
Fuzzy Private Set Intersection with Large Hyperballs

Aron van Baarsen⋆1,2 and Sihang Pu3

aronvanbaarsen@gmail.com, sihang.pu@gmail.com

1 CWI, Cryptology Group, Amsterdam, The Netherlands
2 Leiden University, Mathematical Institute, Leiden, The Netherlands

3 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Abstract. Traditional private set intersection (PSI) involves a receiver and a sender holding
sets X and Y , respectively, with the receiver learning only the intersection X∩Y . We turn our
attention to its fuzzy variant, where the receiver holds |X| hyperballs of radius δ in a metric
space and the sender has |Y | points. Representing the hyperballs by their center, the receiver
learns the points x ∈ X for which there exists y ∈ Y such that dist(x, y) ≤ δ with respect
to some distance metric. Previous approaches either require general-purpose multi-party
computation (MPC) techniques like garbled circuits or fully homomorphic encryption (FHE),
leak details about the sender’s precise inputs, support limited distance metrics, or scale poorly
with the hyperballs’ volume.
This work presents the first black-box construction for fuzzy PSI (including other variants
such as PSI cardinality, labeled PSI, and circuit PSI), which can handle polynomially large
radius and dimension (i.e., a potentially exponentially large volume) in two interaction
messages, supporting general Lp∈[1,∞] distance, without relying on garbled circuits or FHE.
The protocol excels in both asymptotic and concrete efficiency compared to existing works.
For security, we solely rely on the assumption that the Decisional Diffie-Hellman (DDH)
holds in the random oracle model.

⋆ Research partially funded by NWO/TKI Grant 628.009.014.

https://orcid.org/0009-0003-2056-6079

Table of Contents

Fuzzy Private Set Intersection with Large Hyperballs . 1

Aron van Baarsen and Sihang Pu aronvanbaarsen@gmail.com,
sihang.pu@gmail.com

1 Introduction . 3

1.1 Our Contributions . 3

1.2 Related Work . 5

1.3 Applications . 6

2 Technical Overview. 7

2.1 Recap: Apple’s PSI Protocol . 7

2.2 Fuzzy Matching for Infinity Distance . 7

2.3 Generalized Distance Functions . 8

2.4 Fuzzy PSI in Low Dimensions . 10

2.5 Extending to High Dimensions . 11

3 Preliminaries . 13

3.1 Oblivious Key-Value Store (OKVS) . 14

3.2 Random Self-Reductions of DDH Tuples . 15

3.3 Locality-Sensitive Hashing . 15

3.4 Oblivious Programmable PRF . 16

3.5 Partially Homomorphic Encryption . 16

4 Definitions and Functionalities . 18

4.1 Definition of Fuzzy Matching . 18

4.2 Definition of Fuzzy (Circuit) Private Set Intersection . 18

5 Fuzzy Matching . 19

5.1 Fuzzy Matching for Infinity Distance . 20

5.2 Fuzzy Matching for Minkowski Distance . 22

6 Fuzzy PSI in Low-Dimension Space . 24

6.1 Spatial Hashing Techniques . 24

6.2 Fuzzy PSI-CA for Infinity Distance . 26

6.3 Fuzzy PSI-CA for Minkowski Distance . 28

7 Fuzzy PSI in High-Dimension Space . 29

7.1 Infinity Distance . 30

7.2 Minkowski Distance . 33

8 Extending to Broader Functionalities . 35

8.1 Labeled PSI. 35

8.2 Standard PSI. 36

8.3 Standard PSI with Sender Privacy (PSI-SP). 36

8.4 Circuit PSI. 38

8.5 Reducing Comparisons for PSI-SP and Circuit PSI. 39

9 Performance Evaluation . 39

9.1 Concrete Performance . 40

10 Conclusion . 40

https://orcid.org/0009-0003-2056-6079

1 Introduction

Private set intersection (PSI) is a cryptographic primitive that allows two parties to compute the
intersection X∩Y of their private datasets X and Y , without revealing any information about items
not in the intersection. The first PSI protocol is often dated back to Meadows [Mea86] and many
modern protocols still have the same structure using an oblivious pseudorandom function (OPRF)
[KKRT16,RS21,RR22]. Recent PSI protocols are very practical and can for example compute the
intersection of sets of 220 elements in ≈ 0.37 seconds [RR22]. Many richer PSI functionalities have
also been explored, such as: PSI cardinality [FNP04,IKN+20,DPT20], where only the cardinality of
the intersection is revealed; labeled PSI [CGN98,CHLR18,CMdG+21], which allows the parties to
learn labels associated to the items in the intersection; circuit PSI [HEK12,PSTY19,RS21], which
only reveals secret shares of the intersection and allows the parties to securely evaluate any function
on the intersection.

Recently Garimella et al. [GRS22,GRS23] introduced the concept of structure-aware PSI, where
the receiver’s input set has some publicly known structure. For example, the receiver holds N balls
of radius δ and dimension d and the sender holds a set of M points, and the sender learns which
of the sender’s points lie within one of their balls. This special case is often referred to as fuzzy
PSI and is the focus of our work. Using a standard PSI protocol for this task leads to a rather
inefficient solution since the communication and computation complexity usually scale at least
linearly in the cardinality of the input sets, i.e., the total volume of the balls N · δd. Garimella
et al. can overcome this barrier in terms of communication in the semi-honest [GRS22] as well as
in the malicious [GRS23] setting. However, the receiver’s computation is still proportional to the
total volume of the input balls, which makes their protocols scale poorly with the dimension d.
Moreover, their protocols are limited to the L∞ and L1

4 distance and only realize a standard PSI
functionality, where the receiver learns exactly which of the sender’s points lie in the intersection.
Other works are either limited to the Hamming distance [UCK+21], Hamming and L2 distance
[IW06] or Hamming distance and one-dimensional L1 distance [CFR23], and often require heavy
machinery or yield non-negligible correctness error.

In this work, we present fuzzy PSI protocols in the semi-honest setting for general L∞ and Lp

distance with p ∈ [1,∞), and present several optimized variants for low as well as high dimensions.
Notably, the communication as well as computation complexity of our high-dimension protocols
scales linearly or quadratically with the dimension d. We moreover extend our protocols to various
richer fuzzy PSI functionalities including PSI cardinality, labeled PSI, PSI with sender privacy, and
circuit PSI. Our protocols have comparable performance to [GRS22] in the low-dimensional setting
and significantly outperform other approaches when the dimension increases. Finally, our protocols
rely only on the decisional Diffie-Hellman (DDH) assumption.

1.1 Our Contributions

Fuzzy Matching. The main building block for our fuzzy PSI constructions is a fuzzy matching
protocol, which on input a point w ∈ Zd from the receiver and a point q ∈ Zd from the sender,
outputs 1 to the receiver if dist(w,q) ≤ δ and 0 otherwise. Here dist can either be L∞ distance or
Lp distance for p ∈ [1,∞). It results in a two-message protocol for L∞ distance with communication
complexity O(δd), computation complexity O(δd) for the receiver and O(d) for the sender when
dist = L∞; For Lp distance, it has communication complexity O(δd+ δp), computation complexity
O(δd) for the receiver, and O(d+ δp) for the sender.

4 The overhead of L1 balls would be 2d

d
times larger than that of L∞ balls in their protocols.

3

Table 1. Asymptotic complexities of fuzzy PSI protocols, where the receiver holds N hyperballs of radius
δ and the sender holds M points in Zd. ρ ≤ 1/c is a parameter to the LSH scheme if the receiver’s points
are distance > cδ apart. We ignore multiplicative factors of the computational security parameter λ and
statistical parameter κ.

Setting [protocol] Communication Comp.(receiver) Comp. (sender)

L∞

trad. PSI [RR22] O
(
(2δ)dN +M

)
O
(
(2δ)dN

)
O
(
(2δ)dN +M

)
> 2δ [ours] O

(
δdN+ 2dM

)
O

(
δdN+ 2dM

)
O

(
2ddM)

)
> 2δ [GRS22] O

(
(4 log δ)dN +M

)
O
(
(2δ)dN

)
O
(
(2 log δ)dM

)
> 4δ [ours] O

(
δ2ddN +M

)
O

(
δ2ddN+M

)
O (dM)

> 4δ [GRS22] O
(
2ddN log δ +M

)
O
(
(2δ)dN

)
O (dM log δ)

> 8δ [GRS23] O (dN log δ +M) O
(
(2δ)dN

)
O (dM log δ)

∃disj. proj. [ours] O
(
(δd)2N +M

)
O
(
(δd)2N +M

)
O
(
d2M

)
∀disj. proj.[GRS22] O (dN log δ +M) O

(
(2δ)dN

)
O (dM log δ)

Lp
> 2δ(d1/p+1)[ours] O

(
δ2ddN + δpM

)
O
(
δ2ddN +M

)
O ((d+ δp)M)

LSH [ours] O
(
δdN1+ρ+δpMNρlogN

)
O
(
δdN1+ρ+MNρlogN

)
O ((d+δp)MNρlogN)

Fuzzy PSI in Low-Dimensions. Using a fuzzy matching protocol we can trivially obtain
a fuzzy PSI protocol by letting the sender and receiver run the fuzzy matching protocol for
every combination of inputs, but this leads to an undesirable N ·M blowup in communication
and computation complexity. To circumvent this blowup for a low dimension d, we develop a
new spatial hashing technique for disjoint L∞ balls which incurs only a O(2d) factor to the
receiver’s communication and sender’s computational complexity. To support Lp balls, we extend
the “shattering” idea from [GRS22] to generalized Lp setting. The asymptotic complexities are
given in Table 1. It is worth noting that, unlike to [GRS22,GRS23], the computation complexity of
our protocols scale sublinearly to the volume of balls.

Fuzzy PSI in High-Dimensions. Unfortunately, the above spatial hashing approaches still yield
a 2d factor in the communication and computation complexities, which becomes prohibitive for
large dimensions d. The earlier work [GRS22] proposes a protocol that can overcome this factor, for
communication costs, in the L∞ setting under the globally disjoint assumption that the projections
[wk,i − δ, wk,i + δ] of the sender’s balls k ∈ [N] are disjoint for all dimensions i ∈ [d], which
the authors themselves mention is a somewhat artificial assumption. We present a two-message
protocol with comparable communication and much lower computation complexity under a milder
assumption that for each k ∈ [N] there exists a dimension i ∈ [d] where the projection is disjoint
from all other k′ ∈ [N], namely, not necessary to be globally disjoint. We argue that this is a more
realistic assumption since points in high dimensions tend to be sparser and show that it is satisfied
with a high probability if the points wk are uniformly distributed.

We moreover present a two-message protocol in the Lp setting which can circumvent this
exponential factor in the dimension d, while achieving sub-quadratic complexity in the number of
inputs. The key idea of this protocol is to use locality-sensitive hashing (LSH) to perform a coarse
mapping such that points close to each other end up in the same bucket with high probability, and

4

subsequently use our fuzzy matching protocol for Lp distance to compare the items in each bucket.
See Table 1 for the asymptotic complexities of our protocols.

Extensions to Broader Functionalities. By default, all our protocols except for the LSH-based
protocol realize the stricter PSI functionality where the receiver only learns how many of the
sender’s points lie close to any of the receiver’s points, which we call PSI cardinality (PSI-CA).
Earlier works [GRS22,GRS23] realize the functionality where the receiver learns exactly which of
the sender’s points are in the intersection. We refer to this functionality as standard PSI.

For all of our protocols discussed above, except for the LSH-based protocol, we show that we can
extend them to realize the following functionalities: standard PSI; PSI with sender privacy (PSI-SP),
where the receiver only learns which of the receiver’s balls are in the intersection; labeled PSI, where
the receiver only learns some label associated to the sender’s points in the intersection; circuit
PSI, where the parties only learn secret shares of the intersection and optional data associated
to each input point, which they can use as the input to any secure follow-up computation. We
can realize these extensions without increasing the asymptotic complexities of the protocols and
without needing to introduce additional computational assumptions. With the only exception that
for the circuit PSI extension we need a generic MPC functionality to compute a secure comparison
circuit at the end of the protocol, which is common for traditional (non-fuzzy) circuit PSI protocols
[PSTY19,RS21].

Performance. Our experimental results demonstrate that it requires only 1.2 GB bandwidth and
432 seconds in total to complete a standard fuzzy PSI protocol when parties have thousands of L∞
balls and millions of points in a 5-dimensional space. As a comparison, prior works need ≫ 4300
seconds (conservative estimate). We also explore the scenario where both parties have structured
sets. For instance, when each party holds thousands of 64-radius L∞ balls in a 5-dimensional space
(representing 246 points), our protocol takes only 240 MB and 97 seconds to finish. Please refer
to Section 9 for details.

1.2 Related Work

Traditional PSI protocols have become very efficient [KKRT16,CM20,RR22], but are optimized for
the setting where the parties’ input sets have approximately the same size, and their communication
and computation costs scale linearly with the input size. This leads to an inefficient fuzzy PSI
protocol since the receiver’s input size is N · δd when the receiver holds N hyperballs of dimension
d and radius δ. Asymmetric (or unbalanced) PSI protocols [CLR17,CHLR18,CMdG+21,ABD+21]
target the setting where one party’s set is much larger than the other’s and can achieve commu-
nication complexity sublinear in the large set size, but O(

√
N · δd/2) computational complexity,

using fully homomorphic encryption [CMdG+21]. For traditional PSI there exist many efficient
protocols realizing richer functionalities such as PSI cardinality [IKN+20,DPT20], labeled PSI
[CHLR18,CMdG+21] and circuit PSI [HEK12,PSTY19,RS21], but all of these suffer from the same
limitations as discussed above when applied to the fuzzy PSI setting. There exists another line of
works concerning threshold PSI [GS19,BMRR21,BDP21,GS23], where the fuzziness is measured by
the number of exact matches between items.

Secure fuzzy matching was introduced by Freedman et al. [FNP04] as the problem of identifying
when two tuples have a Hamming distance below a certain threshold. They propose a protocol based
on additively homomorphic encryption and polynomial interpolation, which was later shown to be
insecure [CH08]. Follow-up works focus on the Hamming distance as well and use similar oblivious

5

polynomial evaluation techniques [CH08,YSPW10]. Indyk and Woodruff [IW06] construct a fuzzy
PSI protocol for L2 and Hamming distance using garbled circuits. Uzun et al. [UCK+21] give a
protocol for fuzzy labeled PSI for Hamming distance using garbled circuits and fully homomorphic
encryption. Chakraborti et al. [CFR23] propose a fuzzy PSI protocol for Hamming distance based
on additively homomorphic encryption and vector oblivious linear evaluation (VOLE), which has a
non-negligible false positive rate. They moreover present a protocol for one-dimensional L1 distance,
which can be constructed using any O(N) communication PSI protocol for sets of size N , and has
resulting communication complexity O(N log δ) [CFR23]. It is an interesting question whether their
techniques can be extended to higher dimensions. Since the focus of our work is to construct fuzzy
PSI protocols for general Lp and L∞ distances, general dimension d, and with negligible error rate,
it is not possible to make a meaningful comparison with these works.

Garimella et al. [GRS22,GRS23] initiated the study of structure-aware PSI, which covers fuzzy
PSI as a special case. They introduce the definition of weak boolean function secret sharing (bFSS)
for set membership testing and give a general protocol for structure-aware PSI from bFSS. They
develop several new bFSS techniques, focusing on the case where the input set is the union of N
balls of radius δ with respect to the L∞ norm in d-dimensional space, which results in a fuzzy PSI
protocol as the ones we concern ourselves with in this work. The techniques used in their protocols
are fundamentally different from ours, except that we use similar spatial hashing techniques to
obtain efficient fuzzy matching protocols in the low-dimensional setting. Moreover, their protocols
are limited to the L∞ and L1 distance setting and only realize the standard PSI functionality
where the receiver learns the exact sender’s points in the intersection. Finally, the receiver’s
computational complexity in their protocols scales as O((2δ)dN), which makes them unsuitable in
the high-dimensional setting. See Table 1 for a more detailed comparison of communication and
computational complexities.

1.3 Applications

Private proximity detection. There exist certain contexts where individuals need to know the
proximity of others for varying purposes: In the realm of contact tracing, where individuals may
seek to determine if they are in the vicinity of an infected person; Within the scope of ride-sharing
platforms, users might wish to identify available vehicles in their surroundings. In both scenarios,
the privacy of all involved parties should preserved and fuzzy PSI protocols provide a direct solution
to this problem.

Biometric and password identification. Fuzzy matching could also be useful in authentication
or identification scenarios. Notable applications of this technique can be observed in the matching
of similar passwords to enhance usability or security. A case in point is Facebook’s authentication
protocol, which auto-corrects the capitalization of the initial character in passwords [Muf15].
Similarly, it can be useful to check if a user’s password is similar to a leaked password [PIB+22].
Furthermore, fuzzy matching can be employed to match biometric data, such as fingerprint and
iris scans, thereby facilitating a blend of convenience and security [DHP+18]. In general, a fuzzy
unbalanced PSI protocol is more useful since the server usually holds a large database of clients’
passwords (or biometric samples).

Illegal content detection. Recently, Bartusek et al. [BGJP23] introduced the study of illegal
content detection within the framework of end-to-end secure messaging, focusing particularly on
the detection of child sexual abuse material, encompassing photographs and videos. Central to

6

their protocol is a two-message PSI protocol, wherein the initial message is reusable and published
once for the receiver’s database. After this, the computational overhead for both parties is rendered
independent of the database size. The research notably leverages Apple’s PSI protocol [BBM+21],
which, while only facilitating exact matches, serves its purpose effectively. Ideally, matching should
be sufficiently fuzzy to ensure that illegal images remain detectable even following rotation or
mild post-processing. Our fuzzy PSI constructions, encapsulated within two-round protocols and
featuring a reusable initial message, may find potential applicability in such contexts.

2 Technical Overview

Before heading for the details of our fuzzy matching and PSI protocols, let us start by discussing a
standard PSI protocol proposed by Apple [BBM+21].

