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Abstract. In 1994, Langford and Hellman introduced differential-linear
(DL) cryptanalysis, with the idea of decomposing the block cipher F into
two parts, Fy and E, such that Ey exhibits a high-probability differential
trail, while F; has a high-correlation linear trail. Combining these trails
forms a distinguisher for E, assuming independence between Ey, and FEi.
The dependency between the two parts of DL distinguishers remained un-
addressed until EUROCRYPT 2019, where Bar-On et al. [3] introduced
the DLCT framework, resolving the issue up to one S-box layer. However,
extending the DLCT framework to formalize the dependency between the
two parts for multiple rounds remained an open problem. In this paper,
we first tackle this problem from the perspective of boomerang analysis.
By examining the relationships between DLCT, DDT, and LAT, we introduce
a set of new tables facilitating the formulation of dependencies between
the two parts of the DL distinguisher across multiple rounds. Then, as
the main contribution, we introduce a highly versatile and easy-to-use
automatic tool for exploring DL distinguishers, inspired by automatic
tools for boomerang distinguishers. This tool considers the dependency
between differential and linear trails across multiple rounds. We apply
our tool to various symmetric-key primitives, and in all applications, we
either present the first DL distinguishers or enhance the best-known ones.
We achieve successful results against Ascon, AES, SERPENT, PRESENT,
SKINNY, TWINE, CLEFIA, WARP, LBlock, Simeck, and KNOT. Further-
more, we demonstrate that, in some cases, DL distinguishers outperform
boomerang distinguishers significantly.
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1 Introduction

The security assessment of a symmetric primitive typically involves subjecting
it to various cryptanalysis techniques to ascertain that none pose a significant



threat. This analysis also aims to gauge the security margins provided by the
primitive, allowing designers to finely tune operational parameters (such as the
number of rounds in block ciphers) to strike a balance between efficiency and
security. Differential [11] and linear [41] attacks represent two fundamental crypt-
analysis techniques. However, given the well-known nature of these cryptanalysis
techniques, most new cryptographic primitives are designed to resist them, at
least in terms of basic applications of the attacks. One way to resist these attacks
is to prevent the existence of long, high-probability differential or linear trails.

Nevertheless, in 1994, Langford and Hellman [36] showed that the non-
existence of such trails does not necessarily imply the security of the prim-
itive against differential and linear attacks. They introduced the concept of
a combined attack known as the differential-linear (DL) attack. This attack
merges the principles of both differential and linear cryptanalysis, forming an
effective distinguisher on more rounds than achievable using either technique
alone. They showed that if we can decompose the block cipher E into two parts
E = E, o Ey such that there is a high-probability differential trail for F; and a
high-correlation linear trail for FE;, then we can combine them to create a dis-
tinguisher for E. DL attacks have been successfully applied to many ciphers and
led to a full-round attack on COCONUT98 [9] as well as the best known attacks
for several ciphers such as SERPENT [24], ICEPOLE [34], and Chaskey [6,37].

However, the complexity analysis of the DL distinguisher relies on two statis-
tical assumptions: an independence assumption for the two parts Fy, and F; and
certain randomness assumptions for the output difference of Ey;. Thus, many
of the follow-up works were dedicated to formalizing the complexity of the DL
distinguisher, relaxing the underlying assumptions. In 2002, Biham et al. [9]
showed that some of the assumptions made in [36] may fail in practice, and pro-
posed an enhanced DL attack. In 2017, Blondeau et al. [12] provided an exact
expression of the correlation for DL distinguishers in a closed form under the
sole assumption that the two parts are independent. While the dependence be-
tween the two parts Fy and FE; remained unexplored for a considerable period,
it was eventually investigated within the context of another differential-based
combined attack, namely, the boomerang attack [53]. Dunkelman et al. [25] pro-
posed the sandwich framework to consider the dependence between the two parts
of the boomerang distinguisher. The core idea of the sandwich framework is to
divide the block cipher F into three parts Ey, Ey, and E}, where the middle
part Ey, takes dependencies into account. A similar framework is also applicable
for differential-linear distinguishers. In this case, Ey is covered by an ordinary
differential distinguisher and E; by a linear distinguisher, while E\; is subject
to a small combined distinguisher that connects the two parts, as illustrated
in Figure 1b. The main role of the middle part E), is to take the dependency
between E, and F, into account while computing the correlation of the DL
distinguisher. One option is to estimate the correlation of differential-linear ap-
proximations over E, with an experimental approach using a sufficiently large
set of random inputs. As a more formal alternative, at EUROCRYPT 2019,
Bar-On et al. [3] introduced the DLCT framework to derive the correlation of the



middle part E\, when it covers only one S-box layer, based on the Differential-
Linear Connectivity Table (DLCT) of the S-box. However, they left extending the
DLCT framework to the case where the middle part includes multiple rounds as
an open problem. At CRYPTO 2021, Liu et al. [39] proposed a pure algebraic
method to estimate the correlation of DL distinguishers for multiple rounds,
but this approach is quite different from the DLCT framework. This situation is
different compared to boomerang attacks, where recent papers made significant
progress in generalizing the BCT framework to multi-round middle parts for vari-
ous design paradigms. Despite the similar structure of boomerang distinguishers
and differential-linear distinguishers, the duality between these two has so far
not been systematically explored, and it remains an open problem to leverage
insights gained in one technique for the other.

An even more pressing open problem is that identifying the most effective
DL distinguishers against a primitive is a non-trivial task, particularly when tak-
ing dependencies between the two parts into account. Bar-On et al. [3] demon-
strated the importance of studying the junction between differential and linear
trails carefully, as optimizing the two trails independently may not necessarily
result in the distinguisher with the highest correlation. While recent years have
seen the emergence of several automated tools focused on identifying optimal
boomerang/rectangle distinguishers [14,19,28,31] and even the most effective full
boomerang/rectangle attacks [23,46] across various classes of primitives, there is
a noticeable gap in research dedicated to exploring differential-linear distinguish-
ers and attacks. Only very recently, Bellini et al. [7] introduced an automated
tool based on Mixed-Integer Linear Programming (MILP) and Mixed-Integer
Quadratic Constraint Programming (MIQCP) for identifying DL distinguishers
in ARX ciphers and applied it to Speck-32. However, the authors themselves ac-
knowledge that their Constraint Programming (CP) model is resource-intensive,
limiting its application to smaller variants of Speck like Speck-32. Furthermore,
the tool’s efficiency with respect to SPN ciphers remains an open question. In
another recent work from ASTACRYPT 2023, Chen et al. [16] proposed an al-
ternative method for searching for DL distinguishers. However, their approach is
also tailored to ARX ciphers and does not leverage general-purpose CP/MILP
solvers. Developing an efficient and generic approach to automatically search
for good DL distinguishers of different classes of primitives, particularly SPN
designs, remains an open problem (see Section A for a detailed comparison).

Our contributions. This work addresses two important research gaps in the
context of DL cryptanalysis. First, we tackle one of the open problems proposed
in EUROCRYPT 2019 [3], which involves generalizing the DLCT framework to
formalize the correlation of the middle part in the DL distinguisher when it is
composed of multiple rounds. To achieve this, we explore the relations between
DLCT, DDT, and LAT and propose a set of new tables that enable us to formulate
the correlation of the middle part of the DL distinguisher across multiple rounds.
Our approach is inspired by the generalized BCT framework in boomerang analy-
sis and reveals a certain duality between the two frameworks. The advantage of
our approach is that it allows us to leverage the insights gained in one framework



for the other. To demonstrate the utility of our new tables, we apply them to the
DL distinguishers of various block ciphers to derive a formula for the correlation
of the multiple-round middle part of the DL distinguisher. Then, as the primary
contribution and inspired by advancements in boomerang analysis, we introduce
an automated search method for DL distinguishers based on CP/MILP. This
method is both generic and user-friendly, designed for searching good DL distin-
guishers across a broad spectrum of symmetric primitives. Our tool is applied
to various primitives, including weakly aligned permutations (Ascon, KNOT),
bit-sliced block ciphers (SERPENT, PRESENT), and AndRX designs (Simeck),
as well as strongly aligned SPN block ciphers (AES, SKINNY) and Feistel ciphers
(CLEFIA, TWINE, LBlock, WARP). In all applications, we are either the first to
propose DL distinguishers or improve the best-known ones (see Table 1):

— For AES, we propose single-key DL distinguishers for up to 5 rounds for the
first time.

— For Ascon, we propose a deterministic DL distinguisher for 4 rounds of the
permutation, though it was considered not to have any deterministic DL
distinguisher. We also introduce a new 5-round DL distinguisher with a
correlation improved from 279 to 274,

— For SERPENT, we provide a new 9-round DL distinguisher with correlation
improved from 275650 o 275095,

— For TWINE, CLEFIA, LBlock, and WARP, we propose DL distinguishers for
the first time and show that in some cases the DL distinguisher can per-
form much better than boomerang distinguishers. For instance, we found
a 17-round DL distinguisher for TWINE, which is 1 round longer than all
distinguishers proposed so far. We also found a 17-round DL distinguisher
for LBlock and LBlock-s exceeding its boomerang distinguisher by 1 round.

— For KNOT-256, we provide new DL distinguishers reaching up to 23 rounds
of the permutation, whereas the best previous DL distinguisher is a 15-round
conditional DL distinguisher [54].

— For SKINNY, we found DL distinguishers in both single-tweakey and related-
tweakey settings for the first time. We introduce 15-round (resp. 17-round)
related-tweakey distinguishers for SKINNY-64-128 (resp. SKINNY-64-192)
that are 1 round longer than the best related-tweakey distinguishers of
SKINNY with only 2 related tweakeys. Note that boomerang distinguish-
ers of SKINNY require at least 4 related tweakeys.

— For Simeck, we significantly improve the DL distinguishers of all variants.
Notably, we improve the DL distinguishers of Simeck-64, and Simeck-48 by
1 and 2 rounds, respectively.

The source code of our tool will be publicly available. Most of the results
reported in Table 1 can be found within a few minutes, or sometimes seconds,
running on a standard laptop.

Outline. In Section 2, we revisit the basics of differential-linear cryptanalysis.
In Section 3, we extend the DLCT framework and introduce new connectivity
tables to formalize the correlation of a DL distinguisher. In Section 4, we first



Table 1: Summary of our DL distinguishers. #R: number of rounds, C: correla-
tion, S/RTK: Single/Related-Tweakey. 8: Experimental verification.

Cipher #R C O Ref. Cipher #R C O Ref.
4 271 [20] 7 1 v o J2
Ascon 4 1 v E.2 Simeck-32 14 271663 [59]
P 5 279 [20] 14 271892, g9
—4
5 2 v E2 8 1 v J2
2 1 v D.2 17 9272237 [59]
AES 3 2776 v D2 17 271380 o J2
4 973106 D.2 Simeck-48 18 27247° [59]
5 279500 D.2 18 271589 J.2
—17.89
3 27068  , FR2 ;3 5_21489 jg
4 2—12475 [24] .
4 27855  , F2 10 1 v J2
5 27107 [24] 24 273813 [59]
SERPENT 5 271110 0 2 Simeck-64 24 272514 J.2
8 278918 F.2 B 25 4104 [59]
9 27°0% [24] 25 2727T J.2
9 27999 F.2 26 27%0%° J.2
6 1 v G2 8 1 v 12
SKINNY 9 271086 G2 KNOT-256 15 271720 1.2
(STK) 10 27197 G.2 23 27°%% 1.2
—26.36
11 2 G.2 3 1 7 M2
8 1 v G2 9 27928 o, H2
SKINNY-64-128 14 720.05 G.2 PRESENT 15 g-zarr H.2
15 272872 G.2 13 9272701 H.2
10 1 v G2 7 1 v N2
5K|N'(\'R\T(;(6)4-192 16 272057 G.2 10 2778 , N2
17 272759 G.2 TWINE 12 271149 N2
—23.64
1 1 v/ L2 ig 272%2 Eg
14 276 v L2 :
15 278 v L2 7 1 v K2
16 2711 v L2 11 27742 v K2
WARP 17 2715 L.2 12 27942, K2
18 271 L.2 LBlock-s 13 271210 o K2
19 27% L.2 16 272280 K.2
20 273 L.2 17 272880 K.2
—51
2 2 L.2 — 7 K2
4 1 v M.2 11 278 v K2
6 27797 v M2 12 2710 v K2
~11.75 LBlock ~11.89
CLEFIA 7 2 v M2 13 2 v K2
S A M.2 16 27218 K.2
9 275529 M.2 17 272915 K.2




discuss in more detail the DLCT and switches connecting both trails to give an
intuition about the effective parameters when searching for DL distinguishers.
Finally, we present our CP/MILP model and its results on several primitives. For
detailed results including detailed cipher specifications as well as an introduction
to constraint satisfaction and constraint optimization problems (CSP and COP),
we refer to the appendix.

