ 1κ

H(A0)⊕ H(B1)
H(A1)⊕ H(B0)⊕A1

H(A1)⊕ H(B1)

Given the relationship A0 ⊕ A1 = ∆, it can be confirmed that the bitwise XOR of the four rows mentioned
above is ∆⊕ 1κ. Indeed, the structure of the base is not unique, and we can also use a construction like the
one below:

H(A0)⊕ H(A0 ⊕B0)⊕A0 ⊕ 1κ

H(A0)⊕ H(A0 ⊕B1)
H(A1)⊕ H(A1 ⊕B0)⊕A1

H(A1)⊕ H(A1 ⊕B1)

The mapping function MAP remains consistent with the one discussed in Construction #1, employing the
majority voting method to flip a specific bit. Further elaboration is not provided here. In Appendix B.4, we
provide a formal description and security proof for this construction.

Remark 2. In comparison to the previous construction, this approach is compatible with free-XOR, im-
plying that garbling an XOR gate is cost-free. However, we refrain from asserting that this construction is
superior. The rationale behind this is that free-XOR relies on stronger security assumptions and may be
more vulnerable to practical attacks, including side-channel attacks [LH23].

Interestingly, the GRR2 construction in [GLNP15] and the half gates in [ZRE15] have a relationship
similar to that between our Construction #1 and Construction #2. That is, they employ the same mapping
function MAP but with different bases.

5 Column-wise Garbling via “Mapping with Rejection”

We observe that even without constraints on the function MAP, MODEL-2 cannot capture Ashur et al.’s con-
struction [AAC+23]. In this section, we introduce a new model that incorporates probability and address
the following question:

Is a better construction possible if the mapping function MAP allows rejection?

5.1 MODEL-3: Column-wise Garbling via “Mapping with Rejection”

Revisiting the Techniques in [AAC+23]. We first revisit Ashur et al.’s construction [AAC+23] from a column-
wise perspective. In their construction, the garbler generates a simple base as follows (not in the free-XOR
setting):

H(A0, B0)
H(A0, B1)
H(A1, B0)
H(A1, B1)

For the t-th column of the base, the garbler aims to map it to Z[t] = (Z00[t], Z01[t], Z10[t], Z11[t]) us-
ing the function MAP. We once again assume that labels A0, B1, and C0 correspond to FALSE, which
implies that Z[t] must satisfy Z00[t] = Z01[t] = Z11[t]. In Ashur et al.’s construction [AAC+23], the
function MAP acts as an identity map to some extent. If the four bits of the t-th column, represented as
M [t] = (M00[t],M01[t],M10[t],M11[t]), already meet the condition M00[t] = M01[t] = M11[t], then Z[t] is
set to M [t]. Otherwise, this column is skipped and the next column is processed. The garbler uses a 1-bit
sub-ciphertext G[t] to inform the evaluator whether to skip the t-th column. A value of G[t] = 1 indicates
that the column achieves the mapping and contributes one bit to the output label. If G[t] = 0, the column
should be skipped.

9Technically, within our definition of MODEL-2, the base should not include specific constants like 1κ. Nevertheless, for the sake of
clarity, we’ve included 1κ in the first row of the base here. This inclusion is inconsequential, as we can encompass the act of XORing
the first row with 1κ within the sub-function MAP00.

12



For any given M [t], the probability that it satisfies M00[t] = M01[t] = M11[t] is 1/4. Therefore, the
probability of successfully processing a column is 1/4. Each successful process contributes one bit to the
output label. To obtain an output label of κ bits, an average of 4κ columns are required. This means the
average length of the base (output length of the random oracle) should be 4κ, and the average ciphertext
length is also 4κ.

Building on the above observation, we incorporate it into MODEL-3. Here, each column is successfully
processed with a probability p. In MODEL-2, every column can be processed successfully, representing a
special case of MODEL-3 with p = 1. Therefore, MODEL-3 can cover all known constructions that conform
to MODEL-2, as well as the construction in [AAC+23].

The main distinction between MODEL-3 and MODEL-2 lies in the 6-th step of the Gb algorithm and the
4-th step of the Ev algorithm. Specifically, for the garbler, the processing of the t-th column will fall into two
cases:

1. With a probability of p, successfully find m-bit sub-ciphertext G[t] such that the following two condi-
tions are satisfied:

(a) MAP(M [t],G[t]) =


MAP00(M00[t],G[t])
MAP01(M01[t],G[t])
MAP10(M10[t],G[t])
MAP11(M11[t],G[t])

 =


Z00[t]
Z01[t]
Z10[t]
Z11[t]

;

(b) Zab[t] = Z(a⊕1)b[t] = Za(b⊕1)[t].

2. With a probability of 1− p, the desired mapping does not exist. Using a particular G[t] to indicate that
this column is skipped.

In the first case, one bit of the output label will be successfully retrieved, while in the second case, it
cannot be obtained. We present a detailed definition of MODEL-3 in Appendix C.1.

5.2 A Lower Bound

Among existing constructions, only the one in [AAC+23] employs a mapping with rejection, where p <
1. Nonetheless, the investigation into the role of probability in garbling schemes is intriguing and vital.
However, from our analysis, simply introducing probability in the processing of a single column does not
appear to yield better results.

Theorem 2. Any ideally secure garbling scheme for an AND gate conforming to MODEL-3 must satisfy |G| ≥ 2κ
on average.

Proof Sketch. To prove this, we only need to demonstrate the following: If p = 1, then m ≥ 2; If m = 1, then
p ≤ 1/2, where m is the length of the sub-ciphertext. The former can be directly derived from Theorem 1,
so we only need to prove the latter.

Given m = 1, the sub-ciphertext G[t] can only assume two distinct values. One of these values indicates
the failure of the mapping. Therefore, for a fixed M [t], MAP(M [t],G[t]) can produce a maximum of one
valid output (which should have three identical bits according to the selected permute bits).

Next, we classify different values of M [t]. Suppose x potential values of M [t] that map to outputs in
the set {(0, 0, 0, 0), (1, 1, 1, 1)}, then these values are valid for any case (4 different permute bit choices) and
make the t-th bit of C0 and the t-th bit of C1 be identical. Assume y values that map to other valid outputs,
then they cover only one case and lead to the t-th bit of C0 differing from the t-th bit of C1. The remaining
values, totaling 16− x− y, don’t map to valid outputs. To ensure privacy, the probability that the t-th bit of
C0 and C1 are identical should be 1/2, resulting in y = 4x. Based on this relationship, we can conclude that
p < 1/2.

We provide a complete proof in Appendix C.2.

Remark 3. While allowing mapping with rejection does not seem to result in a better construction, this
concept is still insightful. It is possible that through more sophisticated constructions that go beyond the
constraints of MODEL-3, the full potential of this approach can be unlocked. In Section 7.3, we will delve
deeper into this idea.
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6 Multi-Column Garbling

Now, it is time to answer the final question:

How much improvement can be achieved by introducing additional bases?

6.1 From Single- to Multi-Column Garbling

What we are aiming for is to surpass the lower bound of MODEL-2 or MODEL-3. The construction in [RR21]
appears to have already achieved this. Before delving into a detailed review of their work, we first consider
a straightforward approach.

A Straightforward Approach. In the definition of MODEL-2 or MODEL-3, we process one column at a time,
aiming to obtain one bit of the output label. An intuitive extension would involve processing multiple
columns at once with a single ciphertext to obtain several bits of the output label. This method indeed
offers a more favorable lower bound.

In Appendix D.1, we briefly describe a potential approach that might come close to a ciphertext length of
log(3)·κ by simultaneously processing multiple columns of the base. However, existing construction [RR21]
has already achieved an overhead of 1.5κ for garbling an AND gate, noting that 1.5 < log 3. Consequently,
simply processing multiple columns will not be able to cover the construction in [RR21] as a special case.
In the definition of MODEL-2, the form of the base is some linear combinations of random oracle outputs
and random numbers, as exemplified below:

H(A0 ⊕B0)⊕A0 ⊕ . . .
H(A0 ⊕B1)⊕A0 ⊕ . . .
H(A1 ⊕B0)⊕A1 ⊕ . . .
H(A1 ⊕B1)⊕A1 ⊕ . . .

Given the randomness of the random oracle outputs, any two columns, such as M [t] and M [t + 1], are
independent of each other. Therefore, processing multiple columns simultaneously does not yield a sig-
nificant reduction in ciphertext length, rendering our first attempt unsuccessful. In fact, we can view the
construction in [PSSW09] as handling multiple columns of the base together. However, despite this, it does
not result in a better construction.

An appealing direction is to introduce correlation to bypass the lower bound. Indeed, this can be ac-
complished by incorporating additional bases.

Revisiting the “Slicing and Dicing” Technique. In [RR21], Rosulek and Roy develop a novel technique called
“slicing and dicing” to circumvent the lower bound. Specifically, the “slicing” pertains to the introduction
of two bases, as detailed below (Sv

ij denotes a specific combination derived from the input labels, where
i, j ∈ {0, 1} and v ∈ {1, 2}):

the left base︷ ︸︸ ︷
H(A0)⊕ H(A0 ⊕B0)⊕ S1

00

H(A0)⊕ H(A0 ⊕B1)⊕ S1
01

H(A1)⊕ H(A1 ⊕B0)⊕ S1
10

H(A1)⊕ H(A1 ⊕B1)⊕ S1
11

the right base︷ ︸︸ ︷
H(B0)⊕ H(A0 ⊕B0)⊕ S2

00

H(B1)⊕ H(A0 ⊕B1)⊕ S2
01

H(B0)⊕ H(A1 ⊕B0)⊕ S2
10

H(B1)⊕ H(A1 ⊕B1)⊕ S2
11

In their construction, the garbler uses the left base to produce the left half of the output label and the right
base for the right half. This approach can be understood in terms of column-wise processing. Specifically,
during the t-th iteration, both the t-th columns of the left and right bases are chosen. These columns are
combined using the sub-ciphertext G[t] to yield two bits for the output label. If each G[t] requires only 3
bits, then the total ciphertext length achieved is 1.5κ.

The remaining question is why G[t] requires only 3 bits. The answer lies in the correlation between the
two bases. For example, when suitable Sv

ij are identified such that the XOR of the first and second rows of
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the left base matches the XOR of the first and third rows of the right base, namely10

H(A0)⊕ H(A0 ⊕B0)⊕ S1
00 ⊕ H(A0)⊕ H(A0 ⊕B1)⊕ S1

01

= H(B0)⊕ H(A0 ⊕B0)⊕ S2
00 ⊕ H(B0)⊕ H(A1 ⊕B0)⊕ S2

10,

then once the t-th column in the left base is determined, the number of the potential values for the t-th
column in the right base will be reduced. For example, without this correlation, the column in the right base
might have 16 potential values. However, with the left base column fixed, the correlation will help reduce
the potential values for the right column to just 8. As a result, processing the right column requires less
ciphertext since the reduced uncertainty dictates a shorter ciphertext.

However, the specific correlation required between the two bases varies based on the permute bits.
Therefore, revealing all values of Sv

ij (i, j ∈ {0, 1} and v ∈ {1, 2}) directly to the evaluator would compro-
mise privacy. To address this, [RR21] employs a technique termed “dicing;” note that, the “dicing” idea
was first introduced in [KKS16]. In this approach, the garbler generates some constant-sized additional
ciphertext. Given that the evaluator obtains input labels Aα and Bβ , she can decrypt certain additional
ciphertext through some random oracle queries with Aα, Bβ and then obtain some control bits. Relying on
these control bits, the evaluator is restricted to determining only the values of S1

αβ and S2
αβ . This marginal

view of the bases enables the evaluator to compute the output label while ensuring privacy.

6.2 MODEL-3′: Multi-Column Garbling

Building on the observation from the previous section, we now consider a garbling scheme that includes
w bases, where w ≥ 1. In every operation, the t-th column is extracted from each base, resulting in a total
of w columns. Using the mapping function MAP and the sub-ciphertext G[t], these w columns are jointly
processed to produce w bits of the output label. The process of each operation is illustrated in Figure 2.

base 1 base 2 ... base w
output
labels

MAP with G[t]

Figure 2: Procedure of the t-th operation.

Our MODEL-3′ builds on MODEL-2. For clarity and simplicity, we’ve opted not to expand this definition
based on MODEL-3, reserving such extension for future works. That is, every column will be processed
successfully in our MODEL-3′. Our MODEL-3′ includes all constructions under MODEL-2, as well as [RR21].

Here, we briefly describe the differences in the definition of MODEL-3′ compared to MODEL-2:

• In MODEL-2, the base is not influenced by permute bits. In contrast, in MODEL-3′, permute bits can
affect the generation of each base. Therefore, in MODEL-3′, the parameters used to generate the bases
are associated with the permute bits (a, b).

• In MODEL-3′, there are w bases with w ≥ 1. For the u-th base, the mapping function is MAPu, and the
t-th column is Mu[t], where 1 ≤ u ≤ w. For every operation, find m-bit sub-ciphertext G[t] such that
the following two conditions are satisfied for all u ∈ [w]:

1. MAPu(Mu[t],G[t]) =


MAPu

00(M
u
00[t],G[t])

MAPu
01(M

u
01[t],G[t])

MAPu
10(M

u
10[t],G[t])

MAPu
11(M

u
11[t],G[t])

 =


Zu
00[t]

Zu
01[t]

Zu
10[t]

Zu
11[t]

;

2. Zu
ab[t] = Zu

(a⊕1)b[t] = Zu
a(b⊕1)[t].

10In the free-XOR setting, we have H(A0⊕B1) = H(A1⊕B0). For the equation to hold, it is necessary that S1
00⊕S1

01 = S2
00⊕S2

10.
By choosing the appropriate Sv

ij , this condition can be satisfied.
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• In MODEL-3′, some additional ciphertext needs to be generated. The evaluator can decrypt only a
portion of them and reconstructs a specific row of each base using these decrypted bits.

In Appendix D.2, we provide a detailed definition of MODEL-3′.

6.3 Lower Bounds

In Section 6.3.1, as before, we demonstrate the lower bound on the ciphertext size required for garbling
an AND gate in MODEL-3′. In Section 6.3.2, we attempt to directly extend the technique presented by
[RR21] in a model with more constraints than MODEL-3′. However, we find that this approach leads to an
impossibility result.

6.3.1 A Lower Bound for MODEL-3′

In this section, we assume that every column of each base would have 16 potential values, regardless of the
choice of permute bits. If the base remains unaffected by permute bits, as in MODEL-2 and MODEL-3, then
as demonstrated in Theorem 2, each column should encompass 16 potential values. However, according to
the definition of MODEL-3′, the generation of each base might be influenced by permute bits, so we cannot
discount the possibility of having fewer potential values of each column. To the best of our knowledge,
nearly all existing constructions adhere to this assumption, with the exception of [BMR16, KKS16, WmM17].
Both [KKS16] and [WmM17] explicitly exploit the relationships among input labels to ensure two rows
in the base are identical, reducing the number of potential column values to 8. Similarly, [BMR16] also
makes implicit use of this feature. They leverage the Hamming weight of inputs, noting that the Hamming
weight remains consistent for inputs (0, 1) and (1, 0). When garbling an AND gate, all these constructions
necessitate ciphertext of only κ bits. However, these constructions can only garble a single AND gate in
isolation, and cannot work for general circuits. Therefore, we exclude them from our consideration11. In
other words, our lower bound in this section isn’t applicable to them.

Coming back to our primary focus, our goal is to reduce the ciphertext length by leveraging the corre-
lations between multiple bases. But the pressing questions remain: What precisely are these correlations?
And how can we effectively harness them? Tackling these questions is pivotal in setting a substantial lower
bound.

Definition 2 (Column correlation). Consider a garbling scheme with w bases, where w > 1. For any two distinct
basesM i,M j , where i, j ∈ [w], we say M i and M j are column-correlated, if there exist unique non-zero vectors
P i,P j of lengths 4 with entries in GF(2⌈

κ
w ⌉) such that, ⟨P i,M i⟩ = ⟨P j ,M j⟩ is always satisfied. Furthermore, if

i < j, then we say M i is an ancestor of M j .

We will use the term “column-correlated” to describe the correlation between two bases. We empha-
size that this definition is justified. Each base is generated through a linear combination of random oracle
outputs and input labels, so it is reasonable to define the correlation between two bases using the inner
product. Using the construction in [RR21] as an example, we assume that the garbler selects permute
bits (a, b) = (0, 0). The garbler generates two bases, namely M1 = (M1

00,M
1
01,M

1
10,M

1
11) and M2 =

(M2
00,M

2
01,M

2
10,M

2
11), where all elements are in GF(2⌈

κ
2 ⌉). There exists a unique P 1 = (1, 1, 0, 0) and

P 2 = (1, 0, 1, 0) such that for all potential values of M1 and M2, ⟨P 1,M1⟩ = ⟨P 2,M2⟩ holds.
If two bases are column-correlated, then once the value of the first base is determined, the potential

values of the second base will decrease.

Lemma 1. In a garbling scheme with w bases adhering to MODEL-3′, suppose two bases M i and M j (where
1 ≤ i < j ≤ w) are column-correlated. Once M i is determined, the number of potential values for each column of
M j is halved, reducing from 16 to 8.

The proof of Lemma 1 can be found in Appendix D.3.
In MODEL-3′, the garbler selects one column from each of the w bases to process and derives w bits

of the output label. For any two bases satisfying column-correlated, the column taken from the first base

11Even so, this observation is quite intriguing. The question of how to halve the potential values of a column from 16 to 8 while
retaining self-composability remains an open question.
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has 24 = 16 potential values. As demonstrated in the proof of Theorem 1, this necessitates at least a 2-bit
ciphertext. Lemma 1 elucidates that the column extracted from the second base has only 8 potential values.

In the definition of MODEL-3′, the ciphertext consists of two parts: the main ciphertext G and the ad-
ditional ciphertext. Given that the length of the additional ciphertext remains constant, our primary focus
lies on the length of G. We now proceed to establish the lower bound.

Theorem 3. Consider an ideally secure garbling scheme in MODEL-3′ with w bases. Assume that each base has at
most one ancestor. If υ pairs of bases are column-correlated, then for garbling an AND gate, the ciphertext length
|G| must satisfy |G| ≥ (2− υ/w) · κ, where υ ≤ w − 1.

If υ = w − 1, then a secure garbling scheme requires at least (1 + 1/w) · κ bits of ciphertext to handle an
AND gate. Below we provide a proof sketch. The detailed proof can be found in Appendix D.4.

Proof Sketch. From the given conditions, there are w − υ bases without ancestor, and υ bases with ancestor.
For the column taken from the bases without ancestor, there are 16 potential values. For the column taken
from the bases with ancestor, there are 8 possible values.

For the former case, at least 2-bit sub-ciphertext is needed as in Theorem 1. For the latter case, at least
1-bit sub-ciphertext is required, based on the intuition that the column is correlated with its ancestor. We
can conclude that each processing requires at least (2 · (w − υ) + 1 · υ) bits of ciphertext. And a total of κ/w
operations are required, so |G| ≥ (2 · (w − υ) + 1 · υ) · κ/w = (2− υ/w) · κ.

Remark 4. The understanding of the “sliced” technique in general remains an open question. Essentially,
increasing slices can be seen as introducing more bases. The obtained lower bound suggests that incor-
porating additional bases could potentially lead to improved constructions. Therefore, a straightforward
extension of the sliced technique in [RR21] may help us develop constructions with ciphertext less than
1.5κ bits.

6.3.2 Limitation of the Rosulek-Roy Technique

As mentioned, a natural idea is to extend the approach of [RR21] (or jumping ahead, our Construction #3
in the next section) by introducing multiple bases and leveraging the correlations between them, thereby
surpassing the optimal result of 1.5κ bits for garbling an AND gate. However, surprisingly, this method is
not feasible. In other words, if we impose some reasonable constraints on MODEL-3′ (such as compatibility
with free-XOR and the mapping function MAP being linear), using 1.5κ bits to garble an AND gate is already
optimal. We remark that, in a concurrent work [BK24], Baek and Kim also presented a lower bound proof
using an algebraic approach.

Recall that in [RR21], the authors introduce two bases and use the correlation between them to reduce
the ciphertext length. Specifically, for a column in the first base, 2-bit sub-ciphertext is needed, and only
1-bit sub-ciphertext is needed for the corresponding column in the second base, since these two bases are
column-correlated. Therefore, an intuitive extension is to introduce three bases, assuming that the first base
and second base are column-correlated, as well as the first base and third base. According to Theorem 3,
this would require only 4(= 2+1+1) bits of sub-ciphertext to handle three columns, with a total ciphertext
length of 4κ/3 bits. Unfortunately, such an extension will leak privacy.