2.1 Recap: Apple’s PSI Protocol

We simplify Apple’s PSI protocol to the basic setting where the receiver holds a set W :=
{w1, . . . , wn}, the sender holds an item q, and the receiver wants to learn q if q ∈W and nothing
otherwise. Their main idea is a novel usage of random self-reduction of DDH tuples from Naor
and Reingold [NR97] in PSI contexts. Given a cyclic group G := ⟨g⟩ of prime order p, the tuple
(g, h, h1, h2) can be re-randomized into (g, h, u, v) such that u, v are uniformly random over G as long
as (g, h, h1, h2) is not a well-formed DDH tuple (i.e., there is no s ∈ Z∗p to satisfy gs = h∧ hs

1 = h2).
Otherwise, both (g, h, h1, h2) and the re-randomized tuple (g, h, u, v) are valid DDH tuples. This
re-randomization basically utilizes two random coins a, b←$ Z∗p to output

(u := gahb
1, v := hahb

2).

Now to obtain a PSI protocol, the receiver could sample s←$ Z∗p and publish

(g, h := gs,H(w1)
s, . . . ,H(wn)

s) ,

where H is a hash-to-group function. Then the sender returns pairs

(ui, cti := Encvi(q))i∈[n] ,

where (ui, vi) is the re-randomization output for each tuple (g, h,H(q),H(wi)
s), and Enc is some

symmetric-key encryption scheme (e.g., a one-time pad). The receiver can try to decrypt each cti
using the key us

i to learn q. For the sender’s privacy, the random self-reduction of DDH tuples
guarantees that when q ≠ wi, the secret key vi is uniformly random from the receiver’s view and
thus q is hidden according to the security of this symmetric-key encryption. For the receiver’s
privacy, (H(w1)

s, . . . ,H(wn)
s) is pseudorandom according to the generalized DDH assumption when

H is modelled as a random oracle.

2.2 Fuzzy Matching for Infinity Distance

Our crucial observation is that the above approach can be naturally applied in fuzzy matching
protocols where the receiver holds a point w ∈ Zd in a d-dimensional space, the sender holds a point
q ∈ Zd, and the receiver learns if dist(w,q) ≤ δ. Here, δ is the maximal allowed distance between

7

w and q. For the moment, let us focus on the simplest case where the distance is calculated over
L∞, which means, the receiver gets 1 if

∀i ∈ [d] : wi − δ ≤ qi ≤ wi + δ,

and gets 0 otherwise. This problem is equivalent to the following: The receiver holds d sets
{W1, . . . ,Wd} where Wi := {wi − δ, . . . , wi + δ}, the sender holds d items {q1, . . . , qd}, and they
want to run a membership test for each dimension simultaneously, without leaking the results for
individual dimensions. Though the receiver can publish H(wi + j)s for each i ∈ [d], j ∈ [−δ,+δ] as
above, the sender has to use random self-reduction for each possible match, which yields too much
communication and computation effort for the sender. Namely, the entire volume of a d-dimensional
δ-radius ball O

(
(2δ + 1)d

)
.

Reducing the complexity. There is a standard trick to significantly reduce the complexity by
using an oblivious key-value store (OKVS). Recall that an OKVS [GPR+21] will encode a key-value
list {(keyj , valj)}j∈[n] into a data structure E, such that decoding with a correct key∗ returns the
corresponding val∗, where the encoding time scales linearly to the list size and decoding a single
key takes only a constant number of operations. So the above protocol can be improved as follows:

1) The receiver publishes
(
g, h,Ei ← Encode({(wi + j, H(wi + j)s)}j∈[−δ,+δ])

)
for each i ∈ [d];

2) The sender retrieves hi ← Decode(Ei, qi) for each i ∈ [d] and sends the rerandomized tuple

(u := ga
∏d

i=1 H(qi)
b, v := ha

∏d
i=1 h

b
i), where a, b←$ Z∗p, to the receiver;

3) The receiver checks if (g, h, u, v) is a valid DDH tuple.

The protocol is correct when dist(q,w) ≤ δ, according to the correctness of the underlying
OKVS scheme, which says that decoding the structure Ei with a correct encoding key qi will
return the encoded value hi := H(qi)

s; When dist(q,w) > δ, we typically need to rely on the
independence property of OKVS, which says that decoding with a non-encoded key will yield a
uniformly random result. Therefore, in this case, there exists at least one hi∗ that is uniformly
random; hence (g, h,H(qi∗), hi∗) is not a DDH tuple except with negligible probability. The sender’s
privacy can be established as before from the random self-reduction of DDH tuples. To argue the
receiver’s privacy, we rely on the obliviousness property of the OKVS, namely, the encoded keys
{wi + j} are completely hidden as long as the encoded values {H(wi + j)s} are uniformly random.
Since (h,H(wi + j),H(wi + j)s) is pseudorandom by the DDH assumption, then according to the
obliviousness of OKVS, the receiver’s message can be simulated by encoding random key-value
pairs.

Note that our real construction shown in Section 5.1, is slightly different from what we described
here. We encode the OKVS “over the exponent” to reduce heavy public-key operations over G
because our encoded values are pseudorandom over a structured group G (i.e., the elliptic curves).

So far, we have obtained a two-message fuzzy matching protocol for L∞ distance, with O(dδ)
communication and computation complexity.

2.3 Generalized Distance Functions

When the distance function is calculated in Lp, the receiver would get 1 if

distp(w,q) :=

(
d∑

i=1

|wi − qi|p
)1/p

≤ δ,

8

and 0 otherwise. To make the problem easier, we consider the p-powered Lp distance, namely,

we check if
∑d

i=1 |wi − qi|p ≤ δp. Thanks to the homomorphism of DDH tuples, the sender can
homomorphically evaluate the distance function. Moreover, since an Lp≥1 ball must be confined
in an L∞ ball, namely, |wi − qi| ≤ δ for any i ∈ [d] if distp(w,q) ≤ δ, the protocol could work as
follows:

1) The receiver publishes(
g, h,Ei ← Encode

({(
wi + j, H(wi + j)s · g|j|

p)}
j∈[−δ:δ]

))
,

for each i ∈ [d];

2) The sender retrieves hi ← Decode(Ei, qi) for each i ∈ [d], and computes(
u := ga

d∏
i=1

H(qi)
b, v := ha

d∏
i=1

hb
i

)
,

for random a, b←$ Z∗p;
3) The sender generates a list list := {gb·j}j∈[0:δp] and outputs (u, v, list);
4) The receiver checks if there is any x ∈ list such that v = us · x.

Denote t := distp(w,q). If ∀i ∈ [d], |wi − qi| ≤ δ, then the correctness holds naturally since each
retrieved hi := H(qi)

s · g|wi−qi|p , implying that

v

us
= gb·t

p

,

which would be included in list if and only if t ≤ δ5. On the other hand, if there exists i∗ ∈ [d] such
that |wi∗ − qi∗ | > δ, then according to the independence property of OKVS the decoded hi∗ as well
as v would be uniformly random over G, such that v/us ∈ list with only negligible probability.

Subtle issues and the fix. The receiver’s privacy is almost the same as before, relying on the
generalized DDH assumption and the obliviousness of OKVS. It is a little bit subtle to argue the
sender’s privacy: Currently, list would leak information on the sender’s input. Precisely, given
(u, v, list), the receiver could check, for example, if v

us·gb ∈ list to learn if tp = δp + 1 or not, since

gb ∈ list. Moreover, even in the case that t ≤ δ, the receiver could still deduce the exact t by
checking which index is matched. The latter can be solved by shuffling the list, so we focus on
the former issue. One approach is to hash each list item as list := {H′(gb·j)}j∈[0:δp]. By modeling
H′ : G 7→ {0, 1}∗ as a random oracle, the group structure is erased and the adversary cannot utilize
gb·j anymore. However, the issue still exists since the adversary could check if H′

(
(v
us)

1/α
)
∈ list to

learn if tp ∈ {0, α, 2α, . . . , δpα} for any α. Therefore, we have to apply a random linear function
over tp to make sure that v

us = gb·t
p+c where b, c are random scalars. The details can be found

in Section 5.2.

Regarding the complexity, the communication and computation are increased by an additive
term O(δp) from the infinity distance setting.

5 Assuming the group order p is large enough that tp < p.

9

2.4 Fuzzy PSI in Low Dimensions

For the moment, let us consider the fuzzy PSI cardinality problem, where the receiver holds a union
of d-dimensional balls of radius δ represented by their centers {w1, . . . ,wN}, the sender holds a set
of points {q1, . . . ,qM} in the same space, and the receiver learns the number of sender’s points
located inside the balls. When the dimension d of the space is low, e.g., O(log(λ)), we can exploit the
geometric structure of the space to efficiently match balls and points to avoid the quadratic blowup
mentioned in the introduction. The high-level idea is to tile the entire space by d-dimensional
hypercubes of side-length 2δ (also called cells, together a grid), then the receiver can encode a ball
(represented by its center wi) in a way that the sender can efficiently match it with a point qj ,
without enumerating all balls. After that, both parties can run a fuzzy matching protocol between
wi and qj as before.

The idea of Garimella et al. [GRS22] is to “shatter” each receiver’s ball into its intersected cells,
however, to guarantee each cell is intersected with a single ball (otherwise collisions appear during
encoding an OKVS6), the receiver’s balls typically need to be at least 4δ apart from each other. To
tackle the case of disjoint balls, the authors improved their techniques [GRS23] by observing that
each grid cell can only contain the center of a single receiver’s ball. Thus, the receiver could encode
the identifier of each cell which contains a ball center, and the sender can try to decode the OKVS
by iterating over all neighborhood cells7 surrounding its point. This approach yields a O(3d) factor
for the sender’s computation and communication costs: Given a point q, the center of any L∞ ball
intersected with q is located in at most 3d cells surrounding the cell containing q.

New spatial hashing ideas. Here we provide a new hashing technique to reduce this blowup
from 3d to 2d. Note that the 3d factor comes from the fact that the entire neighborhood of the point
q is too large (i.e., a hypercube of side-length 6δ), but we only need to care about the neighbor cells
that intersected with the receiver’s balls already. Specifically, if the grid is set properly, an L∞ ball
will intersect exactly 2d cells, which constitute a hypercube of side-length 4δ, denoted as a block.
Our crucial observation is that each block is unique for each disjoint ball, i.e., two disjoint balls
must be associated with different blocks, as detailed in Lemma 6. Given this, the receiver could
encode the identifier of each block, and the sender would decode by iterating all potential blocks.
There are in total 2d possible blocks for each sender’s point due to each block being comprised of
2d cells and each cell contains at most a single ball’s center.

Compatible with Lp balls. Though we only considered L∞ balls so far, we can generalize the
“shattering” idea from [GRS22] to Lp balls as well. We still tile the space with hypercubes, but we
show that as long as Lp balls are at least 2δ(d1/p + 1) apart from each other, then each grid cell
intersects at most one Lp ball, as detailed in Lemma 5. In particular, when p =∞, 2δ(d1/p + 1)
degrades to the original 4δ. Combining it with our fuzzy matching protocols for the Lp distance,
we immediately obtain fuzzy PSI for precise Lp distance (i.e., without approximation or metric
embedding). An important step different from the L∞ setting is to pad the key-value list to size
2dN with random pairs since an Lp ball could intersect with a various number of cells. Otherwise,
the receiver’s privacy would be compromised.

6 Note that this is not a problem in their setting as they use the function secret sharing (FSS) to handle
each grid cell.

7 The neighborhood is a hypercube of side-length 6δ.

10

2.5 Extending to High Dimensions

To overcome the 2d factor in the complexities, we first focus our attention on L∞ distances: Ideally,
if the receiver’s balls are globally disjoint on every dimension, that is, the projection of the balls on
each dimension never overlaps, then the “collision” issue mentioned above would disappear. In this
way, for each dimension i ∈ [d], the receiver could encode the OKVS as

Ei ← Encode
({(

wk,i + j, H(wk,i + j)s · ζk,i
)}

k∈[N],j∈[−δ,+δ]

)
,

where wk,i is the projection of the ball center wk on dimension i and ζk,i is a random secret share

of 1 such that 1 =
∏d

i=1 ζk,i, for each k ∈ [N]. The sender just behaves the same as in Section 2.2.
This approach results in O(δdN +M) communication and computation costs. However, as stated
in [GRS22], this ideal setting is somewhat artificial and unrealistic.

Weaker assumptions by leveraging dummy OKVS instances. After taking a closer look
at this approach, we realized that the global disjointness is not necessary to be satisfied on every
dimension, as we actually could tolerate some collisions. Specifically, the value hi decoded from
Ei for some point q (lying in one of the receiver’s balls) would constitute a tuple (g, h,H(qi), hi).
However, this tuple does not necessarily need to be a DDH tuple. We only need the final product(

g, h,

d∏
i=1

H(qi),
d∏

i=1

hi

)

to be a valid DDH tuple for correctness.
Suppose there exists at least one dimension on which the projections of all balls are disjoint.

This gives each ball a unique way to identify it from others. Our idea is to leverage OKVS instances
recursively: For each dimension i ∈ [d], the receiver encodes an outer OKVS as

Ei ← Encode
({(

wk,i + j, valk,i,j
)}

k∈[N],j∈[−δ,+δ]

)
,

where valk,i,j differs in two cases:

– If the current dimension i is the globally separated dimension for all balls, then valk,i,j is an
inner OKVS instance for fuzzy matching with wk, namely,

valk,i,j ← Encode
({(

i′ ∥wk,i′ + j′, hi′,j′ ∥hs
i′,j′
)}

i′∈[d],j′∈[−δ,+δ]

)
,

where hi′,j′ ←$ G;
– Otherwise, the valk,i,j := (r ∥ rs) is a dummy instance where r←$ Gm and m is the size of the
inner OKVS instance.

For each point q, the sender first decodes the outer OKVS to obtain a list {val1, . . . , vald}, then
runs the decoding function on each valj∈[d] to get

(uj ∥ vj) :=
d∏

i=1

Decode(valj , qi).

In the end, the sender re-randomizes the result from the tuple (g, h,
∏d

j=1 uj ,
∏d

j=1 vj).

11

For correctness, we expect that decoding a dummy instance on any key would output a valid
DDH pair all the time. This can be guaranteed if the inner OKVS has a linear decoding function.
Clearly, in this way, each q would get either an inner OKVS instance or random garbage from the
globally separated dimension. The latter results in valid DDH tuples with negligible probability, so
we focus on the case that the sender gets an inner OKVS instance in the end. This reduces the fuzzy
PSI problem to the fuzzy matching problem as other dummy instances won’t affect the correctness.
For security, the inner OKVS has to be doubly oblivious, namely, the encoded structure itself is
uniformly random. Regarding the complexity, the receiver’s communication and computation costs
would be O(dδ) times larger.

Further weaken the assumption. The above assumption is weaker and milder than what was
used in prior works, but it is still somewhat artificial. Here we show that we can even weaken
this assumption to the following: For each ball, there exists at least one dimension on which
its projection is separated from others. Note that the above approach doesn’t work yet in this
setting: There might exist a point whose projection on each dimension is inside the projection of
a non-separated interval from some ball. In other words, the sender would get a list of dummy
instances after decoding the outer OKVS. This results in a false positive since dummy instances
always output a match. To rule out these false positives, we realize that we could encode additional
information into each valk,i,j .

For simplicity, let’s assume the decoding function of the OKVS is determined by a binary vector
with some fixed hamming weight, that is, given an instance r ∈ Gm and some key, the decoding
function outputs

Decode(r, key) = ⟨d, r⟩ =
m∏
i=1

rdi
i ,

where d ∈ {0, 1}m is deterministically sampled by the key, and HammingWeight(d) = t. The receiver
samples two random shares ζ⊥, ζ⊤ such that ζ⊥ · ζ⊤ = 1. We denote as Ik the first dimension on
which wk projects a separated interval. Then the receiver could set valk,i,j for each wk in this way:

– If the current dimension i = Ik, then valk,i,j is an inner OKVS instance defined by

valk,i,j ← Encode
({(

i′ ∥wk,i′ + j′, hi′,j′ ∥hs
i′,j′ · ζ

t·(d−1)
⊥

)}
i′∈[d],j′∈[−δ,+δ]

)
,

where hi′,j′ ←$ G and t is the hamming weight of d;
– Otherwise, the valk,i,j := (r ∥ rs · ζ⊤) for r←$ Gm.

The security follows as before, whereas the correctness is non-trivial. First, consider the sender’s
point q intersecting some receiver’s ball. After decoding the inner OKVS instance, the sender gets a

pair (u∗ ∥us
∗ · ζ

td·(d−1)
⊥) for some u∗; After decoding a dummy instance, the sender gets (r∗ ∥ rs∗ · ζtd⊤)

for some r∗ instead. Now, by multiplying them together, the final tuple(
g, h, v ∥ vs · ζtd·(d−1)⊥ · ζtd·(d−1)⊤

)
= (g, h, v ∥ vs)

is a valid DDH tuple for some v ∈ G.
Then consider the case that the sender’s point q is outside of all balls. The only way to report a

match is to get a list of all dummy instances after decoding the outer OKVS instance, otherwise
the inner OKVS instance will output a random garbage result. However, since dummy instances

12

only encode ζ⊤, the product of them equals 1 with negligible probability due to ζ⊤ being randomly
sampled and td2 ≪ p if t = O(κ).

Recall that we assume the decoding vector d to have fixed hamming weight. This is not ideal since
most modern OKVS instantiations (e.g., [GPR+21,RR22,BPSY23]) don’t satisfy this requirement,
whereas the only exception is the garbled bloom filters [DCW13] whose efficiency is not satisfactory.
We managed to get rid of this assumption in our real protocol in the end, please refer to Section 7.1
for details.

Locality-sensitive hashing. The above approaches are heavily tailored to the L∞ distance8 and
require proper distribution of the receiver’s input. To support Lp distance in high dimensions, we
utilize locality-sensitive hashing (LSH) to identify matching balls. An LSH family with parameters
(δ, cδ, p1, p2) guarantees the following:

– If two points w and q are close enough, i.e., distp(w,q) ≤ δ, they would be hashed into the
same bucket with at least p1 probability;

– If they are far apart, i.e., distp(w,q) > cδ, then the probability of hashing them into the same
bucket is at most p2.

In other words, an LSH family bounds the false-positive and false-negative probability to p2
and 1− p1, respectively. Usually, false-positive and false-negative cannot be reduced to negligible
simultaneously. However, given the existence of our fuzzy matching protocols, we can tolerate false
positives by running fuzzy matching on each positive match. Therefore, the high-level strategy is
that the receiver hashes each ball center via LSH to some LSH entry, and the sender would identify
multiple positive LSH entries for each of its points. If we set the parameters properly, the total
number of false positives for each sender’s point can be upper-bounded by O(Nρ) for some ρ < 1
which gives us just a sub-quadratic blowup in total communication and computation complexities.