2 Background

Here, we recall the basics of differential-linear analysis, and introduce the nota-
tions we use in the rest of this paper. For A,z € F}, we define the dot product of
A, T as Z?:_Ol Ali] - z[i], where x[i] (resp. A[é]) represents the ith bit of  (resp. A).
Given a set S C F3 and a Boolean function f : F} — Fq, the correlation of f
over the sample space S is defined as

Cs(f): .

] YN =P(fX)=0[XeS)-P(f(X)=1]| X €S)

Xes
—2.P(f(X)=0|X€eS)—1,

where P denotes the probability when X is chosen uniformly at random from S.

Differential Cryptanalysis. Differential cryptanalysis, first introduced by Biham
and Shamir [11], exploits the propagation of difference between two plaintexts
through the encryption algorithm. We use A; & A, to denote a differential
transition through the block cipher E with probability p = P(C1®&Cy = A, | Pi®
P, = A;), where C; = E(F;) for i € {0,1}. Sometimes, we use the compact
notation P (4;, A,) to denote the probability. Differential cryptanalysis relies on
the fact that A; 2 A, may have a non-negligible probability for some A;, A,.

Linear Cryptanalysis. Linear cryptanalysis, first introduced by Matsui [41],
exploits biased linear approximations connecting a plaintext with its cipher-
text. We use A\j — A, to denote a linear approximation with correlation ¢ =
C\i-P® A, -C), where C = E (P). Sometimes, we use the compact notation
C (Ai, Ao) to denote the correlation. Linear cryptanalysis relies on the fact that

A N Ao may have a non-negligible correlation for some A;, A,.

Differential-Linear Cryptanalysis. In 1994, Langford and Hellman [36] merged
concepts from both differential and linear cryptanalysis, giving rise to differential-
linear cryptanalysis. The main concept of DL analysis involves merging a high-
probability short differential transition with a high-correlation short linear ap-
proximation, aiming to create a long distinguisher for the block cipher. Later,
in 1999, Wagner proposed the boomerang attack [53] that combines two high-
probability short differential transitions to build a longer distinguisher. Com-
bined attacks, like DL and boomerang attacks, highlight that the absence of long,
high-probability differentials or high-correlation linear approximations does not



guarantee the cipher’s security against differential or linear cryptanalysis. The
presence of short, high-probability differentials and highly correlated linear ap-
proximations can potentially make the cipher susceptible to DL or boomerang
attacks, as exemplified by the full-round DL attack on COCONUT98 in [9].
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(b) A DL distinguisher with a middle part.

Fig. 1: The structure of DL distinguishers.

Assume that we decompose the block cipher E into two parts Ey and F;, ac-
cording to Figure la. Additionally, assume that we have a differential transition
A B A, through Ey and a linear approximation Ay ENDW through E;. To dis-
tinguish E from a random permutation, we encrypt a pair of plaintexts (P;, P»)
with difference 4; and for each pair, we check if the corresponding ciphertexts
(C1, Cs) satisty the linear approximation A, - C; = A, - Cs.

As can be seen in Figure la, the linear approximation A\, - Cy & A, - Cy can
be rewritten as a combination of three linear approximations:

)\0'01@)\0'02 = ()\0'6169)\1\1')(1)@()\1\1'Xl@)\M'X2)@()\M'X2@>\o'02)o

If we assume that the linear approximations are independent, then using Matsui’s
Piling-up lemma [41], the correlation of the linear approximation A,-C1 @ Ao+ Co
is the multiplication of the correlations of the three linear approximations, i.e.,
C (M- AX) - q? where AX = X; © X,. If we also assume that A\y - AX = 0
holds in half of the cases when AX # A, then we have3:

PA-AX=0)=PM\y-AX =0]AX =A4,)p

1
+P A\ -AX =0 AX#AM)'(:[_ZD>Z§:‘:§'

3 For a fixed value of Ay and AX, Pr (M- AX =0] AX = Ay) is either 1 or 0.



Hence, C(\y - AX) = (—=1)4up = +p, implying that the correlation of
the linear approximation A, - C; @ ) - Co is £pg?. Consequently, if pg? is large
enough, we can distinguish F from a random permutation with O (p*Qq*‘l)
chosen plaintexts. Nevertheless, this computation relies on two key assumptions:
(1) The subciphers Ey and E;, are statistically independent, and (2) Ay-AX =0
holds in half of the cases when AX # A,;.

However, subsequent works revealed that the above assumptions may not
hold in practice. For instance, Biham et al. [9] demonstrated that the second
assumption can fail in numerous cases and proposed experimental verification
as a workaround. Later, Blondeau et al. [12] provided an exact expression of the
correlation for DL distinguisher in a closed form without the second assumption.
Based on Theorem 2 in [12], under the sole assumption that the two parts are
independent, the correlation of the DL distinguisher is (see Figure 1a):

Cho-CrdAo-Ca) =S C- (Ee(X)®Ee(X ® A)))-C* (M ho). (1)
Amt

While the dependency between the two parts (i.e., Ey and E) was not ad-
dressed for a long time, it was studied in the context of another differential-based
combined attack, i.e., boomerang attack. Dunkelman et al. [25] proposed the idea
of the sandwich framework to consider the dependency between the two parts of
the boomerang distinguisher. This framework is also applicable to DL attacks.
In the sandwich framework, we divide the block cipher E into three parts: Ey,
E\, and E}, as illustrated in Figure 1b. While we handle Fy and E; as standard
differential and linear distinguishers, respectively, we treat E,, as a compact
combined distinguisher connecting the two segments (refer to Figure 1b).

Assume that R (Ay, A\y) = C(Ay - Ex(X) @ Ay - Ey(X @ Ay)) in Figure 1b.
Then, the correlation of the DL distinguisher is given by [3]:

Cho-Cr® A Ca) = > P(A,Ay) R(A M) CP( A o). (2)
AM)AM

The fundamental formula for DL distinguishers in Equation 2 does not rely on
the two assumptions we mentioned earlier, but computing P, R, and C still relies
on the round independence assumption within Ey, E\, and E;. Although the
round independence assumption may not precisely hold in practice, it enables
us to provide a good approximation for the probability (resp. correlation) of
differential (resp. linear) transitions averaged over a large set of random keys.

Given the input difference 4A;, and the output mask A, for a block cipher FE,
assume that for a fixed Ay and Ay, p = Prepan (4i, Ao), 7 = Rz € F2™ (Ay, Ay),
and ¢ = Cx € F§ (Ay, \o). If we decompose E appropriately into three segments:
Ei, Ey, and E,, and if Ay, and \y are good choices, then prqg? gives a good
estimation for the actual correlation of the DL distinguisher with input difference
A;, and output mask A,. We elaborate on the appropriate decomposition of F
and the good choices for A, and A, in Section 4.

While the probability of a differential (resp. correlation of a linear approxi-
mation) through Ey, (resp. E,) is computed using the DDT (resp. LAT) framework,



calculating the correlation of the small combined distinguisher over F,; is not
a straightforward task. The middle term in Equation 2, namely R (A, \y), is
typically determined through experimental means, involving the encryption of
a sufficiently large set of random plaintexts with F\. More recently, Bar-On et
al. [3] introduced the DLCT framework to formalize the correlation of the small
combined distinguisher over E,;, when it is composed of only one S-box layer.
However, they left extending the DLCT framework to cover more rounds at the
boundary between Ey; and E; as an open problem. In Section 3, we show how
to extend it for multiple rounds.

3 Generalizing the DLCT Framework

In this section, we extend the DLCT framework to handle multiple rounds in the
middle part F\,. Recent advances in boomerang analysis [19, 28] have enabled us
to formulate the probability of boomerang distinguishers using a generalized BCT
framework, providing some basic rules for modeling the involved S-boxes with
different BCT tables. Inspired by boomerang analysis, we introduce the alternative
of generalized BCT [17] tables to the DLCT framework. Our main motivation is
to apply the same technique for DL distinguishers, especially providing a basic
guideline for modeling involved S-boxes with certain tables. To this end, we first
review the DDT, LAT, and DLCT definitions. Then, we introduce new tables akin
to those in [19,28], and demonstrate their use in extending the DLCT framework.
Finally, we provide examples to illustrate how these new tables can effectively
formulate the correlation of DL distinguishers across multiple rounds.

Definition 1 (Differential Distribution Table (DDT)). For a vectorial Boolean
function S : Fy — F5*, the DDT is a 2™ x 2" table whose rows correspond to the

put difference A; to S and whose columns correspond to the output difference
A, of S. The entry at index (A;, A,) is

DDT(A;, Ay) ={z e Fy: S(z) @ S(xd A;) = Ay}

Definition 2 (Differential Uniformity [44]). The differential uniformity of

an S-boz S : F3 — FI is defined as DU(S) = . \I?(%XA - DDT(A;, A,).
i€EFY PAPIS] o

Definition 3 (Linear Approximation Table (LAT)). For a vectorial Boolean
function S : F§ — F5*, the LAT of S is a 2™ x 2™ table whose rows correspond
to the input mask \; to S and whose columns correspond to the output mask A,
of S. The entry at index (A;, Ao) is

LAT(Ai, Ao) = |LATo (N, Ao)| — |LAT1 (A, Ao)],
where LATy(Ai, A\o) = {x €F5 2 Nz @ N, - S(z) = b}.

It can be seen that C(A; -z @ A, - S(x)) = LAT(\;, Ao)/2™.



Definition 4 (Linearity [44]). The linearity of an S-box S : Fy — F5* is
defined as L(S) = max [LAT(As, No) |-

X€FY A, €FF\{0}
Definition 5 (Differential-Linear Connectivity Table (DLCT) [3]). For a
vectorial Boolean function S : Fy — F5', the DLCT of S is a 2™ x 2™ table whose

rows correspond to the input difference A; to S and whose columns correspond
to the output mask \, of S. The entry at index (A;, \,) is*

DLCT(A;, A,) = |DLCTo (A4, Ao)| — [DLCT1 (A4, Nb)|,
where DLCT, (A, Xo) ={x € Fy : X\o-S(z) D Ao S(x® A;) = b} (see Figure 2a).

Sometimes we use the normalized DLCT, which is defined as DLCT(A;, A,) =
DLCT(A;, A\o)/2™, and is equal to C(\, - S(z) ® Ao - S(z @ 4;)).

Definition 6 (Differential-Linear Uniformity). The differential-linear uni-
formity of an S-box S : Fy — F5* is defined as DLU(S) = An&a);owLCT(Ai, Ao) |-

Ai \ - Ai \ AO Ai \ B
/\i /\0 /\i /\() )\i )\0
(a) DLCT (Ai, Ao) (b) UDLCT (Ai, Ao, Ao) (C) LDLCT (Ai, iy Ao)
- \ B - \ - \ -
Ai Ao Ai A Ao
(d) EDLCT (A;, Ao, Ai, Ao) (e) DDLCT (A;, Ao)

Fig. 2: Tables of the generalized DLCT framework.

As in boomerang distinguishers, we can extend the definition of the DLCT to
the cases where the output difference and/or the input mask are also specified.
This leads to the following definitions:

Definition 7 (Upper Differential-Linear Connectivity Table (UDLCT)).
For a vectorial Boolean function S : Fy — F5', the UDLCT of S is a 2™ x 2™ x 2™
table. The entry at index (A;, Ay, No) is (see Figure 2b)

UDLCT(A;, Ao, No) = |UDLCTy(As, Ao, Ao)| — |UDLCTL (A, Ao, Ao)|,
where UDLCTy(A;, Ao, Ao) = {x € Fy: S(z)@S(xd A;) = A, and N\, A, = b}.

4 Our definition is slightly different from [3], where DLCT is defined as [DLCTo| — 2"~ 1.
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Definition 8 (Lower Differential-Linear Connectivity Table (LDLCT)).
For a vectorial Boolean function S : Fy — F5*, the LDLCT of S is a 2™ x 2™ x 2™
table. The entry at index (A, Aiy o) is (see Figure 2c)

LDLCT(Ay, Miy Ao) = |LDLCTy (A4, Niy Ao)| — |LDLCT; (A, Mis No)l,

where LDLCTb(A“A“)\O) = {.’,U e Fg : AOS(I) = )\OS(I@Az) and AzAz — b}

Finally, we define the table corresponding to the case where all inputs and out-
puts are specified.