Informally, we find that, building upon the technique outlined in [RR21], where a garbling scheme is de-
picted as a linear equation system12, introducing more bases (slices) does not yield constructions requiring
fewer than 1.5κ-bit ciphertext for garbling an AND gate.

Theorem 4. If a secure garbling scheme can be represented by a linear equation system, and the correlation between
bases can be expressed using Definition 2, then this scheme requires at least 3/2 · κ + O(1) bits of ciphertext length
for garbling an AND gate.

A proof sketch can be found below. In Appendix D.5, we provide a detailed proof.

12More details about this notion can be found in Appendix D.5.
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Proof Sketch. To demonstrate this impossibility result, we initially establish that the introduction of three
bases necessitates a ciphertext length of at least 3κ/2 bits. In other words, we will show that, if a garbling
scheme employs three bases and the ciphertext length is less that 3κ/2 bits, it violates the privacy require-
ment.

In [RR21], Rosulek and Roy proposed a garbling scheme by transforming the problem into solving a
linear equation system with compatibility of free-XOR. Following their technical approach, we divide the
proof into three steps:

1. Determine the form of hash queries (represented by the matrix M) and the form of the linear mapping
function MAP (represented by the matrix V). To ensure the solvability of the linear equation system,
the column spaces of matrices M and V must be identical.

2. Establish correlations within each base and among the three bases. These correlations arise from three
aspects. Firstly, to accommodate free-XOR, as observed in our Construction #2, the XOR of four rows
within a base must equal ∆. Secondly, to achieve a ciphertext length of less than 1.5κ, there must be at
least two correlations among the three bases. For example, assuming the first base and the second base
are column-correlated, and the first base and the third base are column-correlated. Lastly, the linear
equation system must be solvable. These correlations result in multiple relational equations involving
the 12 rows originating from the three bases.

3. Deduce partial information about the true values of wires based on the marginal view. Specifically, if
the evaluator obtains A0 and B0, she can reconstruct the first row of each base. (Recall that we use the
“dicing” technique, so the evaluator can only learn the content of the first row of each base.) However,
we find that the evaluator, relying on her marginal view and the relational equations established in
the previous step, can infer partial information about the true values of wires, violating the privacy
requirement.

Therefore, if we use three bases, it is impossible to garble an AND gate with a ciphertext length of less
than 3κ/2. As a corollary, we can extend this impossibility to multiple bases. Again, please see the full proof
in Appendix D.5.

In a concurrent work, Ashur et al. [AHS24] introduced an intriguing method to extend the approach
in [RR21], asserting the achievement of garbling an AND gate with only 4κ/3 bits. However, our proof
technique highlights a gap between their construction and security proof, suggesting that their scheme is
not secure. In another recent independent work, Kim [Kim24] also identified the security issue in Ashur et
al.’s scheme. More details can be found in Appendix D.6. As a result, the question of surpassing the 1.5κ
bound is still open.

Remark 5. Theorem 4 suggests that introducing more bases and correlating them would not lead to better
constructions, implying that the lower bound we proved in Theorem 3 might be too conservative. How-
ever, this is not the case. Firstly, our MODEL-3′ allows non-linear operations, making it impossible for
representation through a linear equation system. Secondly, we aren’t confined to specific hash queries or
the free-XOR setting as in [RR21] (which can be found in Appendix D.5 in detail). Therefore, it is still
possible that a garbling scheme meets our lower bound in Theorem 3.

6.4 New Construction #3: 1.5κ with Free-XOR

Following the idea of majority voting, weobtained a scheme that requires 2κ bits to garble an AND gate,
maintaining compatibility with free-XOR. Utilizing the same idea, we can further optimize our construction
to necessitate only 1.5κ bits for garbling an AND gate. This puts our performance on par with [RR21].

From the previous section, it’s clear that to achieve a reduced ciphertext size, leveraging correlations
between multiple bases is crucial. Consequently, we introduce two bases here, where the left base is derived
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directly from the Construction #2 in Section 4.3:

the left base︷ ︸︸ ︷
H(A0)⊕ H(B0)⊕ S1

00

H(A0)⊕ H(B1)⊕ S1
01

H(A1)⊕ H(B0)⊕ S1
10

H(A1)⊕ H(B1)⊕ S1
11

the right base︷ ︸︸ ︷
H(A0)⊕ H(A0 ⊕B0)⊕ S2

00

H(A0)⊕ H(A0 ⊕B1)⊕ S2
01

H(A1)⊕ H(A1 ⊕B0)⊕ S2
10

H(A1)⊕ H(A1 ⊕B1)⊕ S2
11

Here, each Su
ij (where i, j ∈ {0, 1}, u ∈ {1, 2}) represents some values derived from the input labels, which

are undetermined.
We emphasize our primary construction idea here. From the left base, we choose a column and em-

ploy the majority voting approach, necessitating a 2-bit sub-ciphertext as before, to specify which position
should be flipped. Next, from the right base, we pick another column. By carefully determining the com-
position of each Su

ij , we can establish a correlation between the two bases. As a result, majority voting can
be performed using only a 1-bit sub-ciphertext for the second column.

However, unlike the first two constructions, in this construction, the generation of each base depends
on permute bits, leading to several technical challenges. To address these, we introduce a unified flipping
method. For the specific details and the security proof for this construction, refer to Appendices D.7 and
D.8.

Remark 6. Compared to the state-of-the-art ([RR21]), our construction incurs the same overhead. However,
it exhibits more non-linearity, which might better resist certain attacks, such as side-channel attacks [LH23].
These potential advantages are left to be tested by future works.

7 Toward a Unified Framework

In this section, we will explore more variants of the design models.

7.1 MODEL-0: Garbling with Random Output Labels

In the definition of MODEL-2, there are no constraints on the relationship between output and input la-
bels. In the classical garbling scheme, output labels are selected independently, meaning they are picked
randomly before generating the ciphertext. Reducing the degrees of freedom in output label choice can
decrease the ciphertext size. However, the ability to freely select output labels has its benefits. For instance,
it improves the garbler’s efficiency when generating the garbled circuits by permitting parallel processing
of each gate. Discussing this from a theoretical viewpoint is also significant.

First, we introduce a variant of MODEL-2, referred to as MODEL-0. In this variant, output labels are
selected independently. For brevity, we won’t explore the detailed definition of MODEL-0. We assume that
MODEL-0 and MODEL-2 are identical in all aspects, except for the independent selection of output labels in
MODEL-0.

Theorem 5. Any ideally secure garbling scheme for an AND gate that satisfies the MODEL-0 must have |G| ≥ 4κ.

The proof of Theorem 5 can be found in Appendix E.1. Interestingly, by processing multiple columns
together, we can achieve an even lower bound.

Lemma 2. For ℓ columns of the output labels, the total number of potential values is given by 22ℓ+2 − 3 · 2ℓ, where
1 ≤ ℓ ≤ κ.

We provide the proof of Lemma 2 in Appendix E.2.
From Lemma 2, we can infer that if ℓ columns are processed simultaneously, then the required ciphertext

length is greater than log(22ℓ+2 − 3 · 2ℓ). When we amortize this length over each column, it becomes
log(22ℓ+2 − 3 · 2ℓ)/ℓ. Hence, the total ciphertext length is (log(22ℓ+2 − 3 · 2ℓ)/ℓ) · κ > 2κ. This suggests
that by processing multiple columns simultaneously, we could potentially design a garbling scheme with a
ciphertext length approaching 2κ.
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7.2 MODEL-3′′: Garbling an AND Gate with Multiple Inputs

Up to now, we have considered an AND gate with two input wires and one output wire. However, for an
AND gate with n inputs and one output, where n ≥ 2, the current optimal approach is to break it down
into n− 1 two-input AND gates. Then, the optimal garbling technique for a two-input AND gate is applied.
While constructing a better scheme remains a challenge, we can establish a lower bound using a similar
proof technique.

We introduce a variant of MODEL-2, denoted as MODEL-3′′. The main difference between MODEL-3′′

and MODEL-2 is that MODEL-3′′ doesn’t limit the number of inputs. Given its intuitive nature, we won’t
delve into the detailed definition of MODEL-3′′. It’s worth mentioning that the base in MODEL-3′′ has 2n

rows.

Theorem 6. Any ideally secure garbling scheme for an AND gate with n input wires that satisfies the MODEL-3′′

must have |G| ≥ nκ.

The proof of Theorem 6 can be found in Appendix E.3.

7.3 Summary and Extensions

In this work, we provide a detailed exploration of MODEL-0, MODEL-1, MODEL-2, MODEL-3, MODEL-3′,
and MODEL-3′′, along with their respective lower bounds. First, we summarize these models and discuss
the reasons behind their development.

MODEL-0 is the closest to the classical Yao scheme (that is why we named it MODEL-0). This model has
the following characteristics:

1. It handles a single binary gate, specifically a two-input, one-output AND gate.
2. The mapping function MAP cannot be rejected.
3. It only allows a single base, so there is no correlation between bases.
4. The mapping function MAP is linear, meaning it can be represented using matrix multiplication or

vector inner product.
5. Input and output labels are chosen independently, meaning output labels do not depend on input

labels.
In this case, we find that we need at least 4κ bits of ciphertext to garble an AND gate. Interestingly, the

features listed above can also be considered as constraints. Therefore, removing some of these constraints
may allow us to achieve a more favorable lower bound, suggesting more efficient constructions.

For example, we can develop MODEL-1 by removing the fifth constraint. In this model, output labels
may depend on input labels. Thus, by reducing the degree of freedom, we can achieve a better lower bound
and more efficient construction. Specifically, we only need 2κ bits to garble an AND gate.

Building on MODEL-1, if we remove the fourth constraint, we arrive at MODEL-2. However, we find
that even with non-linear mappings allowed, the 2κ lower bound still applies. Going further, by removing
the third constraint from MODEL-2, we develop MODEL-3′, which achieves a bound of (1 + 1/w) · κ and
results in a construction that requires only 1.5κ bits for garbling an AND gate.

In Figure 3, we summarize all the models discussed in this work. We remark that a more appropriate
way to name models might be to use the gray numbers from Figure 3, rather than simply naming them as
MODEL-0, MODEL-1, etc.

Indeed, we can imagine and propose even more variants, as illustrated in Figure 4.
We provide brief descriptions of these potential models:

• MODEL-2′: Retaining the linear operations on each column as in MODEL-1, we introduce additional
bases to exploit the correlations among them, thereby reducing the ciphertext length. Strictly speaking,
[RR21] falls under MODEL-2′, but the construction we introduce in Section 6.4 does not belong to this
model.

• MODEL-4: This model represents a combination of MODEL-3 and MODEL-3′. That is to say, in this
model, we allow for multiple bases and mapping with rejection. Moreover, we can make even more
interesting extensions, such as allowing each base to have distinct rejection probability.
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MODEL-0 MODEL-1 MODEL-2

MODEL-3

MODEL-3′

MODEL-3′′

1+2+3+4+5 1+2+3+4 1+2+3 1+2

1+3

2+3

Figure 3: A hierarchy of garbling models discussed in this work. The numbers in gray on each box represent
the constraints for each model. The models on the right strictly include those on the left.

MODEL-0 MODEL-1 MODEL-2

MODEL-2′

MODEL-3

MODEL-3′

MODEL-3′′

MODEL-4

MODEL-4′

1+2+3+4+5 1+2+3+4 1+2+3 1+2

1+3 1

2+3 21+2+4

...

...

Figure 4: More potential variants of garbling models. Solid boxes represent the models discussed in this
work, while dashed boxes indicate potential extensions. If a line connects two boxes, it indicates that the
model in the right box strictly encompasses the model in the left box.

• MODEL-4′: By combining MODEL-3′ and MODEL-3′′, we obtain this new model. In other words, we
allow the presence of multiple bases to garble a multi-input AND gate. Recent work by Ashur et al.
[AHS23] attempted to find new constructions within this model, but their efforts were unsuccessful.

• ...

Can more efficient constructions be derived in the aforementioned variants? What are their lower
bounds? These remain open questions, which we leave for future work.

8 Related Works

Following Yao’s introduction of garbled circuits [Yao86], Lindell and Pinkas [LP09] provided a compre-
hensive description and security proof for Yao’s protocol. Bellare et al. [BHR12b] later abstracted garbled
circuits into a primitive, giving them a flexible syntax and multiple security definitions.

In optimizing garbled circuits, much effort has been on enhancing the efficiency of garbling a single gate
against semi-honest adversaries. Beaver et al. [BMR90] introduced the point-permute technique, which lets
the evaluator choose the right ciphertext using visible “color bits” without decrypting each one. Naor et
al. [NPS99] utilized the freedom of randomly choosing output labels to present the row reduction tech-
nique, reducing the ciphertext length for garbling an AND gate from 4κ to 3κ. Subsequent optimizations by
[PSSW09] and [GLNP15] brought this down to 2κ. Kolesnikov and Schneider’s free-XOR technique [KS08]
leveraged linear relationships to make the garbling of an XOR gate cost-free. However, its security relies on
circular security, not standard assumptions, as detailed in [CKKZ12, GKWY20]. The fleXOR by Kolesnikov
et al. [KMR14] expanded on free-XOR, offering several advantages. Zahur et al. [ZRE15] introduced the
half gates, which require only 2κ bits for an AND gate and are compatible with free-XOR. Acharya et al.
[AAC+23] took a novel approach by conceptualizing gate functionality as a unified entity rather than en-
crypted rows, though it lacked efficiency benefits. Currently, the state-of-the-art method is by Rosulek and
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Roy [RR21], which uses just 1.5κ-bit ciphertext for an AND gate and remains compatible with free-XOR.
Some methods [BMR16, KKS16, WmM17] achieved κ bits for an AND gate, but they are restricted to

garbling an individual AND gate in isolation and lack self-composability, thus falling outside the scope of
our work.

Other research has pursued security against malicious adversaries [WRK17, KRRW18] or focused on
adaptive adversaries [BHR12a, HJO+16]. As garbling gate-by-gate optimization opportunities wane, stud-
ies increasingly target improving larger circuits [HK20, HK21] or devising arithmetic garbling schemes
[AIK11, BMR16, BLLL23].
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A Supplemental Materials for Section 3

A.1 Linear Garbling Model

Zahur et al. introduced the linear garbling model in [ZRE15]. The authors observed that in all existing
constructions at the time, operations are linear with the exception of the point-permute and queries to the
random oracle. Formally, they considered a garbling scheme to be linear if it takes the following form:

• Garbling algorithm Gb:
Parameterized by integers m, r, q, vectors A0, A1, B0, B1, {Cab,i | a, b, i ∈ {0, 1}}, {Gi

ab | a, b ∈
{0, 1}, i ∈ [m]}, random oracle RO. Each vector is of length r + q with entries in GF(2κ). The RO is
defined as {0, 1}∗ → GF(2κ).
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1. For i ∈ [r], choose Ri ← GF(2κ).
2. Make q distinct queries to the RO, which can be determined based on the Ri values. Let Q1, . . . , Qq

denote the responses to these queries, and define S := (R1, . . . , Rr, Q1, . . . , Qq).
3. Choose random permute bits a, b← {0, 1} for the two input wires.
4. Compute A0 := ⟨A0,S⟩, A1 := ⟨A1,S⟩, B0 := ⟨B0,S⟩, B1 := ⟨B1,S⟩, C0 := ⟨Cab,0,S⟩, C1 :=
⟨Cab,1,S⟩. Then A0||0 and A1||1 are labels for one input wire, and B0||0 and B1||1 for the other.
Subscripts indicate the color bits, with Aa and Bb representing FALSE. C0 and C1 are the output
wire labels with C0 corresponding to FALSE.

5. For i ∈ [m], compute Gi := ⟨Gi
ab,S⟩, and the values G1, . . . , Gm comprise the ciphertext of

garbled circuit.

• Encoding algorithm En:
Given inputs xa, xb ∈ {0, 1}, compute α := xa ⊕ a and β := xb ⊕ b, where a and b are previously
selected permute bits. Then, output Aα∥α and Bβ∥β.

• Evaluation algorithm Ev:
Parameterized by integers m, q, vectors {Vαβ | α, β ∈ {0, 1}}, random oracle RO. The length of each
vector is m+ q + 2.

1. The inputs are wire labels Aα∥α,Bβ∥β and the ciphertext G1, . . . , Gm.
2. Make q distinct queries to the RO, which can be determined based on the input wire labels. Let

Q′1, . . . , Q
′
q denote the responses to these queries, and define T := (Aα, Bβ , Q

′
1, . . . , Q

′
q, G1, . . . , Gm).

3. Compute ⟨Vαβ ,T ⟩ as the output label.

Based on the above model, they derived the following theorem.

Theorem 7 (Theorem 3 in [ZRE15]). Every ideally secure garbling scheme for AND gates that is linear in the above
sense must have m ≥ 2. That is, the garbled gate consists of at least 2κ bits.

B Supplemental Materials for Section 4

B.1 Formal Definition of MODEL-2

We formally define MODEL-2 as follows:

• Garbling algorithm Gb:
Parameterized by integers m, r, q, vectors A0, A1, B0, B1, {Mij | i, j ∈ {0, 1}}, random oracle RO
and mapping function MAP. Each vector is of length r + q with entries in GF(2κ). The RO is mapped
as {0, 1}∗ → GF(2κ). The MAP is defined as GF(24) ×GF(2m) → GF(24), and it can be decomposed
into four sub-functions (MAP00,MAP01,MAP10,MAP11).

1. For i ∈ [r], choose Ri ← GF(2κ).
2. Make q distinct queries to the RO, which can be determined based on the Ri values. Let Q1, . . . , Qq

denote the responses to these queries, and define S := (R1, . . . , Rr, Q1, . . . , Qq).
3. Choose random permute bits a, b← {0, 1} for the two input wires.
4. Compute A0 := ⟨A0,S⟩, A1 := ⟨A1,S⟩, B0 := ⟨B0,S⟩, B1 := ⟨B1,S⟩. Then A0||0 and A1||1 are

labels for one input wire, and B0||0 and B1||1 for the other. Subscripts indicate the color bits,
with Aa and Bb representing FALSE.

5. For i, j ∈ {0, 1}, compute Mij := ⟨Mij ,S⟩. Then (M00,M01,M10,M11)
⊤ is the base. The t-

th column of the base, represented by M [t], is composed of 4 bits and can be interpreted as
(M00[t],M01[t],M10[t],M11[t]).

6. For t ∈ [κ], find m-bit ciphertext G[t] such that the following two conditions are satisfied:
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(a) MAP(M [t],G[t]) =


MAP00(M00[t],G[t])
MAP01(M01[t],G[t])
MAP10(M10[t],G[t])
MAP11(M11[t],G[t])

 =


Z00[t]
Z01[t]
Z10[t]
Z11[t]

;

(b) Zab[t] = Z(a⊕1)b[t] = Za(b⊕1)[t].
Then use Zab[t] as one bit of the output label C0 and Z(a⊕1)(b⊕1)[t] as one bit of the output label
C1, where C0 corresponds to FALSE. The sub-ciphertext G[t], with a length of m, represents the
t-th part of the whole ciphertext G.

• Encoding algorithm En:
Given inputs xa, xb ∈ {0, 1}, compute α := xa ⊕ a and β := xb ⊕ b, where a and b are previously
selected permute bits. Then, output Aα∥α and Bβ∥β.

• Evaluation algorithm Ev:
Parameterized by integers q, vectors {Vαβ | α, β ∈ {0, 1}}, random oracle RO and mapping function
MAP. The length of each Vαβ is 2 + q, with entries in GF(2κ).

1. The inputs are wire labels Aα||α, Bβ ||β and the ciphertext G.
2. Make q distinct queries to the RO, which can be determined based on the input wire labels. Let

Q′1, . . . , Q
′
q denote the responses to these queries, and define T := (Aα, Bβ , Q

′
1, . . . , Q

′
q).

3. Compute Vαβ := ⟨Vαβ ,T ⟩, and use Vαβ [t] to denote the t-th bit of Vαβ .
4. For t ∈ [κ], use Zαβ [t] := MAPαβ(Vαβ [t],G[t]) as the t-th bit of the output label.

B.2 Proof of Theorem 1

Theorem 1. Any ideally secure garbling scheme for an AND gate conforming to MODEL-2 must satisfy |G| ≥ 2κ.

Proof. In the definition of MODEL-2, we perform column-wise operations, producing one bit of the output
label for each operation. Each operation requires a sub-ciphertext G[t] with a length of m, where 1 ≤ t ≤ κ.
To prove |G| ≥ 2κ, we need only demonstrate that m ≥ 2.