One caveat is that there is a constant gap between the calculation of false positives and false
negatives mentioned above, namely, false positives are calculated when points are cδ-apart, whereas
false negatives are calculated when points are δ-close. Fortunately, when the receiver’s balls are
disjoint (i.e., centers are 2δ-part), this gap can be filled by setting c = 2. Another caveat is that this
approach does not support fuzzy PSI cardinality anymore due to the rationale behind the LSH: To
guarantee a negligible false-negative rate, we typically have to prepare multiple LSH tables where a
true positive might appear more than once.

3 Preliminaries

We represent the computational security parameter as λ ∈ N, the statistical security parameter
as κ ∈ N, and the output of the algorithm A on input in using r ← {0, 1} as its randomness by
x← A(in; r). Randomness is often omitted and is only explicitly mentioned when necessary. Efficient
algorithms are considered to be probabilistic polynomial time (PPT) machines. We use ≈c to denote
computational indistinguishability and ≈s to denote statistical indistinguishability of probability
distributions. The notation [n] signifies a set {1, . . . , n} and [a : b] the set {a, a+ 1, . . . b− 1, b}. We
use c[i : j] to represent a vector with a defined length of [ci, . . . , cj] and c to indicate a vector of c.

All protocols presented in this work are two-party protocols. Security is proven against semi-
honest adversaries via the standard simulation-based paradigm (see, e.g., [Lin16]).

8 It can also be generalized to the Lp setting as briefly explained in Remark 4.

13

3.1 Oblivious Key-Value Store (OKVS)

The concept of an oblivious key-value store (OKVS) was introduced by Garimella et al. [GPR+21]
to capture the properties of data structures commonly used in PSI protocols. Subsequent work
proposed OKVS constructions offering favorable trade-offs between encoding/decoding time and
encoding size [RR22,BPSY23].

Definition 1 (Oblivious Key-Value Store). An oblivious key-value store OKVS is parameterized
by a key space K, a value space V, computational and statistical security parameters λ, κ, respectively,
and consists of two algorithms:

– Encode : takes as input a set of key-value pairs L ∈ (K × V)n and randomness θ ∈ {0, 1}λ, and
outputs a vector r ∈ Vm or a failure indicator ⊥.

– Decode : takes as input a vector r ∈ Vm, a key k ∈ K and randomness θ ∈ {0, 1}λ, and outputs
a value v ∈ V.

That satisfies:

– Correctness: For all L ∈ (K×V)n with distinct keys and θ ∈ {0, 1}λ for which Encode(L; θ) =
r ̸= ⊥, it holds that ∀(k, v) ∈ L: Decode(r, k; θ) = v.

– Low failure probability: For all L ∈ (K × V)n with distinct keys:

Pr
θ←${0,1}λ

[Encode(L; θ) = ⊥] ≤ 2−κ.

– Obliviousness: For any {k1, . . . , kn}, {k′1, . . . , k′n} ⊆ K of n distinct keys and any θ ∈ {0, 1}λ,
if Encode does not output ⊥, then for v1, . . . , vn ←$ V:

{r← Encode({(ki, vi)i∈[n])}; θ)} ≈c {r′ ← Encode({(k′i, vi)i∈[n]}; θ)}.

– Double obliviousness: For all sets of n distinct keys {k1, . . . , kn} ⊆ K and n values
{v1, . . . , vn} ←$ V, there is Encode({(ki, vi)i∈[n])}; θ)} statistically indistinguishable from the
uniformly random element from Vm.

The efficiency of OKVS is characterized by: (1) the time it takes to encode n key-value pairs; (2)
the time it takes to decode a single key; (3) the ratio n/m between the number of key-value pairs n
and the encoding size m, also called rate. Recent OKVS constructions [GPR+21,RR22,BPSY23]
achieve: (1) encoding time O(nκ); (2) decoding time O(κ); (3) constant rate.

For this work, we will need OKVS to support the value space V being equal to a cyclic group G
of prime order p. A sufficient condition for this, which is satisfied by the efficient constructions of
[GPR+21,RR22,BPSY23] is:

– Fp-Linear: There exists a function dec : K×{0, 1}λ → Fm
p such that for all r ∈ Gm, k ∈ K and

θ ∈ {0, 1}λ it holds that Decode(r, k; θ) := ⟨dec(k; θ), r⟩, where dec : K × {0, 1}λ 7→ Fm
p . For

d ∈ Fm
p and g ∈ Gm we define ⟨d,g⟩ := gd1

1 · · · gdm
m .

When OKVS is Fp-linear, the encoding procedure for a set of key-value pairs {(k1, v1), . . . , (kn, vn)} ∈
(K ×G)n basically consists of finding a solution r ∈ Gm to a system of equations M · r = v, where
M ∈ Fn×m

p with rows mi := dec(ki; θ). Hence, in this case an encoding can be computed through
linear algebra over Fp followed by evaluating the action of Fn

p on Gn as defined above. In our

instantiation, we choose the function dec : K × {0, 1}λ 7→ {0, 1}m ∈ Fm
p which will not affect

correctness or security but will make the decoding process more efficient.

14

We require an additional property for OKVS which says decoding a non-encoded key will yield a
uniformly random result. It is only about correctness rather than security and is proved in [GRS22]
for binary OKVS (and naturally extends to Fp-linear case) as the independence property 9. We
sketch the proof for completeness. One caveat is that the proof below (as well as in [GRS22])
requires the rate of OKVS to be smaller than 1, and thus the original polynomial-based OKVS does
not satisfy this property, unless we assume the encoded values to be uniformly random.

Lemma 1 (Independence). If OKVS satisfies Fp-linearity, double obliviousness and negl(κ)
failure probability, and θ is uniformly randomly chosen while n < m holds, then for any L :=
{(ki, vi)i∈[n]} with distinct keys, and any key k /∈ {ki}i∈[n], it holds that Decode (Encode(L; θ), k) is
indistinguishable from random, where Encode : (K × V)n → Vm.

Proof. Following the proof of Lemma 30 in [GRS22], Fp-linearity means that the output r of
Encode(L; θ) is a vector satisfying the linear system M·r = v where mi := dec(ki; θ) and (ki, vi) ∈ L.
If we require the negl(κ) failure probability of the encoding algorithm, then the matrix M has the
full rank with overwhelming probability. Moreover, when n < m, and θ is randomly chosen, r is
a random solution in the subspace by the property of double obliviousness. With overwhelming
probability, any k∗ /∈ L results in a linear independent vector m∗ := dec(k∗; θ), which makes ⟨m∗, r⟩
uniformly random distributed and independent of v. ⊓⊔

3.2 Random Self-Reductions of DDH Tuples

The well-known decisional Diffie-Hellman (DDH) assumption for a cyclic group G = ⟨g⟩ of prime
order p states that the distribution of Diffie-Hellman (DH) tuples (g, h := gs, h1, h2 := hs

1), where
s ←$ Zp, h1 ←$ G, is computationally indistinguishable from the distribution of random tuples
(g, h := gs, h1, h2), where s ←$ Zp, h1, h2 ←$ G. Naor and Reingold [NR97] show that deciding
whether an arbitrary tuple (g, h, h1, h2) with h, h1, h2 ∈ G is a DH tuple can be reduced to breaking
the DDH assumption. For this work, we consider a special case of this reduction where h := gs is
fixed.

Lemma 2 (Random Self-Reduction [NR97]). Let G := ⟨g⟩ be a cyclic group of order p, let
h := gs for s ∈ Zp and h1, h2 ∈ G. If h′1 := ga · hb

1 and h′2 := ha · hb
2, where a, b←$ Zp, then:

– h′1 is uniformly random in G and h′2 = (h′1)
s if h2 = hs

1.
– (h′1, h

′
2) is a uniformly random pair of group elements otherwise.

3.3 Locality-Sensitive Hashing

We recall the definition of locality-sensitive hashing (LSH) [IM98] and adapt it according to our
constructions.

Definition 2 (LSH). A hash family FD:{FD |Zd 7→ {0, 1}∗} is a (δ, cδ, p1, p2)-LSH family for
some distance metric D if it maps points in Zd into string labels, such that the following two
conditions hold for any two points w,q ∈ Zd:

– distD(w,q) ≤ δ =⇒ Pr[FD(w) = FD(q)] ≥ p1, and
– distD(w,q) > cδ =⇒ Pr[FD(w) = FD(q)] ≤ p2,

where p1 > p2 and the probabilities are over random choices of FD ∈ FD.
9 It is also mentioned and proved in [BPSY23] as random decoding.

15

Theorem 1 (Locality-Sensitive Hash Table [IM98]). Given a set of cδ-apart points W ∈
Zd×N in d dimensional space, and a (δ, cδ, 1

Nρ ,
1
N)-LSH family FD as in Definition 2 where ρ < 1,

there exists an efficient algorithm that hashes the set into L = κ
log eN

ρ hash tables with statistical
parameter κ, such that:

– for any point q for which distD(w,q) ≤ δ holds for some w ∈W, there exists i ∈ [L] such that
q and w are hashed to the same bucket in this table with probability at least 1− negl(κ);

– space complexity for L tables is O(Nλ · L) and encoding complexity O(NdL);
– query complexity is O(Ld) per lookup point.

Proof. It is folklore that if we choose L = κ′Nρ where κ′ = κ/ log e, then for two points q,w that
dist(q,w) ≤ δ, there is

Pr[∃i ∈ [L], FD,i(q) = FD,i(w)] ≥ 1− (1− 1

Nρ
)L (1)

≥ 1− e−LN−ρ

(2)

= 1− e−κ
′
= 1− negl(κ), (3)

where κ is the statistical parameter and (2) is followed by the Bernoulli’s inequality. ⊓⊔
Note that we only guarantee that the false-negative rate is negligible but not the false-positive

rate, which will be taken care of in our concrete constructions. Moreover, we provide an efficient
instantiation of LSH family FD for D = L2 and D = L1 distance from existing work as follows.

Theorem 2 (L2 [AI06]). There exists a (δ, cδ, 1
Nρ ,

1
N)-LSH family FL2

for L2 distance with
ρ ≤ 0.365 when c = 2 and ρ ≤ 0.168 when c = 4.

Theorem 3 (L1 [DIIM04]). There exists a (δ, cδ, 1
Nρ ,

1
N)-LSH family FL1

for L1 distance with
ρ ≤ 0.5 when c = 2 and ρ ≤ 0.25 when c = 4.

For theoretical interests, it is also possible to get near-linear space complexity (instead of
super-linear N1+ρ as above).

Theorem 4 (Near-linear Space [AI06]). There exists an efficient algorithm that can generically
transform the above hash tables into one with space complexity Õ(N) and query time O(NO(ρ)).

3.4 Oblivious Programmable PRF

An oblivious programmable PRF (OPPRF) [KMP+17] is a two-party primitive that allows the
sender to program a PRF such that it maps certain inputs to certain outputs and to let the receiver
obliviously evaluate this programmed function on a number of points. It can be realized by using
an OKVS to encode “corrections” for an oblivious PRF (OPRF) [KMP+17,RS21]. A basic ideal
functionality is given in Figure 1.

3.5 Partially Homomorphic Encryption

As mentioned in Section 1.1, a main ingredient in our fuzzy matching protocols is a partially
homomorphic public key encryption scheme. In this section we introduce the necessary definitions
and conditions this scheme needs to satisfy, but in the main body we explicitly instantiate it by
ElGamal’s cryptosystem (see Example 1).

16

Fopprf

Parameters : cardinality of sets n, m, input space X , output space Y.
Functionality :

– Receiver inputs X ∈ Xn.
– Sender inputs L := {(y1, z1), . . . , (ym, zm)} ∈ (X × Y)m.
– Sample F ←$ {f : X → Y | ∀j ∈ [m] : f(yj) = zj}
– Output {(x, F (x)) | x ∈ X} to Receiver and OF to Sender.

Fig. 1. Ideal functionality of oblivious programmable PRF (OPPRF).

A partially homomorphic public key encryption scheme is an encryption scheme for which it is
possible to compute an encryption of the sum of two messages by just performing operations on
encryptions of these messages. It is parametrized by a message space familyM := (Mλ)λ∈N, where
eachMλ is a finite abelian group (written additively), a ciphertext space family C := (Cλ)λ∈N and
is given by a tuple of PPT algorithms PKE := (Gen,Enc,Dec,⊞), where:

– Gen(1λ)→ (pk, sk): takes as input the security parameter λ and outputs a key pair (pk, sk).
– Encpk(m) → c: takes as input the public key pk and a message m ∈ Mλ, and outputs a

ciphertext c ∈ Cλ.
– Decsk(c)→ m: takes as input the private key sk and a ciphertext c ∈ Cλ, and outputs a message

m ∈Mλ. For all m ∈Mλ and c← Encpk(m), we require that Decsk(c) = m.
– c′ ⊞pk c

′′ → c: takes as input the public key pk and two ciphertexts c′, c′′ ∈ Cλ and outputs a
ciphertext c ∈ Cλ. For all m′,m′′ ∈ Mλ, c

′ ← Encpk(m
′), c′′ ← Encpk(m

′′), c ← c′ ⊞pk c
′′, we

require that Decsk(c) = m′ +m′′.

We require PKE to satisfy IND-$CPA security [CLOS02]. That is, for any (pk, sk) ← Gen(1λ)
and m ∈ Mλ, the distributions {pk, c ← Encpk(m)} and {pk, c ←$ Cλ} are computationally
indistinguishable. For example, ElGamal’s [ElG85] cryptosystem is partially homomorphic and
satisfies the above security notion under the decisional Diffie-Hellman (DDH) assumption.

Example 1 (ElGamal). ElGamal’s cryptosystem [ElG85] is defined over a prime-order cyclic group
family G := (Gλ)λ∈N and consists of the following algorithms:

– Gen(1λ)→ (pk, sk): samples G←$ Gλ of prime order p with generator p, samples s←$ Zp and
puts h := gs. Let pk := (G, p, g, h) and sk := s.

– Encpk(m)→ (c1, c2): samples r ←$ Zp and puts (c1, c2) := (gr,m · hr).
– Decsk(c1, c2)→ m: puts m := c−s1 · c2.
– (c′1, c

′
2)⊞pk (c

′′
1 , c
′′
2)→ (c1, c2): puts (c1, c2) := (c′1 · c′′1 , c′2 · c′′2).

It is clear that the above gives a partially homomorphic public key encryption scheme with respect
to the group operation of G. It is moreover known to be IND-$CPA secure under the decisional
Diffie-Hellman (DDH) assumption. For some applications it might be desirable to obtain an additive
homomorphism with respect to Zp, in which case one can encrypt a message m := gx using the
above algorithm. In this case there does however not exist an efficient decryption algorithm, since
decrypting comes down to solving the discrete logarithm problem over G, which we assume to be
hard. For applications where one only needs to check whether a message belongs to some relatively
small set of valid messages this does not pose a problem, which is the case for our fuzzy matching
protocols in Section 5.1 and Section 5.2

17

FFuzzyMatch

Parameters : dimension d, radius δ, and a distance function dist(·, ·).
Functionality :

– Receiver inputs w ∈ Zd.
– Sender inputs q ∈ Zd.
– Output 1 to Receiver if dist(w,q) ≤ δ, and 0 otherwise.

Possible Distance Functions

dist(w,q) is defined as:

– L∞ Distance: dist(w,q) = maxi∈[d] |wi − qi|
– Hamming Distance: dist(w,q) =

∑d
i=1(wi ̸= qi)

– Conjunction of Hamming Distance and L∞ on δ∞:
dist(w,q) =

∑d
i=1 (|wi − qi| > δ∞)

– Lp Distance: dist(w,q) =
(∑d

i=1 |wi − qi|p
)1/p

Fig. 2. Ideal Functionality of Fuzzy Matching

Furthermore note that the random self-reduction of DH tuples Lemma 2 essentially says that if one
rerandomizes an ElGamal ciphertext c := (h1, h2) as c

′ := cb · c1, where c1 := (ga, ha ·1)← Encpk(1),
then the resulting ciphertext c′ is a fresh random encryption of 1 if c is an encryption of 1, and an
encryption of a uniformly random element otherwise. For the generalized version of our protocols
using a partially homomorphic encryption scheme we will need the analogous condition.

4 Definitions and Functionalities

We define the two-message protocol as below, consisting of three algorithms:

– Receiver1(InputR) : The algorithm takes the Receiver’s InputR, outputs the first message
msg1 and its secret state st;

– Sender1(InputS ,msg1) : The algorithm takes the Sender’s InputS and msg1, outputs the
second message msg2;

– Receiver2(st,msg2) : The algorithm takes the state st and the second message msg2, outputs
the final Output.

4.1 Definition of Fuzzy Matching

We define the functionality of fuzzy matching between two points in in Figure 2, with different
distance functions including both infinity (L∞) and Minkowski (Lp) distance where p ∈ [1,∞).

4.2 Definition of Fuzzy (Circuit) Private Set Intersection

We define the functionality of fuzzy PSI and fuzzy circuit PSI in Figure 3 and Figure 4, respectively.
Note that for standard fuzzy PSI, we also consider a slightly stronger functionality (compared to

18

FFuzzyPSI

Parameters : dimension d, radius δ, cardinality of sets N,M , a distance function dist(·, ·), a leakage function
leakage(·, ·), label length σ, and a concise description for receiver’s and sender’s points DR,DS , respectively.

Functionality :

– Receiver inputs W ∈ Zd×N according to DR.
– Sender inputs Q ∈ Zd×M according to DS .

For Labeled PSI, Sender inputs LabelQ ∈ {0, 1}σ×M .
– Return leakage(W,Q) to Receiver.

Possible Leakage Functions

leakage(W,Q) is defined as:

– PSI-CA: leakage(W,Q) =
∑

i∈[N],j∈[M] (dist(wi,qj) ≤ δ).