Definition 9 (Extended Differential-Linear Connectivity Table (EDLCT)).
For a vectorial Boolean function S : Fy — F3', the EDLCT of S is a 2" x 2" x
2™ x 2™ table. The entry at index (A;, Ao, Niy No) 18 (see Figure 2d)

EDLCT(A;, Aoy Xiy No) = |EDLCTy( Ay, Apy Aiy Ao)| — |EDLCTy (A4, Aby Ay Ao),

where EDLCTy, (A, Ao, Aiy Ao) ={x €F): S(x) D S(x® A;) = A, and A\, - A; ®
Ao A, = b}

3.1 Table Properties

Here, we explore the relationship between the introduced tables, both among
themselves and with the DDT and LAT tables.

Proposition 1. The generalized DLCT tables satisfy the following properties:

1. DLCT(0, \,) = DLCT(A;,0) = 2", YA;, A,

2. DLCT(As, Xo) = Y. 5, UDLCT(A;, Ag,y Ao)

8. UDLCT(A;, Ay, \p) = (—1)22DDT(A;, A,)

4. LDLCT(A;, Niy Ao) = (=1)2+XDLCT( A, \,)

5. EDLCT(A;, Ag, Miy Ap) = (—1)N A2 Ao pDT( A, A,)
6. LDLCT(Aj, Xiy Xo) = Y. 5, EDLCT(A;, Ao, Mis Xo)

7. 37 A, LDLCT(A, Xiy Xo) = LAT*(Ni, Ao)

Proof. The last property is the only non-trivial one to prove. Let \; and A, be
two masks, and let A7 betheset x € F3: N+ (2D A) D Ao - S(x® A) =b. We

11



then observe the following equalities:

D LDLCT(A;, Ai, Ao) = > [AJ N AT + [AY N ATY| — |A§ N ALY — |AD N Agh
Ai Ai
=Y > HebnAgh| - e} nAf
Ai zeAf
+3 > ey n AP = [{z} n A7
Ai zeAY
= 3 3 Ha} 043 - |} 0 4]
z€A) Aidw
+ Y0 3 Hebn AReT| — {0 A
z€A) A
=2 (2 1= )+ (X 1-> 1)
z€EAY  Aj€Af AeA? z€AY A€Af A€ A

= |AQ® = 2|A[|AY] + |A7] = (JAG] — |A}])* = LAT*(\;, Ao)

As observed, the new DLCT tables differ entirely from their counterparts in the
BCT framework for boomerang analysis. In fact, each of them is equivalent, dif-
fering only in sign and a scalar factor, to either the DDT or the DLCT.

In many cases, there are two consecutive active S-boxes in the middle part of
the DL distinguishers (also referred to as DL switch), potentially accompanied by
key additions and linear layers in between. To efficiently address this scenario,
we introduce the DDLCT table, favoring memory usage over time to effectively
reduce the overall time complexity of evaluating DL distinguisher correlations.

Definition 10 (Double Differential-Linear Connectivity Table (DDLCT)).
For a vectorial Boolean function S : F§ — F5*, the DDLCT of S is a 2™ x 2™ table
such that the entry at index (A;, \,) 1s (see Figure 2e)

DDLCT(Ai, Xo) = » > UDLCT(A;, A, Aw) LDLCT (A, Awi, Xo) (3)
AM AI\|

Proposition 2. The DDLCT table satisfies the following properties:

DDLCT(A;, Ao) = Y DDT(A;, Ay) - DLCT( Ay, Ao)
Al\l

=277 Z DLCT(A;, Ay) - LATZ()\M’ Ao).
A]\'

Section C provides a detailed proof for Proposition 2. We emphasize that the
DDLCT relies on the assumptions of round independence and round-key indepen-
dence. Nevertheless, it significantly reduces the time complexity in evaluating
correlations. Additionally, it can be employed to analyze the behavior of S-boxes
against DL attacks. One can extend this approach by defining the Triple DLCT
or t-DLCT to precompute correlations for different portions of the distinguisher.
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Definition 11 (¢-DLCT). For a wvectorial Boolean function S : F§ — FJ', the
t-DLCT of S is a 2™ x 2™ table such that the entry at index (A N,) is

t-DLCT(A;, Xo) = Y DDT(A;, Aw) - (t — 1)-DLCT(Aw, Ao) - (4)
AM

Definition 12. Let A;, A,, Ai, A, € FY. We define the following quantities:

Poor (A, A,) = DDT(A;, A,) /2" Crar (Niy Ao) = LAT( N, Xp) /27
Curer (A4, Ao, N\o) = UDLCT(A;, Ay, Xp) /27 Corer (Aiy Ao) = DLCT(A;, Np) /27
Crorer (As, Aiy Ao) = LDLCT (A, Ai, o) /22" Coprer (As, A\o) = DDLCT( A, Xy) /22"
Ceorer (Aiy Ao, Aiy Ao) = EDLCT(A;, Ap, Aiy Ao) /22" Ciprer (Aiy Ay) = t-DLCT(A,, /\0)/2’5'"

3.2 Practical Examples with the Generalized DLCT Framework

Now that we have defined all the tables related to DL distinguishers, let us
explore some practical examples demonstrating how we can use these tables to
accurately formulate the correlation of a DL distinguisher.

Ezxample 1. We start by studying a simple example on 3-round AES as shown in
Figure 3. The internal differences/masks have been replaced by variables to be
as precise as possible regarding potential clusters.

RO R1 R2
e e

MC
SB AK SB AK

SR o SR
MC MC
SB AK SB AK SB

Fig. 3: DL distinguisher for 3-round AES in the single-key model. The upper trail
represents the differential trail while the lower one represents the linear trail.
White, blue/red, and gray colors indicate respectively that the difference/mask
on the byte is null, fixed, and unknown.

RO R1 R2

The correlation of this DL distinguisher can be computed as follows:

C (An /\o) = Z CUDLCT(Aia 0475) : CEDLCT(aaﬁa J, 7) : CLDLCT(/B”Y, /\0)
a,B,7,6

The terms of this formula are obtained by looking at each S-box cell through
the encryption, exactly as for boomerang distinguishers. For instance, the term
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Cuprer (4, a, §) comes from the red cell in the first round since both the input
and output of the differential transition and the output mask are set.

According to Proposition 1, all extended tables can be expressed using only
DDT, LAT and DLCT. Thus the above formula can be rewritten as:

C (A, Xo) =27°" > "DDT(A;, ) - DDT(av, B) - DLCT(B, Ao) D _(—1)* & 0818
o, ¥,8

The nested sum equals 227, so the formula for the correlation is reduced to

C(4;,A) =27°" ) "DDT(A;, ) - DDT(ar, B) - DLCT(B, Ao).- (5)
a,f

According to Equation 5, we observe the maximum (absolute) correlation of
27766 when (A;,\,) = (0xb4,0x67). Table 2 compares the theoretical value
obtained from Equation 5 with the experimental results, confirming the high
accuracy of the formula. Using Equation 5, we computed the correlation for
all possible input/output differences/masks. Figure 8 visualizes the correlation
matrix for our 3-round distinguisher for AES. An interesting observation is that
for all (A, Ao) where A;, and A, are nonzero, we have C (4;, \,) < 0, indicating
that the sign of the correlation remains unchanged.

Table 2: Theoretical vs. experimental results for the distinguisher in Figure 3.

Input/Output Differences/Linear-mask Equation 5 Exp. Correlation

(Ai, \o) = (0xb4, 0x67) _9=7.66 _o-T.64
(Ai, Ao) = (0x02, 0x02) _9—T7.92 _9-T7.93
(4Ai, o) = (0x55,0x55) _9-7.99 _g-798
(Ai, \o) = (0xbf, Oxef) _9—8.05 _9—8.06
(Ai,)\o) = (Oxfe OXOG) _9—826 _9—8.25
(Ah)\o) (0X4b Oxla) _9—8.43 _o-8.44

Ezample 2. Figure 4 displays the 9-round middle part of a DL distinguisher
for 13 rounds of TWINE, as depicted in Figure 64. In this distinguisher, we can
divide the commonly active S-boxes into two groups of three consecutive S-boxes
along with several key additions and linear layers in between. We highlight the
two identified groups in [l and [ within Figure 4d. Each group of active S-
boxes contributes a correlation value of C, as defined in Equation 6, to the total
correlation:

C (A, )= Z Poor (A, Aum) - Coprer (Au, Ao) = Z Coprer (A, M) -Ciar (A, Ao) - (6)
Ay Am

The two groups of commonly activated S-boxes, highlighted in [] and [, are
independent. Therefore, the total correlation is C; = C2.
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(b) DDT-DDLCT coupling.

ecce

(c¢) DDLCT-LAT coupling. (d) DL distinguisher for 9-round TWINE (— differential — linear).

Fig. 4: Application of ¢-DLCT to formulate the correlation of DL distinguishers.

Table 3 provides a comparison between experimental and theoretical results
for the correlation of the DL distinguisher depicted in Figure 4d. As demon-
strated in Table 3, the outcomes derived from Equation 6 closely align with the
experimental findings. Expressing the correlation is simpler using just one 3-
DLCT: C; (A, \o) = C32 prer (Ai, \o). Table 39 represents the 3-DLCT of TWINE’s
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S-box, demonstrating that (4A;, Ao) € {(4,5),(5,a)} yields the maximum corre-
lation for the DL distinguisher.

Table 3: Theoretical vs. experimental results for the distinguisher in Figure 4d.

Input/Output Differences/Linear-mask Equation 6 Exp. Correlation

(Ai7 )\o) — (4’ 5) 275.83 275480
(Ai7>\o) — (a7 a) 2—639 276.39
(Ah)\o) _ (f, C) 2—7.36 2—7431
(Ai7 )\o) — (e’ 9) 278.39 278439
(Ai7>\o) — (d, a) 271000 279.98
(A, Ao) = (£,1) 0 0

3.3 Cell-wise Switches and Bit-wise Switches

The examples in Section 3.2 convey some key points. If an S-box is active in both
differential and linear trails, referred to as common active S-box, it contributes
to the correlation by a specific generalized DLCT table. However, if an S-box is
active in at most one of the differential or linear trails, it does not contribute to
the correlation of the distinguisher, allowing us to freely bypass it. We term
these activeness patterns ladder switches or cell-wise switches. The cell-wise
switches can also be explained by the maximal entries in the first row and the first
column of all generalized DLCT tables. Moreover, the DLCT of many S-boxes also
have maximal entries (2") in the middle rows/columns. For example, referring
to Table 30, we can see that if (A, A\o) = (2,2), then Cprer(Ai, Ao) = 1. We
refer to these bit-wise differential-linear transitions with correlation 1 as bit-wise
switches. It is worth noting that according to Proposition 16 in [15], any Boolean
component of degree 2 leads to such bit-wise switches.

The correlation of a DL distinguisher depends on three main factors: the
probability of the differential transition over Ey (denoted by p), the correlation
over the middle part Ey, (denoted by 7), and the squared correlation of the linear
approximation over E; (denoted by ¢?). We already know that p and ¢* are de-
termined by the number of differentially and linearly active S-boxes through Ey
and E, respectively. Nevertheless, r depends on the number of common active
S-boxes between the differential and linear trails over E);. As a result, mini-
mizing the number of differentially (rep. linearly) active S-boxes through Fj
(resp. E,,) while maximizing the cell-wise/bit-wise switches over E), can yield a
better distinguisher. Therefore, finding a good DL distinguisher is a non-trivial
combinatorial optimization problem. CP/MILP-based methods have been shown
to effectively solve optimization problems stemming from symmetric-key crypt-
analysis. With a systematic CP/MILP-based method, we can take advantage of
cell-wise/bit-wise switches during the search for DL distinguishers. If the middle
part (E)) includes only one S-box layer, the DLCT captures all the switches, and
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one can model all valid transitions through DLCT by CP/MILP constraints as
done in [38]. However, what if the middle part includes much more than one
round, e.g., 10 rounds? Section 4 addresses this research gap.

4 CP/MILP Model to Search for DL Distinguishers

Here, we describe how to model the problem of finding differential-linear dis-
tinguishers as a CP/MILP problem. We present two approaches: the cell-wise
and bit-wise models. Our cell-wise model treats the S-boxes as black-boxes and
only takes advantage of cell-wise switches. The cell-wise model offers simplicity
in creation as well as solving, and as we will show, it performs very well for
strongly aligned ciphers such as AES, SKINNY, CLEFIA, WARP, and TWINE. On
ther other hand, our bit-wise model takes advantage of the internal structure
of S-boxes (generally non-linear operations) and is suitable for weakly aligned
primitives like Ascon, SERPENT, KNOT, and Simeck.