To ensure the correctness of garbling an AND gate, the target vector (Z00[t], Z01[t], Z10[t], Z11[t]) in the
computation of MAP(M [t],G[t]) should satisfy the condition Zab[t] = Z(a⊕1)b[t] = Za(b⊕1)[t]. For permute
bits a, b ∈ {0, 1}, there are four cases. In each case, the vector (Z00[t], Z01[t], Z10[t], Z11[t]) has four potential
values, detailed in Table 3. For example, in the case where (a, b) = (0, 0), A0 and B0 are set to FALSE. There-
fore, the vector (Z00[t], Z01[t], Z10[t], Z11[t]) should belong to the set {(0, 0, 0, 0), (0, 0, 0, 1), (1, 1, 1, 1), (1, 1, 1, 0)}.

Table 3: The potential values of (Z00[t], Z01[t], Z10[t], Z11[t]) in different cases.

(a, b) potential values of (Z00[t], Z01[t], Z10[t], Z11[t])

(0, 0) S00 = {(0, 0, 0, 0), (0, 0, 0, 1), (1, 1, 1, 1), (1, 1, 1, 0)}
(0, 1) S01 = {(0, 0, 0, 0), (0, 0, 1, 0), (1, 1, 1, 1), (1, 1, 0, 1)}
(1, 0) S10 = {(0, 0, 0, 0), (0, 1, 0, 0), (1, 1, 1, 1), (1, 0, 1, 1)}
(1, 1) S11 = {(0, 0, 0, 0), (1, 0, 0, 0), (1, 1, 1, 1), (0, 1, 1, 1)}

All potential output values in Table 3 compose a set S = S00 ∪S01 ∪S10 ∪S11 which can be divided into
two subsets. The first subset is S1 = {(0, 0, 0, 0), (1, 1, 1, 1)}, and the second subset is S2 = S \ S1. For a
given vector (Z00[t], Z01[t], Z10[t], Z11[t]), if it belongs to S1, then the t-th bit of C0 and the t-th bit of C1 will
be the same, otherwise they will differ. To ensure privacy, the bitwise XOR of the two output labels, namely
C0 ⊕ C1, should appear random. In other words, the probability that the same bit position in C0 and C1 is
identical should be 1/2. Therefore, we have:

Pr [MAP(M [t],G[t]) ∈ S1] = Pr [MAP(M [t],G[t]) ∈ S2] =
1

2
. (1)
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Recall that in the MODEL-2 definition, the generation of the base is independent of the choice of permute
bits. Similarly, the function MAP doesn’t depend on these bits either. For a fixed M [t], changing G[t] should
let the output of MAP(M [t],G[t]) cover all four cases. This means that the set of possible outputs from
MAP(M [t],G[t]) when changing G[t], should not only be a subset of S but also intersect with each Sab for
a, b ∈ {0, 1}.

We use a proof by contradiction, starting with the assumption m = 1. If this is the case, then G[t]
can have only two potential values. Therefore, for each M [t], the mapping function MAP(M [t],G[t]) can
produce, at most, two unique values, which we denote as the set W . To ensure correctness, regardless of
the values of permute bits a, b ∈ {0, 1}, the function MAP(M [t],G[t]) must yield a correct output. IfW ∩S1
is empty, thenW cannot cover all rows in Table 3.

Therefore, among the four possible values of (a, b), in at least three of them, MAP(M [t],G[t]) will be in
S1. This violates the probability in Equation 1. Consequently, the assumption m = 1 is untenable, leading
to the conclusion that m ≥ 2. This completes the proof.

B.3 Garbling an XOR Gate

We briefly outline the procedure for garbling an XOR gate, which also requires a 2-bit sub-ciphertext for
each column. For the t-th column, the garbler aims to ensure that M00[t] and M11[t], as well as M01[t] and
M10[t], have the same value after flipping. This can be achieved using a 2-bit ciphertext. Specifically, the
first bit indicates whether M00[t] should be flipped, while the second bit indicates whether M01[t] should
be flipped. Table 4 provides a detailed construction of the sub-ciphertext G[t].

Table 4: Sub-ciphertext generation for the t-th column when garbling an XOR gate.

M00[t] 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
M01[t] 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
M10[t] 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
M11[t] 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

G[t] 00 10 01 11 01 11 00 10 10 00 11 01 11 01 10 00

B.4 Security Proof of Construction #2

We present a formal description and security proof for the second construction in Section 4.3. Based on this,
one can directly derive a formal description and security proof for the first construction.
Formal Description. Our garbling scheme is depicted in Figures 5, 6, 7, and 8. The boolean circuit function
f can be decomposed into four parts: (inputs, outputs, in, type). The ‘inputs’ refers to the indices of the input
wires of f , while ‘outputs’ provides the indices of the output wires. The ‘in’ specifies the indices of the two
input wires of a gate, and ‘type’ indicates the type of a gate. The i-th wire has two labels, (Wi,Wi ⊕∆), and
a permute bit πi. We assume that the color bit of each label is its least significant bit, and the color bit of Wi

is lsb(Wi) = 0, while that of Wi ⊕ ∆ is lsb(Wi ⊕ ∆) = 1. Additionally, Wi ⊕ πi∆ is the label representing
false.

We use the function H : {0, 1}κ × Z→ {0, 1}κ to denote a hash function suitable for this scheme, which
accepts the index of the gate as a tweak. We did not specify this detail in the previous informal description.

We introduce a private algorithm, MajVote, to represent the majority voting process. For each AND gate,
the garbler generates a base by querying the oracle H with input labels. Then, column by column, each
operation produces one bit of the output label and two bits of the ciphertext. Each column contains four
bits, and any of these bits could be flipped, yielding four possible flip cases.

For every output wire of f , the garbler computes hashes of the wire labels. These hashes serve as
decoding information. We employ 2|f |+ i as the tweak for these queries, where i is the index of the output
wire. This ensures there’s no duplication of the oracle queries used in generating the base.

For the evaluator, she processes each gate in sequence. We assume that for an AND gate, she has two
“active” input labels A and B. The color bits of these labels are α = lsb(A) and β = lsb(B) respectively. As
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Garbling algorithm Gb(1κ, f):
(inputs, outputs, in, type) := f
∆← {0, 1}κ−1
∆ = ∆||1
for i = 1 to inputs :

Wi ← {0, 1}κ−1
Wi = Wi||0
πi ← {0, 1}

for i = inputs+ 1 to |f | :
(A0, B0) := (Win1(i),Win2(i))
(πA, πB) := (πin1(i), πin2(i))
if type(i) = XOR :

Wi := A0 ⊕B0

πi := πA ⊕ πB

else if type(i) = AND :
(C,Fi) := MajVote(A0, B0,∆, πA, πB , i)
πi := lsb(C)
Wi := C ⊕ πi∆

for i ∈ outputs, j ∈ {0, 1} :
dji := H(Wi ⊕ (j ⊕ πi)∆, 2|f |+ i)

return (F, e = (∆,W[1,inputs], π[1,inputs]), d)

Private algorithm MajVote(A0, B0,∆, πA, πB , i):
M00 := H(A0, 2i− 2)⊕ H(B0, 2i− 1)⊕A0 ⊕ 1κ

M01 := H(A0, 2i− 2)⊕ H(B0 ⊕∆, 2i− 1)
M10 := H(A0 ⊕∆, 2i− 2)⊕ H(B0, 2i− 1)⊕A0 ⊕∆
M11 := H(A0 ⊕∆, 2i− 2)⊕ H(B0 ⊕∆, 2i− 1)
for t = 1 to κ :

if MπA||πB
[t] = MπA⊕1||πB

[t] = MπA||πB⊕1[t] :
(C[t], G[t]) := (MπA||πB

[t], πA ⊕ 1||πB ⊕ 1)
else if MπA||πB

[t] = MπA⊕1||πB
[t] :

(C[t], G[t]) := (MπA||πB
[t], πA||πB ⊕ 1)

else if MπA||πB
[t] = MπA||πB⊕1[t] :

(C[t], G[t]) := (MπA||πB
[t], πA ⊕ 1||πB)

else if MπA||πB⊕1[t] = MπA⊕1||πB
[t] :

(C[t], G[t]) := (MπA||πB
[t]⊕ 1, πA||πB)

return (C,G)

Figure 5: The Gb algorithm of the Construction #2.
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Evaluation algorithm Ev(F,X):
for i = inputs+ 1 to |f | :

(A,B) := (Xin1(i), Xin2(i))
(α, β) := (lsb(A), lsb(B))
if type(i) = XOR :

Xi := A⊕B
else if type(i) = AND :

M := H(A, 2i− 2)⊕ H(B, 2i− 1)⊕ (β ⊕ 1)A
if α||β = 00 :

M = M ⊕ 1κ

for t = 1 to κ :
if Fi[t] = α||β :

Xi[t] := M [t]⊕ 1
else

Xi[t] := M [t]
for i ∈ outputs :

Yi := Xi

return Y

Figure 6: The Ev algorithm of the Construction #2.

Encoding algorithm En(e = (∆,W, π), x):
for i = 1 to inputs :

Xi := Wi ⊕ (xi ⊕ πi)∆
return X

Figure 7: The En algorithm of the Construction #2.

Decoding algorithm De(d, Y ):
for i ∈ outputs :

if ∃ j such that dji = H(Yi, 2|f |+ i) :
yi := j

else
abort

return y

Figure 8: The De algorithm of the Construction #2.
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a result, the evaluator can reconstruct the (2α+β+1)-th row of the base. She then processes each bit of this
row. If the pair (α, β) aligns with the corresponding ciphertext, the bit is flipped; otherwise, it remains the
same.
Security Proof. First, we define the security property that the hash function H should satisfy. We adopt
the tweakable circular correlation robustness (TCCR) as defined in [GKWY20]. A hash function with this
property is sufficient to demonstrate the security of our scheme. For a hash function H, consider an oracle
defined as Otccr

∆ (x, t, b) = H(x⊕∆, t)⊕ b∆. Roughly speaking, if H is a TCCR, then the result of any query
to this oracleOtccr

∆ is indistinguishable from the output of a random oracle, provided that the distinguisher
never queries both (x, t, 0) and (x, t, 1) for any x, t.

However, as noted in [GKWY20], to prove the security of garbled circuits, TCCR is overkill. What we
require is the “tweakable circular correlation robustness for naturally derived keys,” which is a weaker
variant of TCCR where the adversary does not possess full control over the queries made to the oracle
Otccr

∆ .

Definition 3. Let H : {0, 1}κ × Z → {0, 1}κ be a hash function, RO : {0, 1}∗ → {0, 1}κ be a random oracle, and
let R be a distribution over {0, 1}κ. Say that a sequence of operations Q = (Q1, . . . , Qq) is natural if each operation
is one of the following:

• xi ← {0, 1}κ.
• xi := xi1 ⊕ xi2 , where i1 < i2 < i.
• xi := H(xi1 , t), where i1 < i and t ∈ Z.
• xi := O(xi1 , t, b), where i1 < i, t ∈ Z, and b ∈ {0, 1}.

We fix a natural sequence Q with q operations. Then we define two experiments:

1. The real-world experiment RealH,Q,R: sample ∆ ← R, set oracle query O(x, t, b) to Otccr
∆ (x, t, b) = H(x ⊕

∆, t)⊕ b∆.
2. The ideal-world experiment IdealRO,Q: set oracle O to RO.

Each experiment defines a distribution over values x1, . . . , xq , based on the sequential execution of operations in Q,
which are then produced as the experiment’s output.

We say a H is TCCR for naturally derived keys if, for any PPT distinguisher D that never repeats an oracle query
to Otccr

∆ on the same (x, t),∣∣∣ Pr
{xi}←RealH,Q,R

[D({xi}) = 1]− Pr
{xi}←IdealRO,Q

[D({xi}) = 1]
∣∣∣ is negligible.

Now, we formally prove the security of our scheme.

Theorem 8. Our construction described in Figures 5, 6, 7, and 8 is a secure garbling scheme with any H satisfies
Definition 3.

Proof. We will prove the four properties that a secure garbling scheme needs to satisfy.

Correctness. This property is obvious, and we provide a brief description here. We require that a base has
three rows that can produce the same output label, while another row produces a different output label. We
use the majority voting method to operate column by column. One column has four bits. If any of the three
bits corresponding to the same output label are not equal, we flip that bit, thus ensuring their consistency.
For the evaluator, she can reconstruct a row of the base, determine bit by bit whether to flip, and obtain the
corresponding output label.

Privacy. We need to prove that, for any f and any x, there must exist a simulator Sim that takes the input
(1κ, f, f(x)) and outputs a (F,X, d) that is indistinguishable from the one generated in the usual way. The
simulator Sim we constructed is shown in Figure 9. We prove this by hybrid arguments.

Hybrid1: In this hybrid, we will track all “active” wire labels. In the definition of the Gb algorithm, for each
wire, we assume that the color bit of label Wi is 0, and use this label to track each wire. In Hybrid1, we
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rewrite the Gb algorithm, using the “active” label to track each wire. The so-called “active” refers to the
labels activated when evaluating the circuit, assuming the input x is known. Note that only one of the two
labels for each wire will be activated.

In Figure 10, we provide a detailed description of this hybrid. The main differences between Hybrid1
and the real garbling are as follows:

Simpriv(1
κ, f, y = f(x)):

(inputs, outputs, in, type) := f
(F,X)← Simobliv(1

κ, f)
Y := Ev(F,X)
for i ∈ outputs :

dyi

i := H(Yi, 2|f |+ i)

dyi⊕1
i ← {0, 1}κ

return (F, X, d)

Simobliv(1
κ, f):

(inputs, outputs, in, type) := f
for i = 1 to inputs :

Ei ← {0, 1}κ
for i = inputs+ 1 to |f | :

if type(i) = XOR :
continue

else if type(i) = AND :
Fi ← {0, 1}2κ

return (F,X = E)

Figure 9: The algorithms of simulator Sim.

• For the i-th input wire, Ei is randomly selected as its active label, and Ei corresponds to the truth
value xi. The permute bit of this wire is πi = xi ⊕ lsb(Ei).

• For majority voting, we use an equivalent representation. Assume that the two active input labels of
the i-th AND gate are A and B, and their color bits are α = lsb(A) and β = lsb(B). For the algorithm
MajVote′, its inputs A and B are no longer the labels with color bits of 0. We represent the base using
the following compact matrix representation:

M00

M01

M10

M11

 :=

α⊕ 1 β ⊕ 1 α β
α⊕ 1 β α β ⊕ 1
α β ⊕ 1 α⊕ 1 β
α β α⊕ 1 β ⊕ 1

×
 H(A, 2i− 2)

H(B, 2i− 1)
H(A⊕∆, 2i− 2)
H(B ⊕∆, 2i− 1)

 +

 α
0

α⊕ 1
0

×∆ +

1 1
0 0
1 0
0 0

× [
A
1κ

]

We focus on three rows of this base: MπA||πB
, MπA⊕1||πB

, and MπA||πB⊕1. Therefore, we represent
these three rows separately as follows:

 MπA||πB
MπA⊕1||πB
MπA||πB⊕1

 =

(πA ⊕ 1) · (πB ⊕ 1) (πA ⊕ 1) · πB πA · (πB ⊕ 1) πA · πB

πA · (πB ⊕ 1) πA · πB (πA ⊕ 1) · (πB ⊕ 1) (πA ⊕ 1) · πB

(πA ⊕ 1) · πB (πA ⊕ 1) · (πB ⊕ 1) πA · πB πA · (πB ⊕ 1)

×
M00

M01

M10

M11


Next, during the majority voting process, we compare each bit of these three rows. Equivalently,

we can use the bitwise XOR between different rows to represent the relationship between their cor-
responding bits. For example, if the t-th bit of MπA||πB

⊕MπA⊕1||πB
is 0, then it means MπA||πB

[t] =
MπA⊕1||πB

[t]. After substituting the first equation into the second one, and taking the XOR of the first
and second rows, as well as the XOR of the first and third rows from the second equation, we obtain
the following equation:[
MπA||πB

⊕MπA⊕1||πB
MπA||πB

⊕MπA||πB⊕1

]
=

[
1 0
0 1

]
×

[
H(A, 2i− 2)
H(B, 2i− 1)

]
+

[
1 0
0 1

]
×

[
H(A⊕∆, 2i− 2)
H(B ⊕∆, 2i− 1)

]
+

[
πB ⊕ 1
πA ⊕ α

]
×∆ +

[
0 πB ⊕ 1
1 πA ⊕ 1

]
×

[
A
1κ

]

In MajVote′, we use T0 to represent MπA||πB
⊕MπA⊕1||πB

and T1 to represent MπA||πB
⊕MπA||πB⊕1.

If T0[t] = T1[t] = 0, then it indicates that the t-th bit of the aforementioned three rows are equal. As a
result, we should flip the t-th bit of the remaining row. The logic follows similarly for other scenarios.

• In the real garbling, the ciphertext and the output labels of each gate are generated together. In
Hybrid1, we split this process. That is to say, the MajVote′ algorithm only needs to return the ci-
phertext. Then, using the input labels A and B, along with the ciphertext, the gate is evaluated to get
the active output label. The correctness of the scheme ensures that this change is valid.

This hybrid is just some equivalent modifications of the real garbling, so the distributions of their out-
puts are identical.
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Hybrid1(1κ, f, x):
(inputs, outputs, in, type) := f
∆← {0, 1}κ−1
∆ = ∆||1
for i = 1 to inputs :

Ei ← {0, 1}κ
for i = inputs+ 1 to |f | :

(A,B) := (Ein1(i), Ein2(i))
(α, β) := (lsb(A), lsb(B))
(xA, xB) := (xin1(i), xin2(i))
if type(i) = XOR :

Ei := A⊕B
xi := xA ⊕ xB

else if type(i) = AND :
Fi := MajVote′(A,B,∆, α⊕ xA, β ⊕ xB , i)
M := H(A, 2i− 2)⊕ H(B, 2i− 1)⊕ (β ⊕ 1)A
if α||β = 00 :

M = M ⊕ 1κ

for t = 1 to κ :
if Fi[t] = α||β :

Ei[t] := M [t]⊕ 1
else

Ei[t] := M [t]
xi := xA ∧ xB

for i ∈ outputs, j ∈ {0, 1} :
dxi
i := H(Ei, 2|f |+ i)

dxi⊕1
i := H(Ei ⊕∆, 2|f |+ i)

return (F, e = E[1,inputs], d)

Private algorithm MajVote′(A,B,∆, πA, πB , i):
(α, β) := (lsb(A), lsb(B))
T0 := H(A, 2i− 2)⊕ H(A⊕∆, 2i− 2)⊕ (πB ⊕ 1)∆⊕ (πB ⊕ 1)1κ

T1 := H(B, 2i− 1)⊕ H(B ⊕∆, 2i− 1)⊕ (πA ⊕ α)∆⊕A⊕ (πA ⊕ 1)1κ

for t = 1 to κ :
if T0[t] = 0 and T1[t] = 0 :

G[t] := πA ⊕ 1||πB ⊕ 1
else if T0[t] = 0 and T1[t] = 1 :

G[t] := πA||πB ⊕ 1
else if T0[t] = 1 and T1[t] = 0 :

G[t] := πA ⊕ 1||πB

else if T0[t] = 1 and T1[t] = 1 :
G[t] := πA||πB

return G

Figure 10: Hybrid1 for proof of privacy.
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Hybrid2: In this hybrid, we employ the property of TCCR for naturally derived keys, as defined earlier, for
hash queries in the form of H(· ⊕∆, ·). In Hybrid1, the hash queries in this format appears in the following
three places:

• T0 := H(A, 2i− 2)⊕ H(A⊕∆, 2i− 2)⊕ (πB ⊕ 1)∆⊕ (πB ⊕ 1)1κ

• T1 := H(B, 2i− 1)⊕ H(B ⊕∆, 2i− 1)⊕ (πA ⊕ α)∆⊕A⊕ (πA ⊕ 1)1κ

• dxi⊕1
i := H(Ei ⊕∆, 2|f |+ i)

We represent it in the form of Otccr
∆ (x, t, b) = H(x⊕∆, t)⊕ b∆:

• T0 := H(A, 2i− 2)⊕Otccr
∆ (A, 2i− 2, πB ⊕ 1)⊕ (πB ⊕ 1)1κ

• T1 := H(B, 2i− 1)⊕Otccr
∆ (B, 2i− 1, πA ⊕ α)⊕A⊕ (πA ⊕ 1)1κ

• dxi⊕1
i := Otccr

∆ (Ei, 2|f |+ i, 0)

As can be seen, we have moved all references to ∆ into the oracle Otccr
∆ . By using its security property,

replacing the results of these oracle queries with random values will only result in a negligible effect.