– PSI: leakage(W,Q) = {qj | ∃ i ∈ [N], dist(wi,qj) ≤ δ}.
– PSI-SP: leakage(W,Q) = {wi | ∃ j ∈ [M], dist(wi,qj) ≤ δ}.
– Labeled PSI: leakage(W,Q) = {labelj | ∃ i ∈ [N], dist(wi,qj) ≤ δ}, where labelj is the label associated

with qj .

Fig. 3. Ideal Functionality of Fuzzy PSI

prior works) where the receiver only learns whether their points are in the intersection, but not the
sender’s exact points, which we call PSI with sender privacy (PSI-SP). We extend the functionality
of fuzzy PSI to many closely related variants including PSI cardinality (PSI-CA), labeled PSI, and
circuit PSI.

5 Fuzzy Matching

We start by presenting a fuzzy matching protocol for two points in hyperspace with infinity distance
(L∞) and hamming distance, then we extend it into a more general setting with Minkowski distance
(Lp∈[1,∞)).

FFuzzyCPSI

Parameters : dimension d, radius δ, cardinality of sets N,M , a distance function dist(·, ·), associated data
length σ, and a concise description for receiver’s and sender’s points DR,DS , respectively.

Functionality :

– Receiver inputs W ∈ Zd×N according to DR and associated data W̃ ∈ {0, 1}σ×N .
– Sender inputs Q ∈ Zd×M according to DS and associated data Q̃ ∈ {0, 1}σ×M .
– For each j ∈ [M], sample rj , sj ←$ {0, 1}1+2σ such that:

rj ⊕ sj = 1∥w̃i∥q̃j if ∃i ∈ [N] s.t. dist(wi,qj) ≤ δ, and rj ⊕ sj = 01+2σ otherwise.
– Return (rj)j∈[M] to Receiver and (sj)j∈[M] to Sender.

Fig. 4. Ideal Functionality of Fuzzy Circuit PSI

19

GetList∞(h, s,w,∆w)

For each i = 1 . . . d :

For each j = −δ . . . δ :

Set keyj ← Hγ(∆w∥wi + j)

Set hj ←$ G
Set valj = (hj ∥hs

j)

Set listi =
{
(keyj , valj)j∈[−δ:δ]

}
Return list1, . . . , listd

GetTuple∞(g, h,q,∆q,E)

For each i = 1 . . . d :

Set keyi ← Hγ(∆q∥qi)
(ui ∥ vi)← Decode(Ei, keyi)

Sample a, b←$ Zp

Set u∗ = ga ·
(∏d

i=1 ui

)b

Set v′ = ha ·
(∏d

i=1 vi
)b

Set v∗ ← Hκ′(v′)

Return (u∗, v∗)

Receiver1(w ∈ Zd)

Sample g ←$ G, s←$ Zp

Compute h = gs

Get {listi}i∈[d] ← GetList∞(h, s,w, 0κ)

Set Ei ← Encode(listi) for each i ∈ [d]

Set E = {E1, . . . , Ed}
Output msg1 := (g, h,E), st := s

Sender1(q ∈ Zd,msg1)

Parse msg1 := (g, h,E)

(u∗, v∗)← GetTuple∞(g, h,q, 0κ,E)

Output msg2 := (u∗, v∗)

Receiver2(st,msg2)

Parse msg2 := (u∗, v∗) and st := s

Output 1 if Hκ′(us
∗) = v∗ and 0 otherwise

Fig. 5. Fuzzy Matching for L∞ Distance

5.1 Fuzzy Matching for Infinity Distance

We provide the protocol for infinity distance in Figure 5. Intuitively, the receiver encodes its point
as a list of DDH values and then encodes this list into an oblivious key-value store. This guarantees
that the sender will decode a correct DDH value if its i-th dimension lies in the range, and will
decode a random group element otherwise. Finally, according to random self-reduction of DDH
tuples, the sender will send a uniformly random pair if its point is δ apart from the receiver’s point
and will send a randomized DDH tuple otherwise.

Theorem 5 (Correctness). The protocol provided in Figure 5 is correct with 1−negl(κ) probability
if OKVS satisfies perfect correctness defined in Section 3.1 and independence property from Lemma 1,
and Hγ : {0, 1}∗ 7→ {0, 1}γ ,Hκ′ : G 7→ {0, 1}κ′

are universal hash functions where γ = κ+ log δ and
κ′ = κ.

Proof. It is clear that the correctness holds in the case that dist∞(w,q) ≤ δ: For each i ∈ [d],
there is qi ∈ [wi − δ, wi + δ], then according to the perfect correctness of OKVS, we have us

i = vi
at the sender’s side which implies us

∗ = v′, Hκ(u
s
∗) = v∗, and 1 ← Receiver2. Now we turn to the

case that dist∞(w,q) > δ: Since the OKVS satisfies independence property, there exists at least
one j ∈ [d] such that (uj ∥ vj) is uniformly random over G×G, which implies us

∗ = v′ with only
negl(κ) probability. Moreover, since Hκ′ and Hγ are universal hash functions, the probability that

20

any different inputs resulting the same hash value is negligible. Taking a union bound over all 2δ+1
possible values, we have 0← Receiver2 with 1− negl(κ) probability. ⊓⊔

Theorem 6 (Security). The protocol provided in Figure 5 realizes the functionality defined
in Figure 2 for L∞ distance function against semi-honest adversaries if OKVS is oblivious and the
DDH assumption holds.

Proof. First, consider the sender is corrupted. Since the sender doesn’t receive any output from the
functionality, its view contains only the msg1. The simulator can simulate msg1 by inserting 2δ + 1
dummy key-value pairs (i.e., key′j ←$ {0, 1}γ , val′j ←$ G×G) into each of d OKVSs, denoted as E′i
for i ∈ [d]. We show the simulated msg′1 := (g,R ←$ G,E′) is computationally indistinguishable
from msg1 in the real game as below. According to the DDH assumption, (g, h, hj , h

s
j) in the real

game is a DDH tuple and thus valj := (hj ∥hs
j) is indistinguishable from a uniformly random pair

of group elements. Then according to the obliviousness of OKVS, as long as inserted {valj} are
uniformly random, then E′ and E are perfectly indistinguishable. Therefore we have msg′1 ≈c msg1
which is sufficient to simulate the sender’s view.

Now consider the case that the receiver is corrupted. Since the output can be easily simulated
by invoking FFuzzyMatch, we focus on simulating the msg2. If 1 ← FFuzzyMatch, the simulator
generates msg′2 := (gr,Hκ(h

r)) where r ←$ Zp; otherwise, generates msg′2 := (R,Hκ(R
′)) where

R,R′ ←$ G. We show the simulated msg′2 is indistinguishable from msg2 in the real game as follows.

If 1← FFuzzyMatch, then there is us
i = vi for each i ∈ [d] thus (

∏d
i=1 ui)

s = (
∏d

i=1 vi) ; otherwise,

there is at least one j ∈ [d] such that us
j ̸= vj and thus (

∏d
i=1 ui)

s ̸= (
∏d

i=1 vi) with overwhelming
probability. According to the random self-reduction of DDH tuples shown in Lemma 2, (g, h, u∗, v

′)
is a randomized DDH tuple when 1← FFuzzyMatch, and (u∗, v

′) are truly uniformly random over
G×G otherwise. Therefore, we have msg′2 ≈s msg2, and the receiver’s view can be simulated. ⊓⊔

Theorem 7 (Complexity). The communication complexity is O (2δdλ+ λ+ κ) where λ, κ are
the security and statistical parameters; The computational complexity is O(2δd) for the receiver and
O(d) for the sender.

Proof. It is clear to see that the above complexity holds if the instantiation of OKVS has a constant
rate, linear encoding time, and constant decoding time. Also, note that the sender can already
compute their keys before receiving msg1, reducing the computation during online time. ⊓⊔

Remark 1 (Potential Trade-off). Note that we can save half of the receiver’s communication cost by
sampling hj ← HG(keyj) instead of being uniformly random in Figure 5 where HG : {0, 1}∗ 7→ G is
a hash-to-group mapping and can be modeled as a random oracle in the security analysis. However,
the sender’s concrete computational cost would be dramatically increased, as during OKVS encoding
it needs to perform computations over G which is much more expensive than working over Fp.

Remark 2 (Prefix Encoding). We can use the techniques of Chakraborti et al. [CFR23] to obtain a
communication complexity of O(2dλ log δ + (λ+ κ) · (log δ)d) as follows. Instead of encoding the
entire interval [wi − δ, wi + δ] in the OKVS for each dimension i ∈ [d], the receiver encodes the
O(log δ) common prefixes representing the interval, as in [CFR23, Algorithm 1]. The sender now
similarly has to decode O(log δ) values for each dimension, leading to O((log δ)d) potential tuples
(u∗, v∗). We expect this to lead to a lower communication complexity for low dimensions, but will
leave it to future work to explore this further.

21

Conjunction of Hamming and Infinity Distance. If the dimension is low enough, then the
construction in Section 5.1 can be easily adapted to support the conjunction of hamming and infinity
distance, which is defined in Figure 2. Suppose that the infinity distance threshold is δ∞ and the
hamming distance threshold is δ (noting that δ∞ = 0 implies the pure hamming distance). Intuitively,
we make a random self-reduction for each (ui, vi) pair and then utilize threshold secret sharing
to encode a “zero message” in Sender1. In more detail, we set fi = gaiubi

i and hi = haivbii where
ai, bi ←$ Zp for i ∈ [d]. Since the hamming distance threshold is δ, we generate a (d− δ, d)-secret

sharing of 0 as (t1, . . . , td)← sharedd−δ(0). In the end, the output of Sender1 is

msg2 := {fi, t′i := Hκ(hi)⊕ ti
}
i∈[d].

The algorithm Receiver2 is modified accordingly: It computes t̃i = Hκ(f
s
i)⊕ t′i for i ∈ [d]. Then, it

outputs 1 if 0← recdd−δ
(
{t̃1, . . . , t̃d}

)
and outputs 0 otherwise. In the end, the receiver can succeed

by invoking recdδ at most
(

d
d−δ
)
=
(
d
δ

)
times. Also, if we would like to tolerate some non-negligible

correctness error, we can use robust secret sharing [CDD+15,DHP+18] which lets the receiver
reconstruct the secret in an efficient way even some shares are randomly distributed.

5.2 Fuzzy Matching for Minkowski Distance

We provide the protocol for Lp distance where 1 ≤ p <∞ in Figure 6. For simplicity, we assume
p is an integer for the moment. Similarly, the receiver encodes its point as a list of OKVS, each

one encoding all possible values for one dimension. When p ≥ 1, if
(∑d

i=1 |wi − qi|p
)1/p

≤ δ, this

implies that |wi − qi| ≤ δ for each i ∈ [d]. Thus the receiver can encode from wi − δ to wi + δ as
before. The sender still uses its point to decode each OKVS and then homomorphically sums up
|wi − qi|p for every i ∈ [d] before applying a random linear function. In the end, the sender gets an
encryption of t = (distp(w,q))

p
, then it can rerandomize both the ciphertext and plaintext, and

send back the result.

Theorem 8 (Correctness). The protocol provided in Figure 6 is correct with 1−negl(κ) probability
if OKVS satisfies perfect correctness defined in Section 3.1 and independence property from Lemma 1,
and Hγ : {0, 1}∗ 7→ {0, 1}γ ,Hκ : G 7→ {0, 1}κ are universal hash functions where γ = κ+ log δ and
κ′ = κ+ p log δ.

Proof. Similar to Theorem 5, with the perfect correctness of the OKVS, if distp(w,q) ≤ δ, it is
clear that the correctness always holds since vi = us

i · g|wi−qi|p for i ∈ [d] and thus

h∗ =

(
gc ·

d∏
i=1

ub
i

)s

· ga+b·(
∑d

i=1 |wi−qi|p) = fs
∗ · ga+b·t,

where t1/p = distp(w,q). Moreover, t1/p ≤ δ and p ≥ 1 implies t ≤ δp and thus there must be some
j∗ ∈ [0 : δp] such that Hκ′(h∗/f

s
∗) = xj∗ ∈ list∗.

Now consider the case that distp(w,q) > δ. If qi ∈ [wi − δ, wi + δ] for each i ∈ [d], then we still
get h∗ = fs

∗ · ga+b·t, but now t > δp mod p, then xt will not be included in the {ga+b·0, . . . , ga+bδp},
thus Pr[Hκ′(h∗/f

s
∗) ∈ list∗] ≤ δp+1

2κ′ if Hκ′ is a universal hash function; On the other side, if there is
some qi′ /∈ [wi′ − δ, wi′ + δ], then according to the independence property in Lemma 1, vi′ and thus
h∗/f

s
∗ would be uniform random over G, and thus equal to xj∈[0,δp] with negligible probability. ⊓⊔

22

GetListp(h, s,w,∆w)

For each i = 1 . . . d :

For each j = −δ . . . δ :

Set keyj ← Hγ(∆w∥wi + j)

Set hj ←$ G

Set valj = (hj ∥hs
j · g|j|

p

)

Set listi =
{
(keyj , valj)j∈[−δ:δ]

}
Return list1, . . . , listd

GetTuplep(g, h,q,∆q,E)

For each i = 1 . . . d :

Set keyi ← Hγ(∆q∥qi)
(ui ∥ vi)← Decode(Ei, keyi)

Sample a, b, c←$ Zp

Set f∗ = gc ·
(∏d

i=1 ui

)b

Set h∗ = hc ·
(∏d

=1 vi
)b

· ga

Set list∗ = ∅
For each j = 0 . . . δp :

Set xj = Hκ′(ga+b·j)

Set list∗ = list∗ ∪ xj

Shuffle list∗

Return (f∗, h∗, list∗)

Receiver1(w ∈ Zd)

Sample g ←$ G, s←$ Zp

Compute h = gs

Get {listi∈[d]} ← GetListp(h, s,w, 0κ)

Get Ei ← Encode(listi) for each i ∈ [d]

Set E = {E1, . . . , Ed}
Output msg1 := (g, h,E), st := s

Sender1(q ∈ Zd,msg1)

Parse msg1 := (g, h,E)

(f∗, h∗, list∗)← GetTuplep(g, h,q, 0
κ,E)

Output msg2 := (f∗, h∗, list∗)

Receiver2(st,msg2)

Parse msg2 := (f∗, h∗, list∗) and st := s

Set x = Hκ′(f−s
∗ · h∗)

Output 1 if x ∈ list∗ and 0 otherwise

Fig. 6. Fuzzy Matching for Lp Distance

Theorem 9 (Security). The protocol provided in Figure 6 realizes the functionality defined
in Figure 2 for Lp distance function, against semi-honest adversaries if OKVS is oblivious, the hash

function Hκ′ : G 7→ {0, 1}κ′
is modeled as a random oracle, and the DDH assumption holds.

Proof. Consider the case that the sender is corrupted. The simulator only needs to simulate msg1.
The simulator can simulate it the same as in the proof of Theorem 6, according to DDH assumption,
(hj ∥hs

j) is indistinguishable from uniformly random pairs over G × G, thus valj is also random.
Then the simulator can simulate msg1 by inserting dummy random key-value pairs into each Ei

since OKVS is oblivious.
Then we consider the case that the receiver is corrupted. The output can be simulated via

invoking FFuzzyMatch. We focus on simulating the msg2. The simulator samples

list′∗ := {r0, r1, . . . , rδp} ←$ {0, 1}κ
′×(δp+1),

23

and sets msg′2 := (gr, hr · R′, list′∗) where r ←$ Zp, R
′ ←$ G. If 1 ← FFuzzyMatch, the simulator

additionally programs Hκ′ such that Hκ′(R′) = rj with a randomly chosen j ∈ [0 : δp]. Now we
argue that msg′2 is statistically indistinguishable from msg2 in the real game. According to the
correctness analysis above, h∗ is either f

s
∗ · ga+bt for t ≤ dδp or uniformly random over G in the

real game.
If 1← FFuzzyMatch, then (f∗, h∗) is distributed exactly the same as (gr, hr ·R′) due to a, b, c←$ Zp.

Moreover, since Hκ′ is modelled as a random oracle, list∗ and list′∗ are perfectly indistinguishable,
unless the adversary queried Hκ′ for some ga+b·j for j ̸= t ∧ j ∈ [0 : δp]. However, since any query
gα ∈ G can be represented as ga+b·j′ for some j′ ∈ Zp. With uniformly random a, b, given a single
point ga+bt, the linear system is under-determined, thus j′ is still uniformly random over Zp. This
means the adversary can only query Hκ′ for some unknown random j after seeing ga+bt, and thus
the probability that they query for some j ∈ [0 : δp] is less than δp+1

|G| . Thus, msg′2 ≈s msg2 in this
case.

For the case that 0 ← FFuzzyMatch, it is similar to the above case, except that h∗ = fs
∗g

a+bt

for t > δp when dist∞(w,q) ≤ δ < distp(w,q), or h∗ ←$ G when δ < dist∞(w,q). And (f∗, h∗) is
perfectly indistinguishable from (gr, hr · R′) in either case. Also, msg′2 ≈s msg2 if the adversary
didn’t query Hκ′ with ga+b·j′ for any j′ ∈ [0 : δp]. This probability is negl(λ) as we argued above.
Therefore, the receiver’s view can be statistically simulated. ⊓⊔
When list∗ supports constant lookup time and linear insertion time (e.g., instantiated by a Cuckoo
Hash table), we can achieve the following complexity.

Theorem 10 (Complexity). The communication complexity is O(2δdλ+ 2λ+ δpκ) where λ, κ
are the security and statistical parameters; The computational complexity is O(2δd) for the receiver
and O(d+ δp) for the sender.

Proof. The above complexity can be achieved if list∗ supports constant lookup time and linear
insertion time (e.g., instantiated by a Cuckoo Hash table). ⊓⊔

Remark 3 (p /∈ Z). When p is not an integer, we can scale the space to round p into an integer. This,
however, loses some precision during rounding and increases the computation and communication
overhead by a p power of the scaling factor.

6 Fuzzy PSI in Low-Dimension Space

Clearly, with a fuzzy matching protocol in hand, we could straightforwardly execute a protocol
instance for every pair of points from both the sender and receiver. Yet, this approach would lead
to a quadratic increase in computational and communicative overheads. In the following sections,
we depict some methods to circumvent this quadratic overhead, addressing both low-dimensional
(in Section 6) and high-dimensional (in Section 7) spaces separately. We will deal with PSI-CA
first (i.e., only let the receiver learn the cardinality of the intersection), then show how to extend
PSI-CA to broader functionalities in Section 8, including standard PSI, labeled PSI, and circuit
PSI.