4.1 Decomposing the Distinguisher

Before proposing our CP/MILP-based methods for exploring DL distinguishers,
we would like to discuss how to decompose the DL distinguishers. In Section 3,
we demonstrated that the correlation r of the middle part of a DL distinguisher
is essentially the sum of products of fractional values proportional to the gener-
alized DLCT tables of common active S-boxes. As a result, an increase in common
active S-boxes (more generally, non-linear operations) in the middle part results
in more tables in the formula, thereby complicating the correlation evaluation.
The computational complexity of evaluating the correlation r of the middle part
is approximately r~2, which is exponential in the number of common active S-
boxes or generally common active non-linear operations. Therefore, regardless
of the approach to computing the correlation of the middle part, the number of
common active S-boxes exponentially increases the computational complexity of
evaluating the correlation of the middle part, whether we use experimental or
theoretical approaches for computation.

The number of common active S-boxes (bits) in the middle part depends on
the diffusion effect of the linear layer (and also the diffusion effect of the S-box
in the bit-level) and the density of the differential and linear trails within the
boundaries of E,;. For example, the more differentially (resp. linearly) active bits
at the input of Ey;, the sooner the differences (resp. linear masks) propagate to
the entire state. On the other hand, the accuracy of correlation estimation based
on prq? highly depends on the length of the middle part of 7 rounds. If we set
ru to be too short, then we are considering the dependency in only a few rounds,
ignoring many potential cell-wise switches, and also some harmful dependencies
between the two parts that can spoil the distinguisher.

Therefore, when decomposing the DL distinguishers, we should make a trade-
off between the quality of the distinguisher and the computational complexity
of evaluating the correlation of the middle part. The middle part should be
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long enough for the dependency between the two parts almost to disappear. On
the other hand, it should be short enough to evaluate the correlation of the
middle part efficiently. As a result, a reasonable starting point for the length
of the middle part is the length of full diffusion of the corresponding primitive
in terms of differential and linear trails. Then, we can prepend/append some
rounds before/after E, to obtain E, and E..

After deriving the distinguisher, we can also conduct experiments on a re-
duced number of rounds to enhance the confidence in the accuracy of correlation
estimation. To this end, we can extend FE,, by a few rounds before and after and
check if the prqg? formula gives a reasonable estimate for the correlation of the
extended F). If we have chosen the length of the middle part properly, the cor-
relation of the extended E,; derived by the prqg? formula should be close to the
actual value derived by experiments; otherwise, we should increase the length of
the middle part and repeat the process.

4.2 Cell-Wise Modeling for Distinguishers

We first explain our cell-wise model because it is more straightforward and in-
tuitive. In this model, we consider the S-boxes as black-boxes and set up the
truncated differential and linear trails as constraints. We use the term cell-wise
because we focus on how the differential and linear trails propagate at the cell
level. A cell is active if its difference or linear mask is nonzero; otherwise, it is
inactive. Our cell-wise model has three main parts:

— A truncated CP/MILP model for finding truncated differential-linear trails.

— A bit-wise CP/MILP model to instantiate the discovered truncated trail and
compute p and ¢>.

— A module to compute r using the DLCT framework or experimental approach.
Lastly, we estimate the total correlation using the prq? formula.

We implement these three modules in a unified tool that receives three integer
numbers 7y, ry, 7, as an input and outputs the distinguisher together with an
estimated correlation. The round numbers 7y, ry, and r, determine the decom-
position of the distinguisher, i.e., the length of Ey, Ey;, and E,, respectively.

The most critical step is finding good truncated differential-linear trails (first
part), as it determines the position of differentially/linearly active bits, and the
second and third modules should align with the activation pattern of the first
module’s output. In addition, the CP/MILP models to find ordinary differen-
tial/linear trails have already been studied in the literature [1,33,51]. So, in what
follows, we mainly focus on the first module.

First, we give an overall view of our approach. As illustrated in Figure 5, we
decompose the distinguisher into three parts: Ey, Ey, and E|, with the lengths
of ry, ry, and ry, respectively. Let p be the probability of the differential tran-
sition over Ey, r be the correlation of the middle part, and ¢® be the squared
correlation of the linear approximation for F. Based on Section 4.1, as long as
the length of Ey is long enough and Ay, Ay are well-chosen, prq? gives a reason-
able estimate for the correlation of the distinguisher. Hence, we aim to create
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a CP/MILP model to find a truncated differential-linear trail that maximizes
the value of prg?. We know that p and ¢ depend on the number of differen-
tially/linearly active S-boxes in Fy and Ej, respectively. The mid-term r is the
sum of products of fractional values, with each fractional value corresponding to
a specific generalized DLCT table, associated with the involved S-boxes through
E\. Due to the cell-wise switches, we expect a higher value for r if the number
of common active S-boxes in F)\; is minimized. Consequently, we create a unified
CP model to find a truncated differential-linear trail such that the total number
of differentially (resp. linearly) active S-boxes in Ey (resp. E.) as well as com-
mon active S-boxes in Ey; is minimized. To count the number of common active
S-boxes in Ey (considering cell-wise switches), we employ the idea of cell-wise
deterministic differential and linear propagation. More precisely, while we prop-
agate truncated differential/linear trails through Ey/FE; as usual, we switch to
deterministic propagation of differential/linear trails in the level of cells through
FE\; and identify which cells are only active in at most one of the trails.

Ay A
= >

F-----=--- < - - - - } << |

@ differentially active S-box [ common active S-box (@ linearly active S-box

Fig. 5: Overall view of our CP/MILP model for finding DL distinguishers.

Now, we explain the details of our cell-wise model. As discussed in Section 4.1,
we typically set the length of the middle part to the size of the full diffusion of the
primitive. Next, as Figure 5 visualizes, we model the propagation of the truncated
differential (resp. linear) trails through the E\ 0 Ey (resp. F; o Ey) forward (resp.
backward). Let n = m - ¢ be the block size of E, where c represents the cell size
and m is the number of cells in each state. We define the binary variables XUy[i]
(resp. XL¢[i]) to represent the activeness pattern in the ith cell of the internal
state in round ¢ of Ey (resp. E) for differential (resp. linear) propagation. We
also define the binary variables XMU;[i] (resp. XML;[i]) to represent the activeness
pattern of the internal state in round ¢ of E, in the differential (resp. linear)
propagation.
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Let CSPy (XUg, - -+ ,XU,, ) represent the CSP model for the differential prop-
agation over Ey, and CSP, (XLg, - ,XL, ) denote the CSP model for the linear
propagation over E;. Similarly, let CSPyy, (XMUy, - - - ,XMU,, ) be the CSP model
for the differential propagation over Ey;, and CSPyy, (XML, - -- , XML, ) represent
the CSP model for the linear propagation over E, 1. While CSP;, and CSP, en-
code the propagation of truncated trails over Fy and E| as usual, CSP,, and
CSP,;, encode the propagation over E, in a deterministic manner. Determin-
istic means that the model does not allow cancellation through the diffusion
layers, though it can happen with a certain probability. The main reason for
this choice is that almost all common active S-boxes in the middle affect the
correlation for the middle part. If we let the cancellation happen in the middle
part, we are essentially ignoring the effect of some potentially active S-boxes in
the middle part this would lead to many false positive solutions, i.e., solutions
in which the number of common active S-boxes in the middle is essentially much
higher in practice, but we have underestimated it. So, to avoid underestimating
the number of common active S-boxes in the middle part, we use deterministic
propagation over FE,,. This way, we can ensure that the number of actually ef-
fective S-boxes in the middle part is as high as the number of common active
S-boxes in the solution.

Next, we merge the CSP models CSP;, CSP,, CSPyy, and CSPy; to form a
unified CSP model CSP, for the truncated differential-linear distinguisher. Addi-
tionally, we include constraints Y.~ XUp[i] # 0 and >\~ XLy, [i] # 0 to exclude
trivial solutions. In our CP model, XU, and XMU, correspond to the same internal
state at the junction of Ey, and E), and similarly for XLy and XML,.,. Therefore,
we enforce constraints XU, [i] = XMUp[i] and XLg[:] = XML, [é] for all 7. Finally,
using constant integer weights wy, wy, and w;, we incorporate the following
objective function to build a unified optimization problem COP,:

D wy - XUi] + > wy - bool2int (XMU,[i] + XML[i] = 2) + Y wy - XLyfi]. (7)
t=0 t=0 t=0

The integer weights wy, wy, and wy, should be proportional to the differential uni-
formity (DU), differential-linear uniformity (DLU), and squared linearity (£2) of
the S-box, respectively. For example, in the case of WARP, we have DU = 22, £ =
23 and DLU = 2%, or equivalently, Pppr < 272, CZ,; < 272, and Cper < 1.
In addition, in our CP/MILP models, we work with the absolute logarithm of
probability transitions or squared correlation, i.e., |log, (Pppr) |, |logs (CZyr) |,
and |logs (Cprer) |- Therefore, the cost of each active S-box in Fy and Fi, is ap-
proximately twice as much as an active S-box in Ej;. As a result, (2,1,2) is a
reasonable choice for (wy,wy,w,) for WARP. For ciphers that employ different
S-boxes with different DU, L, and DLU in the design, e.g., CLEFIA, we can use
different appropriate weights for each S-box in the CP model.

After finding a solution for COP,, we find concrete differential (resp. linear)
trails for Ey (resp. Ey) that satisfy the activeness pattern of the solution for
COP,,. To this end, we generate bit-wise CP/MILP models for differential (resp.
linear) trails over Ey (resp. F,) and set all inactive bits to zero. After solving
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the bit-wise models and deriving concrete differential (resp. linear) trails for Ey
(resp. E.), we only fix the differences (resp. linear masks) at the input and output
of By, and E,, i.e., Aj, Ay, A, Ao in Figure 5. Then we compute p and ¢, where
we consider the clustering effect for computing p. Lastly, we compute r using the
generalized DLCT framework or experimental approach and use the pr¢? formula
to estimate the total correlation of the distinguisher. We applied our cell-wise
model to AES, SKINNY, CLEFIA, WARP, LBlock, LBlock-s and TWINE and found
new DL distinguishers for these ciphers. In what follows, we briefly discuss the
discoveries based on our cell-wise model.

Application to AES We applied our method to search for DL distinguishers
of AES in the single-key setting. Refer to Section D for a brief specification of
AES. Given that AES achieves full diffusion within cells after 2 rounds, we set the
length of the middle part (Ey) in our searches to 3. This choice sufficiently cap-
tures the effect of the middle part while also modeling the dependency between
differential and linear trails. Table 5 summarizes the results of our searches for
AES with 2 to 5 rounds. When running our tool for 3 to 5 rounds of AES, due to
the symmetry of AES design, it discovered nearly identical activeness patterns
for the middle part of our distinguishers, with 3 common active S-boxes. Addi-
tionally, the correlation of the 3-round middle part of our DL distinguishers for
AES can be accurately evaluated using Equation 5. Evaluating Equation 5 for all
possible input/output differences and masks reveals that the absolute correla-
tion of the middle part ranges from 27843 to 277-66 (as shown in Figure 8). This
observation confirms that for strongly aligned ciphers such as AES, the choice
of the optimal cell-wise pattern for the distinguisher has a greater impact on its
correlation than selecting the actual values for the active input/output cells of
the middle part. Referring to the previous literature on DL distinguishers for
AES, there are only two results thus far, exclusively in the related-key setting
and limited to (up to 5 rounds) AES-192 [50,58]. Therefore, we are the first to
find DL distinguishers for up to 5 rounds of (all versions of) AES in the single-key
setting.

Application to CLEFIA As one of the most important Feistel ciphers, we ap-
plied our tool to the ISO standard (ISO/TEC 29192-2) block cipher CLEFIA.
Section M provides a brief specification of CLEFIA. The full diffusion of CLE-
FIA at the byte level is 5. So, we set the length of the middle part to 5 in
our searches. Table 34 summarizes the results for CLEFIA. The most interest-
ing property of CLEFIA is the Diffusion Switching Mechanism (DSM) [48, 49].
Thanks to this mechanism, the number of differentially/linearly active S-boxes
of CLEFIA is 40% higher than an ordinary Generalized Feistel Structure (GFS)
without DSM. The diffusion switching mechanism of CLEFIA comes into effect
for more than 3 (resp. 7) rounds in the linear (resp. differential) analysis. So,
one may expect a much higher resistance against DL distinguishers for CLEFIA
compared to boomerang distinguishers. Due to this feature, and also considering
that there is no previous result on DL distinguishers for CLEFIA, comparing our
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DL distinguishers to boomerang distinguishers of CLEFIA is of great interest.
To date, the best boomerang distinguishers proposed for CLEFIA cover up to 9
rounds [31]. As can be seen in Table 34, our DL distinguishers also reach up to
9 rounds. However, for up to 8 rounds of CLEFIA, our DL distinguishers signifi-
cantly surpass the best boomerang distinguishers. For example, whereas the data
complexity of the best boomerang distinguisher for 7 (resp. 8) rounds of CLEFIA
is 232:67 (resp. 276:03) the data complexity of our 7-round (resp. 8-round) DL
distinguisher is 223-59 (resp. 266-86),

Application to SKINNY As an application from lightweight tweakable block
ciphers, we targeted SKINNY in both single-tweakey and related-tweakey set-
tings. Section G briefly describes the SKINNY family of block ciphers. The full
diffusion of SKINNY on the word-level is 6 rounds. So we set the length of the
middle part to 6 or more in our searches. Table 8 summarizes our results for
SKINNY in the single-key setting. Notably, we achieved an 11-round DL distin-
guisher, matching the effectiveness of the best-known single-key distinguishers of
SKINNY in terms of the number of rounds. We also achieved interesting results
for the related-tweakey setting (refer to Table 9). The most potent combined
distinguishers on SKINNY in the related-tweakey setting are the boomerang dis-
tinguisher [28]. However, its efficacy comes at the cost of requiring a minimum
of four related tweakeys. Among the related-tweakey distinguishers of SKINNY
with only two related tweakeys, the impossible-differential distinguishers are the
longest ones which cover up to 14 rounds (resp. 16 rounds) of SKINNY-n-2n
(resp. SKINNY-n-3n) [32]. However, our related-tweakey DL distinguisher cov-
ers one round more, reaching 15 rounds of SKINNY-n-2n, and 17 rounds of
SKINNY-n-3n.