Hybrid3: In this hybrid, we let the ciphertext of each AND gate be randomly generated; that is, Fi ← {0, 1}2κ.
Recall that in Hybrid2, T0 and T1 become two independent random values. As a result, for each position, the
pair (T0[t], T1[t]) uniformly falls into the set {(0, 0), (0, 1), (1, 0), (1, 1)}. Consequently, the position of the bit
that needs to be flipped is uniformly random. Therefore, Hybrid3 and Hybrid2 have the same distribution.

Since the simulator Sim knows the circuit’s output f(x), he can construct the decoding information as
shown in Figure 9. It can be seen that the distribution of Simpriv’s output is identical to the output of Hybrid3.

Obliviousness. The Simpriv we defined calls the Simobliv as a subroutine. The (F,X) generated by the
Simobliv is indistinguishable from the (F,X) generated by the real garbling, which can be directly derived
from the proof of privacy.

Authenticity. We need to proof that for any PPT adversary, given the input (F,X, d), it should be impos-
sible to produce a Ỹ such that De(d, Ỹ ) /∈ {y = f(x),⊥}, except with negligible probability. To compromise
this property, the adversary needs to identify at least one output wire such that dyi⊕1

i = H(Ỹi, 2|f | + i).
However, in the proof of privacy, we demonstrated that dyi⊕1

i can be substituted with a random value.
Therefore, the probability of such an event occurring is 2−κ, which is negligible.

C Supplemental Materials for Section 5

C.1 Formal Definition of MODEL-3

The formal definition of MODEL-3 is as follows:

• Garbling algorithm Gb:
Parameterized by integers m, r, q, n, d, ℓ, vectors A0, A1, B0, B1, {Mij | i, j ∈ {0, 1}}, probability p,
functions Extend and Contract, random oracle RO and mapping function MAP. The length of A0, A1,
B0, B1 is r + d, with entries in GF(2κ). The length of each Mij is n + q, with entries in GF(2ℓ). The
Extend is defined as GF(2κ)r → GF(2ℓ)n. The Contract is defined as GF(2ℓ)q → GF(2κ)d. The RO is
defined as {0, 1}∗ → GF(2ℓ). The function MAP is defined as GF(24)×GF(2m) → GF(24), and MAP
can be decomposed into four sub-functions (MAP00,MAP01,MAP10,MAP11).

1. For i ∈ [r], choose Ri ← GF(2κ), and compute (N1, . . . , Nn) := Extend(R1, . . . , Rr).
2. Make q distinct queries to the RO, which can be determined based on the Ri values. Let Q1, . . . , Qq

denote the responses to these queries, and compute (D1, . . . , Dd) := Contract(Q1, . . . , Qq). De-
fine S1 := (R1, . . . , Rr, D1, . . . , Dd) and S2 := (N1, . . . , Nn, Q1, . . . , Qq).

3. Choose random permute bits a, b← {0, 1} for the two input wires.
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4. Compute A0 := ⟨A0,S1⟩, A1 := ⟨A1,S1⟩, B0 := ⟨B0,S1⟩, B1 := ⟨B1,S1⟩. Then A0||0 and A1||1
are labels for one input wire, and B0||0 and B1||1 for the other. Subscripts indicate the color bits,
with Aa and Bb representing FALSE.

5. For i, j ∈ {0, 1}, compute Mij := ⟨Mij ,S2⟩. Then (M00,M01,M10,M11)
⊤ is the base. The t-

th column of the base, represented by M [t], is composed of 4 bits and can be interpreted as
(M00[t],M01[t],M10[t],M11[t]).

6. For t ∈ [ℓ], the processing of M [t] falls into one of the following two cases:

(a) With a probability of p, find m-bit ciphertext G[t] such that the following two conditions are
satisfied:

i. MAP(M [t],G[t]) =


MAP00(M00[t],G[t])
MAP01(M01[t],G[t])
MAP10(M10[t],G[t])
MAP11(M11[t],G[t])

 =


Z00[t]
Z01[t]
Z10[t]
Z11[t]

;

ii. Zab[t] = Z(a⊕1)b[t] = Za(b⊕1)[t].

Then use Zab[t] as one bit of the output label C0 and Z(a⊕1)(b⊕1)[t] as one bit of the output
label C1, where C0 corresponds to FALSE.

(b) With a probability of 1 − p, the desired mapping does not exist. Using a particular G[t] to
indicate that skip this column.

If the lengths of C0 and C1 reach κ, then the iteration ends. The sub-ciphertext G[t], with a length
of m, represents the t-th part of the whole ciphertext G.

• Encoding algorithm En:
Given inputs xa, xb ∈ {0, 1}, compute α := xa ⊕ a and β := xb ⊕ b, where a and b are previously
selected permute bits. Then, output Aα∥α and Bβ∥β.

• Evaluation algorithm Ev:
Parameterized by integers q, n, ℓ, vectors {Vαβ | α, β ∈ {0, 1}}, function Extend′, random oracle RO
and mapping function MAP. The length of each Vαβ is n + q, with entries in GF(2ℓ). The Extend′ is
defined as GF(2κ)2 → GF(2ℓ)n.

1. The inputs are wire labels Aα||α, Bβ ||β and the ciphertext G.
2. Make q distinct queries to the RO, which can be determined based on the input wire labels. Let

Q′1, . . . , Q
′
q denote the responses to these queries, compute (N1, . . . , Nn) := Extend′(Aα, Bβ) and

define T := (N1, . . . , Nn, Q
′
1, . . . , Q

′
q).

3. Compute Vαβ := ⟨Vαβ ,T ⟩, and use Vαβ [t] to denote the t-th bit of Vαβ .
4. For t ∈ [ℓ], if G[t] indicates that this column is valid, compute Zαβ [t] := MAPαβ(Vαβ [t],G[t]) and

use Zαβ [t] as one bit of the output label. Continue to handle the next column until the length of
the output label reaches κ.

Remark 7. All columns will be successfully processed in MODEL-2, while in MODEL-3, there’s a success
probability of p for each column. To achieve a κ-bit output label, the expected value for ℓ becomes κ/p.
In MODEL-3, we also introduce two auxiliary functions: Extend and Contract. These functions mainly
tackle the issue stemming from the different lengths between wire labels and random oracle outputs. For
instance, each row of the base — which results from the XOR of random oracle outputs and input labels —
has a length of ℓ. As a result, the Extend function is essential to transform the input labels into elements in
GF(2ℓ).

C.2 Proof of Theorem 2

Theorem 2. Any ideally secure garbling scheme for an AND gate conforming to MODEL-3 must satisfy |G| ≥ 2κ
on average.

Proof. In MODEL-3, each column’s processing produces a bit of the output label with a probability p. To
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prove that |G| =
∑ℓ

t=1 |G[t]| = ℓ ·m ≥ 2κ, we need only to demonstrate the two following assertions:

1. If p = 1, then m ≥ 2.
2. If m = 1, then p ≤ 1/2 (indeed, we obtain that p ≤ 3/8).

The first assertion arises directly from Theorem 1, so our attention is on the second. When m = 1, G[t]
contains only a single bit, implying two potential values and making everything quite restrictive. From the
first assertion, it’s evident that if m = 1, then p < 1. Therefore, we should use one potential value of G[t] to
indicate that the operation on the t-th column can yield one bit of the output label, and use another value to
indicate that this column is invalid and should be simply skipped. Consequently, for each M [t], by varying
G[t], the mapping MAP(M [t],G[t]) can generate at most one valid vector (Z00[t], Z01[t], Z10[t], Z11[t]).

Each column of the base M [t] in MODEL-3 has 16 potential values, with each value appearing with
equal probability. To establish this, it suffices to demonstrate that there is no fixed relationship between
different rows of the base. Otherwise, the privacy property of the garbling scheme would be compromised.
Using proof by contradiction, we assume that there exists a certain relationship among the four rows of
the base, and without loss of generality, the fourth row of the base is involved in this relationship. As the
generation of the base is independent of the choice of permute bits, we may assume that the first three
rows lead to producing C0 and the fourth row to C1. If the evaluator obtains input labels Ai and Bj ,
where (i, j) ̸= (1, 1), the valid bits of the first three rows of the base become reconstructable13. Under the
assumption, the evaluator can then infer some information about the fourth row. This allows the evaluator
to discern certain bits of the output label C1, thereby breaching privacy. For clarity, we provide a concrete
counterexample. Imagine the mapping function MAP is the same as in half gates, and the four rows of the
base are as follows: H(A0) ⊕ H(B0), H(A0) ⊕ H(B1), H(A1) ⊕ H(B0), and H(A1) ⊕ H(B1). In this setup, the
XOR operation on the first three rows produces the fourth row. Consequently, only 8 potential values arise
for M [t]. However, this construction compromises privacy. If we assume the first three rows correspond to
C0 and the last row to C1, the evaluator, upon obtaining A0 and B0, can reconstruct the first three rows of
the base. This would immediately reveal the fourth row and the output label C1.

We use S = S00 ∪ S01 ∪ S10 ∪ S11 to denote the set including all the possible values in Table 3. The
mapping function MAP(M [t],G[t]) produces a valid vector (Z00[t], Z01[t], Z10[t], Z11[t]) in S. A subset of S
is S1 = {(0, 0, 0, 0), (1, 1, 1, 1)}, and another subset is S2 = S \ S1.

Consider the 16 potential values of M [t]. Let x denote the number of values yielding a valid vector in
subset S1 and let y denote the number of values yielding a valid vector in subset S2. The residual 16−x− y
values don’t give a valid vector and should be skipped. In other words, there are x potential values of M [t]
mapping to every row (as illustrated in Table 3), while y values map to a specific row. To maintain the
privacy property of the garbling scheme, the probability of (Z00[t], Z01[t], Z10[t], Z11[t]) emerging from S1
should be equal to its probability from S2 14. This condition gives y = 4x.

Finally, we calculate the probability. We can compute the overall probability p as follows:

• For M [t] taking one of the x values, the probability of yielding a bit of the output label is 1.
• For M [t] taking one of the y values, the probability of yielding a bit of the output label is 1/4. For

example, the vector (0, 0, 0, 1) is valid only in the case where permute bits (a, b) = (0, 0).
• For M [t] taking one of the 16 − x − y values, the probability of yielding a bit of the output label is 0,

since it’s guaranteed to be invalid.

Therefore, considering each value of M [t] appears with equal probability, the overall probability p that
a column will yield a bit of the output label is given by:

p =
1

16
× 1× x+

1

16
× 1

4
× y +

1

16
× 0× (16− x− y) =

x

8
.

13Specifically, after the evaluator obtains the output label C0, for each column, if the ciphertext G[t] indicates that this column is
valid, then the evaluator can compute M00[t], M01[t], M10[t]. Note that, under the fixed G[t] condition, MAPij is injective (where
i, j ∈ {0, 1}), ensuring the deterministic values of M00[t], M01[t], M10[t]. Taking MAP00 as an example, if it is not injective, meaning
that regardless of whether M00[t] is 0 or 1, the mapping function MAP00 maps it to the same value, then 1 bit of security will be lost.

14Appearing in the first set indicates that the t-th bit of C0 and C1 are the same, while the second set indicates they differ. Both
should have equal probabilities, as we’ve discussed in the proof of Theorem 1.
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Given that 16− x− y = 16− 5x ≥ 0 and x is an integer, we have

p =
x

8
≤ 3

8
<

1

2
.

Therefore, the second assertion holds true.
If p = 1 then m ≥ 2. We have |G| ≥ 2κ.
If m = 1 then p < 1/2. We have the expectation length of G with |G| = κ/p > 2κ.

D Supplemental Materials for Section 6

D.1 Processing Multi-columns Simultaneously

In the proof of Theorem 1 for MODEL-2, we note that once M [t] is set, the set of possible values for
MAP(M [t],G[t]) by varying G[t], must intersect with each set in Table 3. If G[t] is only one bit, each M [t]
can map to at most two distinct values. This leads to a higher occurrence of (0, 0, 0, 0) and (1, 1, 1, 1) in the
output Z[t], compromising privacy. Therefore, we opt for G[t] to have two bits.

In fact, ensuring each M [t] maps to no more than three unique values suffices for privacy. For example,
with a given M [t], the value set of MAP(M [t],G[t]) by changing G[t] could be {(0, 0, 0, 0), (0, 1, 0, 0), (1, 0, 0, 0)}.
If (a, b) ∈ {(0, 0), (0, 1)}, it maps to (0, 0, 0, 0). If (a, b) = (1, 0), it maps to (0, 1, 0, 0). If (a, b) = (1, 1), it maps
to (1, 0, 0, 0). The probability that the bits in the same position of the output labels C0 and C1 match is 1/2.
In this regard, there is no issue with privacy. Therefore, when amortizing over each column, a more favor-
able lower bound for the length of the sub-ciphertext is log 3, and it remains possible that a secure garbled
circuit scheme that processes multiple columns simultaneously might achieve a ciphertext length close to
log 3 · κ.

D.2 Formal Definition of MODEL-3′

The formal definition of MODEL-3′ is as follows:

• Garbling algorithm Gb:

Parameterized by integers m, r, q, w, n, vectors A0, A1, B0, B1, {Mab,u
ij | i, j, a, b ∈ {0, 1}, u ∈ [w]},

function Contract, random oracle RO and mapping function {MAPu | u ∈ [w]}. The lengths of A0, A1,
B0, B1 are all r + q, with entries in GF(2κ). The length of each Mab,u

ij is n, with entries in GF(2⌈
κ
w ⌉).

The Contract is defined as GF(2κ)r+q → GF(2⌈
κ
w ⌉)n. The RO is defined as {0, 1}∗ → GF(2κ). Each

function MAPu is defined as GF(24)×GF(2m)→ GF(24).
Also parameterized15 by integers v, s, g, vectors {Y ab | a, b ∈ {0, 1}}, matrix X , function Truncate.
The length of each vector is s, with entries in GF(2v). The size of the matrix is g× (s+ q), with entries
in GF(2v). The Truncate is defined as GF(2κ)q → GF(2v)q .

1. For i ∈ [r], choose Ri ← GF(2κ).
2. Make q distinct queries to the RO, which can be determined based on the Ri values. Let Q1, . . . , Qq

denote the responses to these queries, define S1 := (R1, . . . , Rr, Q1, . . . , Qq), S2 := Contract(R1,
. . . , Rr, Q1, . . . , Qq), S3 := Truncate(Q1, . . . , Qq).

3. Choose random permute bits a, b← {0, 1} for the two input wires.
4. Compute A0 := ⟨A0,S1⟩, A1 := ⟨A1,S1⟩, B0 := ⟨B0,S1⟩, B1 := ⟨B1,S1⟩. Then A0||0 and A1||1

are labels for one input wire, and B0||0 and B1||1 for the other. Subscripts indicate the color bits,
with Aa and Bb representing FALSE.

5. For u ∈ [w] and i, j ∈ {0, 1}, compute Mu
ij := ⟨Mab,u

ij ,S2⟩. Then (Mu
00,M

u
01,M

u
10,M

u
11)
⊤ is the

u-th base. The t-th column of the u-th base, represented by Mu[t], is composed of 4 bits and can
be interpreted as (Mu

00[t],M
u
01[t],M

u
10[t],M

u
11[t]).

15These parameters are used for generating additional ciphertext, corresponding to the “dicing” technique in [RR21].
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6. (Generation of the main ciphertext) For t ∈ [⌈κ/w⌉], find m-bit ciphertext G[t] such that for any
u ∈ [w], the following two conditions are satisfied:

(a) MAPu(Mu[t],G[t]) =


MAPu

00(M
u
00[t],G[t])

MAPu
01(M

u
01[t],G[t])

MAPu
10(M

u
10[t],G[t])

MAPu
11(M

u
11[t],G[t])

 =


Zu
00[t]

Zu
01[t]

Zu
10[t]

Zu
11[t]

;

(b) Zu
ab[t] = Zu

(a⊕1)b[t] = Zu
a(b⊕1)[t].

Use Z1
ab[t], . . . , Z

w
ab[t] as w bits of C0, and Z1

(a⊕1)(b⊕1)[t], . . . , Z
w
(a⊕1)(b⊕1)[t] as w bits of the output

label C1, where C0 corresponds to FALSE. If the output label reaches κ bits, discard any excess
bits.

7. (Generation of the additional ciphertext) Compute E := X × (Y ab||S3)
⊤ as additional ciphertext,

where || denotes the concatenation of two vectors.

Then G and E constitutes the whole ciphertext, with a total length of ⌈κ/w⌉ ·m+ g · v.

• Encoding algorithm En:
Given inputs xa, xb ∈ {0, 1}, compute α := xa ⊕ a and β := xb ⊕ b, where a and b are previously
selected permute bits. Then, output Aα∥α and Bβ∥β.

• Evaluation algorithm Ev:
Parameterized by integers q, w, x, v, g, vectors {V u

αβ | α, β ∈ {0, 1}, u ∈ [w]}, {Kαβ | α, β ∈ {0, 1}},
function Contract′ and Truncate, random oracle RO and mapping function MAP. The length of each
V u
αβ is x, with entries in GF(2⌈

κ
w ⌉). The length of each Kαβ is g + q, with entries in GF(2v). The

Contract′ is defined as GF(2κ)2+q → GF(2⌈
κ
w ⌉)x.

1. The inputs are wire labels Aα||α, Bβ ||β and the garbled circuit ciphertext G, E.
2. Make q distinct queries to the RO, which can be determined based on the input wire labels. Let

Q′1, . . . , Q
′
q denote the responses to these queries. Compute T := Contract′(Aα, Bβ , Q

′
1, . . . , Q

′
q),

and U := Truncate(Q′1, . . . , Q
′
q).

3. Compute Kαβ := ⟨Kαβ , (E||U)⟩ and parse it into w vectors, each with a length of x and entries
in GF(2⌈

κ
w ⌉), denote these vectors as {V̂ u

αβ | u ∈ [w]}.

4. For u ∈ [w], compute V u
αβ := ⟨V u

αβ + V̂ u
αβ ,T ⟩, and use V u

αβ [t] to denote the t-th bit of V u
αβ .

5. For t ∈ [⌈ κw ⌉], use Z1
αβ [t] := MAP1

αβ(V
1
αβ [t],G[t]), . . . , Zw

αβ [t] := MAPw
αβ (V w

αβ [t],G[t]) as w bits of
the output label. If the output label reaches κ bits, discard any excess bits.

Remark 8. Compared to MODEL-2, the definition of MODEL-3′ is notably more intricate. We delve deeper
into its clarification. The integer w denotes the number of bases. In MODEL-2, w = 1 while in [RR21]
w = 2. We have not set any specific constraints on the mapping function MAPu, while in [RR21] it is a linear
operation. As indicated by [RR21], the generation of each base is influenced by permute bits. Therefore, in
the definition of MODEL-3′, the parameter Mab,u

ij that used to generate the u-th base is associated with the
permute bits (a, b). To enable the evaluator to reconstruct the (2α+β+1)-th row of each base, an additional
constant-size ciphertext E needs to be transmitted.

D.3 Proof of Lemma 1

Lemma 1. In a garbling scheme with w bases adhering to MODEL-3′, suppose two bases M i and M j (where
1 ≤ i < j ≤ w) are column-correlated. Once M i is determined, the number of potential values for each column of
M j is halved, reducing from 16 to 8.

Proof. Given that M i and M j satisfy column-correlated, vectors P i and P j of length four exist such that
⟨P i,M i⟩ = ⟨P j ,M j⟩. Since we’ve already pinned down what M i is, we can compute K = ⟨P i,M i⟩. We
represent P j and M j as consisting of four elements, as follows:

M j := (M j
00,M

j
01,M

j
10,M

j
11) P j := (P j

00, P
j
01, P

j
10, P

j
11).
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Using the above representation, we obtain: P j
00 ·M

j
00 + P j

01 ·M
j
01 + P j

10 ·M
j
10 + P j

11 ·M
j
11 = K. Without

loss of generality, we can freely choose the values of M j
00, M j

01, and M j
10. Once these values are fixed, M j

11

is determined by the above equation. Therefore, M j
11 cannot be freely chosen. As a result, every column of

M j has only 23 = 8 potential values.

D.4 Proof of Theorem 3

Theorem 3. Consider an ideally secure garbling scheme in MODEL-3′ with w bases. Assume that each base has at
most one ancestor. If υ pairs of bases are column-correlated, then for garbling an AND gate, the ciphertext length
|G| must satisfy |G| ≥ (2− υ/w) · κ, where υ ≤ w − 1.