6.1 Spatial Hashing Techniques

Consider the case that points are located in a low-dimension space Ud (e.g., d = o(log(λ)) where
U is the universe for each dimension. We use a similar idea from [GRS22] to tile the entire space
into hypercubes with side length 2δ, but we consider a more general Lp distance setting. That

24

is, we consider Lp distance over a space tiled by L∞ hypercubes. We denote each hypercube as
a cell. Specifically, given a point w ∈ Ud, the index idi of each cell C on each dimension i ∈ [d] is
determined by idi = ⌊wi

2δ ⌋ and each cell is labeled by id0 ∥ . . . ∥ idd.

Lemma 3 (Maximal Distance in a Cell). Given two points w,q ∈ Ud located in the same

cell with side length 2δ, then the distance between them is distp(w,q) < 2δd
1
p where p ∈ [1,∞].

Specifically, if p =∞, dist∞(w,q) < 2δ.

Proof. Suppose the distance is equal to or greater than 2δd
1
p , then there must exist some i∗ ∈ [d]

such that |wi∗ − qi∗ | ≥ 2δ: Since p > 1, if |wi − qi| < 2δ holds for each i ∈ [d], then(
d∑
i

|wi − qi|p
)1/p

< (2pδpd)
1/p

= 2δ · d1/p.

Without loss of generality, we assume wi∗ ≥ qi∗ + 2δ which implies ⌊wi∗
2δ ⌋ ≥ ⌊

qi∗
2δ ⌋+ 1 and they are

not in the same cell. ⊓⊔

Lemma 4 (Unique Center). Suppose there are multiple Lp balls (p ∈ [1,∞]) with radius δ lying
in a d-dimension space which is tiled by hypercubes (i.e., cells) with side length 2δ. If these balls’

centers are at least 2δd
1
p apart, then for each cell, there is at most one center of the balls lying in

this cell. Specifically, if p =∞, then the unique center holds for disjoint balls since 2δd
1
p degrades

to 2δ in this case.

Proof. Given any pair of centers c1, c2 satisfying that distp(c1, c2) > 2δd
1
p . Then it is clear to

see that for any two centers c1, c2 of different balls, if they are located in the same cell, then

distp(c1, c2) < 2δd
1
p according to Lemma 3. This completes the proof. ⊓⊔

Lemma 5 (Unique Ball). Suppose there are multiple δ-radius Lp balls (p ∈ [1,∞]) distributed
in a d-dimension space which is tiled by hypercubes (cells) of side length 2δ. If these balls’ centers

are at least 2δ(d
1
p + 1) apart from each other, then there exists at most one ball intersecting with

the same cell. Specifically, if p =∞, this holds for L∞ balls with 4δ-apart centers.

Proof. It is clear to check that the maximal distance in a cell is less than 2δd
1
p according to Lemma 3.

In other words, any two points w,q in the cell have distp(w,q) < 2δd
1
p . Therefore, if the centers of

two balls are 2δ(d
1
p + 1) apart, any points w,q inside (or on) the ball will be at least 2δd

1
p apart

because:

distp(w,q) ≥ distp(c1,q)− distp(c1,w)

≥ distp(c1, c2)− distp(c2,q)− distp(c1,w)

≥ 2δ(d
1
p + 1)− δ − δ

= 2δd
1
p

holds by the triangle inequality, where c1, c2 are centers of the balls containing w,q, respectively. ⊓⊔

Lemma 6 (Unique Block). Any L∞ ball with radius δ will intersect with exactly 2d cells with
side length 2δ in a d-dimension space. Moreover, if we denote such 2d cells together as a block
(which is a hypercube with side length 4δ), then each block is unique for each disjoint ball. In other
words, any two disjoint balls must be associated with different blocks.

25

Proof. Consider vertices of a L∞ ball as {v1, . . . ,v2d}. Since the ball has radius δ, the distance
between each pair of adjacent vertices is 2δ. This implies each vertex lies in different but adjacent
cells according to Lemma 3: For each adjacent vi,vj that differ in only one dimension k, there is∣∣∣⌊vi,k

2δ
⌋ − ⌊vj,k

2δ
⌋
∣∣∣ = 1.

Therefore, each vertex of a L∞ ball is located in each cell of the block. Then we show the block is
unique for each disjoint ball.

Suppose two disjoint balls are lying in the same block. For each cell of the block, there is a
vertex lying in this cell for both balls. From Lemma 3, the distance between each pair of vertices
in the same cell is smaller than 2δ. On the other hand, disjoint balls imply the distance between
two centers dist∞(w,q) > 2δ where w,q are two center points. This means that there is some
dimension i ∈ [d], such that |wi − qi| > 2δ. Moreover, on this dimension, assuming wi > qi, there is

(wi + δ)− (qi ± δ) > 2δ.

wi + δ is the projection on this dimension from some vertex, and qi ± δ is the projection from any
vertex of the other ball. In other words, a vertex v∗ of the ball centered at w, which maintains a
distance greater than 2δ from any vertex of the ball centered at q. However, as per the preceding
discussion, the vertex that shares the same cell with v∗ must have a distance less than 2δ. This
completes the proof. ⊓⊔

6.2 Fuzzy PSI-CA for Infinity Distance

With the spatial hashing techniques, we are prepared to get around the quadratic overhead mentioned
above. It is worth noting that, a fuzzy PSI functionality for two parties holding a point set, can be
framed as the so-called structure-aware PSI [GRS22]: The receiver holds a set of balls with radius δ
(i.e., structured), and the sender holds a set of points (i.e., non-structured). In this and the next
section, we mainly focus on the fuzzy PSI-CA functionality as defined in Figure 3, or equivalently,
counting how many sender’s points lie inside the receiver’s balls.

We provide the detailed protocol in Figure 7 realizing fuzzy PSI-CA for infinity distance where
the receiver’s points are 2δ apart from each other (i.e., the receiver’s δ-radius balls are disjoint). In
the figure, block4δ returns the label of the block of side-length 4δ, cell2δ returns the label of the cell
of side-length 2δ, and GetList,GetTuple are provided in Figure 5. The high-level intuition is that
the receiver encodes each of its balls as a unique block, and then the sender checks all possible 2d

blocks containing the cell where its point is located.

Theorem 11 (Correctness). The protocol presented in Figure 7 is correct with probability
1−negl(κ) if OKVS satisfies perfect correctness defined in Section 3.1 and the independence property
from Lemma 1, Hγ : {0, 1}∗ 7→ {0, 1}γ ,Hκ′ : G 7→ {0, 1}κ′

used in GetList,GetTuple are universal
hash functions where γ = κ+ d+ log(MNδ), κ′ = κ+ d+ logM , and the receiver’s points are 2δ
apart.

Proof. Note that if dist∞(wi,qj) ≤ δ for i ∈ [N], j ∈ [M], its correctness reduces to Theorem 5
when Bk = Bj . Thus, in this case, we only need to show that, with overwhelming probability, the
sender will iterate to the same block the receiver encodes its point. This is true because, according
to Lemma 6, the receiver’s ball will intersect with 2d cells which means the sender’s point lies in
one of these cells and thus lies in the same block. When dist∞(wi,qj) > δ, the sender will not get
the same key to decode OKVS for at least one dimension if Hγ is a universal hash, except with

26

Receiver1(W ∈ Zd×N)

Sample g ←$ G, s←$ Zp

Compute h = gs

Set listi = ∅ for each i ∈ [d]

For each k = 1 . . . N :

Bk ← block4δ(wk)

{list′i∈[d]} ← GetList∞(h, s,wk,Bk)

listi = listi ∪ list′i for each i ∈ [d]

Get ∀i ∈ [d], Ei ← Encode(listi)

Set E = {E1, . . . , Ed}
Output msg1 := (g, h,E), st := s

Sender1(Q ∈ Zd×M ,msg1)

Parse msg1 := (g, h,E)

For each k = 1 . . .M :

For each Bj∈[2d] containing cell2δ(qk) :

(uk,j , vk,j)← GetTuple∞(g, h,qk,Bj ,E)

Set msg2 =
{
(uk,j , vk,j)k∈[M],j∈[2d]

}
Shuffle msg2 by j and then by k

Output msg2

Receiver2(st,msg2)

Parse msg2 :=
{
(uk,j , vk,j)k∈[M],j∈[2d]

}
, st := s

Set c = 0

For k = 1 . . .M :

If ∃ j∗ ∈ [2d], Hκ′(us
k,j∗) = vk,j∗ :

Set c = c+ 1

Output c

Fig. 7. Fuzzy PSI-CA, infinity distance, receiver’s points are 2δ apart (i.e., disjoint balls)

2δ+1
2γ probability. After taking a union bound over each pair of points, it is negl(κ). This results in

inconsistent (uk,j , vk,j) pairs with 1− negl(κ) probability as in Theorem 5, and the probability of
existing some j∗ ∈ [2d] such that Hκ′(us

k,j∗
) = vk,j∗ is still negligible if κ′ = κ+ d logM where κ is

the statistical parameter. ⊓⊔

Theorem 12 (Security). The protocol presented in Figure 7 realizes the fuzzy PSI-CA function-
ality defined in Figure 3 for infinity distance against semi-honest adversaries if OKVS is oblivious,
and the DDH assumption holds.

Proof. Intuitively, the usage of spatial hashing doesn’t affect the security but only the correctness.
To see this, we still consider two cases.

If the receiver is corrupted, the simulator needs to simulate msg2 to complete the receiver’s view.
The simulator invokes the ideal functionality to get the cardinality of the intersection c← FFuzzyPSI.
It then samples c random indices denoted as I := {Ii ∈ [M]}i∈[c] and sets L̃ := {L1, . . . , LM},
where

Lk := {(uk,j , vk,j)j∈[2d]} ←$ (G×G)2
d

.

Additionally, for each k ∈ I, the simulator puts (uk,j∗ , vk,j∗) = (gr, hr) in Lk where j∗ ←$ [d], r ←$

Z∗p. In the end, the simulated message would be msg′2 := L̃. The simulated message msg′2 is
indistinguishable from msg2 in the real game. According to Theorem 6, each {(uk,j , vk,j)j∈[2d]} in
msg2 is either uniformly random over (G × G)2

d

, or has a DDH tuple at some location j∗ ∈ [d].
Since msg2 is shuffled, it is clear to see that msg′2 ≈s msg2.

If the sender is corrupted, the simulator invokes FFuzzyPSI to get the output and simulate msg1
to complete the sender’s view. The simulator samples

Li := {(keyj , valj)} ←$ ({0, 1}λ × (G×G))N(2δ+1)

27

for each dimension i ∈ [d], sets E′i ← OKVS.Encode(Li), and sets msg′1 := {E′1, . . . , E′d}. Since each
Bk is unique to wk, the keyj generated during GetList∞ in the real game should be distinct from

each other with 1−negl(κ) probability. Thus each list′i in Figure 7 will not have the intersection with
the existing listi which means ∥listi∥ = N(2δ + 1). Then according to Theorem 6, each E′i ≈c Ei

and thus msg′1 ≈c msg1. This completes the proof. ⊓⊔

Theorem 13 (Complexity). The protocol provided in Figure 7 has communication complexity
O(2δdNλ+2dM(λ+ κ′)) where λ, κ = κ′− d logM are the security and statistical parameters; The
computational complexity is O(2δdN + 2dM) for the receiver and O(2ddM) for the sender.

Structured Sets for Both Parties. Consider the case that both the sender and the receiver
hold a structured set [GRS22]. Namely, the receiver’s set consists of δ-radius balls whose centers
are 4δ apart, and the sender’s set consists of multiple δ-radius balls. Our construction in Figure 7
can also work in this case: We tile the space with cells of side length 4δ and each block has side
length 8δ. Then the protocol would be exactly the same as in Figure 7 except that we replace
{δ, block4δ, cell2δ} with {2δ, block8δ, cell4δ} instead. The intuition is that computing the intersection
between two balls is equivalent to comparing the distance between two centers of the balls (i.e.,
checking if they are ≤ 2δ or not).

6.3 Fuzzy PSI-CA for Minkowski Distance

Assuming that the receiver’s points are spaced 2δ(d
1
p +1) apart, we can allow the receiver to iterate

through each possible location, as depicted in Figure 8. The correctness and security naturally
follow from the above discussion, given that each ballδ(wk) will intersect with at most 2d cells and
is unique for each intersecting cell according to Lemma 5. Note that if Lp = L∞, each ball will
intersect with exact 2d cells according to Lemma 6; For other 1 ≤ p <∞, Lp ball is smaller than
L∞ thus intersects with at most 2d cells. Specifically, when p =∞, the receiver’s points are spaced
4δ apart.

Theorem 14 (Correctness). The protocol presented in Figure 8 is correct with probability
1− negl(κ) if OKVS satisfies the perfect correctness defined in Section 3.1 and the independence
property from Lemma 1, Hγ : {0, 1}∗ 7→ {0, 1}γ ,Hκ′ : G 7→ {0, 1}κ′

used in GetList,GetTuple
are universal hash functions where γ = κ + d + log(δNM), κ′ = κ + log(Mδp) if p < ∞ and

κ′ = κ+ logM if p =∞, and the receiver’s points are 2δ(d
1
p + 1) apart for p ∈ [1,∞].

Proof. The correctness holds as long as the receiver can encode OKVS successfully and the cell of
the sender’s point is iterated during the encoding process. Since for each cell, there is only one ball
intersecting with it according to Lemma 5, thus each cell Ck′ is unique and results in distinct key
with 1− negl(κ) probability. Also, each ball intersects at most 2d cells where any point inside (or
on) the ball must lie in one of these cells. ⊓⊔

Theorem 15 (Security). The protocol presented in Figure 8 realizes the fuzzy PSI-CA function-
ality defined in Figure 3 for Lp∈[1,∞] distance against semi-honest adversaries if OKVS is oblivious

and the DDH assumption holds. Additionally, if p < ∞, the hash function Hκ′ : G 7→ {0, 1}κ′
is

modeled as a random oracle.

Proof. When p =∞, both views can be simulated similarly as in Theorem 12. When p <∞, the
general strategy is the same as in the infinity setting, but the output of GetTuplep will be simulated
by the approach in Theorem 9. ⊓⊔

28

Receiver1(W ∈ Zd×N)

Sample g ←$ G, s←$ Zp

Compute h = gs

Set listi = ∅ for each i ∈ [d]

For each k = 1 . . . N :

For each cell Ck′ intersecting ballδ(wk) :

{list′i∈[d]} ← GetListp(h, s,wk, Ck′)

listi = listi ∪ list′i for each i ∈ [d]

Pad listi to size 2dN with random pairs

Get ∀i ∈ [d], Ei ← Encode(listi)

Set E = {E1, . . . , Ed}
Output msg1 := (g, h,E), st := s

Sender1(Q ∈ Zd×M ,msg1)

Parse msg1 := (g, h,E)

For each k = 1 . . .M :

Ck ← cell2δ(qk)

tk ← GetTuplep(g, h,qk, Ck,E)

Set msg2 =
{
tk∈[M]

}
and shuffle

Output msg2

Receiver2(st,msg2)

Parse msg2 :=
{
tk∈[M]

}
, st := s

Set c = 0

For k = 1 . . .M :

If p =∞: Parse tk := (uk, vk)

Set c = c+ 1 if Hκ′(us
k) = vk

Else: Parse tk := (fk, hk,Xk)

Set c = c+ 1 if Hκ′(f−s
k hk) ∈ Xk

Output c

Fig. 8. Fuzzy PSI-CA, Lp distance with p ∈ [1,∞], receiver’s points are 2δ(d
1
p + 1) apart

Theorem 16 (Complexity). The protocol provided in Figure 8 has communication complexity
O(2δd2dNλ + M(λ + κ′)) when Lp = L∞ and O(2δd2dNλ + M(2λ + δpκ′)) when p ∈ [1,∞)
where λ, κ are the security and statistical parameters. Specifically, κ = κ′ − logM if p = ∞ and
κ = κ′ − p log(Mδ) otherwise. The receiver’s computational complexity is O(2δd2dN +M); The
sender’s computational complexity is O(dM) if p =∞ and O(dM + δpM) otherwise.

Structured Sets for Both. Consider the case that both the sender and the receiver hold a
structured set [GRS22], namely, the receiver’s set consists of δ-radius balls whose centers are 4δ
apart, and the sender’s set consists of multiple δ-radius balls. Our construction in Figure 7 can also
work in this case: We tile the space with cells of side length 4δ and each block has side length 8δ.
Then the protocol would be exactly the same as in Figure 7 except that we replace {δ, block4δ, cell2δ}
with {2δ, block8δ, cell4δ} instead. The intuition is that computing the intersection between two balls
is equivalent to comparing the distance between two centers of the balls (i.e., checking if they are
smaller than 2δ or not).

7 Fuzzy PSI in High-Dimension Space

In this section, we construct an efficient fuzzy PSI protocol in a high-dimensional space, i.e.,
of a polynomially large dimension. For infinity distance, we provide a fuzzy PSI-CA protocol
in Section 7.1 and extend it to richer functionalities in Section 8; For Minkowski distance, we
provide a standard fuzzy PSI protocol in Section 7.2 as it doesn’t support PSI-CA or other stronger
functionalities.

29

7.1 Infinity Distance

Suppose we assume the receiver’s set has good distribution in a high-dimensional space, particularly
if each ball has disjoint projections (i.e., separated) from others on at least one dimension. In
this case, we can get communication and computation complexity both scaling polynomially in
the dimension. For instance, if balls are uniformly distributed, then it satisfies this predicate with
overwhelming probability.

Definition 3 (Separated Balls). The set of δ-radius balls are separated in a d-dimension space
if and only if the projections are separated on at least one dimension for each ball. Specifically, for
the center wk of each ball in the set, there exists some dimension i∗ ∈ [d] such that

∀j ∈ [−δ : δ], wk,i∗ + j /∈ {wk′,i∗ + j′}k′ ̸=k,j′∈[−δ:δ],

where {wk′,i∗ + j′} is the set of projections from other balls.

Lemma 7 (Uniform Distribution). If centers of the balls are uniformly distributed (W ←$

Ud×N) where U := Z2u , then it has the property defined in Definition 3 with probability 1− negl(d).