Appication to WARP Here we propose DL distinguishers for WARP for the
first time. Section L briefly describes the lightweight block cipher WARP. Ac-
cording to the designers of WARP [2], the nibble-wise full diffusion of WARP is
achieved after 10 rounds. So, we set the length of the middle part to 10 or 11 in
our searches. Although the designers of WARP claimed nibble-wise full diffusion
after 10 rounds, we discovered a deterministic DL distinguisher for 11 rounds of
WARP that is noteworthy. This observation arises not only from the diffusion
layer but also from the differential-linear behavior of WARP’s S-box. Table 30
illustrates the DLCT of WARP’s S-box. As shown, the differential-linear unifor-
mity of WARP’s S-box is 16 (DLUwarp = 16), indicating that the correlation
of the common active S-box in the middle can reach 1 for certain input/output
differences/linear masks. For instance, in our 11-round distinguisher for WARP,
we can express the correlation as C2 o; (4;, \o), where A; and )\, denote the dif-
ference and linear mask of the active cell at the input and output of the middle
part, respectively. According to Table 30, we have Cprer (2,2) = 1. Table 32 and
Table 33 summarize our results for WARP. As another interesting example of our
new DLCT tables, the correlation of the 11-round middle part of our DL distin-
guishers for 16 to 22 rounds of WARP can be compactly formulated by only one
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DDLCT. In particular, let A; and A, denote the difference and linear mask of the
active cell at the input and output of the middle part, respectively. Then, the
correlation of the middle part of our 16- to 22-round distinguishers is given by
Crer (Ai, Ao). Table 31 shows the DDLCT of WARP’s S-box. As seen in Table 31,
if (A, X0) € {(a,2),(2,b),(2,e)}, the absolute correlation of the middle part is
maximum.

Application to TWINE Section N provides a brief specification of TWINE.
TWINE achieves full nibble-wise diffusion after 8 rounds. Thus, we set ry to
more than 9 rounds in our searches to ensure that we capture the effect of the
middle part and consider the dependencies between differential and linear trails.
Table 37 shows the DLCT of TWINE’s S-box. In contrast to WARP’s S-box, which
exhibits maximal DLU, TWINE’s S-box has DLUtwine = 8, not maximal. Thus,
TWINE’s S-box is more resistant to DL distinguishers. Table 40 summarizes our
results for TWINE. As an application of our new DLCT tables, we can formu-
late the correlation of our 8-round distinguisher for TWINE using one DDLCT.
Table 38 illustrates the DDLCT of TWINE’s S-box, indicating that the maximum
absolute correlation is achieved by setting the active input/output differences/-
linear masks to (8,2). As another interesting example, we can formulate the
correlation of our 9-round distinguisher for TWINE by only one 3-DLCT. More
precisely, if A; and A\, denote the difference and linear mask of the active cell at
the input and output of the middle part, respectively, then the correlation of our
9-round distinguisher is given by C3 ;o1 (A, \o). Table 39 describes the 3-DLCT
of TWINE’s S-box. According to Table 39, choosing the active input/output
differences/linear masks from {(4,5), (5,a)}, results in the maximum absolute
correlation. As seen in Table 40, we propose DL distinguisher for up to 17 rounds
of TWINE for the first time. Interestingly, our 17-round DL distinguisher is one
round longer than all previous distinguishers for TWINE, including its longest
boomerang distinguisher in [31].

Application to LBlock and LBlock-s Section K provides a brief specification
of LBlock and LBlock-s. Although LBlock employs 8 different S-boxes in its de-
sign, for all of them, DU = L?> = DLU/4 = 4. Therefore, in our cell-wise CP
model, we treat all S-boxes equally (similar to the cell-wise CP model for LBlock-
s). Like TWINE, LBlock exhibits full nibble-wise diffusion after 8 rounds for both
encryption and decryption. Consequently, we set the middle part length in our
searches to at least 8 rounds. Table 24 and Table 25 summarize our results for
LBlock-s and LBlock, respectively. As an application of our new DLCT tables, the
middle part of our 8- to 12-round distinguishers for LBlock-s can be compactly
formulated by only one DDLCT. Table 20 illustrates the DDLCT of LBlock-s’s S-
box. According to Table 20, the maximum absolute correlation is achieved by
setting the active input/output differences/linear masks to (a,1). We managed
to propose DL distinguishers for up to 17 rounds of LBlock-s and LBlock for the
first time. Our 17-round DL distinguisher for LBlock and LBlock-s exceeds the
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length of the longest boomerang distinguishers for both ciphers reported in [31],
highlighting the superiority of DL distinguishers over boomerang ones.

The advantage of our cell-wise model lies in its high efficiency and suffi-
cient accuracy, particularly for strongly aligned ciphers. For instance, results for
AES and CLEFIA are typically obtained within minutes, while those for TWINE,
SKINNY-64, and WARP are often solvable within seconds on a standard lap-
top. However, when dealing with weakly aligned designs such as Ascon, KNOT,
SERPENT, or Simeck, a cell-wise CP model lacks the precision required to track
the deterministic differential /linear transitions in the middle part. To tackle this
issue, we introduce a bit-wise model in Section 4.3.

4.3 Bit-Wise Modeling for Distinguishers

To capture the bit-wise switches for one S-box layer, DLCT is reasonably suffi-
cient. Indeed, one can even model all valid bit-wise differential-linear transitions
for a single S-box layer by using some CP constraints encoding the DLCT [38].
Nevertheless, this approach is not extendable to more than one round. In this
section, we first show that the idea of deterministic bit-wise differential/linear
transitions can capture many bit-wise switches across multiple rounds. Then, we
propose a CP/MILP-based method to model the deterministic bit-wise differen-
tial/linear trails. Lastly, we use our deterministic bit-wise model to create a CP
model to explore DL distinguishers of weakly aligned primitives.

Table 4: DLCT of KNOT’s S-box.

A\X[0o 1 2 3 4 5 6 7 8 9 a b c d e f
0|16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
1116 0 0 OFEEFo o 0 0 0O O O O O O O
2116 -8 -8 0 0 0 8 -8 0 8 0 8 0 0 0 0
3/166 0 -8 -8 0 88 0 0 000 0 -80 8
4116 0 -8 0 0 0 -8 OEJo 8 0 0 0 8 0
516 0 8 0 0 0 -8 0 0 0 8 OFlo 8 0
6/16 -8 8 8 0 0 8 0 0 80 0 0 0 0 8
716 0 8 0 0 8-8-8 0 00 8 0 80 0
8/16 0 0 OFEIO0 0 OFEEJo0 o oo o o
916 -8 0—8—8 08 0 8 0 -8 0 8 0 -8
all6 0 0 8 0 8 0 0 0 0 -8 0 0 -8 -8 -8
b(16 8 00 0 00 8 0 -8-8-80 0-8020
cl16 0 0 8 0 0 0 -sXPo o -8 0 0 0 -8
d{16 -8 0 0 0 -8 0 0 0 8 0 OffG 8 0 0
el16 0 0 0 0 8 0 8 0 0 -8 -8 0 -8 -8 0
f/16 8 0 8 0 0 0 0 0 880 0 0 -8 -8

To explain why the deterministic bit-wise differential/linear transitions can
capture many bit-wise switches, we give a basic example in the level of one S-box
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layer. However, this approach can be extended beyond one S-box layer. Let .S be
the S-box of KNOT. Table 4 illustrates the DLCT of KNOT’s S-box. Also assume
that we represent the difference (resp. linear mask) in each bit of differential
(resp. linear) trail by {0,1,7}, where ? denotes the unknown bits in terms of
difference (resp. linear mask) value. Table 14 shows the DDT of KNOT’s S-box.
Let 4A;, and A, be the input and output difference of the S-box, respectively. By
checking all input differences in {0, 1, ?}*, we can identify the following nontrivial

deterministic differential transitions 4A; — Ag:
2i=(0,0,0,1) 2 Ay = (2,1,7,7)  4; = (0,1,0,0) 25 Ay = (1,7,7,7)
Ao

A 5,
Ai = (1707 070) i Ay = (17 17777) Ai = (1707 071) i = (7707777) (8)
2

A; = (1,1,0,0) o=1(0,7,7,7)

Referring to Equation 8, when 4A; = (1,0,0,0), then A, = (1,1,7,7). Thus,
if A, € (0,1,0,0),(1,0,0,0),(1,1,0,0), Ao+ A, remains constant for all input pairs
with difference A;. This explains the bit-wise switches at indices (8, 4), (8, 8), (8, c)
in DLCT. Similarly, when 4A; = (1,0,0,1), A, = (?,0,7,7), indicating that for
Ao = (0,1,0,0), Ao - A, remains constant for all input pairs with difference 4;.
This accounts for the bit-wise switch at index (9,4) in DLCT. Similarly, other
bit-wise switches, such as (1,4),(4,8), and (c,8), can be explained using only
the bit-wise deterministic differential transitions.

We can also explain the same bit-wise switches by using deterministic back-
ward linear transitions. Table 15 shows the LAT of KNOT’s S-box. Let A; and
Ao be the input and output linear masks of the S-box, respectively. One can see

that there are 4 deterministic linear transitions for \; <i Aot

>\i = (17?7?7 1) i Ao = (07 1707 0) )‘i = (1717?7?)<£ Ao = (1707070) (9)
A =(0,2,7,7) <& Ao = (1,1,0,0)

Based on Equation 9 if A\, = (1,0,0,0) then )\ = (1,1,7,7). Therefore,
Ai - 4y is fixed for all 4; € {(0,1,0,0),(1,0,0,0),(1,1,0,0)}, explaining the bit-
wise switches {(4, 8),(8,8), (c,8)}. As another example, if A, = (0,1,0,0), then
A= (1,7,7,1). Thus, if 4; € {(1,0,0,1),(1,0,0,0),(0,0,0,1)} then X - 4; is
constant. It explains the bit-wise switches {(9,4), (8,4),(1,4)} in DLCT. The bit-
wise switch (8, c) can also be identified by only using the bit-wise deterministic
linear transitions.

Now, we explain how to model deterministic bit-wise differential/linear tran-
sitions. For each bit of the internal state in our bit-wise model, we define an in-
teger variable with domain {—1,0,1} to represent if the difference (linear mask)
is unknown, zero, or one, respectively. Next, we define some constraints to model
the truncated differential/linear trails at the bit level. In what follows, we define
the constraints for the common cryptographic operations, e.g., X0R, Copy, and
S-boxes. We describe our method for truncated differential trails, and a similar
method applies to truncated linear trails.
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Proposition 3 (XOR). For f : F} — Fa, f(xo,21,...,2n-1) = y, where
Y=x0BT1 DB Tp_1, the valid deterministic differential transitions satisfy:

if ?;01 (X[z] = —1) then Y= -1

XORy (Y, X[0],..., X[n — 1]) = {else p 0] 4 £{1] &+ X — 1] mod 2 endiy,

where X[i], and Y are integer variables in {—1,0,1} for 0 <i<mn—1.

Proposition 4 (Copy). For f : Fo — F%, f(z) = (yo,vy1,---,Yn—1) where
Yo = y1 = -+ = x, valid transitions for deterministic differential trails satisfy

Branchy(X, Y[0],..., ¥[n —1]) := /_\ (Yji] = %),

where X, and Y[i] are integer variables with domain {—1,0,1} for all0 < i < n-—1.