Proof. Given that w bases exist, of which υ pairs satisfy column-correlated, we can infer that w−υ bases lack
an ancestor, while the remaining υ bases possess an ancestor. With this in mind, we present the following
two assertions:

1. For a base without an ancestor, processing each column necessitates a ciphertext of at least 2 bits.
2. Conversely, for a base that does have an ancestor, processing each column demands a ciphertext of at

least 1 bit.

If we prove the above two assertions, then for each processing, at least 2(w− υ)-bit ciphertext is needed
for w − υ bases, and at least υ-bit ciphertext is needed for υ bases. Given that one processing can yield w
bits of the output label, at least κ/w processing steps are required. Therefore, the total ciphertext length
|G| ≥ (2(w − υ) + υ) · (κ/w) = (2− υ/w) · κ.

We denote the base u as Mu = (Mu
00,M

u
01,M

u
10,M

u
11), where u ∈ [w], and we refer to the t-th column of

Mu as Mu[t].
We begin by proving the first assertion. Assuming the base u has no ancestor, it can be considered

independent, and therefore has 16 possible values (recall that at the beginning of Section 6.3.1, we assumed
that every column of each base would have 16 potential values). Regardless of the permute bits randomly
selected by the garbler, Mu[t] can assume any of the 16 potential values. Therefore, for a fixed Mu[t], we
need to vary the value of the ciphertext Gu[t] 16 to map Mu[t] to each of the 4 cases outlined in Table 3.
Given that the mapping function MAPu is independent of the permute bits, the length of Gu[t] must be
at least 2 bits, as already demonstrated in the proof of Theorem 1. In addition, it is worth noting that in
the proof of Theorem 1, we do not need to prove that Mu[t] can take 16 values (even though it is true).
In MODEL-2, the value of Mu[t] is independent of the permute bits, so each potential value needs to be
mapped to 4 cases. However, in MODEL-3′, it is explicitly required that Mu[t] can assume 16 potential
values in every cases because its value may depend on the permute bits.

Next, we proceed to prove the second assertion. This time, we assume that the base u has an ancestor
Mv , where v < u. Once the value of Mv is determined, Lemma 1 shows that every column of Mu can take
on only 8 potential values. Without loss of generality, we assume that the permute bits (a, b) = (0, 0). We
need to map these 8 potential values to elements in the corresponding set, as follows:

(a0, b0, c0, d0), (a1, b1, c1, d1)
(a2, b2, c2, d2), (a3, b3, c3, d3)
(a4, b4, c4, d4), (a5, b5, c5, d5)
(a6, b6, c6, d6), (a7, b7, c7, d7)


MAPu with Gu[t]−−−−−−−−−−−−−−−→


(0, 0, 0, 0)
(0, 0, 0, 1)
(1, 1, 1, 1)
(1, 1, 1, 0)

 .

In the left side, (ai, bi, ci, di) represent the 8 distinct values of Mu[t], where 0 ≤ i ≤ 7. We employ a
proof by contradiction, assuming that the length of Gu[t] is 0. As defined in MODEL-3′, we decompose
the function MAPu into four sub-functions (MAPu

00,MAPu
01,MAPu

10,MAPu
11). For MAPu

00(ai,G[t]), since the
length of G[t] is 0, MAPu

00(0,G[t]) can yield at most one value, and similarly, MAPu
00(1,G[t]) can also yield

at most one value. The same conclusion applies to the other sub-functions as well.
First, let us consider all ai values. For ai ∈ {0, 1}, 0 ≤ i ≤ 7, there exists a value x ∈ {0, 1} such that the

number of ai where ai = x is at least 4. We reorder the 8 distinct values of Mu[t] such that for 0 ≤ i ≤ r,
ai = x , and for r + 1 ≤ i ≤ 7, ai = x ⊕ 1, with r ≥ 3. If we map all ai to the same value regardless of

16Here, we decompose the ciphertext G[t] into w parts, each designated for handling a column extracted from w bases.
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whether ai = 0 or ai = 1, then we would incur a loss of 1-bit in security. Therefore, for 0 ≤ i ≤ r, we map
ai to bit y, and for r + 1 ≤ i ≤ 7, we map ai to y ⊕ 1.

Next, we consider all bi values. Given our assumption that permute bits (a, b) = (0, 0), for 0 ≤ i ≤ 7,
ai and bi should be mapped to the same value. If for 0 ≤ i < j ≤ r, there exists bi ̸= bj , then we have
MAPu

01(0,G[t]) = MAPu
01(1,G[t]) = y. However, for r + 1 ≤ i ≤ 7, bi needs to be mapped to y ⊕ 1, that is,

MAPu
01(bi,G[t]) = y⊕ 1. Whether bi = 0 or bi = 1, this contradicts the previous equation. Therefore, we can

conclude that for 0 ≤ i ≤ r, all bi are the same bit , and for r + 1 ≤ i ≤ 7, all bi are also the same bit.
For all values of ci, the same conclusion holds: for 0 ≤ i ≤ r, all ci are the same bit, and for r+1 ≤ i ≤ 7,

all ci are also the same bit.
Thus far, we have derived a contradiction. For 0 ≤ i ≤ r, the first three bits of the vector (ai, bi, ci, di)

are identical. By varying di, we can obtain at most two distinct vectors, contradicting the condition that
r ≥ 3.

D.5 Proof of Theorem 4

Before formally presenting the proof, we first review the design paradigm of [RR21], which involves trans-
forming the design of a garbling scheme into solving a system of linear equations and requiring compat-
ibility with free-XOR. For example, if we have three bases, the garbling scheme can be expressed in the
following form (derived from Equation (4) in [RR21]):

the first base


the second base


the third base



W︷ ︸︸ ︷

1 0 0
1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1



C︷ ︸︸ ︷C(1)

C(2)

C(3)

⊕V
G︷ ︸︸ ︷
G0

G1

G2

G3

 = MH⊕R

Q︷ ︸︸ ︷

A
(1)
0

A
(2)
0

A
(3)
0

B
(1)
0

B
(2)
0

B
(3)
0

∆(1)

∆(2)

∆(3)


⊕

T︷ ︸︸ ︷

0 0 0
0 0 0
0 0 0
1 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 1



D︷ ︸︸ ︷∆(1)

∆(2)

∆(3)

, (2)

abbreviated as WC⊕ VG = MH⊕RQ⊕ T D.

Note that we rearrange the original equation so that the first four rows of the equation correspond to
the processing of the first base, the middle four rows to the second base, and the last four rows to the
third base. The matrix V ∈ GF(2)12×4 represents the mapping function MAP, which is a linear function
in this context. The vector H ∈ GF(2κ/3)ℓ represents potential hash queries, for example, it might be
(H(A0),H(A1),H(B0),H(B1), · · · )⊤. The matrix M ∈ GF(2)12×ℓ represents the hash composition of each
row in each base. The matrix R ∈ GF(2)12×9 represents the input label composition of each row in each
base. The red positions in the matrix T ∈ GF(2)12×3 are related to the choice of permute bits (a, b). Specifi-
cally, in the red positions, the (4− 2a− b), (8− 2a− b), and (12− 2a− b)-th rows are set to 1, while the rest
are set to 0.

To better understand the relationship between our base terminology and the linear equation system
representation, we consider a concrete example. Assume the three bases are as follows:

the first base︷ ︸︸ ︷
H(A0)⊕ H(B0)⊕ S1

00

H(A0)⊕ H(B1)⊕ S1
01

H(A1)⊕ H(B0)⊕ S1
10

H(A1)⊕ H(B1)⊕ S1
11

the second base︷ ︸︸ ︷
H(A0)⊕ H(A0 ⊕B0)⊕ S2

00

H(A0)⊕ H(A0 ⊕B1)⊕ S2
01

H(A1)⊕ H(A1 ⊕B0)⊕ S2
10

H(A1)⊕ H(A1 ⊕B1)⊕ S2
11

the third base︷ ︸︸ ︷
H(B0)⊕ H′(A0 ⊕B0)⊕ S3

00

H(B1)⊕ H′(A0 ⊕B1)⊕ S3
01

H(B0)⊕ H′(A1 ⊕B0)⊕ S3
10

H(B1)⊕ H′(A1 ⊕B1)⊕ S3
11

where Su
ij (i, j ∈ {0, 1}, u ∈ {1, 2, 3}) represents a certain combination of input labels, and H, H′ are two

different hash functions. Recall that we are now in the free-XOR setting, therefore we have A0 ⊕ A1 =
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B0 ⊕ B1 = ∆. If the mapping function MAP is linear, then the processing of the above three bases can be
represented using a linear equation system, as shown below:

W

C(1)

C(2)

C(3)

⊕ V


G0

G1

G2

G3

 =



1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 1 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
0 1 0 0 0 1 0 0
0 1 0 0 1 0 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 0 1
0 0 0 1 0 0 1 0





H(A0)
H(A1)
H(B0)
H(B1)

H(A0 ⊕B0)
H(A0 ⊕B1)
H′(A0 ⊕B0)
H′(A0 ⊕B1)


⊕RQ⊕ T D,

where RQ = (S1
00, S

1
01, S

1
10, S

1
11, S

2
00, S

2
01, S

2
10, S

2
11, S

3
00, S

3
01, S

3
10, S

3
11)
⊤.

In the above example, the vector composed of Su
ij is another equivalent representation of RQ, and this

representation is general, not limited to this example. For the convenience of subsequent proofs, we expand
the representation of each Su

ij as follows:

Su
00 = xu

1A
(1)
0 ⊕ xu

2A
(2)
0 ⊕ xu

3A
(3)
0 ⊕ xu

4B
(1)
0 ⊕ xu

5B
(2)
0 ⊕ xu

6B
(3)
0 (3)

Su
01 = yu1A

(1)
0 ⊕ yu2A

(2)
0 ⊕ yu3A

(3)
0 ⊕ yu4 (B

(1)
0 ⊕∆(1)) ⊕ yu5 (B

(2)
0 ⊕∆(2)) ⊕ yu6 (B

(3)
0 ⊕∆(3)) (4)

Su
10 = zu1 (A

(1)
0 ⊕∆(1)) ⊕ zu2 (A

(2)
0 ⊕∆(2)) ⊕ zu3 (A

(3)
0 ⊕∆(3)) ⊕ zu4B

(1)
0 ⊕ zu5B

(2)
0 ⊕ zu6B

(3)
0 (5)

Su
11 = wu

1 (A
(1)
0 ⊕∆(1))⊕ wu

2 (A
(2)
0 ⊕∆(2))⊕ wu

3 (A
(3)
0 ⊕∆(3))⊕ wu

4 (B
(1)
0 ⊕∆(1))⊕ wu

5 (B
(2)
0 ⊕∆(2))⊕ wu

6 (B
(3)
0 ⊕∆(3)), (6)

and coefficients xu
i , y

u
i , z

u
i , w

u
i ∈ {0, 1}, for i ∈ [6], u ∈ [3].

Next, we represent the main theorem that we intend to prove.

Theorem 4. If a secure garbling scheme can be represented by a linear equation system, and the correlation between
bases can be expressed using Definition 2, then this scheme requires at least 3/2 · κ + O(1) bits of ciphertext length
for garbling an AND gate.

Proof. Recalling the case with three bases, we attempt to achieve a garbling scheme that requires only 4κ/3
bits of ciphertext by introducing more correlations. Firstly, we will demonstrate that such a secure garbling
scheme does not exist. Finally, we will extend this to the general case, allowing any number of bases. We
will break down the proof into three steps.

Step1 - Determine the vector H and matrices M, V .

We allow three types of hash queries: the first type contains only input label Aα, the second type contains
only input label Bβ , and the third type contains only Aα ⊕ Bβ . For example, the hash composition of the
first row of the first base might be H(A0) ⊕ H(B0) ⊕ H(A0 ⊕ B0) ⊕ · · · . However, for the same input label,
different hash functions can be used.

It should be noted that allowing “unlinear” hash queries like H(Aα, Bβ) does not contribute to smaller
garbled circuit ciphertext. The reason is that this would result in the four rows of a base being indepen-
dently random, preventing us from utilizing the correlation between rows to reduce the length of the ci-
phertext while achieving compatibility with free-XOR (this point can be observed from our transition from
Construction #1 to Construction #2).

Based on the above observations, we can obtain the form of vector H is like

(H(A0),H(A1),H
′(A0),H

′(A1), · · · ,H(B0),H(B1), · · · ,H(A0 ⊕B0),H(A0 ⊕B0 ⊕∆), · · · )⊤.

Next, we need to determine matrix M, composed of four submatrices. Submatrix M1 is for hash
queries with input A0 or A1, submatrix M2 for B0 or B1, submatrix M3 for A0 ⊕ B0 or A0 ⊕ B0 ⊕∆, and
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the fourth submatrix is a zero matrix, as follows:

M1 =


1 0
1 0
0 1
0 1

 M2 =


1 0
0 1
1 0
0 1

 M3 =


1 0
0 1
0 1
1 0

 M4 =


0 0
0 0
0 0
0 0

 .

That is to say, matrix M can be divided into blocks with size 4× 2. For instance, for the M in the previous
example, we can write it as

M =

M1 M2 M4 M4

M1 M4 M3 M4

M4 M2 M4 M3

 .

To ensure that the Equation 2 is solvable, the column space of matrix M should be the same as the
column space of matrix [W ||V ]. Therefore, we can simply select four linearly independent columns from
matrix M (and these four columns should also be linearly independent with matrix W) to form the matrix
V . Without loss of generality, we can assume that the first row of matrix V is all zeros (if a certain position
in the first row of matrix V is not zero, then we can XOR the column corresponding to that position with
the first column of matrix W to obtain a new column to replace the original one.). Similarly, we can assume
that the 5-th and 9-th rows of matrix V are also zeros. As a result, we can directly form the output label C0

or C1 by combining the first rows of the three bases, without the need to XOR with any ciphertext.

Step2 - Obtain the correlation within and between bases.

First, we obtain the internal correlation within each base, namely the correlation between the four rows
of each base. In Step1, it can be seen that the XOR of the four rows of submatrix Mi (where i ∈ {1, 2, 3, 4})
equals 0. Therefore, the XOR of the first four rows of matrix M, the XOR of the middle four rows, and the
XOR of the last four rows all equal 0. Obviously, matrices W and V (where V is derived from M) also
satisfy this relationship. Consequently, by XORing the first four rows, the middle four rows, and the last
four rows of the Equation 2, we can establish the following three equations:

S1
00 ⊕ S1

01 ⊕ S1
10 ⊕ S1

11 = ∆(1) (7)

S2
00 ⊕ S2

01 ⊕ S2
10 ⊕ S2

11 = ∆(2) (8)

S3
00 ⊕ S3

01 ⊕ S3
10 ⊕ S3

11 = ∆(3). (9)

Next, we attempt to find correlations between different bases.

Lemma 3. For the submatrix V0, composed of the first four rows of matrix V , its rank must be 2.

Proof. Since matrix V is obtained from M, and assuming its first row consists entirely of zero elements,
we can deduce that the elements of matrix V0 are restricted such that each column vector of V0 is an
element from the set {(0, 0, 0, 0)⊤, (0, 0, 1, 1)⊤, (0, 1, 0, 1)⊤, (0, 1, 1, 0)⊤}. If we can prove that at least two
of the column vectors of V0 are non-zero and distinct, then the rank of V0 is 2, as there are two linearly
independent column vectors.

Assuming that V0 has only one column of non-zero element, or multiple columns of identical element,
then there must exist a row i which is entirely composed of zero elements, where i ∈ {2, 3, 4}. This means
that if the color bits (α, β) obtained by the evaluator satisfy 2α+β ∈ {0, i− 1}, then there is no need to XOR
any ciphertext, and the corresponding row of the base is just the output label.

Without loss of generality, assume i = 2. If the permute bits (a, b) belongs to {(0, 0), (0, 1)}, then the
first and second rows of the first base are equal. Due to the randomness of the random oracle outputs, it is
necessary to ensure that the hash queries in the first and second rows are equal. Therefore, we can deduce
that S1

00 = S1
01. Similarly, if (a, b) is in {(1, 0), (1, 1)}, then the first two rows of the base correspond to two

different output labels, which have an offset of ∆(1), so we have S1
00 = S1

01 ⊕ ∆(1). Based on Equations 3
and 4, we can derive the following relationship:

x1
j = y1j , for j ∈ [6].
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In S1
00 and S1

01, the only coefficient related to ∆(1) is y14 . If (a, b) ∈ {(0, 0), (0, 1)}, then it must be that
x1
4 = y14 = 0. Conversely, if (a, b) ∈ {(1, 0), (1, 1)}, then it must be that x1

4 = y14 = 1. If the evaluator receives
color bits (α, β) = (0, 0), then she can determine the value of S1

00, namely she can learn x1
4. Based on whether

x1
4 is 0 or 1, the evaluator can infer whether the permute bits belong to {(0, 0), (0, 1)} or {(1, 0), (1, 1)},

thereby violating privacy.

From Lemma 3, we can adjust matrix V so that its first four rows are equal to:

V0 =


0 0 0 0
1 0 0 0
0 1 0 0
1 1 0 0

 .

From now on, for simplicity, we will temporarily ignore the part related to permute bits in the Equation
2, that is, temporarily disregard T D. In such case, for each row of a base, after XORing with the corre-
sponding ciphertext, the same output label will be obtained. We represent the four rows of the first base
using M1 = (M1

00,M
1
01,M

1
10,M

1
11)
⊤, and therefore we have

M1
00 = M1

01 ⊕G0 = M1
10 ⊕G1 = M1

11 ⊕G0 ⊕G1, namely,
{

G0 = M1
00 ⊕M1

01

G1 = M1
00 ⊕M1

10
.

Based on the determined first base, for the second base, M2 = (M2
00,M

2
01,M

2
10,M

2
11)
⊤, we conduct a

similar analysis. Using X0 and X1 to represent some linear combinations of G0, G1, G2, G3, we can obtain

M2
00 = M2

01 ⊕X0 = M2
10 ⊕X1 = M2

11 ⊕X0 ⊕X1, namely,
{

X0 = M2
00 ⊕M2

01

X1 = M2
00 ⊕M2

10
.

Recall that the three bases cannot be uncorrelated, as if there were no correlation among them, each
column of a base would require at least 2−bit sub-ciphertext, making it impossible to complete the mapping
of three columns with just 4 bits. Therefore, without loss of generality, we can assume that there is a
correlation between the first base and the second base because otherwise, we could simply exchange the
order of three bases17. Therefore, the processing of the first base and the second base must share some
ciphertext, namely {X0, X1, X0 ⊕ X1} ∩ {G0, G1, G0 ⊕ G1} ̸= ∅. Corresponding to Definition 2, we can
deduce the existence of non-zero vectors P 1 and P 2, such that ⟨P 1,M1⟩ = ⟨P 2,M2⟩, where P 1,P 2 ∈ U =
{(1, 1, 0, 0)⊤, (1, 0, 1, 0)⊤, (1, 0, 0, 1)⊤}.

Finally, we need to establish the correlation between the third base, M3 = (M3
00,M

3
01,M

3
10,M

3
11)
⊤, and

the previous two bases. There are three possible cases:

1. There exist non-zero vectors Q1 and Q3, such that ⟨Q1,M1⟩ = ⟨Q3,M3⟩, where Q1,Q3 ∈ U .
2. There exist non-zero vectors Q2 and Q3, such that ⟨Q2,M2⟩ = ⟨Q3,M3⟩, where Q2,Q3 ∈ U .
3. There exist non-zero vectors Q1, Q2, and Q3, such that ⟨Q1,M1⟩ + ⟨Q2,M2⟩ = ⟨Q3,M3⟩, where

Q1,Q2,Q3 ∈ U .

The first case and the second case are equivalent because for the second case, we only need to swap the
order of the first base and second base to transform it into the first case. However, for the third case, although
it goes beyond our Definition 2, we can use the same proof technique as for the first case to conclude that it
is impossible to occur. Therefore, we only need to focus on the first case.

Up to this point, we have obtained the correlation between the first and second bases (indicated by
vectors P 1,P 2) and the correlation between the first and third bases (indicated by vectors Q1,Q3).

Ultimately, we will demonstrate that if the three bases possess the above correlations, it would violate
privacy.

Step3 - Show such a scheme would leak privacy.