Proof. For each wk with k ∈ [N], its projection on each dimension i is an interval of length 2δ + 1
and thus the probability that it collides with the projection of other wk′ with k′ ̸= k on some
specific dimension is

Pr[Not separated on some dimension] ≤ (N − 1)(2δ + 1) · 2
2u

.

The probability of colliding with others for each dimension is smaller than
(

2(N−1)(2δ+1)
2u

)d
. There-

fore, according to the union bound, the probability that there exists some ball collides with other
balls onto every dimension is

Pr[Not a good distribution] ≤

(
2N

1
d+1(2δ + 1)

2u

)d

,

which is clearly negl(d) when logN+log δ+2
u is a constant smaller than 1. ⊓⊔

Given that the receiver’s balls are separated as defined in Definition 3, we provide an efficient
protocol in Figure 9 that removes the term 2d for communication and computation. The high-level
intuition is the following: For each wk, the receiver encodes an inner OKVS of size O(2δd) following
the same approach in Figure 5, then encode an outer OKVS for each dimension while using this
inner OKVS as the encoded value for the unique separated dimension and dummy instances for
other dimensions.

Theorem 17 (Correctness). The protocol presented in Figure 9 is correct with probability
1 − negl(κ) if OKVS satisfies the perfect correctness, Fp-linearity defined in Section 3.1 and the

independence property from Lemma 1, Hγ : {0, 1}∗ 7→ {0, 1}γ ,Hκ′ : G 7→ {0, 1}κ′
are universal

hash functions where γ = κ + logNMδ, κ′ = κ + logM , and the receiver’s set are separated as
defined in Definition 3. Particularly, we require that the decoding vector satisfies dec(·) ∈ {0, 1}m
and HammingWeight(dec(·)) = O(κ) where m is the size of the OKVS.

30

Receiver1(W ∈ Zd×N)

Sample g ←$ G, s←$ Zp, compute h = gs, and set listi = ∅ for each i ∈ [d]

Set m = (2δ + 1)d · (1 + ϵ) where ϵ is the expansion factor of the OKVS scheme

Denote dec for the Fp-linear decoding function of the OKVS scheme

Denote as Ik the first separated dimension for the ball wk ∈W

Sample ζ ←$ G
For each k = 1 . . . , N :

For each i = 1 . . . d :

For each j ∈ [−δ,+δ] :

If i = Ik:

Set valj ← Encode
({

(Hγ(i
′, wk,i′ + j′), hi′,j′ ∥hs

i′,j′ · ζ
−xi′,j′)

}
i′∈[d],j′∈[−δ,+δ]

)
where hi′,j′ ←$ G and xi′,j′ := (d− 1) ·

∑m
ℓ=1 dec(Hγ(i

′, wk,i′ + j′))ℓ

Else:

Set valj := (rj ∥ ζ · rsj) where rj ←$ Gm

Set listi = listi ∪ (Hγ(i, wk,i + j), valj))

Pad each listi to size (2δ + 1)N with random key-val pairs

Set Ei ← Encode(listi) for each i ∈ [d], and E = {E1, . . . , Ed}
Output msg1 := (g, h,E), st := s

Sender1(Q ∈ Zd×M ,msg1)

Parse msg1 := (g, h,E)

For each k = 1 . . .M :

Sample a, b←$ Zp

For each i = 1 . . . d :

Set ei ← Decode(Ei,Hγ(i, qk,i))

For each j = 1 . . . d :

Set (f ′
j ∥h′

j)← Decode(ei,Hγ(j, qk,j))

Set fi :=
∏d

j=1 f
′
j , hi :=

∏d
j=1 h

′
j

Set uk = ga ·
∏d

i=1 f
b
i , v

′
k = ha ·

∏d
i=1 h

b
i , and vk = Hκ′(v′k)

Set msg2 =
{
(uk, vk)k∈[M]

}
Shuffle and output msg2

Receiver2(st,msg2)

Parse msg2 :=
{
(uk, vk)k∈[M]

}
, st := s

Set c = 0

For k = 1 . . .M :

If Hκ′(us
k) = vk, set c = c+ 1

Output c

Fig. 9. Fuzzy PSI-CA, infinity distance, each ball is separated on at least one dimension

Proof. First, consider the receiver’s encoding process. If the receiver’s set satisfies the Definition 3,
then there will be at least one dimension that is “free” for each wk to encode the inner OKVS
instance which guarantees the receiver’s set can be successfully encoded. Now consider the sender’s
point qk for some k ∈ [M]. If dist∞(w,qk) ≤ δ, then after decoding the outer OKVS, the sender
will get a correct inner OKVS instance ei∗ for some dimension i∗ ∈ [d] on which there exists a

31

separated interval, or a dummy instance (r ∥ζ · rs) for other dimensions. Because the OKVS has
Fp-linear decoding function dec, decoding a dummy instance (r ∥ζ · rs) at Hγ(j, qj) will output:

⟨dec(Hγ(j, qj)), r ∥rs · ζ⟩ =
m∏
ℓ=1

(rℓ ∥ rsℓ · ζ)dj,ℓ =

m∏
ℓ=1

r
dj,ℓ

ℓ ∥ ζxj · (
m∏
ℓ=1

r
dj,ℓ

ℓ)s,

where dj,ℓ := dec(Hγ(j, qj))ℓ and xj :=
∑m

ℓ=1 dj,ℓ. Thus, decoding a dummy instance d times and

then multiplying them together would get an ElGamal encryption of ζ
∑d

j=1 xj , whereas decoding
a correct inner OKVS instance ei∗ for all dimensions and multiplying them together yields an

ElGamal encryption of ζ−(d−1)·
∑d

j=1 xj . Given the fact that the sender’s point qk is located inside a
ball, and there exists exactly one dimension to get an inner OKVS instance, the sender would get(∏d

i=1 fi,
∏d

i=1 hi

)
which is an ElGamal encryption of

ζ−(d−1)·
∑d

j=1 xj ·
d∏

i=1,i̸=i∗

ζ
∑d

j=1 xj

which is equal to 1. Therefore,
(
g, h,

∏d
i=1 fi,

∏d
i=1 hi

)
is a valid DDH tuple. Using a similar

argument as before we know the receiver can correctly verify the sender’s output (uk, vk).
On the other hand, if dist∞(wj ,qk) > δ for every j ∈ [N], any incorrect decoding (i.e., using a

non-encoded key) on either outer or inner OKVS results in a random output over G×G, making(
g, h,

∏d
i=1 fi,

∏d
i=1 hi

)
a DDH tuple with probability at most negl(κ). Consider the case that

the outer OKVS is decoded correctly for each dimension, and then the sender gets either dummy
instances or inner OKVS instances. Since we assume each inner OKVS instance has to be correctly
decoded, a non-match point qk can only report a false positive when those instances are all dummy.

However, in this case, the final product is an ElGamal encryption of
∏d

i=1 ζ
∑d

j=1 xj , which is equal

to 1 with only negl(κ) probability since ζ ←$ G and d ·
∑d

i=1 xj = O(κ · d2)≪ p. ⊓⊔

Theorem 18 (Security). The protocol presented in Figure 9 satisfies the fuzzy PSI-CA function-
ality defined in Figure 3 for infinity distance against semi-honest adversaries if OKVS is doubly
oblivious, and the DDH assumption holds.

Proof. We can still simulate msg1,msg2 as before and only need to take care of the size of the
OKVS. Because the receiver’s balls might overlap on some dimension i ∈ [d] which in turn affects
the size of listi, the receiver pads listi with some dummy key-value pairs to simulate it. Accordingly,
in the simulation against a corrupted sender, the simulator generates a list of size (2δ + 1)N ,
containing uniformly random key-value pairs, for each dimension and encodes it over OKVS. This is
indistinguishable due to the double obliviousness property, where the double obliviousness property
also guarantees that the inner OKVS is uniformly random. ⊓⊔

Theorem 19 (Complexity). The protocol presented in Figure 9 has communication complexity
O
(
(2δd)2Nλ+M(λ+ κ)

)
where λ, κ = κ′ − logM are computational and statistical parameters;

The computational complexity is O((2δd)2N +M) for the receiver and O(2d2M) for the sender.

Remark 4. Note that the above approach in Figure 9 can also be extended to the Lp setting by
replacing the underlying fuzzy matching protocol from L∞ to Lp. Moreover, since Lp balls are
confined in L∞ balls, Lemma 7 still holds in this setting.

32

7.2 Minkowski Distance

Our crucial observation is that locality-sensitive hash (LSH) defined in Section 3.3 can be combined
with our fuzzy matching protocol to achieve negl(κ) correctness error and sub-quadratic complexity
in the fuzzy PSI setting. The high-level intuition is that we can use LSH to do a “coarse mapping”,
and then use a fuzzy matching protocol for “refined filtering”. Usually, LSH will map similar points
(dist ≤ δ) into the same bucket with at least 1− negl(κ) probability, and different points (dist > cδ)
into different buckets with a high probability. In fuzzy PSI setting, cδ is equivalent to the minimal
distance among the receiver’s points, e.g., c = 2 is the same as the disjoint balls and c = 4 reflects
the case that points are 4δ apart. There are only false positives, but no false negatives, thus we can
then use fuzzy matching to do a refined filtering.

The detailed construction is shown in Figure 10, where we denote as L the number of LSH
tables, and T the bucket capacity of each LSH entry. The receiver tries to insert all ball centers into
each LSH table. Particularly, when there is a collision during inserting to some entry, the receiver
tries to insert the ball into the bucket of the same entry. When parameters are set properly, the
insertion will be successful without exceeding the capacity T of each bucket with overwhelming
probability. Note that, no matter how many collisions occurred, the total number inserted in each
LSH table, as well as in each OKVS, is still the same as the receiver’s set size. Given a sender’s
point, an LSH function FLp would map it to L entries across L tables, and for each entry, there are
T possible locations in the bucket that could be the true positive. The sender needs to iterate each
location to run the underlying fuzzy matching protocol, thus the computational overhead would be
L · T times larger.

Theorem 20 (Correctness). The protocol presented in Figure 10 is correct with probability
1−negl(λ) if OKVS satisfies the perfect correctness and independence property defined in Section 3.1
and Lemma 1, Hλ : {0, 1}∗ 7→ {0, 1}γ ,Hκ′ : G 7→ {0, 1}κ′

used in GetListp,GetTuplep and H∆ :

{0, 1}∗ 7→ {0, 1}∆ are universal hash functions where γ = κ + log(δMNLT), κ′ = κ′′ + du with
κ′′ = κ+ log(δpMLT) and u the bit-length of the coordinates, ∆ = κ+ log(MNLT) and FLp is a

(δ, cδ, 1
Nρ ,

1
N)-LSH family defined in Section 3.3 with T = O(logN

log logN) and L = κ
log eN

ρ.

Proof. According to Definition 2, there is a collision for FℓLp
(wk) and FℓLp

(wk′) with probability at

most 1
N . With a similar analysis as maximal-load of balls-into-bins problem, for each ℓ ∈ [L] and

some specific LSH bucket Rℓ
k∗

in ℓ-th table, we have

Pr[Hash to Rℓ
k∗

exactly t∗ times] =

(
N − 1
t∗

) t∗∏
k=1

pk

N−t∗−1∏
k=1

(1− pk) ≤
1

t∗!

where pk ≤ 1
N for k ∈ [N] is the probability that each wk ̸=k∗ hashes to the same bucket Rℓ

k∗
.

It is less than 1
Nx−o(1) if t∗ = x logN/ log logN. Taking a union bound on each LSH bucket and

each t > t∗, the probability that there exists an LSH bucket which has ≥ t∗ collisions is less than
1

Nx−3−o(1) . If we choose x = 3 + κ
log e , then the probability is negl(κ) that there exists a bucket in L

tables which exceeds the capacity T =
(3+ κ

log e) logN

log logN .

Then, according to Theorem 1, if sender’s point q satisfies dist(q,w) ≤ δ, there exists at least
one listℓ∗ for ℓ∗ ∈ [L] which contains the correct key-value pair and the sender can decode them
correctly for Eℓ∗

1 , . . . ,Eℓ∗
d . If the sender’s point q is far away from every w, then the correctness

follows from Theorem 8 directly. ⊓⊔

33

Receiver1(W ∈ Zd×N)

Sample g ←$ G, s←$ Zp

Compute h = gs

Set listℓi = ∅,Lℓ = ∅ for i ∈ [d], ℓ ∈ [L]

For each ℓ = 1 . . . L :

For each k = 1 . . . N :

Set Rℓ
k ← Fℓ

Lp
(wk)

For r = 1 . . . T :

Set ∆k,ℓ ← H∆(Rℓ
k∥r)

If (·,∆k,ℓ) ̸∈ Lℓ

Exit For

Set Lℓ = Lℓ ∪ (k,∆k,ℓ)

For each ℓ = 1 . . . L :

For each k = 1 . . . N :

Retrieve (k,∆k,ℓ) from Lℓ

{list′i}i∈[d] ← GetListp(h, s,wk,∆k,ℓ)

Set listℓi = listℓi ∪ list′i

Get Eℓ
i ← Encode(listℓi) for i ∈ [d]

Set Eℓ = {Eℓ
1, . . . , E

ℓ
d}

Output msg1 := (g, h, {Eℓ}ℓ∈[L]), st := s

Sender1(Q ∈ Zd×M ,msg1)

Parse msg1 := (g, h, {Eℓ}ℓ∈[L])

SetMk = ∅ for k ∈ [M]

For each k = 1 . . .M :

For each ℓ = 1 . . . L :

Get Rℓ
k ← Fℓ

Lp
(qk)

For each r = 1 . . . T :

∆ = H∆(Rℓ
k∥r)

(f, h,X)← GetTuplep(g, h,qk,∆,Eℓ)

For each x ∈ X , set x = x⊕ (0κ
′′
∥qk)

Mk =Mk ∪ (f, h,X)
ShuffleMk

Set msg2 := {M1, . . . ,MM} and shuffle

Output msg2

Receiver2(st,msg2)

Parse msg2 := {M1, . . . ,MM}, st := s

Parse eachMk := {(fj , hj ,Xj)}j∈[L·T]

Set I = ∅
For each k = 1 . . .M :

If ∃ (f∗, h∗,X∗) ∈Mk and x ∈ X∗ s.t.

Hκ′(f−s
∗ · h∗)⊕ x∗ = 0κ

′′
∥qk:

Set I = I ∪ qk

Output I

Fig. 10. Fuzzy PSI, Lp distance in high dimension space, using LSH, disjoint balls

Theorem 21 (Security). The protocol presented in Figure 10 satisfies the fuzzy PSI functionality
defined in Figure 3 for Lp distance against semi-honest adversaries if OKVS is oblivious and the
DDH assumption holds.

Proof. The security follows naturally from the underlying fuzzy matching protocol proved in The-
orem 9. Specifically, the msg1 can be simulated by encoding L lists of N(2δ + 1) random key-value
pairs, for each dimension. The indistinguishability comes from the obliviousness of OKVS and the
DDH assumption. Now consider the receiver is corrupted and the simulator needs to simulate msg2.
The simulator invokes FFuzzyPSI to obtain the intersection

I := {qi | ∃w ∈W, distp(w,qi) ≤ δ}.

Then, it simulates (fj , hj ,Xj) as in the case that 0 ← FFuzzyMatch in Theorem 9, for each
j ∈ [M · L · T]. In the end, it samples |I| random indices {Ii ∈ [M]}i∈[|I|], and for each Ii,
it replaces {(fk, hk,Xk)}k∈[Ii,Ii+L·T] to be the tuples corresponding to qi in the real game. The
indistinguishability can be argued the same as in Theorem 9. ⊓⊔

34

Theorem 22 (Complexity). The protocol presented in Figure 10 has communication complexity
O
(
2δdN1+ρλ+MNρ(2λ+ δpκ) logN

)
; The computational complexity is O(2δdN1+ρ+MNρ logN)

for the receiver and O((d+ δp)MNρ logN) for the sender. Also, ρ ≤ 1
c when receiver’s points are

c-apart.

Proof. Just choose L = O(Nρ) and T = O(logN) according to Section 3.3 and Theorem 20. ⊓⊔
As a concrete example, for L2 distance and disjoint balls (2δ-apart points), we have communication
complexity O(2κδdN1+ρλ+ κ2MNρ logN(2λ+ δ2κ)). After dropping constant terms, we have a
sub-quadratic complexity O(N1+ρ +MNρ logN) where ρ = 0.365. Combined with Theorem 4, this
complexity can be asymptotically reduced to O((N +M) logN).

8 Extending to Broader Functionalities

We show above protocols can be extended to a broader class of functionalities, including standard
PSI, PSI with sender privacy, labeled PSI, and circuit PSI, with small tweaks and therefore
preserving the efficiency. We describe extensions for all protocols in this work except for the Lp

distance protocol in high dimensional space since currently, the simulator for a corrupt receiver
needs to know the points of the sender that lie in the intersection, i.e., only works for the standard
PSI functionality.

8.1 Labeled PSI.

For labeled PSI, the sender has some labels labelk ∈ {0, 1}σ attached to their input points qk,
k ∈ [M], and the receiver wishes to learn the labels of the points for which there exists an i ∈ [N]
such that dist(wi,qk) ≤ δ (see Figure 3 for the ideal functionality). It can be realized for the protocol
in Figure 7 (and similar for the protocols in Figure 8 and Figure 9 by ignoring the index j in these
cases) by letting the sender use vk,j as a one-time pad to encrypt labelk together with a special
prefix, e.g., 0κ, indicating that the label belongs to a valid match. For the protocol in Figure 8 with
p ̸=∞, the sender instead uses the xk,j ∈ Xk as a one-time pad to encrypt 0κ∥labelk.

More formally, let labelk ∈ {0, 1}σ denote the sender’s labels associated to their inputs qk,
k ∈ [M]. The protocol in Figure 7 can be adapted to realize labeled PSI (see Figure 3) as follows,
and the protocols in Figure 8 with p =∞ and Figure 9 can be adapted analogously by ignoring the
index j.

– The sender puts vk,j := Hκ′+σ(v
′
k,j) for each k ∈ [M] and j ∈ [2d], and puts msg2 :=

{
(
uk,j , vk,j ⊕ (0κ

′∥labelk)
)
k∈[M],j∈[2d]

}.