Regarding S-boxes or generally a non-linear vectorial Boolean function, we
refer to its DDT (resp. LAT) to identify deterministic bit-wise differential (resp. lin-
ear) transitions. Then, we define some constraints to model these deterministic
transitions. To explain our bit-wise model for S-boxes, we give a basic example.
Take the 4-bit S-box of KNOT as an example. Let X[¢] and Y[i] be integer variables
with domain {—1,0,1} for 0 <14 < 3, to denote the input and output difference
bits, respectively, where X[0], Y[0] correspond the MSB. The bit-wise determin-
istic differential transitions of KNOT’s S-box are represented in Equation 9. In
CP modeling, we can model these transitions using the following constraints:

if (X[0] = 0AX[1] = 0AX[2] =0 AX[3] =0)then (Y[0] = 0AY[1]=0AY[2] =0AY[3]=0)

elseif (X[0] = 0 AX[1] = 0AX[2] =0AX[3] = 1)then (Y[0] = =1 AY[1] = 1LAY[2] = -1 AY[3] = —1)
elseif (X[0] = 0 AX[1] =1 AX[2] =0 AX[3] = 0)then (Y[0)] = LAY[1]] = —1AY[2] = —1AY[3] =—1)
elseif (X[0] = 1 AX[1] =0 AX[2] =0 AX[3] =0)then (Y[0)] = 1AY[1] =1AY[2] = -1 AY[3] = —1)
elseif (X[0] = 1 AX[1]] = 0AX[2] = 0AX[3] =1)then (Y[0] = —1AY[1]] =0AY[2] = -1AY[3] =—-1)
elseif (X[0] = 1 AX[1] =1 AX[2] = 0AX[3] =0)then (Y[0] =0AY[1] = —-1AY[]2] = -1 AY[3] =—1)
else (Y[0] = —1AY[1]] = —1AY[2] = =1 AY[3] = —1) endif;

We can model the backward deterministic bit-wise linear transitions in Equa-
tion 9 in the same way.

Now, we explain our bit-wise model for finding DL distinguishers. As before,
we split the primitive F into three parts Ey, Ey, and E|, of lengths ry, 7y, and 7,
respectively. Let XUi[i] (resp. XL;[i]) represent the value of the difference (resp.
linear mask) in the ith bit of the internal state in round ¢ of Ey (resp. E.).
Besides, let XMU,[i] (resp. XML;[i]) represent the ith bit of the internal state in
round ¢ of F\ for differential (resp. linear) propagation. We create CP models
CSP; (XU, - -+ , XU, ) and CSP,(XLg,---,XL, ) to model the bit-wise differential
and linear trails through E; and FE, respectively. For this purpose, we employ
the methods outlined in prior studies such as [1,33,51] for the propagation of
differential and linear trails at the bit level. However, for F,;, we switch to deter-
ministic propagation at the bit level. For this, we create CSPyy (XMUg, - - - , XMU,.,)
(resp. CSPyy, (XMLg, - - - , XML, )) to model the deterministic propagation of differ-
ential (resp. linear) trails through Ey (resp. Eg!).
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In CSP;, we encode the DDT by CP constraints to model the probability
of differential transition over Ey. In CSP,, we encode LAT2 by CP constraints
to model the squared correlation of linear approximation over E;. We use the
open-source S-box Analyzer tool [31] (refer to Section O) to effectively encode
the differential and linear behavior of S-boxes and other nonlinear operations
in our CP models. Any feasible solution for CSP, (resp. CSP,) is a differential
(resp. linear) trail for Ey (resp. E; ). Assume that the probability of differential
transition over EYy is p and the squared correlation of linear transition over F is
¢*. In our CP model, we define the variables PU and CL to encode — log,(p) and
—log,(g?), respectively. Depending on the DDT and LAT, the variables PU and CL
can be integer or real-valued variables. Lastly, we combine CSP,, CSP,, CSP,y,
and CSP,, to create a unified CP model for the DL distinguisher. Like our cell-
wise CP model, we add some constraints to link the internal states at the join
points of Ey, and E\ and F\; and E; . To identify the number of bit positions that
are active in both differential and linear propagations in the middle part and
take unknown values in at least one of the differential and linear propagations,
we define the following integer variable:

CM =" wy - bool2int ((XMU;[i] = —1V XML¢[i] = —1) A (XMU:[i] # 0 A XML¢[i] # 0))  (10)

t=0

Next, assuming that wy, wy, and w, are some integer constants, we set the
objective function to: min (wy - PU + wy - CM 4 wy, - CL). If the number of common
active bits in the middle is high, then computing the correlation of the middle
part becomes more difficult. Therefore, we typically use these integer weights to
make a trade-off between the weight of differential and linear transitions over E},
and E;, and the number of common active bits in the middle part. After finding
a solution for the unified CP model, we use the DLCT framework or experimental
approach to compute the correlation of the middle part. Lastly, we put p = 27FY,
¢> = 27 and r together in the prg? formula to estimate the total correlation
of the distinguisher.

It is worth noting that, while our cell-wise model is inspired by techniques
for finding boomerang distinguishers [28], there is no equivalent method for our
bit-wise model in the context of boomerang distinguishers. For example, very re-
cently, Bonnetain and Lallemand [14] demonstrated at ToSC 2023 that previous
tools for finding boomerang distinguishers are not applicable to bit-sliced designs
like Simeck, and they had to propose a different approach to find boomerang dis-
tinguishers. However, our bit-wise model can be applied to both strongly aligned
primitives like WARP and weakly aligned primitives like Simeck.

Application to Ascon Permutation To illustrate the usefulness of our bit-
wise model, we first applied it to Ascon [21,22], the winner of the NIST lightweight
cryptography standardization (LWC) process. Section E.2 briefly describes the
Ascon permutation. Ascon achieves full diffusion at the bit-level after 3.5 rounds.
Therefore, we set the length of the middle part to 2, 3, or 4 in our searches.
Table 6 summarizes our results for Ascon. We discovered the first 4-round deter-
ministic DL distinguisher for Ascon. To find the 4-round DL distinguisher, we
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Fig. 6: DL distinguisher I for 4 rounds of Ascon.

set ry to 4. In this case, our tool returns a solution with no overlap between the
active bits in the differential and linear propagations at the output of the S-box
layer. As a result, due the bit-wise switches, the correlation of our 4-round DL
distinguisher is 1, which we also verified experimentally. Nevertheless, as Fig-
ure 6 shows, there are many common active S-boxes whose input difference and
output linear masks are non-zero, and all switches are bit-wise switches that are
not detectable by the cell-wise models. This example showcases the effective-
ness of our bit-wise model. Moreover, we uncovered a 5-round DL distinguisher
for Ascon that raises the correlation from 279 in the best previous 5-round dis-
tinguishers [20] to 27%. Due to the rotational invariant property of Ascon with
respect to differences and linear trails, each of our DL distinguishers represent
64 different DL distinguishers with the same correlation.

Application to SERPENT As another important bit-sliced cipher, we applied
our method to the runner-up of the AES competition, namely SERPENT [§].
Refer to Section F.2 for a brief specification of SERPENT. The full diffusion of
SERPENT at the bit-level is achieved after 3 rounds. Thus, we set the length
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of the middle part to 3 in our searches. Since SERPENT uses different S-boxes
in each round, its differential/linear behavior depends on the starting round.
So, we also searched for DL distinguishers for different starting rounds. Table 7
summarizes our results for SERPENT. One of the first applications of DL analysis
was on SERPENT in [10], and this cipher has been the center of attention for
much research on DL analysis. The longest DL distinguisher for SERPENT is a
9-round distinguisher with a correlation of 27°® proposed in [10]. Later, in [24],
the authors performed experiments on a reduced-round version of the 9-round
DL distinguisher and showed that the correlation is 27°6-5. Using our bit-wise
model, we found a 9-round DL distinguisher with a correlation of 275995,

Application to Simeck Section J.1 briefly describes the Simeck family of
lightweight block ciphers. Here, we discuss the application of our method to
Simeck. Table 17, Table 18, and Table 19 describe the specification of our dis-
covered DL distinguishers. The number of rounds required for full diffusion in
Simeck-32, Simeck-48, and Simeck-64 is 8, 9, and 11, respectively [35]. Our dis-
coveries also match this fact: we found deterministic 7-, 8-, and 10-round DL dis-
tinguishers for Simeck-32, Simeck-48, and Simeck-64, respectively. Very recently,
the authors of [59] applied the new MILP/MIQCP-based tool [7] to Simeck and
proposed the DL distinguishers for all variants of Simeck for the first time. Using
our bit-wise model, we could significantly improve all of the results of [59]. The
authors of [59] proposed two types of estimations for the correlation of their dis-
tinguishers: the first one is based on the MILP/MIQCP model, and the second
one is based on experimental measurements of the correlation for smaller parts
of the distinguishers. Referring to [59], one can see that the correlation derived
by the MILP/MIQCP model extremely underestimates the real correlation. To
have a fair comparison, we compare the correlation of our new distinguishers with
the (experimental) correlation of distinguishers reported in [59]. The authors of
[59] proposed 14-, 18-, and 25-round DL distinguishers for Simeck-32, Simeck-48,
and Simeck-64, with (experimentally measured) correlations of 2715-57 2-17-88
and 272965 respectively. However, we found 14-, 18, and 25-round DL distin-
guishers for the corresponding variants of Simeck with correlations of 271392,
271589 and 272707 respectively. Interestingly, we discovered a 20-round DL
distinguisher for Simeck-48 with a data complexity of 2438, improving its DL
distinguisher by 2 rounds. Moreover, we provided a 26-round DL distinguisher
for Simeck-64, improving its best known DL distinguisher by 1 round.

Application to KNOT Permutation and PRESENT We also applied our
method to the KNOT permutation, one of the second-round candidates of LWC.
We analyzed the main variant of the KNOT family of lightweight authenticated
encryption algorithms, denoted as KNOT-256. The length of the middle part
was set to 9, sufficient to capture its effect. Table 16 briefly describes our results
for KNOT-256. The only previous result on DL distinguishers for KNOT is a
conditional DL distinguisher for 15 rounds of KNOT-256 in [54], applicable to
the initialization phase. However, as illustrated in Figure 40b, we propose an
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unconditional DL distinguisher for 15 rounds of KNOT-256 with a correlation
of 271720 also targeting the initialization phase, with a data limit of 264, An-
other significant finding is our discovery of up to 23-round DL distinguishers for
KNOT-256, the longest for this permutation, surpassing the 17-round integral
distinguisher proposed in [26]. To demonstrate the versatility of our method, we
also applied it to PRESENT and proposed DL distinguishers for up to 13 rounds
of this cipher for the first time (see Table 12).

5 Conclusion and Future Works

In this paper, we present a general framework for formalizing the correlation
of differential-linear distinguishers, along with new CP-based models designed
to efficiently search for high-quality distinguishers. We propose two CP/MILP-
based models: a cell-wise model suitable for strongly aligned primitives and a
bit-wise model suitable for weakly aligned primitives. Our new CP/MILP-based
models are efficient and user-friendly, allowing for easy incorporation of future
improvements in the search for either differential or linear characteristics to find
better DL distinguishers. To demonstrate the usefulness and versatility of our
new tools, we apply them to a wide range of symmetric-key primitive designs.
In all applications, our DL distinguishers exhibit superior correlation and/or
cover more rounds than previously known ones. In several instances, we show
that DL distinguishers can surpass boomerang distinguishers or even the best
known (integral) distinguishers. We believe our work enables further exploration
of the similarities between boomerang and differential-linear cryptanalysis and
demonstrates that many advances in boomerang analysis can be adapted to
differential-linear cryptanalysis (or vice versa).