17We should note that, when X0 = G0 ⊕G2 and X1 = G0 ⊕G3, we cannot consider that the first base and the second base share
ciphertext. This is because, with the first appearances of G2 and G3, X0 and X1 should be considered as two entirely new ciphertext.
In other words, by adjusting matrix V , we can use G′

2 = G0 ⊕G2 and G′
3 = G0 ⊕G3 to replace G2 and G3.
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Recall that we allow three types of hash queries: the first type is only related to the input label Aα

(TYPE-1), the second type is related to Bβ (TYPE-2), and the third type is only related to Aα ⊕ Bβ (TYPE-3).
From Lemma 3, it is known that the hash queries composing the first base must include at least two types,
otherwise the rank of the submatrix V0 cannot be 2. Similarly, this holds true for the second and third bases
as well.

Assuming that the hash-query-type of a base are TYPE-1 + TYPE-2, then by XORing the first row with
the second row, the hash queries related to the input label Aα will be eliminated (because both the first and
second rows correspond to A0), leaving only TYPE-2-hash-query, i.e., the hash queries related to the input
label Bβ . In Table 5, we have summarized all the possible scenarios that might occur.

Table 5: Hash-query-type for a base and its row-wise XOR results. The table columns represent the hash combi-
nations that compose a base, with a total of four possibilities. The table rows represent the XOR results of two rows of
a base. For example, (1, 1, 0, 0)⊤ corresponds to the XOR of the first and second rows of the base, which is analogous to
the vector inner product in Definition 2.

TYPE-1 + TYPE-2 TYPE-1 + TYPE-3 TYPE-2 + TYPE-3 TYPE-1 + TYPE-2 + TYPE-3

(1, 1, 0, 0)⊤ TYPE-2 TYPE-3 TYPE-2 + TYPE-3 TYPE-2 + TYPE-3
(1, 0, 1, 0)⊤ TYPE-1 TYPE-1 + TYPE-3 TYPE-3 TYPE-1 + TYPE-3
(1, 0, 0, 1)⊤ TYPE-1 + TYPE-2 TYPE-1 TYPE-2 TYPE-1 + TYPE-2

Before we continue, we first prove a lemma.

Lemma 4. For two distinct bases M i and M j , where i, j ∈ {1, 2, 3} and i ̸= j, if there exist vectors P i and P j

such that ⟨P i,M i⟩ = ⟨P j ,M j⟩, where P i,P j ∈ U , then if P i = P j , it would violate the privacy of the garbling
scheme.

Proof. We only consider P i = P j = (1, 0, 0, 1)⊤ because the proof method is the same for other cases.
From the condition ⟨P i,M i⟩ = ⟨P j ,M j⟩, we have M i

00⊕M i
11 = M j

00⊕M j
11. Taking M i

00 as an example,
it includes a combination of hash queries and input labels, the latter of which we denote as Si

00. Due to
the randomness of the output from the random oracle, the parts related to hash queries in M i

00 ⊕M i
11 =

M j
00 ⊕M j

11 must cancel each other out. Therefore, we have Si
00 ⊕ Si

11 = Sj
00 ⊕ Sj

11. In Si
00, Si

11, Sj
00, and Sj

11,
the coefficients related to the input labels A

(i)
0 and B

(i)
0 must also satisfy this relation. From Equations 3

and 6, we have

xi
i ⊕ wi

i = xj
i ⊕ wj

i , and xi
i+3 ⊕ wi

i+3 = xj
i+3 ⊕ wj

i+3. (10)

Recall that we previously ignored the part of the Equation 2 related to permute bits, namely T D (we
assumed that the four rows of a base, after being processed by the ciphertext, would map to the same
output label). However, in fact, based on different choices of permute bits, only three rows are mapped
to the same output label, while the other row is mapped to a different label with a ∆ offset. The premise
for obtaining the relation Si

00 ⊕ Si
11 = Sj

00 ⊕ Sj
11 is that the first and fourth rows of each base are mapped

to the same output label, which corresponds to the permute bits (a, b) ∈ {(0, 1), (1, 0)}. Nevertheless, if
the permute bits (a, b) ∈ {(0, 0), (1, 1)}, then the first and fourth rows of each base will be mapped to two
different output labels. In this case, the relation we obtain is Si

00 ⊕ Si
11 ⊕ ∆(i) = Sj

00 ⊕ Sj
11 ⊕ ∆(j). In Si

00,
Si
11, Sj

00, and Sj
11, the coefficients related to ∆(i) are wi

i , w
i
i+3, wj

i , and wj
i+3. Therefore, if the permute bits

(a, b) ∈ {(0, 1), (1, 0)}, then we have wi
i ⊕wi

i+3⊕wj
i ⊕wj

i+3 = 0. On the other hand, if (a, b) ∈ {(0, 0), (1, 1)},
then we have wi

i ⊕ wi
i+3 ⊕ wj

i ⊕ wj
i+3 = 1.

From Equation 10, we can derive xi
i⊕xi

i+3⊕xj
i ⊕xj

i+3 = wi
i⊕wi

i+3⊕wj
i ⊕wj

i+3. If the evaluator receives
color bits (α, β) = (0, 0), then she will obtain the value of xi

i⊕xi
i+3⊕x

j
i⊕x

j
i+3. Based on whether this value is

0 or 1, the evaluator can distinguish whether the permute bits belong to {(0, 1), (1, 0)} or {(0, 0), (1, 1)}.

It is known that the first base and the second base satisfy ⟨P 1,M1⟩ = ⟨P 2,M2⟩. According to Lemma 4,
we have P 1 ̸= P 2. Since P 1,P 2 ∈ U = {(1, 1, 0, 0)⊤, (1, 0, 1, 0)⊤, (1, 0, 0, 1)⊤}, there are a total of 6 potential
values for (P 1,P 2). Due to the randomness of permute bits, where any row of the base corresponds to
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outputting TRUE with a probability of 1/4, the 6 potential cases have symmetry. Therefore, we only need to
analyze one of them.

Lemma 5. If P 1 = (1, 1, 0, 0)⊤ and P 2 = (1, 0, 1, 0)⊤, then the garbling scheme does not possess the property of
privacy.

Proof. As indicated in Table 5, the intersection of the first and second rows of the table is only TYPE-3.
This means that if ⟨P 1,M1⟩ = ⟨P 2,M2⟩ holds true, then the hash-query-type for the first base must be
TYPE-1 + TYPE-3, and for the second base, it must be TYPE-2 + TYPE-3. The further explanation is that if the
hash-query-type for the first base is TYPE-1 + TYPE-3, then ⟨P 1,M1⟩ is left only with TYPE-3-hash-query.
Therefore, ⟨P 2,M2⟩must also be a TYPE-3-hash-query, and this is only possible when the hash-query-type
for the second base is TYPE-2 + TYPE-3. If we disregard T D, then we have the relationship

S1
00 ⊕ S1

01 = S2
00 ⊕ S2

10. (11)

Next, we will shift our focus to the correlation between the first base and third base, namely ⟨Q1,M1⟩ =
⟨Q3,M3⟩. Similarly, according to Lemma 4, we have Q1 ̸= Q3. Note that we have determined the hash-
query-type of the first base to be TYPE-1 + TYPE-3. We discuss the following three scenarios based on the
different values of Q1:

1. Q1 = (1, 1, 0, 0)⊤: In this case, P 1 = Q1, therefore we can obtain that ⟨P 2,M2⟩ = ⟨Q3,M3⟩. Since
⟨Q1,M1⟩ is a TYPE-3-hash-query, ⟨Q3,M3⟩ is also a TYPE-3-hash-query. According to Table 5, the
hash-query-type of the third base is TYPE-2 + TYPE-3, and Q3 = (1, 0, 1, 0)⊤. Therefore, we arrive at
P 2 = Q3, but according to Lemma 4, this is not feasible.

2. Q1 = (1, 0, 1, 0)⊤: In this case, ⟨Q1,M1⟩ is a (TYPE-1 + TYPE-3)-hash-query, but we cannot find a
Q3 ̸= Q1 such that ⟨Q3,M3⟩ is also of the same type.

3. Q1 = (1, 0, 0, 1)⊤: Similarly, according to Table 5, we can obtain that the hash-query-type of the
third base is TYPE-1 + TYPE-2, and Q3 = (1, 0, 1, 0)⊤. If we do not consider T D, then we have the
relationship

S1
00 ⊕ S1

11 = S3
00 ⊕ S3

10. (12)

This is the most complex scenario, and next, we will focus on analyzing this case in detail.

Combining Equations 7, 11, and 12, we can derive the following equation

S1
00 ⊕ S2

00 ⊕ S3
00 = S1

10 ⊕ S2
10 ⊕ S3

10 ⊕∆(1).

According to Equations 3 and 5, by comparing the coefficients of the input label A(1)
0 , we can obtain

x1
1 ⊕ x2

1 ⊕ x3
1 = z11 ⊕ z21 ⊕ z31 . (13)

Previously, we disregarded T D, meaning we ignored the impact of permute bits. Now it’s time to
consider it. If the permute bits (a, b) ∈ {(0, 0), (1, 0)}, then the following equation holds

S1
00 ⊕ S2

00 ⊕ S3
00 = S1

10 ⊕ S2
10 ⊕ S3

10. (14)

However, if the permute bits (a, b) ∈ {(0, 1), (1, 1)}, we need to modify it to

S1
00 ⊕ S2

00 ⊕ S3
00 = S1

10 ⊕ S2
10 ⊕ S3

10 ⊕∆(1) ⊕∆(2) ⊕∆(3). (15)

Finally, we consider the coefficients related to ∆(1) in Equations 14 and 15. If the permute bits (a, b) ∈
{(0, 0), (1, 0)}, then z11 ⊕ z21 ⊕ z31 = 0. If the permute bits (a, b) ∈ {(0, 1), (1, 1)}, then z11 ⊕ z21 ⊕ z31 = 1. If the
evaluator receives color bits (α, β) = (0, 0), then in conjunction with Equation 13, it becomes apparent that
such a garbling scheme does not satisfy privacy.
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Interestingly, the proof approach we use for Lemmas 3, 4, and 5 is similar. Specifically, we first derive the
relationship E1 satisfied by Su

ij , where i, j ∈ {0, 1} and u ∈ [3], which is related to permute bits. Based on this
E1, we can deduce the relationship E2 that the coefficients of the input labels composing Su

ij need to satisfy,
and this relationship is independent of permute bits. Additionally, from E1, we can deduce a relationship
E3 related to ∆, which is dependent on permute bits. Finally, the evaluator have the coefficients of the
corresponding input labels based on her row’s Su

αβ , and combine E2 and E3 to obtain partial information
about permute bits.

Therefore, we can arrive at the following claim:

Claim 1. If a secure garbling scheme is composed of 3 bases and can be represented by a linear equation system as
shown in Equation 2, then it requires at least 5/3 · κ+O(1) bits of ciphertext length for garbling an AND gate.

Proof. From the previous proofs, it is known that if the length of vector G is 4, consisting of G0, G1, G2, G3,
then such a garbling scheme will not meet privacy requirement.

It is feasible to achieve a ciphertext length of 5/3·κ+O(1) bits. This means that the first and second bases
have a correlation, while the third base is independent, not correlated with the first two bases. Therefore,
for one column taken from the first base and one from the second base, a 3-bit sub-ciphertext is needed.
According to Theorem 1, for one column in the third base, only a 2-bit sub-ciphertext is required. Hence,
each processing step needs a 5-bit sub-ciphertext. With a total of κ/3 operations, the required ciphertext
length is 5/3 · κ+O(1) bits.

Furthermore, we can observe that if one base correlates with multiple subsequent bases, it results in an
insecure garbling scheme. In other words, a base should at most correlate with only one subsequent base in
accordance with Definition 2. Finally, combining this with Theorem 3, we can conclude the proof.

D.6 An Attack on Sliced Garbling

In a recent work by Ashur et al. [AHS24], they showed an extension of [RR21] for garbling a special 3-input
gate x ∧ (y ⊕ z), utilizing three bases (in our terminology). Their construction achieved a ciphertext length
of only 4κ/3. By specifically setting z to 0, they obtained a scheme to garble the 2-input AND gate, only
requiring ciphertext length of 4κ/3.

At first glance, their result might not appear contradictory to the impossibility stated in our Theorem
4, as they are dealing with a specific structure of a 3-input gate. However, setting z = 0 just implies
introducing additional constant in the proof of our theorem, which does not affect the conclusion we have
drawn. Therefore, their work is indeed in contradiction with our result. Actually, there exists a gap between
their construction and their security proof. In their construction, they claimed that the linear equation
system is solvable, but this does not necessarily imply that the evaluator’s marginal view is independent of
the (secret) permute bits. Employing the same proof method in our Theorem 4, it can be directly concluded
that their garbling scheme for the 3-input gate fails to meet privacy requirement. This implies that the
evaluator can infer some information about the true values of wires during the evaluation process.

Next, we provide a detailed description of the attack on their scheme. As before, the scheme can be
expressed as a system of linear equations, as depicted in Equation 16. We assume that the labels for the
three input wires are (A0, A1), (B0, B1), and (C0, C1), while the labels for the output wire are (D0, D1). We
also employ the parameters they provided in Appendix A. (Although there are a total of 24 rows in the
system, for simplicity, we include only the first 9 rows.)
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1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 1
0 1 0 0 0 1 1
0 0 1 0 0 1 1
1 0 0 0 1 0 1
0 1 0 0 1 0 1
0 0 1 1 0 0 1

...
...

...
...

...
...

...





D(1)

D(2)

D(3)

G0

G1

G2

G3


=



1 0 1 0 0 0 1 0
0 0 1 0 1 0 1 0
1 0 0 0 1 0 1 0
1 0 1 0 0 0 0 1
0 0 1 0 0 1 0 1
1 0 0 0 0 1 0 1
1 0 0 1 0 0 0 1
0 0 0 1 1 0 0 1
1 0 0 0 1 0 0 1

...
...

...
...

...
...

...
...





H(A0)
H(A1)
H(B0)
H(B1)
H(C0)
H(C1)

H(A0 ⊕B0 ⊕ C0)
H(A0 ⊕B0 ⊕ C1)


⊕R



A
(1)
0

A
(2)
0

A
(3)
0

B
(1)
0

B
(2)
0

B
(3)
0

C
(1)
0

C
(2)
0

C
(3)
0

∆(1)

∆(2)

∆(3)



⊕ T

∆(1)

∆(2)

∆(3)

 (16)

The matrix T ∈ GF(2)24×3 depends on the permute bits (a, b, c). We use 03×3 to represent the 3× 3 zero
matrix, and I3 to represent the 3× 3 identity matrix. To show the attack, we only need to focus on the first
9 rows of T (hightlighted in red fonts).

1. If permute bits (a, b, c) = (0, 0, 0), then T = [03×3 03×3 03×3 03×3 03×3 I3 I3 03×3]
⊤;

2. If permute bits (a, b, c) = (0, 0, 1), then T = [03×3 03×3 03×3 03×3 I3 03×3 03×3 I3]⊤;
3. If permute bits (a, b, c) = (0, 1, 0), then T = [03×3 03×3 03×3 03×3 I3 03×3 03×3 I3]⊤;
4. If permute bits (a, b, c) = (0, 1, 1), then T = [03×3 03×3 03×3 03×3 03×3 I3 I3 03×3]

⊤;
5. If permute bits (a, b, c) = (1, 0, 0), then T = [03×3 I3 I3 03×3 03×3 03×3 03×3 03×3]

⊤;
6. If permute bits (a, b, c) = (1, 0, 1), then T = [I3 03×3 03×3 I3 03×3 03×3 03×3 03×3]

⊤;
7. If permute bits (a, b, c) = (1, 1, 0), then T = [I3 03×3 03×3 I3 03×3 03×3 03×3 03×3]

⊤;
8. If permute bits (a, b, c) = (1, 1, 1), then T = [03×3 I3 I3 03×3 03×3 03×3 03×3 03×3]

⊤.

It is clear that when a = 0, the first 9 rows of matrix T are entirely composed of zeros, while for a = 1,
they are not. Recall that the matrix R is in GF(2)24×12. We choose an alternative representation to express
certain rows of the matrix R:

1-st row of R : x1A
(1)
0 ⊕ x2A

(2)
0 ⊕ x3A

(3)
0 ⊕ x4B

(1)
0 ⊕ x5B

(2)
0 ⊕ x6B

(3)
0 ⊕ x7C

(1)
0 ⊕ x8C

(2)
0 ⊕ x9C

(3)
0

2-nd row of R : y1A
(1)
0 ⊕ y2A

(2)
0 ⊕ y3A

(3)
0 ⊕ y4B

(1)
0 ⊕ y5B

(2)
0 ⊕ y6B

(3)
0 ⊕ y7C

(1)
0 ⊕ y8C

(2)
0 ⊕ y9C

(3)
0

7-th row of R : z1A
(1)
0 ⊕ z2A

(2)
0 ⊕ z3A

(3)
0 ⊕ z4(B

(1)
0 ⊕∆

(1)
) ⊕ z5(B

(2)
0 ⊕∆

(2)
) ⊕ z6(B

(3)
0 ⊕∆

(3)
) ⊕ z7C

(1)
0 ⊕ z8C

(2)
0 ⊕ z9C

(3)
0

8-th row of R : w1A
(1)
0 ⊕ w2A

(2)
0 ⊕ w3A

(3)
0 ⊕ w4(B

(1)
0 ⊕∆

(1)
)⊕ w5(B

(2)
0 ⊕∆

(2)
)⊕ w6(B

(3)
0 ⊕∆

(3)
)⊕ w7C

(1)
0 ⊕ w8C

(2)
0 ⊕ w9C

(3)
0 ,

and coefficients xi, yi, zi, wi ∈ {0, 1}, for i ∈ [9].
Interestingly, by XORing rows 1, 2, 7, and 8 of the Equation 16, we observe that all terms related to the

hash queries and ciphertext Gi cancel out. When permute bit a = 0, the result of the XORing is

(x1 ⊕ y1 ⊕ z1 ⊕w1)A
(1)
0 ⊕ · · · ⊕ (x4 ⊕ y4 ⊕ z4 ⊕w4)B

(1)
0 ⊕ (z4 ⊕w4)∆

(1) ⊕ · · · ⊕ (x9 ⊕ y9 ⊕ z9 ⊕w9)C
(3)
0 = 0.

Therefore, we can conclude that

x4 ⊕ y4 ⊕ z4 ⊕ w4 = 0 and z4 ⊕ w4 = 0.

However, if permute bit a = 1, then the XORing result is

(x1⊕y1⊕z1⊕w1)A
(1)
0 ⊕· · ·⊕(x4⊕y4⊕z4⊕w4)B

(1)
0 ⊕(z4⊕w4)∆

(1)⊕· · ·⊕(x9⊕y9⊕z9⊕w9)C
(3)
0 = ∆(1)⊕∆(2).

So we have
x4 ⊕ y4 ⊕ z4 ⊕ w4 = 0 and z4 ⊕ w4 = 1.

If the evaluator’s input labels are (A0, B0, C0), she will obtain all coefficients xi and yi (this represents
her marginal view). Depending on whether x4 ⊕ y4 equals 0, the evaluator can deduce if z4 ⊕ w4 (which
equals x4 ⊕ y4) is also 0, thereby revealing the permute bit a and breaching the privacy requirement.
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Remark 9. Consequently, the challenge of achieving garbling for the 2-input AND gate with ciphertext less
than 1.5κ bits still remains an open question. However, we believe that the impossibility result in [AHS24]
is still meaningful. The authors have demonstrated that, for garbling an AND gate with fan-in greater than
2, simply introducing additional bases following the approach outlined in [RR21] is futile. We remark that
our Theorem 4 and their impossibility result do not overlap and can complement each other.

D.7 Detailed Description of Construction #3

Recall that we introduce two bases as follows:

the left base︷ ︸︸ ︷
H(A0)⊕ H(B0)⊕ S1

00

H(A0)⊕ H(B1)⊕ S1
01

H(A1)⊕ H(B0)⊕ S1
10

H(A1)⊕ H(B1)⊕ S1
11

the right base︷ ︸︸ ︷
H(A0)⊕ H(A0 ⊕B0)⊕ S2

00

H(A0)⊕ H(A0 ⊕B1)⊕ S2
01

H(A1)⊕ H(A1 ⊕B0)⊕ S2
10

H(A1)⊕ H(A1 ⊕B1)⊕ S2
11

The output length of H(·) is κ/2 bits18. Similarly, each Su
ij (where i, j ∈ {0, 1}, u ∈ {1, 2}) also has a length

of κ/2 bits. Each Su
ij represents a linear combinations of values derived from the input labels, potentially

through operations like extracting κ/2 bits from the input labels.
In the definition of MODEL-3′, we highlight that the generation of each base may depend on permute

bits. This holds true for our construction as well. Therefore, we will categorize our discussion into four
cases based on the different permute bits.