– The receiver parses msg2 := {(uk,j , Ck,j)k∈[M],j∈[2d]} and, for each k ∈ [M], if there exists

j∗ ∈ [2d] for which Hκ′+σ(u
s
k,j∗

) ⊕ Ck,j = 0κ
′∥zk,j for some zk,j ∈ {0, 1}σ, adds zk,j to their

output.

The simulation for a corrupt sender remains identical. In case of a corrupt receiver, the only
thing that changes is that the simulator puts uk,jk := gr, Ck,jk := Hκ′+σ(h

r)⊕ (0κ
′∥labelk), where

r ←$ Zp, jk ←$ [2d], if labelk is in the output, and uk,j := R, Ck,j := Hκ′+σ(R
′), where R,R′ ←$ G,

otherwise.
The protocol from Figure 8 with p ̸=∞ can be adapted similarly by letting the sender use the

xk,j as a one-time pad to encrypt their labels. Formally:

35

– The sender constructs the items in Xk as xk,j := Hκ′+σ(g
ak+bk·j)⊕ (0κ

′∥labelk) for j ∈ [δp] and
each k ∈ [M], shuffles Xk and puts msg2 := {(fk, hk,Xk)k∈[M]}.

– The receiver checks for each k ∈ [M] if there exists j ∈ [δp] for which Hκ′+σ(f
−s
k · hk)⊕ xk,j =

0κ
′∥zk,j for some zk,j ∈ {0, 1}σ, adds zk,j to their output.

The simulation proceeds similar to before, where the simulator for a corrupt receiver now puts
fk := gr, hk := hr ·R, xk,j := Hκ′+σ(R)⊕ (0κ

′∥labelk) with r ←$ Zp, R←$ G for a random j ←$ [δp]

if labelk is in the output, and xk,j ←$ {0, 1}κ′+σ otherwise.

8.2 Standard PSI.

By letting the labels be a description of the sender’s points, we can realize standard PSI, where the
receiver learns the sender’s points qk for which there exists an i ∈ [N] such that dist(wi,qk) ≤ δ
(see Figure 3 for the ideal functionality).

8.3 Standard PSI with Sender Privacy (PSI-SP).

We saw above that standard PSI where the receiver learns the sender’s points within distance δ of
theirs can be seen as a special case of labeled PSI. Adapting the protocol such that the receiver
only learns which of their balls have a non-empty intersection with any of the sender’s points, which
we refer to as standard PSI with sender privacy (PSI-SP) requires a bit more work. The basic idea
is to again let the sender use vk,j as a one-time pad, but now to encrypt a value that can be used to
identify the receiver’s point wk′ in case dist(wk′ ,qk) ≤ δ. For the protocol in Figure 7 the sender
can encrypt Hκ(Bk,j) as an identifier for the receiver’s point. For the protocol in Figure 8 the
receiver first encodes an OKVS P that maps all cells intersecting ballδ(wk′) to fresh encryptions of
the same identifier Rk′ , which the sender decodes at Hλ(Ck), masks with vk and sends the result to
the receiver together with uk. The receiver can then decrypt, unmask with us

k and compare to Rk′ .
For the Minkowski distance protocol, we can reduce the number of decryptions and comparisons
the receiver needs to perform at the end of the protocol by letting the sender program an oblivious
programmable PRF (OPPRF, see Section 3.4) that sends the points in Xk to Decode(P,Hλ(Ck)).

More formally, we can achieve sender privacy (see Figure 3) for the protocol in Figure 7 as
follows:

– The sender puts msg2 := {(uk,j , vk,j ⊕Hκ′(Bk,j))k∈[M],j∈[2d]}, where Bk,j , j ∈ [2d], ranges over
all the blocks containing cell2δ(qk).

– The receiver parses msg2 := {(uk,j , Ck,j)k∈[M],j∈[2d]} and, for each k ∈ [M], if there exists

j∗ ∈ [2d] and k′ ∈ [N] for which Hκ′(us
k,j∗

)⊕ Ck,j∗ = Hκ′(Bk′), adds wk′ to their output.

The simulator for a corrupt sender again remains identical. In case of a corrupt receiver, if wk′

is in the output, the simulator puts uk,jk := gr, Ck,jk := Hκ′(hr) ⊕ Hκ′(Bk′), where k ←$ [M],
jk ←$ [2d], r ←$ Zp, and otherwise puts uk,j := R, Ck,j := Hκ′(R′), where R,R′ ←$ G.

To achieve sender privacy for the other protocols we need to do a bit more work. The receiver
encodes encryptions of the identifiers for their points in an OKVS such that the sender does not learn
any information if multiple points are close to the same point of the receiver. The sender subsequently
homomorphically masks the encrypted identifiers such that the receiver can only unmask them for
points in the intersection. Let PKE := (Gen,Enc,Dec,⊞) be an additively homomorphic IND-$CPA
secure public-key encryption scheme as defined in Section 3.5 with plaintext space {0, 1}κ′

. Just as
in our main protocols, one can also choose to instantiate PKE by ElGamal’s cryptosystem, and let
the receiver use the same key-pair s, h, but we leave the details of this to future work. Using the
subprotocols from Figure 11 we can describe the adaptations as follows:

36

GetOKVS(pk,R, (∆k)k∈[N])

For each k = 1, . . . , N :

For each j = 1, . . . , |∆k|:
Ck,j ← Encpk(Rk)

list← list ∪ {(∆k
j , Ck,j)}

P ← Encode(list)

Output P

HomMask(pk, P, S,∆)

X ← Encpk(S)

Y ← Decode(P,∆)

Z ← X ⊞ Y

Output Z

Fig. 11. Subprotocols GetOKVS and HomMask

– Figure 8 (p = ∞): Receiver samples (pk, sk) ← Gen(1λ), R ←$ {0, 1}κ×N and sends pk,
P ← GetOKVS(pk,R, ((Hγ(Ck,j))j∈[2d])k∈[N]) in addition to msg1. Sender computes Zk ←
HomMask(pk, P, vk, Hγ(Ck)) for each k ∈ [M] and sends a shuffled msg2 := {(uk, Zk)k∈[M]}. For
each k ∈ [M], if there exists k′ ∈ [N] such that Hκ′(us

k)⊕ Decsk(Zk) = Rk′ , the receiver adds
wk′ to their output.

– Figure 8 (p ̸= ∞): Receiver generates pk, P same as above. Sender computes Zk,j ←
HomMask(pk, P, xk,j , Hγ(Ck)), where xk,j ∈ Xk, for each k ∈ [M] and j ∈ [δp], and sends
a shuffled msg2 := {(fk, hk, (Zk,j)j∈[δp])k∈[M]}. For each k ∈ [M], j ∈ [δp], if there exists

k′ ∈ [N] such that Hκ′(f−sk · hk)⊕ Decsk(Zk,j) = Rk′ , the receiver adds wk′ to their output.

To simulate a corrupt sender can encode an OKVS P with random key-value pairs, and indistin-
guishability follows from the IND-$CPA security of the encryption scheme and the obliviousness of
the OKVS. In case of a corrupt receiver, if wk′ is in the output, the simulator can insert the relation
being checked by the receiver into a random entry in Zk for a random k ∈ [M], and sample the
remaining entries uniformly random. That is, if p =∞ it puts uk := gr, Zk := Encpk(Hκ′(hr)⊕Rk′),
where r ←$ Zp, for a random k ←$ [M] if wk′ is in the output, and otherwise puts uk := R,

Zk := Encpk(R
′) where R ←$ G and R′ ←$ {0, 1}κ′

. The simulator for p ̸= ∞ can be adapted
similarly.

Finally, the protocol in Figure 9 can be adapted in a similar way as follows:

– For every k ∈ [N], the receiver samples a random Rk ←$ {0, 1}κ′
and picks a dimension i∗ ∈ [d]

where the projected interval [wk,i∗ − δ : wk,i∗ + δ] is disjoint from [wk′,i∗ − δ : wk′,i∗ + δ] for
all k′ ≠ k. For each k ∈ [M], the receiver puts Ck,i∗,j ← Encpk(Rk) and Ck,i,j ← Encpk(0) for
i ̸= i∗, using fresh randomness for each j ∈ [−δ : δ], and puts listi := {(Hγ(i, wk,i + j), Ck,i,j) :
k ∈ [M], j ∈ [−δ : δ]} padded to size 2δ ·M with random key-value pairs. The receiver encodes
Pi ← Encode(listi) and sends P := (P1, . . . , Pn) to the sender in addition to msg1.

– The sender computes Yk,i ← Decode(Pi, Hγ(i, qk,i)) for each k ∈ [M] and i ∈ [d], puts Xk ←
Encpk(vk) and Zk ← Yk,1 ⊞ · · · ⊞ Yk,d ⊞ Xk for each k ∈ [M] and sends a shuffled msg2 :=
{(uk, Zk)k∈[M]}.

– For each k ∈ [M], if there exists k′ ∈ [N] for which Hκ′(us
k) ⊕ Decsk(Zk) = Rk′ , the receiver

adds wk′ to their output.

The simulator can be adapted similarly to before.

37

8.4 Circuit PSI.

In the circuit PSI setting, we want none of the parties to learn which or even how many points are
close to each other. Instead, they only learn secret shares encoding the intersection, which they can
use as the input to a secure follow-up computation (see Figure 4 for the ideal functionality). The
main idea behind the tweaks needed to achieve this functionality is to perform the comparisons that
the receiver does at the end of the protocol inside of a secure computation to let the parties obtain
secret shares of bits encoding the intersection. Additionally, the receiver encodes encryptions of their
associated values into an OKVS similar to the PSI-SP extension and lets the sender homomorphically
mask these with random values such that the parties obtain secret shares of the receiver’s associated
values for points in the intersection. We can reduce the number of secure comparisons the parties
need to perform at the end of the protocol from δp ·M to M by letting the sender program an
OPPRF that maps Xk to a random ak and securely comparing this value to the OPPRF evaluation
at Hκ(f

−s
k · hk).

More formally, let w̃k, q̃k ∈ {0, 1}σ be the associated data for the inputs wk,qk, respectively.
Furthermore, let PKE := (Gen,Enc,Dec,⊞) be an additively homomorphic IND-$CPA secure public
key encryption scheme as defined in Section 3.5 with plaintext space {0, 1}σ. Then the fuzzy PSI
protocols can be adapted to realize circuit PSI (see Figure 4) as follows:

– Figure 7: Receiver samples (pk, sk) ← Gen(1λ) and sends the sender pk together with P ←
GetOKVS(pk, (w̃k)k∈[N], (Hγ(Bk))k∈[N]) in addition to msg1. Sender samples sk,j ←$ {0, 1}σ,
computes Zk,j ← HomMask(pk, P, sk,j , Hγ(Bk,j)) for each k ∈ [M], j ∈ [2d], and sends
msg2 := {(uk,j , Zk,j)k∈[M],j∈[2d]}. Receiver inputs yk,j := Hκ(u

s
k,j) and rk,j := Decsk(Zk,j)

and sender inputs vk,j , sk,j and q̃k into a generic MPC functionality that outputs secret shares
of
∑

j∈[2d](yk,j = vk,j) · (1∥(rk,j ⊕ sk,j)∥q̃k) for each k ∈ [M].

– Figure 8 (p = ∞): Receiver samples (pk, sk) ← Gen(1λ) and sends the sender pk, P ←
GetOKVS(pk, (w̃k)k∈[N], ((Hγ(Ck,j))j∈[2d])k∈[N]) in addition to msg1. Sender samples sk ←$

{0, 1}σ, computes Zk ← HomMask(pk, P, sk, Hγ(Ck)) for each k ∈ [M] and sends msg2 :=
{(uk, Zk)k∈[M]}. Receiver inputs yk := Hκ(u

s
k) and rk := Decsk(Zk), sender inputs vk, sk and

q̃k into an MPC functionality that computes secret shares of (yk = vk) · (1∥(rk ⊕ sk)∥q̃k) for
each k ∈ [M].

– Figure 8 (p ̸=∞): Receiver generates pk, P identical to above. Sender computes Zk identical to
above and sends msg2 := {(fk, hk, Zk)k∈[M]} to the receiver. Receiver inputs yk := Hκ′(f−sk ·hk)
and rk := Decsk(Zk), sender inputs Xk, sk and q̃k into an MPC functionality that computes
secret shares of

∑
xk,j∈Xk

(yk = xk,j) · (1∥(rk ⊕ sk)∥q̃k) for each k ∈ [M].

The simulator for a corrupt sender can encode an OKVS P with random key-value pairs similar to
before, and return the sender’s output shares as the output of the ideal MPC functionality. In case
of a corrupt receiver, the simulator generates msg2 by sampling the first entries uniformly random,
and setting the entries of Zk to be ciphertexts of uniformly random values. Finally, it returns the
receiver’s output shares as the output of the ideal MPC functionality.

Finally, the protocol in Figure 9 can be adapted as follows:

– The receiver samples (pk, sk)← Gen(1λ). For each k ∈ [M] and j = −δ, . . . , δ, generates fresh
encryptions Ck,i∗,j ← Encpk(w̃k), where i∗ ∈ [d] is randomly sampled from the dimensions where
the projected interval [wk,i∗−δ : wk,i∗+δ] is disjoint from [wk′,i∗−δ : wk′,i∗+δ] for all k′ ̸= k. For
all other k ∈ [M], i ̸= i∗ and j ∈ [−δ : δ], generates a fresh Ck,i,j ← Encpk(0). For each i ∈ [d], the
receiver encodes Pi ← Encode(listi), where listi is {(Hγ(i, wk,i+j), Ck,i,j) : k ∈ [M], j ∈ [−δ : δ]}
padded to size 2δ ·M with random key-value pairs. The receiver sends pk, P := (P1, . . . , Pd) to
the sender in addition to msg1.

38

– The sender computes Yk,i := Decode(Pi, Hγ(i, qk,i)) for each k = 1, . . . ,M and i = 1, . . . , d,
samples sk ←$ {0, 1}σ, puts Xk ← Encpk(sk) and puts Zk := Yk,1 ⊞ · · ·⊞ Yk,d ⊞Xk. The sender
puts msg2 := {(uk, Zk)k∈[M]}.

– The receiver inputs yk := Hκ′(us
k) and rk := Decsk(Zk), and the sender inputs vk, sk and q̃k

into a generic MPC functionality that computes secret shares of (yk = vk) · (1∥(rk ⊕ sk)∥q̃k) for
each k ∈ [M].

The simulator can be adapted similarly to before.

8.5 Reducing Comparisons for PSI-SP and Circuit PSI.

Using an oblivious programmable PRF (OPPRF) as defined in Section 3.4, we can reduce the
number of comparisons the receiver needs to perform for the PSI-SP extensions of the Minkowski
distance protocols. The main idea (in terms of the protocol in Figure 8 with p ̸=∞) is to let the
sender, in addition to sending (fk, hk), program an OPPRF Fk that maps the points in Xk to
a rerandomized encryption of Decode(P,Hγ(Ck)) and to let the receiver evaluate the OPPRF at
Hκ′(f−sk · hk). If the decryption of this evaluation equals Rk′ for some k′ ∈ [N], the receiver adds
wk′ to their output. This reduces the number of comparisons from δp ·M to M , assuming that
{(Rk′)k′∈[N]} has constant lookup time.

Similarly, we can reduce the number of secure comparisons the sender and receiver need to perform
for the circuit PSI extensions of the Minkowski distance protocols. For the protocol in Figure 8, in
addition to sending the (fk, hk, Zk), the sender can program an OPPRF Fk that maps the points
in Xk to a random ak and to let the receiver evaluate the OPPRF at Hκ′(f−sk · hk) to obtain bk.
Now the MPC functionality just needs to compute secret shares of (ak = bk) · (1∥(rk ⊕ sk)∥q̃k) for
each k ∈ [M]. This reduces the number of secure comparisons needed from δp ·M to M .

9 Performance Evaluation

In this section, we provide a micro-benchmark for our fuzzy PSI protocols for Lp∈{1,2,∞} in
low-dimension settings.

Implementation. We implement the standard fuzzy PSI variant (i.e., the receiver learns the
sender’s points in the intersection) in three different metrics (L∞, L1, L2) in a d-dimension space
where d = {2, 3, 5, 10}, following the Figure 7, and Figure 8. The proof-of-concept implementation10

is written in Rust, with less than 1000 lines of code. We use Risttreto and curve25519-dalek
to instantiate the underlying group G, use FxHash and Blake3 to instantiate the hash function
Hγ ,Hκ′ . We choose the security parameter λ = 128 and statistical parameter κ = 40 as usual.
To instantiate the OKVS, we follow the construction from [BPSY23] but working in Fp and the
expansion rate ϵ = 0.5 to make sure we have 2−κ correctness error rate. Though it can be optimized
to ϵ = 0.1 ∼ 0.25 to have a more compact size, the encoding and decoding time would also increase
accordingly.

Environment. We run the experiments on an ordinary laptop over a single thread: Macbook
Air (M1 2020) with 8GB RAM and a 2.1 GHz CPU, without using SIMD (e.g., AVX, NEON)
optimizations. We measure the entire protocol time in a local network setting (i.e., LAN-like)
without considering latency.

10 The open-sourced repository: https://github.com/sihangpu/fuzzy_PSI

39

https://github.com/sihangpu/fuzzy_PSI

Table 2. Fuzzy PSI when points are > 2δ (i.e., disjoint balls)

Metric Radius δ Dimension d Receiver’s N Sender’s M Bandwidth Total Time

L∞ [GRS22] 30 2 211 220 ≈ 9865 2MB ≫ 1500 1s

L∞ 30 2 211 220 173 MB 257.25 s

L∞ 30 5 213 211 231 MB 177.18 s

L∞ 1000 2 211 211 753 MB 303.59 s

1 Estimated by assuming each PRG evaluation is about 4.8 nanoseconds and hash
evaluation is about 4.8 nanoseconds/byte [II23]. Only consider the computational
costs at the receiver’s side.

2 Estimated by the concrete bFSS size provided in [GRS22].

9.1 Concrete Performance

Fuzzy PSI. We mainly consider three cases for fuzzy PSI protocols: The receiver’s points are

2δ-apart (shown in Table 2), and 2δ(d
1
p + 1)-apart (shown in Table 3). It is worth noting that any

distribution of the receiver’s points can be reduced to the disjoint setting by varying the radius.
Specifically, for the L∞ metric, the second case degrades to 4δ-apart points; For the L{1,2} metric,
our protocol only supports the second case. Our protocols can support large-volume balls since our
computation and communication cost scaled only sublinearly to the total volume.