Our work also raises several open questions and suggests future research
directions. First of all, our new tools can be applied to other primitives, par-
ticularly extending our bit-wise model for ARX primitives. Another interesting
avenue for future work is extending our cell-wise/bit-wise models to a unified
CP model for finding complete differential-linear key recovery. Additionally, in
our applications to SKINNY, we observed that the experimental correlation of
the distinguisher is often much higher than the approximation provided by the
prq® formula. We believe this is mainly due to partial key addition. Therefore,
another interesting area for future work would be to accurately consider the
dependencies between rounds for ciphers with partial key addition, potentially
leading to the discovery of better distinguishers. Moreover, it is worth inspecting
the impact of our approach for finding rotational DL distinguishers [40,43]. Dur-
ing our analyses of several symmetric-key primitives, we noticed that the DLCT
of many S-boxes contains numerous bit-wise switches, rendering them weaker
against differential-linear cryptanalysis. Thus, further studies on constructing
strong S-boxes against differential-linear cryptanalysis appear necessary. For ex-
ample, investigating the application of DDLCT or t-DLCT in the design and analysis
of S-boxes resistant to differential-linear cryptanalysis would be intriguing.
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— Supplementary Material —

A Comparison of our Approach with the State-of-the-Art

Here, we briefly compare our approach with the state-of-the-art in DL analysis.
After introducing DL cryptanalysis in CRYPTO 1994 [36], efforts to formalize
computing the correlation of DL distinguishers have been extensive, while au-
tomation of the search for DL distinguishers has received less attention. One of
the most interesting works is that of Blondeau, Leander, and Nyberg [12]. They
relaxed one of the two critical assumptions from the original work of Langford
and Hellman, providing a closed formula to compute the correlation of DL distin-
guishers. In EUROCRYPT 2019, Bar-On et al. [3] further relaxed another critical
assumption in computing the correlation of DL distinguishers. They proposed
the DLCT and utilized the sandwich framework to formulate the correlation of
DL distinguishers. Another interesting work is that of Liu et al. [39], presented
at CRYPTO 2021. They introduce a purely algebraic approach to compute the
correlation of DL distinguishers across multiple rounds. Recently, at EURO-
CRYPT 2021, Liu et al. [40] combined the concepts of rotational differentials
and DL analysis. They proposed a novel combined attack known as rotational
DL analysis. This work was further extended in CRYPTO 2022 [43], presenting
an efficient algorithm for computing the (rotational) differential-linear correla-
tion of modular additions for arbitrary output linear masks. However, most of
these interesting works have focused mainly on formalizing the correlation of DL
distinguishers and rarely on providing a (generic CP-based) automatic tool for
finding DL distinguishers. Other interesting works have also aimed to improve
the key recovery of DL attacks, such as the one by Beierle et al. presented at
CRYPTO 2020 [6].

Only very recently have there been some interesting works regarding the
automatic search for DL distinguishers. For example, in 2023, Bellini et al. [7]
introduced an automated tool based on MILP/MIQCP for identifying DL dis-
tinguishers in ARX ciphers and applied it to Speck-32. However, the authors
acknowledge that their CP model is resource-intensive, limiting its application
to smaller variants of Speck like Speck-32. Furthermore, the tool’s efficiency con-
cerning SPN ciphers remains an open question. Later, Zhou et al. [59] applied this
method to Simon and Simeck. In another recent work from ASIACRYPT 2023,
Chen et al. [16] proposed an alternative method for searching for DL distin-
guishers. However, their approach is also tailored to ARX ciphers and does not
leverage general-purpose CP/MILP solvers. Developing an efficient and generic
approach to automatically search for effective DL distinguishers across various
classes of primitives, especially SPN designs, remained an open problem. In our
paper, we initially examine the interdependency between two DL distinguishers
components from the boomerang analysis perspective to extend the framework
proposed in [3]. Subsequently, we introduce a novel tool for automating the
search for DL distinguishers.

36



The advantage of our approach is that it allows us to capitalize on the
progress made in boomerang analysis within DL analysis. Our CP-based auto-
matic tool also addresses the need for a generic and efficient CP-based method
for exploring DL distinguishers, especially for strongly aligned SPN ciphers. Ad-
ditionally, our approach can be integrated with some intriguing previous ap-
proaches, such as the algebraic one presented in CRYPTO 2021 [39]. For in-
stance, while our generalized DLCT framework is very efficient for formulat-
ing/computing the correlation across multiple rounds of strongly aligned prim-
itives, it is more complicated to use it for weakly aligned primitives, where the
algebraic approach in [39] might be more efficient. However, our tool for finding
the DL distinguishers performs well for strongly and weakly aligned primitives.
Therefore, one can use our automatic tool for finding DL distinguishers and then
use either the generalized DLCT framework or the algebraic approach in [39] to
compute the correlation of the middle part.
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B Constraint Satisfaction and Constraint Optimization
Problems

A constraint satisfaction problem (CSP) is a mathematical problem including a
set of constraints over a set of variables that should be satisfied. The following
definition is a formal definition of CSPs.

Definition 13. A CSP is a triple (X,D,C), where

— X ={Xo,X1,...,Xn_1} is a set of variables;

— D ={Dy,D1,...,Dp_1} is the set of domains such that X; € D;, 0 < i <
n—1; and

— C={Co,Cy,...,Cpr_1} is a set of constraints.

Each constraint C; € C is a tuple (S;,R;), where S; = {X;y,...,Xs, ,} C X

and R; is a relation on the corresponding domains, i.e., R; € Dy x -+ xDy, .

Any assignment of domain values to the variables that satisfies all constraints
of a CSP problem is a feasible solution. Including an objective function to be
minimized (or maximized) in a CSP problem results in a constraint optimization
problem (COP). We refer to finding a feasible solution for a CSP or COP problem
as constraint programming (CP). The tools that are used to solve CSP and COP
problems are called CP solvers.

To generate our COP models in this paper, we use MiniZinc [42]. The main
advantage of MiniZinc is that it allows modeling the CSP and COP problems in
a high-level and solver-independent way. It compiles the model into FlatZinc, a
standard language supported by a wide range of CP solvers. As a result, once a
model is written in MiniZinc, it can be solved by any CP solver that supports
FlatZinc, which includes a wide range of powerful CP solvers, e.g., Gurobi [27],
and Or-Tools [45]. In this paper we use Gurobi and Or-Tools as the CP solvers.
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C Proof of Proposition 2

Proof. The goal is to prove the equalities:

DDLCT(A;, Ao) :2_"ZDLCT(Ai,AI\,I)-LATQ()\M,/\O) = Z DDT(A;, Ay )-DLCT(A!, A,

)\m Al’\l 1AM

This is done by relying on the 7 equalities given in Proposition 1 and at each
step we will indicate which equality is use. We first rewrite LAT? using the LDLCT
(7) and we obtain:

> DLCT(A;, Ay) - LAT*(Ay, Ao) = D DLCT(A;, Ay) - LDLCT(A}, Ay, Ao)-
Au A, A

Now we rewrite the DLCT using the UDLCT (2) to get:

> UDLCT(A;, Ay, Ay) - LDLCT(A, Aui, Ao).-
Anm ,A,,“ Ay

We then simplify both the UDLCT and the LDLCT by using equalities 3 and 4:

> (~1)M(A@XIDDT(A;, Ay) - DLCT(A], Ao).
>\M1A£1-,AM

This sum can be rewritten as:

Z DDT(A;, Ay) - DLCT(A];, Ao) Z(‘DAM(AM@AL)’
Al Au Au

and thus, by evaluating the nested sum we finally reach:

/.
M

> DDT(A;, Ay) - DLCT(A}, Ao) - 2" - 14,24
A§17ARI

At this point we have obtained that the sum over Ay and A, can be reduced
to a sum over Ay = A}, achieving the proof.

It is worth noting that our formulation for DDLCT aligns with Theorem 2 in
[12], which addresses computing the correlation of DL distinguishers.
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D Application to AES

D.1 Brief Specification of AES

The AES family of 128-bit block ciphers with key sizes k € {128,192, 256} bits
was designed by Rijmen and Daemen [18] and standardized in NIST FIPS PUB
197 in 2001. The state of all family members is a 4 x 4 matrix of bytes, while the
key is a 4x {4, 6, 8} matrix depending on the key size. The state is updated in 10,
12, or 14 rounds, respectively. The round function is illustrated in Figure 7 and
consists of the operations SubBytes, ShiftRows, MixColumns, and AddRoundKey.
An additional round key is added before the first round, while MixColumns is
omitted in the last round.

/>

aoo |ao1|agz | aos boo |bo1 Nz bos
aip|ail 13 bio b1t b13
az0|a21a22|az3 bZU b21 b22 b23
aszo|asi azz ass b30 |b31 |bs2 | bss
(a) SubBytes (SB) (¢) MixColumns (MC)
am o »no bo1 boz‘bos aoo |ao1|ao2 | ao3 koo |ko1 ko2 | ko3 boo | bo1 |boz2 |bos
a — b 'H%a aiplail | aiz|ais + k1o k11 ki2|ki3| _ |b1o|b11 bi2|b1s
a — '5%2 bas azo|az1|azz az;3 k2o k21 ka2 ko3 b2 b2y |baz | bas
a — 1 b32 b3z ago|asi|asz ass k3o k31 ka2 kas b3o |bs1| b3z bss
(b) ShiftRows (SR) (d) AddRoundKey (AK)

RotWord|«

o n

N

ﬂ -

(e) Key schedule for AES-128

Fig. 7: Round function of AES.
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D.2 The DL Distinguishers of AES

Table 5: DL distinguishers for 2 to 5 rounds of AES (single-key).

2 Rounds,

Figure 9a

ro=0,rm=2,11=0,p=1,r=1¢g=1, pr¢ =1

AXp 01000000000100000000010000000001

I"X5 00000000008500000006000000000000

3 Rounds,

ro=0,rm=3,11=0, p=1, r:2_7‘66,q:1, prq2

Figure 9b
— 9-7.66

AX( 0000000000000000000000000000b400

I"X3 0032000000ab00000066000000980000

4 Rounds,
ro=1,rm =3,r1 =0, p=2"24

r= 277.667 q2

Figure 9c

—1, prq? = 273166

AX( 00005200000000£58£000000007H0000
I"X4 0032000000ab00000066000000980000

AX; 0000000000000000000000000000b400

5 Rounds,
ro=1Lrm=3r1=1, p= 2_24'00,7'

— 9—7.66

Figure 9d

, q2 — 2—24.007 pqu

— 9—55.66

AXy 00005200000000£58£0000000070000
I"X4 0032000000ab00000066000000980000

AX; 0000000000000000000000000000b400
I'X5 208acd121f4b3£f£232f46e51299eda33

9-7.66

2—8,43

Fig.8: Correlation matrix visualization for 3-round AES DL distinguisher.
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Xo Ko Yy Zo Wo X, K Y, Z Wy X,
T B SR MC B SR MC
(a) DL distinguisher for 2 rounds of AES
Xy Ky Yo Zy W Xy K, Y Z Wy Xo
44 44 44 y v RN [T [ [T
Ad Add SB 4444 SR A4 MC **:l TV SB 41 SR T4 MC 4
L |4 | |4 W 4| 4| | 'ﬁ
Aﬂj Aﬂj Aﬂj (44 4 A4
Xo K, Yy Zy Wo X3
yj ¥ SB ¥ SR Py MC
Vi a4 VVVH y|
(b) DL distinguisher for 3 rounds of AES
Xo Ky Yo Zoy Wy X, K, Y Z) Wi Xo
44 44 44 yy NER
SB SR MC (444 ‘dd4d SB (dddd SR ‘A4 MC 47
> [ r Y |
4 4 4 yy |
X K, Y 7y W X3 K3 Y Z: W Xy
yanJdlEs P se LFHP sk - vc 'a_]_* ¥ SB 7 SR pppp MC
4 4 4 4 W VVVH VVVH y|
(c) DL distinguisher for 4 rounds of AES
Xo Ko Yo Zy Wo X, K Y; 7 W, X,
yY| 44 a4 yy NER
SB SR MC (444 ‘444 SB ‘4444 SR ‘44 MC g
> r r [ |
Aﬂj Aﬂ: Aﬂj (44 ]
Xy Ky Y 7y Wy X3 K Ys Z: W3 X4
771” (TTETIl 71 SB 71 SR [ 4 MC 'aj_*ﬁ ¥l SB ¥ SR pppy MC
\ 4 7 VVVH a4 y|
X4 Ky Ya Z4 Wi X5
SB SR MC

(d) DL distinguisher for 5 rounds of AES

Fig.9: DL distinguishers for 2 to 5 rounds of AES ()7 difference |4 linear mask).
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E Application to Ascon

E.1 Brief Specification of Ascon

Ascon is a family of authenticated encryption and hashing designed by the Ascon
team [21,22] and has been selected by NIST as the new standard for lightweight
cryptography (LWC). Its underlying primitive is a 320-bit permutation. This
permutation is defined with a different number of rounds (6, 8, or 12) for different
phases of the encryption scheme. The SPN-based round transformation p consists
of three steps, p = pr, o ps o pc. Ascon’s 320-bit state S is split into five 64-bit
registers words x;, S = xg||x1]|z2||zs]|z4 (see Figure 10).

] o

T
T2
Z3
Z

(a) Round constant addition pc

(b) Substitution layer ps with 5-bit S-box S(x)

(c) Linear layer with 64-bit diffusion functions X;(x;)

Fig. 10: The register words of the 320-bit state S and operations py, o ps o pc.

The substitution layer pg updates the state S with 64 parallel applications
of the 5-bit S-box S(z) defined in Figure 11a to each bit-slice of the five registers
Zg ... x4. The linear diffusion layer py, applies a linear function X;(z;) defined in
Figure 11b to each word z;.