Case1 A0, B0 correspond to FALSE

In this case, following the order of the color bits, the fourth row of each base corresponds to the output
of TRUE. If we set S1

00⊕S1
10 = S2

01⊕S2
10, then the XOR of the 1-st and 3-rd rows of the left base will be equal

to the XOR of the 2-nd and 3-rd rows of the right base, namely

H(A0)⊕ H(B0)⊕ S1
00 ⊕ H(A1)⊕ H(B0)⊕ S1

10

= H(A0)⊕ H(A0 ⊕B1)⊕ S2
01 ⊕ H(A1)⊕ H(A1 ⊕B0)⊕ S2

10

For each operation, we need to select one column from the left base and one from the right base, and
process them together. We use (M0

00[t],M
0
01[t],M

0
10[t], M

0
11[t]) to denote the first column, and (M1

00[t],M
1
01[t],

M1
10[t],M

1
11[t]) to denote the second column.

If M0
00[t] = M0

10[t], then based on the above equation, we have M1
01[t] = M1

10[t]. In this case, the bit
requiring flipping in the first column would either be M0

01[t] or M0
11[t], whereas in the second column, the

bit requiring flipping would either be M1
00[t] or M1

11[t]. Conversely, if M0
00[t] ̸= M0

10[t] then we must have
M1

01[t] ̸= M1
10[t]. In this situation, the bit requiring flipping in the first column would either be M0

00[t] or
M0

10[t], whereas in the second column, the position requiring flipping would either be M1
01[t] or M1

10[t]. In
summary, Table 6 shows the corresponding bit-flip positions between the first and second columns.

Table 6: The corresponding bit-flip positions between two columns in Case1 and Case2.

the first column the second column

(0, 0) (0, 1) or (1, 0)
(0, 1) (0, 0) or (1, 1)
(1, 0) (0, 1) or (1, 0)
(1, 1) (0, 0) or (1, 1)

Based on the above table, two columns can be processed with a 3-bit ciphertext. For example, using
ciphertext (0, 0, 0) indicates that in the first column, the bit to be flipped is M0

00[t], and in the second column,

18For consistency with MODEL-3′, we might assume H(·) to have an output length of κ bits. By applying a Contract function, we
can reduce this to κ/2 bits.
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the bit to be flipped is M1
01[t]. Utilizing (0, 0, 1) indicates that in the first column, the bit to be flipped is

M0
00[t], while in the second column, the bit to be flipped is M1

10[t].

Case2 - Case4

We provide a brief description for Case2, Case3, and Case4:

• Case2: Both A0 and B1 correspond to FALSE. Setting S1
01⊕S1

11 = S2
00⊕S2

11, then the positions requiring
flipping on the two columns are specified in Table 6.

• Case3: Both A1 and B0 correspond to FALSE. By setting S1
00⊕S1

10 = S2
00⊕S2

11, the positions that need
flipping on the two columns are specified in Table 7.

• Case4: Both A1 and B1 correspond to FALSE. If we set S1
01 ⊕ S1

11 = S2
01 ⊕ S2

10, the required positions
for flipping on the two columns are outlined in Table 7.

Table 7: The corresponding bit-flip positions between two columns in Case3 and Case4.

the first column the second column

(0, 0) (0, 0) or (1, 1)
(0, 1) (0, 1) or (1, 0)
(1, 0) (0, 0) or (1, 1)
(1, 1) (0, 1) or (1, 0)

Up to this point, we have remained two unresolved problems:

1. There isn’t a flip method that can cover every case. We illustrate with an example, when the ciphertext
is (0, 0, 0), in Case1 and Case2, the bit in the second column that needs to be flipped is at position (0, 1).
However, in Case3 and Case4, the bit needing flipping is at position (0, 0). Due to privacy concerns,
the evaluator cannot discern which case she is in, therefore she is uncertain about flipping the bit at
position (0, 0) or (0, 1).

2. We have detailed the relationships that the Su
ij (where i, j ∈ {0, 1}, u ∈ {1, 2}) must satisfy in different

cases. However, we have not provided the specific values for each Su
ij that would satisfy both the

privacy and correctness requirements.

We will address these issues one by one.

D.7.1 A Unified Flip Method

For Case1 and Case2, we will flip the two columns according to Table 6. Fortunately, for Case3 and Case4,
if we XOR the third and fourth rows of the right base with 1κ/2, then we can also flip according to Table 6
instead of Table 7.

We delve deeper into the reason behind this. For example, in Case3 described in the previous section,
we have S1

00 ⊕ S1
10 = S2

00 ⊕ S2
11. This means the XOR of the first and third rows of the left base is equal to

the XOR of the first and fourth rows of the right base. If M0
00[t] = M0

10[t], then M1
00[t] = M1

11[t]. As a result,
the flip position for the first column is either (0, 1) or (1, 1), and the flip position for the second column is
either (0, 1) or (1, 0). However, if the third and fourth rows of the right base are XORed with 1κ/2, then the
original M1

00[t] = M1
11[t] will change to M1

00[t] ̸= M1
11[t], meaning the flip position for the second column

becomes either (0, 0) or (1, 1). The same analysis can be applied to other situations. Therefore, we can flip
according to Table 6 in both Case3 and Case4.

However, we have not resolved the issue because if the garbler informs the evaluator to XOR the third
and fourth rows of the right base with 1κ/2, it will breach privacy. We can address this issue by introducing
some obfuscation, as detailed in Table 8.

For both Case1 and Case2, actually there are two choices available: either keep all rows of the right
base unchanged or XOR all rows of the right base with 1κ/2. Similarly, for Case3 and Case4, there are also
two choices. We previously discussed the first choice, where the third and fourth rows of the right base are
XORed with 1κ/2, but it’s equally feasible to XOR the first and second rows of the right base with 1κ/2. It is

48



Table 8: XOR operation choices for the right base in different cases.

color bits Case1 & Case2 Case3 & Case4
Choice1 Choice2 Choice1 Choice2

(0, 0) 0 1κ/2 0 1κ/2

(0, 1) 0 1κ/2 0 1κ/2

(1, 0) 0 1κ/2 1κ/2 0
(1, 1) 0 1κ/2 1κ/2 0

straightforward to verify that regardless of which choice is taken from Table 8, two columns can be flipped
according to the rules outlined in Table 6. The garbler will randomly choose one of the two choices based
on the permute bits, that is, depending on which case he is in.

Finally, we can employ the technique from [KKS16] to ensure privacy. Specifically, the garbler uses four
control bits to instruct the evaluator whether a given row should be XORed with 1κ/2. For example, a
control bit of 0 indicates that the row does not need to be XORed with 1κ/2, while a value of 1 indicates
the opposite. If the garbler opts for the first choice in Case3, then the four control bits are (0, 0, 1, 1). The
garbler can encrypt each control bit using the least significant bit of each random oracle output. For clarity,
the garbler might use the last bit of H(A0, B0), H(A0, B1), H(A1, B0), and H(A1, B1) to encrypt the four
control bits respectively. The evaluator can decrypt and retrieve only one of these control bits. As illustrated
in Table 8, regardless of what color bits the evaluator sees and regardless of which case the evaluator falls
into, the probability that a row needs to be XORed with 1κ/2 remains at 1/2. Therefore, the evaluator cannot
distinguish which case she is in.

Up to this point, the first problem has been resolved. Only one problem remains, which is specify the
specific values for Su

ij , where i, j ∈ {0, 1}, u ∈ {1, 2}.

D.7.2 Equation Solving

To ensure compatibility with free-XOR, the two output labels should satisfy C0 ⊕ C1 = ∆, where ∆ is a
global offset. Let ∆(1) denotes all the odd-indexed bits of ∆ with a length of κ/2, and ∆(2) represents all the
even-indexed bits of ∆, also of length κ/2.

As discussed in Section 4.3, the compatibility with free-XOR requires the XOR among the four rows of
the base to equal ∆⊕1κ. In this section’s construction, the t-th column from the left base and the t-th column
from the right base are taken during the t-th operation. This results in the (2t− 1)-th and (2t)-th bits of the
output label. Consequently, the XOR among the four rows of the left base should be ∆(1)⊕ 1κ/2, and for the
right base, it should be ∆(2) ⊕ 1κ/2. All random oracle queries will cancel out, simplifying the equations to:

S1
00 ⊕ S1

01 ⊕ S1
10 ⊕ S1

11 = ∆(1) ⊕ 1κ/2

S2
00 ⊕ S2

01 ⊕ S2
10 ⊕ S2

11 = ∆(2) ⊕ 1κ/2

In Table 9, we detail the conditions Su
ij must satisfy in various cases.

The garbler cannot directly disclose to the evaluator the specific value of each Su
ij , as doing so would

enable the evaluator to determine which case she is in based on the relationships between different Su
ij ,

thereby compromising privacy. As before, we once again utilize the idea from [KKS16] to address this
challenge. Specifically, the garbler encrypts the composition of each Su

ij using random oracle outputs. After
obtaining Aα and Bβ , the evaluator can only decrypt specific control bits to retrieve the values of S1

αβ and
S2
αβ . We must ensure that from this marginal view, the evaluator cannot deduce the permute bits. In other

words, S1
αβ and S2

αβ must appear independent of the permute bits.
Determining the specific value of each Su

ij is a mathematical challenge for which we seek solutions. We

use A
(1)
0 to denote all the odd-indexed bits of the label A0, with a length of κ/2, and A

(2)
0 to represent all

the even-indexed bits of the label A0. Similarly, we define A
(1)
1 , A(2)

1 , B(1)
0 , B(2)

0 , B(1)
1 , and B

(2)
1 . Based on

the free-XOR requirements, it can be inferred that A(1)
0 ⊕ A

(1)
1 = B

(1)
0 ⊕ B

(1)
1 = ∆(1) and A

(2)
0 ⊕ A

(2)
1 =
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Table 9: The conditions that Su
ij (where i, j ∈ {0, 1}, u ∈ {1, 2}) need to satisfy.

conditions for Su
ij

Case1 S1
00 ⊕ S1

10 = S2
01 ⊕ S2

10

Case2 S1
01 ⊕ S1

11 = S2
00 ⊕ S2

11

Case3 S1
00 ⊕ S1

10 = S2
00 ⊕ S2

11

Case4 S1
01 ⊕ S1

11 = S2
01 ⊕ S2

10

All Cases S1
00 ⊕ S1

01 ⊕ S1
10 ⊕ S1

11 = ∆(1) ⊕ 1κ/2

S2
00 ⊕ S2

01 ⊕ S2
10 ⊕ S2

11 = ∆(2) ⊕ 1κ/2

B
(2)
0 ⊕B

(2)
1 = ∆(2). For simplicity, we assume the specific form of each Su

ij to be as follows:

S1
00 = x00A

(1)
0 ⊕ x01A

(2)
0 ⊕ x02B

(1)
0 ⊕ x03B

(2)
0 ⊕ 1κ/2 x00, x01, x02, x03 ∈ {0, 1}

S2
00 = x10A

(1)
0 ⊕ x11A

(2)
0 ⊕ x12B

(1)
0 ⊕ x13B

(2)
0 ⊕ 1κ/2 x10, x11, x12, x13 ∈ {0, 1}

S1
01 = x20A

(1)
0 ⊕ x21A

(2)
0 ⊕ x22B

(1)
1 ⊕ x23B

(2)
1 x20, x21, x22, x23 ∈ {0, 1}

S2
01 = x30A

(1)
0 ⊕ x31A

(2)
0 ⊕ x32B

(1)
1 ⊕ x33B

(2)
1 x30, x31, x32, x33 ∈ {0, 1}

S1
10 = x40A

(1)
1 ⊕ x41A

(2)
1 ⊕ x42B

(1)
0 ⊕ x43B

(2)
0 x40, x41, x42, x43 ∈ {0, 1}

S2
10 = x50A

(1)
1 ⊕ x51A

(2)
1 ⊕ x52B

(1)
0 ⊕ x53B

(2)
0 x50, x51, x52, x53 ∈ {0, 1}

S1
11 = x60A

(1)
1 ⊕ x61A

(2)
1 ⊕ x62B

(1)
1 ⊕ x63B

(2)
1 x60, x61, x62, x63 ∈ {0, 1}

S2
11 = x70A

(1)
1 ⊕ x71A

(2)
1 ⊕ x72B

(1)
1 ⊕ x73B

(2)
1 x70, x71, x72, x73 ∈ {0, 1}

Next, we only need to determine the unknown coefficients above, namely xij , where 0 ≤ i ≤ 7 and
0 ≤ j ≤ 3. Like [RR21], through computer search, we obtain four solutions for each case, as shown in
Table 10, 11, 12, and 13.

Table 10: Solutions for Case1.

Choice1 Choice2 Choice3 Choice4

(x00, x01, x02, x03) (1, 1, 0, 1) (0, 1, 0, 0) (1, 0, 1, 0) (0, 0, 1, 1)
(x10, x11, x12, x13) (0, 0, 0, 1) (0, 1, 1, 0) (1, 1, 1, 1) (1, 0, 0, 0)
(x20, x21, x22, x23) (1, 0, 0, 0) (0, 0, 0, 1) (1, 1, 1, 1) (0, 1, 1, 0)
(x30, x31, x32, x33) (0, 1, 1, 0) (0, 0, 0, 1) (1, 0, 0, 0) (1, 1, 1, 1)
(x40, x41, x42, x43) (0, 0, 1, 0) (1, 0, 1, 1) (0, 1, 0, 1) (1, 1, 0, 0)
(x50, x51, x52, x53) (1, 0, 0, 1) (1, 1, 1, 0) (0, 1, 1, 1) (0, 0, 0, 0)
(x60, x61, x62, x63) (0, 1, 1, 1) (1, 1, 1, 0) (0, 0, 0, 0) (1, 0, 0, 1)
(x70, x71, x72, x73) (1, 1, 1, 0) (1, 0, 0, 1) (0, 0, 0, 0) (0, 1, 1, 1)

After the garbler has randomly selected the permute bits and determined the specific case he is in, he
processes to randomly choose one of the four available choices within that case. The garbler then encrypts
each xij , where 0 ≤ i ≤ 7 and 0 ≤ j ≤ 3, and sends them to the evaluator. Once the evaluator obtains Aα

and Bβ , she can decrypt only 8 of these bits, allowing her to determine the values of S1
αβ and S2

αβ .
A noteworthy observation is that every combination of S1

αβ and S2
αβ appears in any given case19. For

example, the combination of S1
01 and S2

01 from Choice1 in Case1 is also found in Choice4 of Case2, Choice3 of

19Although the total number of xij is 32, implying the need for a 32-bit additional ciphertext to be transmitted, this can be reduced
to just 8 bits based on our observation. This is due to the fact that there are only 4 possible values for (S1

αβ , S
2
αβ), with each value

being representable using just 2 bits. Considering that there are 4 potential values for (α, β), a total of only 8 bits are necessary.
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Table 11: Solutions for Case2.

Choice1 Choice2 Choice3 Choice4

(x00, x01, x02, x03) (1, 1, 0, 1) (0, 1, 0, 0) (1, 0, 1, 0) (0, 0, 1, 1)
(x10, x11, x12, x13) (0, 0, 0, 1) (0, 1, 1, 0) (1, 1, 1, 1) (1, 0, 0, 0)
(x20, x21, x22, x23) (0, 1, 1, 0) (1, 1, 1, 1) (0, 0, 0, 1) (1, 0, 0, 0)
(x30, x31, x32, x33) (1, 1, 1, 1) (1, 0, 0, 0) (0, 0, 0, 1) (0, 1, 1, 0)
(x40, x41, x42, x43) (0, 1, 0, 1) (1, 1, 0, 0) (0, 0, 1, 0) (1, 0, 1, 1)
(x50, x51, x52, x53) (0, 1, 1, 1) (0, 0, 0, 0) (1, 0, 0, 1) (1, 1, 1, 0)
(x60, x61, x62, x63) (1, 1, 1, 0) (0, 1, 1, 1) (1, 0, 0, 1) (0, 0, 0, 0)
(x70, x71, x72, x73) (1, 0, 0, 1) (1, 1, 1, 0) (0, 1, 1, 1) (0, 0, 0, 0)

Table 12: Solutions for Case3.

Choice1 Choice2 Choice3 Choice4

(x00, x01, x02, x03) (1, 1, 0, 1) (0, 1, 0, 0) (1, 0, 1, 0) (0, 0, 1, 1)
(x10, x11, x12, x13) (0, 0, 0, 1) (0, 1, 1, 0) (1, 1, 1, 1) (1, 0, 0, 0)
(x20, x21, x22, x23) (1, 1, 1, 1) (0, 1, 1, 0) (1, 0, 0, 0) (0, 0, 0, 1)
(x30, x31, x32, x33) (1, 0, 0, 0) (1, 1, 1, 1) (0, 1, 1, 0) (0, 0, 0, 1)
(x40, x41, x42, x43) (1, 0, 1, 1) (0, 0, 1, 0) (1, 1, 0, 0) (0, 1, 0, 1)
(x50, x51, x52, x53) (1, 1, 1, 0) (1, 0, 0, 1) (0, 0, 0, 0) (0, 1, 1, 1)
(x60, x61, x62, x63) (1, 0, 0, 1) (0, 0, 0, 0) (1, 1, 1, 0) (0, 1, 1, 1)
(x70, x71, x72, x73) (0, 1, 1, 1) (0, 0, 0, 0) (1, 0, 0, 1) (1, 1, 1, 0)

Table 13: Solutions for Case4.

Choice1 Choice2 Choice3 Choice4

(x00, x01, x02, x03) (1, 1, 0, 1) (0, 1, 0, 0) (1, 0, 1, 0) (0, 0, 1, 1)
(x10, x11, x12, x13) (0, 0, 0, 1) (0, 1, 1, 0) (1, 1, 1, 1) (1, 0, 0, 0)
(x20, x21, x22, x23) (0, 0, 0, 1) (1, 0, 0, 0) (0, 1, 1, 0) (1, 1, 1, 1)
(x30, x31, x32, x33) (0, 0, 0, 1) (0, 1, 1, 0) (1, 1, 1, 1) (1, 0, 0, 0)
(x40, x41, x42, x43) (1, 1, 0, 0) (0, 1, 0, 1) (1, 0, 1, 1) (0, 0, 1, 0)
(x50, x51, x52, x53) (0, 0, 0, 0) (0, 1, 1, 1) (1, 1, 1, 0) (1, 0, 0, 1)
(x60, x61, x62, x63) (0, 0, 0, 0) (1, 0, 0, 1) (0, 1, 1, 1) (1, 1, 1, 0)
(x70, x71, x72, x73) (0, 0, 0, 0) (0, 1, 1, 1) (1, 1, 1, 0) (1, 0, 0, 1)
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Case3, and Choice2 of Case4. As a result, the evaluator, based on the values of S1
01 and S2

01, cannot deduce
which case she is in.

In Appendix D.8, we provide a formal description and security proof for this construction.

D.8 Security Proof of Construction #3

For the construction presented in Section 6.4, we provide a formal description and security proof.
Formal Description. Our garbling scheme is formally described in Figures 11 to 15. The main body of the
algorithm Gb, along with En and De, is essentially consistent with the description in Appendix B.4. The
only point to note is that in the Gb algorithm, the definition of H′′ used for producing decoding information
is {0, 1}κ × Z→ {0, 1}κ.

In the subroutine algorithm MajVote, the Sample function is first called, returning S and P . Specifically,
S is a certain combination of input labels, which we have discussed in detail in Appendix D.7. Another
value P addresses the inconsistency of bit-flipping rules between (Case1,Case2) and (Case3,Case4). Its
potential values are shown in Table 8. The Sample function randomly selects from these possible values.
Following that, two bases are generated based on S and P . In this context, the hash function H we employ
is {0, 1}κ × Z → {0, 1}κ/2. Next, for the first base, we employ the majority voting as usual to produce
one bit of the output label and a ciphertext of two bits indicating which position needs to be flipped. As
observed from Table 6, if the position to be flipped in the first column is determined, there are only two
possible scenarios for the position to be flipped in the second column. Thus, for the column retrieved from
the second base, we only need to use the first bit of the flipped position to indicate which position requires
flipping. Lastly, it is imperative to encrypt S and P before transmitting them to the evaluator. The rationale
behind this is that if the evaluator gains full knowledge of S and P , it would violate privacy (a point we
have already discussed in detail). We employ another hash function, H′ : {0, 1}2κ×Z→ {0, 1}3, to perform
one-time pad encryption. Given that the evaluator possesses input labels Aα and Bβ , she can only decrypt
the (2α+ β + 1)-th row.