For comparison, we estimate the concrete communication cost for [GRS22] based on their
concrete bFSS size table reported in the paper. For the setting of disjoint balls, we use the reported
share sizes for their spatial hash ◦ sum ◦ tensor ◦ ggm (0.5, 1)-bFSS, assume bFSS evaluation to
cost (2 log δ)d PRG calls, estimate PRG calls to take 10 machine cycles using AES-NI, and put
ℓ = 440. For the distance > 4δ setting we use the reported share sizes for their spatial hash ◦
concat ◦ tt (1− 1/2d, d)-bFSS, assume bFSS evaluation to cost 1 machine cycle and put ℓ = 162 for
dimension d = 5, ℓ = 139 for dimension d = 10. In all settings we estimate the correlation-robust
hash calls at the end of the protocol to take around 10 machine cycles/byte, based on the fastest
performance reported in [II23] on 64-byte inputs. We assumed a universe size of 32-bit integers for
each dimension. Note that here we report the most conservative estimates for their running time,
which can only be considered as a loose lower bound.

PSI with Structured Sets. We also explore the setting that both receiver and sender hold a
structured set, and their bandwidth and computation time should only depend on the succinct
description of the set. Specifically, we consider each one to hold a union of balls. The centers of the
balls can efficiently represent the set. For instance, if we work in a two-dimension space with L∞
metric, and each party holds 4δ-apart 211 balls with radius δ = 64, then it reflects the classical
PSI setting with 32 million points from each side. As comparison, prior works [GRS22] or trivial
PSI [KKRT16] requires from 156 to 1184 MB bandwidth when receiver’s set contains 10 million
points and sender’s set contains only 1.2 million points.

10 Conclusion

In this work, we explored the fuzzy PSI in a more general setting, including higher dimensional space,
comprehensive Lp distance metric, and extended functionality variants. We also demonstrate the

40

Table 3. Fuzzy PSI when points are > 2δ(d
1
p + 1)

Metric Radius δ Dimension d Receiver’s N Sender’s M Bandwidth Total Time

L∞ [GRS22] 10 5 211 220 - ≫ 4300 1s

L∞ [GRS22] 30 10 25 220 ≈ 1011 2MB ≫ 1013 1s

L∞ 30 2 211 220 134 MB 99.28 s

L∞ 10 5 211 220 1240 MB 432.42 s

L∞ 30 10 25 220 1844 MB 1135.63 s

L1 10 2 211 220 107 MB 94.10 s

L1 30 2 211 220 369 MB 111.07 s

L2 10 2 211 220 467 MB 97.37 s

L2 30 2 211 220 3727 MB 121.21 s

1 Estimated by assuming each PRG evaluation is about 4.8 nanoseconds and hash
evaluation is about 4.8 nanoseconds/byte [II23]. Only consider the computational
costs at the receiver’s side.

2 Estimated by the concrete bFSS size provided in [GRS22].

Table 4. PSI where both parties hold a structured set

Metric Radius δ Dimension d Receiver’s N Sender’s M Bandwidth Total Time

[KKRT16] 1 2 225 225 ≈ 4325 MB -

L∞ (225 points) 64 2 211 211 97 MB 39.36 s

L∞ (246 points) 64 5 211 211 241 MB 97.48 s

practicality of our protocols by experimental results. However, there are still many open problems
to be solved, such as, our Lp protocols have an additional O(δp) communication overhead for each
sender’s point which might be expensive when δ or p is too large. Another interesting problem to
think is how to get a more efficient protocol in polynomially large dimension space for L2 distance,
or if we can weaken the separated assumption further for L∞ distance? We leave them as well as the
concrete efficiency optimization to future works. Also, current fuzzy PSI protocols with negligible
correctness error require disjoint balls at least. What if the receiver’s balls are intersected? Any
non-trivial approaches without quadratic overhead would be interesting to explore.

References

ABD+21. Navid Alamati, Pedro Branco, Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, and Sihang
Pu. Laconic private set intersection and applications. In Kobbi Nissim and Brent Waters,
editors, TCC 2021: 19th Theory of Cryptography Conference, Part III, volume 13044 of Lecture
Notes in Computer Science, pages 94–125, Raleigh, NC, USA, November 8–11, 2021. Springer,
Heidelberg, Germany.

AI06. Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. In 47th Annual Symposium on Foundations of Computer Science,
pages 459–468, Berkeley, CA, USA, October 21–24, 2006. IEEE Computer Society Press.

41

BBM+21. Abhishek Bhowmick, Dan Boneh, Steve Myers, Kunal Talwar, and Karl Tarbe. The apple psi
system, 2021.

BDP21. Pedro Branco, Nico Döttling, and Sihang Pu. Multiparty cardinality testing for threshold
private intersection. In Juan Garay, editor, PKC 2021: 24th International Conference on
Theory and Practice of Public Key Cryptography, Part II, volume 12711 of Lecture Notes
in Computer Science, pages 32–60, Virtual Event, May 10–13, 2021. Springer, Heidelberg,
Germany.

BGJP23. James Bartusek, Sanjam Garg, Abhishek Jain, and Guru-Vamsi Policharla. End-to-end secure
messaging with traceability only for illegal content. In Carmit Hazay and Martijn Stam,
editors, Advances in Cryptology – EUROCRYPT 2023, Part V, volume 14008 of Lecture Notes
in Computer Science, pages 35–66, Lyon, France, April 23–27, 2023. Springer, Heidelberg,
Germany.

BMRR21. Saikrishna Badrinarayanan, Peihan Miao, Srinivasan Raghuraman, and Peter Rindal. Multi-
party threshold private set intersection with sublinear communication. In Juan Garay, editor,
PKC 2021: 24th International Conference on Theory and Practice of Public Key Cryptography,
Part II, volume 12711 of Lecture Notes in Computer Science, pages 349–379, Virtual Event,
May 10–13, 2021. Springer, Heidelberg, Germany.

BPSY23. Alexander Bienstock, Sarvar Patel, Joon Young Seo, and Kevin Yeo. Near-optimal oblivious
key-value stores for efficient psi, PSU and volume-hiding multi-maps. In USENIX Security
Symposium, pages 301–318. USENIX Association, 2023.

CDD+15. Ronald Cramer, Ivan Bjerre Damg̊ard, Nico Döttling, Serge Fehr, and Gabriele Spini. Linear
secret sharing schemes from error correcting codes and universal hash functions. In Elisabeth
Oswald and Marc Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015, Part II,
volume 9057 of Lecture Notes in Computer Science, pages 313–336, Sofia, Bulgaria, April 26–30,
2015. Springer, Heidelberg, Germany.

CFR23. Anrin Chakraborti, Giulia Fanti, and Michael K. Reiter. Distance-aware private set intersection.
In USENIX Security Symposium. USENIX Association, 2023.

CGN98. Benny Chor, Niv Gilboa, and Moni Naor. Private information retrieval by keywords. Cryptology
ePrint Archive, Report 1998/003, 1998. https://eprint.iacr.org/1998/003.

CH08. Lukasz Chmielewski and Jaap-Henk Hoepman. Fuzzy private matching (extended abstract).
In ARES, pages 327–334. IEEE Computer Society, 2008.

CHLR18. Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. Labeled PSI from fully homomorphic
encryption with malicious security. In David Lie, Mohammad Mannan, Michael Backes, and
XiaoFeng Wang, editors, ACM CCS 2018: 25th Conference on Computer and Communications
Security, pages 1223–1237, Toronto, ON, Canada, October 15–19, 2018. ACM Press.

CLOS02. Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable
two-party and multi-party secure computation. In 34th Annual ACM Symposium on Theory
of Computing, pages 494–503, Montréal, Québec, Canada, May 19–21, 2002. ACM Press.

CLR17. Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection from homomorphic
encryption. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors,
ACM CCS 2017: 24th Conference on Computer and Communications Security, pages 1243–1255,
Dallas, TX, USA, October 31 – November 2, 2017. ACM Press.

CM20. Melissa Chase and Peihan Miao. Private set intersection in the internet setting from lightweight
oblivious PRF. In Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptology
– CRYPTO 2020, Part III, volume 12172 of Lecture Notes in Computer Science, pages 34–63,
Santa Barbara, CA, USA, August 17–21, 2020. Springer, Heidelberg, Germany.

CMdG+21. Kelong Cong, Radames Cruz Moreno, Mariana Botelho da Gama, Wei Dai, Ilia Iliashenko,
Kim Laine, and Michael Rosenberg. Labeled PSI from homomorphic encryption with reduced
computation and communication. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021:
28th Conference on Computer and Communications Security, pages 1135–1150, Virtual Event,
Republic of Korea, November 15–19, 2021. ACM Press.

DCW13. Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection meets big data:
an efficient and scalable protocol. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung,

42

https://eprint.iacr.org/1998/003

editors, ACM CCS 2013: 20th Conference on Computer and Communications Security, pages
789–800, Berlin, Germany, November 4–8, 2013. ACM Press.

DHP+18. Pierre-Alain Dupont, Julia Hesse, David Pointcheval, Leonid Reyzin, and Sophia Yakoubov.
Fuzzy password-authenticated key exchange. In Jesper Buus Nielsen and Vincent Rijmen,
editors, Advances in Cryptology – EUROCRYPT 2018, Part III, volume 10822 of Lecture
Notes in Computer Science, pages 393–424, Tel Aviv, Israel, April 29 – May 3, 2018. Springer,
Heidelberg, Germany.

DIIM04. Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceedings of the Twentieth Annual Symposium on
Computational Geometry, SCG ’04, page 253–262, New York, NY, USA, 2004. Association for
Computing Machinery.

DPT20. Thai Duong, Duong Hieu Phan, and Ni Trieu. Catalic: Delegated PSI cardinality with
applications to contact tracing. In Shiho Moriai and Huaxiong Wang, editors, Advances in
Cryptology – ASIACRYPT 2020, Part III, volume 12493 of Lecture Notes in Computer Science,
pages 870–899, Daejeon, South Korea, December 7–11, 2020. Springer, Heidelberg, Germany.

ElG85. Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Transactions on Information Theory, 31(4):469–472, 1985.

FNP04. Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching and
set intersection. In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology –
EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 1–19, Interlaken,
Switzerland, May 2–6, 2004. Springer, Heidelberg, Germany.

GPR+21. Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Oblivious
key-value stores and amplification for private set intersection. In Tal Malkin and Chris Peikert,
editors, Advances in Cryptology – CRYPTO 2021, Part II, volume 12826 of Lecture Notes in
Computer Science, pages 395–425, Virtual Event, August 16–20, 2021. Springer, Heidelberg,
Germany.

GRS22. Gayathri Garimella, Mike Rosulek, and Jaspal Singh. Structure-aware private set intersection,
with applications to fuzzy matching. In Yevgeniy Dodis and Thomas Shrimpton, editors,
Advances in Cryptology – CRYPTO 2022, Part I, volume 13507 of Lecture Notes in Computer
Science, pages 323–352, Santa Barbara, CA, USA, August 15–18, 2022. Springer, Heidelberg,
Germany.

GRS23. Gayathri Garimella, Mike Rosulek, and Jaspal Singh. Malicious secure, structure-aware private
set intersection. In Helena Handschuh and Anna Lysyanskaya, editors, Advances in Cryptology
– CRYPTO 2023, Part I, volume 14081 of Lecture Notes in Computer Science, pages 577–610,
Santa Barbara, CA, USA, August 20–24, 2023. Springer, Heidelberg, Germany.

GS19. Satrajit Ghosh and Mark Simkin. The communication complexity of threshold private set
intersection. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology
– CRYPTO 2019, Part II, volume 11693 of Lecture Notes in Computer Science, pages 3–29,
Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg, Germany.

GS23. Satrajit Ghosh and Mark Simkin. Threshold private set intersection with better communication
complexity. In Alexandra Boldyreva and Vladimir Kolesnikov, editors, PKC 2023: 26th
International Conference on Theory and Practice of Public Key Cryptography, Part II, volume
13941 of Lecture Notes in Computer Science, pages 251–272, Atlanta, GA, USA, May 7–10,
2023. Springer, Heidelberg, Germany.

HEK12. Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled circuits
better than custom protocols? In ISOC Network and Distributed System Security Symposium –
NDSS 2012, San Diego, CA, USA, February 5–8, 2012. The Internet Society.

II23. ECRYPT II. ebacs ecrypt benchmarking of cryptographic systems, 2023. https://bench.cr.
yp.to/results-sha3.

IKN+20. Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn Seth,
Mariana Raykova, David Shanahan, and Moti Yung. On deploying secure computing: Private
intersection-sum-with-cardinality. In EuroS&P, pages 370–389. IEEE, 2020.

43

https://bench.cr.yp.to/results-sha3
https://bench.cr.yp.to/results-sha3

IM98. Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse
of dimensionality. In 30th Annual ACM Symposium on Theory of Computing, pages 604–613,
Dallas, TX, USA, May 23–26, 1998. ACM Press.

IW06. Piotr Indyk and David P. Woodruff. Polylogarithmic private approximations and efficient
matching. In Shai Halevi and Tal Rabin, editors, TCC 2006: 3rd Theory of Cryptography
Conference, volume 3876 of Lecture Notes in Computer Science, pages 245–264, New York, NY,
USA, March 4–7, 2006. Springer, Heidelberg, Germany.

KKRT16. Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient batched
oblivious PRF with applications to private set intersection. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS
2016: 23rd Conference on Computer and Communications Security, pages 818–829, Vienna,
Austria, October 24–28, 2016. ACM Press.

KMP+17. Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and Ni Trieu. Practical multi-
party private set intersection from symmetric-key techniques. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017: 24th Conference on
Computer and Communications Security, pages 1257–1272, Dallas, TX, USA, October 31 –
November 2, 2017. ACM Press.

Lin16. Yehuda Lindell. How to simulate it - A tutorial on the simulation proof technique. Cryptology
ePrint Archive, Report 2016/046, 2016. https://eprint.iacr.org/2016/046.

Mea86. Catherine Meadows. A more efficient cryptographic matchmaking protocol for use in the
absence of a continuously available third party. In S&P, pages 134–137. IEEE Computer
Society, 1986.

Muf15. Alec Muffett. Facebook: Password hashing & authentication, 2015.
NR97. Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random

functions. In 38th Annual Symposium on Foundations of Computer Science, pages 458–467,
Miami Beach, Florida, October 19–22, 1997. IEEE Computer Society Press.

PIB+22. Bijeeta Pal, Mazharul Islam, Marina Sanusi Bohuk, Nick Sullivan, Luke Valenta, Tara Whalen,
Christopher A. Wood, Thomas Ristenpart, and Rahul Chatterjee. Might I get pwned: A second
generation compromised credential checking service. In USENIX Security Symposium, pages
1831–1848. USENIX Association, 2022.

PSTY19. Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai. Efficient circuit-
based PSI with linear communication. In Yuval Ishai and Vincent Rijmen, editors, Advances in
Cryptology – EUROCRYPT 2019, Part III, volume 11478 of Lecture Notes in Computer Science,
pages 122–153, Darmstadt, Germany, May 19–23, 2019. Springer, Heidelberg, Germany.

RR22. Srinivasan Raghuraman and Peter Rindal. Blazing fast PSI from improved OKVS and subfield
VOLE. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS 2022:
29th Conference on Computer and Communications Security, pages 2505–2517, Los Angeles,
CA, USA, November 7–11, 2022. ACM Press.

RS21. Peter Rindal and Phillipp Schoppmann. VOLE-PSI: Fast OPRF and circuit-PSI from vector-
OLE. In Anne Canteaut and François-Xavier Standaert, editors, Advances in Cryptology
– EUROCRYPT 2021, Part II, volume 12697 of Lecture Notes in Computer Science, pages
901–930, Zagreb, Croatia, October 17–21, 2021. Springer, Heidelberg, Germany.

UCK+21. Erkam Uzun, Simon P. Chung, Vladimir Kolesnikov, Alexandra Boldyreva, and Wenke Lee.
Fuzzy labeled private set intersection with applications to private real-time biometric search. In
Michael Bailey and Rachel Greenstadt, editors, USENIX Security 2021: 30th USENIX Security
Symposium, pages 911–928. USENIX Association, August 11–13, 2021.

YSPW10. Qingsong Ye, Ron Steinfeld, Josef Pieprzyk, and Huaxiong Wang. Efficient fuzzy matching and
intersection on private datasets. In Donghoon Lee and Seokhie Hong, editors, ICISC 09: 12th
International Conference on Information Security and Cryptology, volume 5984 of Lecture Notes
in Computer Science, pages 211–228, Seoul, Korea, December 2–4, 2010. Springer, Heidelberg,
Germany.

44

https://eprint.iacr.org/2016/046

	Fuzzy Private Set Intersection with Large Hyperballs
	Introduction
	Our Contributions
	Related Work
	Applications

	Technical Overview
	Recap: Apple's PSI Protocol
	Fuzzy Matching for Infinity Distance
	Generalized Distance Functions
	Fuzzy PSI in Low Dimensions
	Extending to High Dimensions

	Preliminaries
	Oblivious Key-Value Store (OKVS)
	Random Self-Reductions of DDH Tuples
	Locality-Sensitive Hashing
	Oblivious Programmable PRF
	Partially Homomorphic Encryption

	Definitions and Functionalities
	Definition of Fuzzy Matching
	Definition of Fuzzy (Circuit) Private Set Intersection

	Fuzzy Matching
	Fuzzy Matching for Infinity Distance
	Fuzzy Matching for Minkowski Distance

	Fuzzy PSI in Low-Dimension Space
	Spatial Hashing Techniques
	Fuzzy PSI-CA for Infinity Distance
	Fuzzy PSI-CA for Minkowski Distance

	Fuzzy PSI in High-Dimension Space
	Infinity Distance
	Minkowski Distance

	Extending to Broader Functionalities
	Labeled PSI.
	Standard PSI.
	Standard PSI with Sender Privacy (PSI-SP).
	Circuit PSI.
	Reducing Comparisons for PSI-SP and Circuit PSI.

	Performance Evaluation
	Concrete Performance

	Conclusion