For the evaluation algorithm Ev, the initial step involves decrypting to obtain partial information of S
and P . Utilizing this partial information, the evaluator can reconstruct a row of the left base and a row
of the right base. Next, the evaluator can perform flipping according to the rules laid out in Table 6. For
a given iteration, suppose the ciphertext is (g0, g1, g2). The position to be flipped in the first column is
given by g0||g1. Based on Table 6, we can deduce that the position to be flipped in the second column is
g2||g1 ⊕ g2 ⊕ 1.

It should be noted that in our scheme description, we only considered reducing the ciphertext length
required to garble an AND gate to 1.5κ+O(1). We did not address the minimization of hash queries. Indeed,
simple optimizations can be implemented. For example, we can define H as {0, 1}κ × Z → {0, 1}κ/2+3,
eliminating the need for additional H′ queries. Instead, one can simply truncate the last 3 bits of H as the
output of H′.
Security Proof. We need to define the security property that the hash function H must satisfy. Here, we no
longer employ the TCCR for naturally derived keys as in Definition 3. Instead, we utilize the randomized
TCCR (RTCCR) assumption from [RR21]. We adopt this approach for reasons similar to [RR21]; for more
details, please refer to Section 2.3 of their work.

Definition 4. LetH be a family of hash functions where each function maps {0, 1}n×Z→ {0, 1}m, RO : {0, 1}∗ →
{0, 1}n be a random oracle, L be a linear function set where each L ∈ L maps {0, 1}n → {0, 1}m, and let R be a
distribution over {0, 1}n. Sample H ← H, ∆ ← R, and define an oracle Ortccr

H,∆ (x, t, L) = H(x ⊕ ∆, t) ⊕ L(∆).
We say the H is randomized TCCR for L if, for any PPT distinguisheres D1, D2 that never repeat an oracle query to
Ortccr

H,∆ (x, t, L) on the same (x, t),∣∣∣ Pr
H,∆

[v ← AH,Ortccr
H,∆

1 ;A2(v,H) = 1]− Pr
H,RO

[v ← AH,RO
1 ;A2(v,H) = 1]

∣∣∣ is negligible.

In the above definition, the hash function H is sampled from H. Consequently, we need to make some
modifications to the scheme described in Figures 11 to 15. In the Gb algorithm, the garbler should first
sample H ← H. Then, this H is incorporated as a part of the garbled circuit F . For the evaluator, it is
necessary to extract H from F and subsequently make oracle queries.
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Garbling algorithm Gb(1κ, f):
(inputs, outputs, in, type) := f
∆← {0, 1}κ−1
∆ = ∆||1
for i = 1 to inputs :

Wi ← {0, 1}κ−1
Wi = Wi||0
πi ← {0, 1}

for i = inputs+ 1 to |f | :
(A0, B0) := (Win1(i),Win2(i))
(πA, πB) := (πin1(i), πin2(i))
if type(i) = XOR :

Wi := A0 ⊕B0

πi := πA ⊕ πB

else if type(i) = AND :
(C,Fi) := MajVote(A0, B0,∆, πA, πB , i)
πi := lsb(C)
Wi := C ⊕ πi∆

for i ∈ outputs, j ∈ {0, 1} :
dji := H′′(Wi ⊕ (j ⊕ πi)∆, i)

return (F, e = (∆,W[1,inputs], π[1,inputs]), d)

Private algorithm Sample(πA, πB):
if (πA, πB) = (0, 0) :

S ← {four choices in Table 10} // S ∈ GF(2)8×4

P ← {(0, 0, 0, 0), (1, 1, 1, 1)} // P ∈ GF(2)1×4

if (πA, πB) = (0, 1) :
S ← {four choices in Table 11}
P ← {(0, 0, 0, 0), (1, 1, 1, 1)}

if (πA, πB) = (1, 0) :
S ← {four choices in Table 12}
P ← {(0, 0, 1, 1), (1, 1, 0, 0)}

if (πA, πB) = (1, 1) :
S ← {four choices in Table 13}
P ← {(0, 0, 1, 1), (1, 1, 0, 0)}

return (S, P )

Private algorithm MajVote(A0, B0,∆, πA, πB , i):
(S, P ) := Sample(πA, πB)

Parse matrix S as


S1

00 S2
00

S1
01 S2

01

S1
10 S2

10

S1
11 S2

11

 :=



x00 x01 x02 x03

x10 x11 x12 x13

x20 x21 x22 x23

x30 x31 x32 x33

x40 x41 x42 x43

x50 x51 x52 x53

x60 x61 x62 x63

x70 x71 x72 x73


Parse P as (p00, p01, p10, p11)

Figure 11: The Gb algorithm of the Construction #3.
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M0
00

M1
00

M0
01

M1
01

M0
10

M1
10

M0
11

M1
11


:=



1 0 1 0 0 0
1 0 0 0 1 0
1 0 0 1 0 0
1 0 0 0 0 1
0 1 1 0 0 0
0 1 0 0 0 1
0 1 0 1 0 0
0 1 0 0 1 0


×


H(A0, 3i− 3)

H(A0 ⊕∆, 3i− 3)
H(B0, 3i− 2)

H(B0 ⊕∆, 3i− 2)
H(A0 ⊕B0, 3i− 1)

H(A0 ⊕B0 ⊕∆, 3i− 1)

+


S1

00 S2
00 0

S1
01 S2

01 S2
01

S1
10 S2

10 S1
10

S1
11 S2

11 S1
11 + S2

11

×



A
(1)
0

A
(2)
0

B
(1)
0

B
(2)
0

∆(1)

∆(2)


+



1
p00 ⊕ 1

0
p01
0
p10
0
p11


× 1

κ
2

for t = 1 to κ/2 :
if M0

πA||πB
[t] = M0

πA⊕1||πB
[t] = M0

πA||πB⊕1[t] :

(c0, g0||g1) := (M0
πA||πB

[t], πA ⊕ 1||πB ⊕ 1)

else if M0
πA||πB

[t] = M0
πA⊕1||πB

[t] :

(c0, g0||g1) := (M0
πA||πB

[t], πA||πB ⊕ 1)

else if M0
πA||πB

[t] = M0
πA||πB⊕1[t] :

(c0, g0||g1) := (M0
πA||πB

[t], πA ⊕ 1||πB)

else if M0
πA||πB⊕1[t] = M0

πA⊕1||πB
[t] :

(c0, g0||g1) := (M0
πA||πB

[t]⊕ 1, πA||πB)

if M1
πA||πB

[t] = M1
πA⊕1||πB

[t] = M1
πA||πB⊕1[t] :

(c1, g2) := (M1
πA||πB

[t], πA ⊕ 1)

else if M1
πA||πB

[t] = M1
πA⊕1||πB

[t] :

(c1, g2) := (M1
πA||πB

[t], πA)

else if M1
πA||πB

[t] = M1
πA||πB⊕1[t] :

(c1, g2) := (M1
πA||πB

[t], πA ⊕ 1)

else if M1
πA||πB⊕1[t] = M1

πA⊕1||πB
[t] :

(c1, g2) := (M1
πA||πB

[t]⊕ 1, πA)

(C[t], G[t]) := (c0||c1, g0||g1||g2)

Compress S into


S1
00 S2

00

S1
01 S2

01

S1
10 S2

10

S1
11 S2

11



Z00

Z01

Z10

Z11

 =


S1
00||S2

00||p00
S1
01||S2

01||p01
S1
10||S2

10||p10
S1
11||S2

11||p11

+


H′(A0, B0, i)

H′(A0, B0 ⊕∆, i)
H′(A0 ⊕∆, B0, i)

H′(A0 ⊕∆, B0 ⊕∆, i)


return (C, (G, (Z00, Z01, Z10, Z11)))

Figure 12: Continuation of the Gb algorithm. As indicated by Footnote 19, we can compress S into 8 bits.
For example, x00||x01||x02||x03||x10||x11||x12||x13 can be represented by 2 bits, namely S1

00 and S2
00.
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Evaluation algorithm Ev(F,X):
for i = inputs+ 1 to |f | :

(A,B) := (Xin1(i), Xin2(i))
(α, β) := (lsb(A), lsb(B))
if type(i) = XOR :

Xi := A⊕B
else if type(i) = AND :

(G, (Z00, Z01, Z10, Z11)) := Fi

s0||s1||p := H′(A,B, i)⊕ Zα||β
x0||x1||x2||x3||x4||x5||x6||x7 := expand s0||s1 into 8 bits
M0 := H(A, 3i− 3)⊕ H(B, 3i− 2)⊕ x0A

(1) ⊕ x1A
(2) ⊕ x2B

(1) ⊕ x3B
(2)

M1 := H(A, 3i− 3)⊕ H(A⊕B, 3i− 1)⊕ x4A
(1) ⊕ x5A

(2) ⊕ x6B
(1)⊕

x7B
(2) ⊕ p1κ/2

if α||β = 00 :
M0 = M0 ⊕ 1κ/2

M1 = M1 ⊕ 1κ/2

for t = 1 to κ/2 :
g0||g1||g2 := G[t]
Xi[t] := M0[t]||M1[t]
if g0||g1 = α||β :

Xi[t] = Xi[t]⊕ 10
if g2||g1 ⊕ g2 ⊕ 1 = α||β :

Xi[t] = Xi[t]⊕ 01
for i ∈ outputs :

Yi := Xi

return Y

Figure 13: The Ev algorithm of the Construction #3.

Encoding algorithm En(e = (∆,W, π), x):
for i = 1 to inputs :

Xi := Wi ⊕ (xi ⊕ πi)∆
return X

Figure 14: The En algorithm of the Construction #3.

Decoding algorithm De(d, Y ):
for i ∈ outputs :

if ∃ j such that dji = H′′(Yi, i) :
yi := j

else
abort

return y

Figure 15: The De algorithm of the Construction #3.
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Now, we formally prove the security of our scheme.

Theorem 9. Let H be a family of hash functions where n = κ, m = κ/2, and let L = {Lab(∆) = a∆(1) ⊕ b∆(2)}.
If H is randomized TCCR for L, and H′, H′′ are random oracles, then our construction described in Figures 11 to 15
is a secure garbling scheme.

Proof. Our proof approach is similar to that of Theorem 8. The correctness of our construction can be
directly inferred from the description in Section 6.4 and Appendix D.7. The proof of obliviousness can be
directly derived from the proof of privacy, and the proof of authenticity aligns with that of Theorem 8.
Therefore, we focus solely on proving that this construction meets the privacy requirement.

Privacy. We employ hybrid arguments to prove this property. The algorithms of the simulator Sim is
depicted in Figure 16. For each AND gate, in addition to generating 1.5κ random bits as the main ciphertext,
a constant number of random bits must also be produced as the additional ciphertext.

Simpriv(1
κ, f, y = f(x)):

(inputs, outputs, in, type) := f
(F,X)← Simobliv(1

κ, f)
Y := Ev(F,X)
for i ∈ outputs :

dyi

i := H′′(Yi, i)

dyi⊕1
i ← {0, 1}κ

return (F, X, d)

Simobliv(1
κ, f):

(inputs, outputs, in, type) := f
H← H
for i = 1 to inputs :

Ei ← {0, 1}κ
for i = inputs+ 1 to |f | :

if type(i) = XOR :
continue

else if type(i) = AND :
G← {0, 1}1.5κ
for s, t ∈ {0, 1} :

Zs||t ← {0, 1}3
Pi := (G, (Z00, Z01, Z10, Z11))

return (F = (P,H), X = E)

Figure 16: The algorithms of Sim for proof of privacy.

Hybrid1: In this hybrid, we make the following modifications to the real garbling:

• Track all active wire labels, instead of tracking labels with color bits of 0.
• Use an equivalent representation for majority voting. Assume that for the i-th AND gate’s two input

wires, the active input labels are A and B, and the permute bits are πA and πB . Next, we discuss
based on different cases:

– (πA, πB) = (0, 0): We compute the XOR of the first and second rows of the left base as T 0
0 , and the

XOR between the first row and the third row as T 0
1 :

T 0
0 :=H(B, 3i− 2)⊕ H(B ⊕∆, 3i− 2)⊕ s00A

(1) ⊕ s10A
(2) ⊕ s20B

(1) ⊕ s30B
(2) ⊕ s40∆

(1)⊕
s50∆

(2) ⊕ s601
κ/2

T 0
1 :=H(A, 3i− 3)⊕ H(A⊕∆, 3i− 3)⊕ s01A

(1) ⊕ s11A
(2) ⊕ s21B

(1) ⊕ s31B
(2) ⊕ s41∆

(1)⊕
s51∆

(2) ⊕ s611
κ/2

where each svu is determined by S and P . Similarly, we compute the XOR between the first and
second rows of the right base as T 1

0 , and the XOR between the second and third rows of the right
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base as T 1
1 :

T 1
0 :=H(A⊕B, 3i− 1)⊕ H(A⊕B ⊕∆, 3i− 1)⊕ t00A

(1) ⊕ t10A
(2) ⊕ t20B

(1) ⊕ t30B
(2)⊕

t40∆
(1) ⊕ t50∆

(2) ⊕ t601
κ/2

T 1
1 :=H(A, 3i− 3)⊕ H(A⊕∆, 3i− 3)⊕ t01A

(1) ⊕ t11A
(2) ⊕ t21B

(1) ⊕ t31B
(2) ⊕ t41∆

(1)⊕
t51∆

(2) ⊕ t611
κ/2

where each tvu is also determined by S and P . As indicated by Table 9, under the condition of
(πA, πB) = (0, 0), we have S1

00 ⊕ S1
10 = S2

01 ⊕ S2
10, namely T 0

1 = T 1
1 ⊕ (s61 ⊕ t61)1

κ/2. Therefore,
using T 0

0 , T 0
1 , and T 1

0 , we can represent the majority voting process.
– Other cases: For the cases where (πA, πB) ̸= (0, 0), we can conduct a similar analysis. We find

that in any case, the majority voting process can be represented using the aforementioned three
T forms.

• We remove the process of generating the output label of an AND gate within the subroutine MajVote.
In the main Gb algorithm, the output label is obtained through evaluation using the ciphertext and
input labels.

This hybrid is derived from the real garbling through simple variable substitutions and equivalent op-
eration replacements; therefore, their distributions are identical.

Hybrid2: In this hybrid, we replace the hash queries using ∆ with random oracle queries. Recall that in
Definition 4, we defined the oracleOrtccr

H,∆ (x, t, L) = H(x⊕∆, t)⊕L(∆). Since L ∈ {Lab(∆) = a∆(1)⊕b∆(2)},
we can express Ortccr

H,∆ (x, t, L) as Ortccr
H,∆ (x, t, a, b) = H(x⊕∆, t)⊕ a∆(1) ⊕ b∆(2).

Assuming (πA, πB) = (0, 0), we can express the previously mentioned T 0
0 , T 0

1 , and T 1
0 in the following

form:

• T 0
0 = H(B, 3i− 2)⊕Ortccr

H,∆ (B, 3i− 2, s40, s
5
0)⊕ s00A

(1) ⊕ s10A
(2) ⊕ s20B

(1) ⊕ s30B
(2) ⊕ s601

κ/2

• T 0
1 = H(A, 3i− 3)⊕Ortccr

H,∆ (A, 3i− 3, s41, s
5
1)⊕ s01A

(1) ⊕ s11A
(2) ⊕ s21B

(1) ⊕ s31B
(2) ⊕ s611

κ/2

• T 1
0 = H(A⊕B, 3i− 1)⊕Ortccr

H,∆ (A⊕B, 3i− 1, t40, t
5
0)⊕ t00A

(1) ⊕ t10A
(2) ⊕ t20B

(1) ⊕ t30B
(2) ⊕ t601

κ/2

Due to the property of RTCCR, we can replace Ortccr
H,∆ (x, t, a, b) with a random value. Therefore, we

obtain three independent random values: T 0
0 , T 0

1 , and T 1
0 . For the cases where (πA, πB) ̸= (0, 0), we can

derive the same result.

Hybrid3: In this hybrid, the ciphertext for each AND gate is randomly generated. Specifically, for each ci-
phertext (G, (Z00, Z01, Z10, Z11)), we have G ← {0, 1}κ/2 and Zuv ← {0, 1}3 for u, v ∈ {0, 1}. In every case,
the three T values are independently random. Therefore, the main ciphertext G generated based on these
three values is also random. Given our assumption that H′ is a random oracle, the values (Z00, Z01, Z10, Z11)
generated in Hybrid2 are indistinguishable from those randomly generated here. Additionally, during the
process of evaluating an AND gate to obtain the output label, the marginal view of S and P is independent
of the truth table. Therefore, the distributions of Hybrid2 and Hybrid3 are identical.

In Hybrid3, the ciphertext is randomly generated. Additionally, the decoding information produced by
Simpriv is also identically distributed with Hybrid3. Consequently, the distribution of Simpriv aligns with
that of Hybrid3.

E Supplemental Materials for Section 7

E.1 Proof of Theorem 5

Theorem 5. Any ideally secure garbling scheme for an AND gate that satisfies the MODEL-0 must have |G| ≥ 4κ.

Proof. As shown in Table 3, for varying choices of permute bits a, b ∈ {0, 1}, there exist 10 potential val-
ues for (Z00[t], Z01[t], Z10[t], Z11[t]) (the size of S = S00 ∪ S01 ∪ S10 ∪ S11 is 10). Given that these values
are randomly chosen, any of the 10 possibilities could be assumed. Therefore, for a fixed M [t], the set
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derived by applying different ciphertext G[t] should encompass the entire range of these potential val-
ues for (Z00[t], Z01[t], Z10[t], Z11[t]). Considering there are 2|G[t]| possible values for G[t], it is evident that
2|G[t]| ≥ 10. Since |G[t]|must be an integer, it naturally follows that |G[t]| ≥ 4.

E.2 Proof of Lemma 2

Lemma 2. For ℓ columns of the output labels, the total number of potential values is given by 22ℓ+2 − 3 · 2ℓ, where
1 ≤ ℓ ≤ κ.

Proof. Let S represent the set of all possible values in Table 3. A subset of S is S1 = {(0, 0, 0, 0), (1, 1, 1, 1)},
and another subset is S2 = S \ S1.

We use induction to prove the lemma. When ℓ = 1, referring to Theorem 5, the possible values for a
single column equal the size of S. This gives 22·1+2 − 3 · 21 = 10 = |S|. So, our base case holds.

Assume that for ℓ = n, the number of possible values for n columns is 22n+2 − 3 · 2n. Now, we consider
ℓ = n+ 1. We split our discussion into two cases based on the first column:

1. If the first column belongs to S1, then the number of potential values for the first column is 2. The
number of potential values for the next n columns is 22n+2 − 3 · 2n.

2. If the first column belongs to S2, then the number of potential values for the first column is 8. The
number of potential values for the next n columns is 4n.

Taking these two cases together, the total number of possible values for ℓ = n+ 1 columns is:

2 · (22n+2 − 3 · 2n) + 8 · 4n = 22(n+1)+2 − 3 · 2(n+1)

This matches our induction hypothesis and confirms the lemma for all ℓ in the given range.

E.3 Proof of Theorem 6

Theorem 6. Any ideally secure garbling scheme for an AND gate with n input wires that satisfies the MODEL-3′′

must have |G| ≥ nκ.

Proof. In MODEL-3′′, we continue to use the column-wise processing approach. Each time, a column is
extracted from the base. Given n inputs, a total of n permute bits are required, leading to 2n possible cases.
For the t-th column, represented as M [t] (which consists of 2n bits), our goal is for MAP(M [t],G[t]) to cover
all possible cases by varying the ciphertext G[t].

If the length of G[t] is n−1, then for any given M [t], the mapping function MAP(M [t],G[t]) can produce
at most 2n−1 distinct outputs. Considering that there are 2n possible cases, either {0, . . . , 0} (all zeros) or
{1, . . . , 1} (all ones) must be included among these outputs.

This implies that, of the 2n potential mappings, a minimum of 2n−1 + 1 will result in either {0, . . . , 0}
or {1, . . . , 1}, restricting other mappings to at most 2n−1 − 1 that can produce other values. Mappings of
the former kind will cause the same bit position in the output labels C0 and C1 to be identical, whereas
mappings of the latter kind will result in differing bits.

Consequently, this leads to a higher probability of the same bit position in C0 and C1 being equal than
being unequal, thereby violating privacy. Therefore, we must have G[t] ≥ n.
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