T o ?”f :EE =0 3y« So(z0) = 20 @ (0 3> 19) ® (w0 3> 28)

1 G- > T 21+ XZi(z1) =21 @ (21 >> 61) @ (21 > 39)
bt}

T2 —,-D . W ?ﬁm To < Yo(x2) =x2® (w2 > 1) D (22> 6)

A b4

x3 1 é) > > T3 €T3 E3(.’E3) =x3 D (:I)g > 10) (&) (1’3 > 17)
Pt}

Ta—d & > T4 Ta  Ya(z4) = 22 B (T2 > D (ra > 41

A (00) =21 (023> T) & (w4 3> 41)

(a) 5-bit S-box S(x) (b) Linear layer with 64-bit functions X;(xz;)

Fig. 11: Ascon’s substitution layer and linear diffusion layer.
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E.2 The DL Distinguishers of Ascon

Abh |

Vv

W NN

L

y VY Py PPy PPy PPy Y rr Vv rPrr Py PPy PPy P PPy P PrPPriY)

444

44

424

44

N

7] active difference | unknown difference [ 4 active mask | 4 unknown mask

Fig. 12: DL distinguisher II for 4 rounds of Ascon.
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Table 6: Specification of DL distinguishers for Ascon (C: experimental correlatin).
4 Rounds, Figure 6

re=0,ry=4,m=0,p=1r=1, ¢>=1, prq

2

1, C=1

AXo
0020000000000000
0000000000000000
0000000000000000
0020000000000000
0020000000000000

I'Xy
€c9125b6925b76d24
0000000000000000
0000000000000000
0000000000000000
0000000000000000

ro=0,ry=4,7. =0, p=1, r:271, q2=17 prq2:2

4 Rounds, Figure 12

-1 =291

AXo
8000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

I'Xy
496da496ddb49324
0000000000000000
0000000000000000
0000000000000000
0000000000000000

re=0ru=4m=0p=1r=2"" ¢ =1, pr¢® =2~

4 Rounds, Figure 13

17 622—1

AXo
0000000000000000
0100000000000000
0100000000000000
0000000000000000
0000000000000000

I'Xy
892db492dbb69264
babe22leeabad7cc
0000000000000000
0000000000000000
0000000000000000

re=lLry=3m=1p=2"2r=1, * =272, prg® =274, ¢

5 Rounds, Figure 14

274433

AXo
0000000000000080
0000000000000000
0000000000000000
0000000000000080
0000000000000080

AXq
0000000000000000
0000000000000000
00000000000000c2
0000000000000000
0000000000000000

I'X,
0000000000000000
0000000000000000
0000000000020000
0000000000000000
0000000000000000

I'Xs
6da496ddb4932449
7110£752d23e65d3
0000000000000000
0000000000000000
e631e6e25c7£614b

5 Rounds, Figure 14
ro=1ry=3,r, =1, p=272 r=2798_ 2 =974 ppg?

— 968 @ _ 9-7.61

AXy
0000000000000000
0100000000000000
0100000000000000
0000000000000000
0000000000000000

AX,
0100002010000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

I'Xy
0000000000000080
0000000000000000
0000000000000000
0000000000000000
0000000000000000

I'X5
125b6925b76d24c9
74dc443dd4b48£99
0000000000000000
0000000000000000
0000000000000000
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|dddddddddddddddd |44 |44 dddddddddddddiddddddddddd dddddddd4
dddddddddddddddd | 4 4 | 4 4 d4ddddddddddddddddddddddd | dddddddddd

7] active difference | unknown difference [ 4 active mask | 4 unknown mask

Fig. 13: DL distinguisher III for 4 rounds of Ascon.
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AA

AA

7] active difference ) unknown difference |4 active mask [ 4 unknown mask

Fig. 14: DL distinguisher I for 5 rounds of Ascon.
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N
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A

L4

W AN

7] active difference ) unknown difference |4 active mask [ 4 unknown mask

Fig. 15: DL distinguisher II for 5 rounds of Ascon.
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F Application to SERPENT

F.1 Brief Specification of SERPENT

The SERPENT family of 128-bit block ciphers with key sizes k € {128,192, 256}
bits was designed by Anderson, Biham, and Knudsen [8] and was a finalist in the
AES competition. The state of all family members is a 4 x 32 matrix of bits, i.e.,
it is organized in four 32-bit words Xy, ..., X3. SERPENT has a very generous
security margin with a total of 32 SPN rounds. The round function consists of
a round key addition, a bitsliced S-box layer across words, and a linear layer
(omitted in the last round) that mixes all four words. The S-box layer alternates
between different S-boxes Sy, ...,S7 in consecutive rounds. Overall, the round
function in round 7 is defined by the instructions in Figure 16, where Y; is the
output state of round ¢ — 1, K; is the current round key, and <&, < denote left
rotation and left shift, respectively.

X
X? Xo, X1, X2, X3 < Simoas(Vi @ K;)
§§ Xo+ Xox 13
(a) State layout Xp = Xy K3
Xl(*Xl@XO@XQ
x 0123456789abcdef Xz X9 X2 8 (Xo <3)
X+ X1kl
So(z)38f1a65bed42709c
Si(z)£c27905albe86d34 Xz X3 K7
S2(r) 86793cafdled0b52 Xo  Xo® X1 D X3
Sgga:§0fb8c963d124a75e Xo Xo® X3 (X1 <7)
Si(r)1£83c0b6254a9e7d
X X 5
Ss(z) £52b4a9c03e8d671 0 Ao
Se(z) 72c5846be91fd3aod Xo = Xop 22
S/(r)1df0e82b74ca9356 Yit1 « Xo, X1, X2, X3

- f SERPENT
(b) S-boxes of S (¢) Instructions for round i

Fig. 16: Round function of SERPENT.

F.2 The DL Distinguishers of SERPENT
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Table 7: DL distinguishers for 3 to 9 rounds of SERPENT.

3 Rounds, Figure 17a

offset =6, 70 =0,7 =3,r1 =0, p=1, r =27068

0.68

,q=1, pr¢® =2~

AXp 00000000000200000002000000000000  I"X'3 00008204000000000000800c00100080

4 Rounds, Figure 17b

offset =4,70 = 0,7 =3, r1 =1, p=1, r =271 g =274 prg® =27554

AX( 04000000040000000400000004000000
I"X3 00000008000000000000000800000100  I'X4 00210c09420000020021031304202020

5 Rounds, Figure 18a

offset =2, ro=1,rm =3, =1, p=2"490 p=97310 =271110

¢ =2"" pre®

AXp 00000000090000000100000001000000  AX; 00000000000200000000000000000000
I"X4 00000080000000000000008000001000  I'X5 02181600000000050210022842004000

6 Rounds, Figure 18b

offset =2, ro=1,r, =3,11 =2, p= 2_4‘00,7“ —=278:58 = 97800

, q2 , qu2 — 2—2058

AX( 04000000008000000480000000800000  AX; 00000000000100000000000000000000
"X, 00000100000000000000000000000000  I'X 20000084000908000c28408484001080

7 Rounds, Figure 19a

offset =1, ro=1,rm =3,r1 =3, p=2"200 p=97745 = g~16.00

, q2 , pqu — 2728445

AXy 00800000000000000000000004800000  AX; 00000000000100000000000000000000
I"X4 00000000400000000000000200000000  I'X7 34a400860009080000cc408410801080

8 Rounds, Figure 19b

offset =1, 1o = 1,7 =3,71 =4, p=2"40 p =27918 =2726:00

g | prg? = 273918

AXy 40020000400200000002000040020000  AX; 00000000000000000000000000000008
I"X4 00000000800000000000000400000000  I'Xg 00102c00000000420001661000248000

9 Rounds - I, Figure 20a

offset =2, ro =2,7m =3,r1 =4, p=2"70 p=97743 =97 5443

, ¢ =27" prg?

AX(y 00000000000000090000000100000001  AX2 00000001004000000400000080000020
I"X5 00001000000000000000100000020000  I'Xg 04590204080010010009842403208480

9 Rounds - II, Figure 20b

offset = 17 ro = 27Tm — 37 r = 47 p= 277.0077, — 27134957 q2 — 2730.00’ 2 _ 2750.95

prq

AXy 00001000000000000000900000000000  AX3 000010000000000c0000004000020800
I"X5 00000100000000000000000000000000  I' Xy 4216902300808500c847b80008520009
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VY
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(a) 3-round SERPENT (b) 4-round SERPENT

7] active difference P/ unknown difference |4 active mask [ 4 unknown mask

Fig. 17: DL distinguishers for 3 to 4 rounds of SERPENT.
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’ VI L4 ] 7
7 27273 g
y
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O 4 V4
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|d
S S
4] 4 .4 4 44
4 | n 4 4.4
; 1% 44
D D
S S
vy
.4 4
D D
S S
D D
4 4

(a) 5-round SERPENT (b) 6-round SERPENT

7] active difference | unknown difference [ 4 active mask | 4 unknown mask

Fig. 18: DL distinguishers for 5 to 6 rounds of SERPENT.
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dAAMd4dddddddddd

VVVVVVVVVVVVVVV

dddddddddddd 44484444

VVVVVVVVVVVVVVV

dddddddddddddddd
dddddd4 44444
VVVVVVVVVVVVVVVV

(a) 7-round SERPENT

VVVVVVVY __VV APV BV VPV VRVPVPVPV
ddddddddddddd Wdd 44440 4484444

dddNddddddddd |4

&V dddddd 44

L4
MMM AR AAMAMAd 44 BAMMAL ddddddd

AV AVVV 4 VV 4

AV AV 4 B4

4 4
AVI IAVIIAA AAAAAA1=AAVAIV 4N

Ve V4PV 4
VYV Vi VI VPV

D

dddddddd dd4d 44

AAIAAIAAVAAA A4

dddddddd A4
AAA A4

g

ddddddddddddddd
ddddddddddddddd
dddddddd AAAA}}

D

(b) 8-round SERPENT

7] active difference P/ unknown difference |4 active mask [ 4 unknown mask

Fig. 19: DL distinguishers for 7 to 8 rounds of SERPENT.



e

s

D

ddddddddddddddd
ddddddddddddddd
ddddddddddddddd
(ddddddddddddaqdq

Esiiiiiieeer it

D

iR

(a) 9-round SERPENT, variant I
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(b) 9-round SERPENT, variant II

7] active difference | unknown difference [ 4 active mask | 4 unknown mask

Fig. 20: DL distinguishers for 9 rounds of SERPENT.
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G Application to SKINNY

G.1 Brief Specification of SKINNY

SKINNY is a family of tweakable block ciphers introduced by Beierle et al. at
CRYPTO 2016 [5]. The SKINNY family offers two block sizes, n € {64,128},
and for each block size there are three tweakey sizes available, t € {n,2n,3n}.
SKINNY-n-t denotes SKINNY with n-bit blocks and ¢-bit tweakey. The internal
state is a 4 x 4 array of cells, where the cell size is 4 (or 8) bits when n = 64
(resp. n = 128). The tweakey state consists of z arrays TK1, TK2,..., TKz of
4 x 4 cells, where z = % € {1,2,3} depends on the tweakey size.

Y, STK, YA Wy Xrq1
AC [T 1] 2l
EEEN

Fig.21: Round function of SKINNY

oo wo
nom»-nx
o|p o N3
o N W

Each round of SKINNY applies five basic operations to the internal state:
SubCells (SC), AddConstants (AC), AddRoundTweakey (ART), ShiftRows (SR),
and MixColumns (MC) (see Figure 21). The SC operation applies a 4-bit (or 8-
bit) S-box on each cell. AC XORs the round constant to the internal state. In the
ART layer, the cells in the first and the second rows of subtweakey are XORed to
the corresponding cells in the internals state. SR applies a permutation P on the
position of the state cells, where P =[0,1,2,3,7,4,5,6,10,11,8,9,13,14, 15,12].
MC multiplies each column of the internal state by a non-MDS matrix M:

Mt =

= i
o~ OO
—_ =0 =
OO O
= o O O
O R ==
SO = O
== =0

The tweakey schedule of SKINNY updates each n-bit tweakey array TK1, ...,
TKz independently with a linear update function: First, a permutation h is
applied to each tweakey array, such that TKm,[n] < TKm,_1[h(n)] for all
0 <n <15, and m € {1,2,3}. Next, an LFSR is applied to each cell of the first
and the second rows of TK2, and TK3,.. The final subtweakey added in the rth
round is then the XOR of these z arrays.

G.2 The DL Distinguishers of SKINNY
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Table 8: Specification of DL distinguishers for SKINNY-64 (Single-Tweakey) (C:
experimental correlation)

6 Rounds, Figure 22a
o =0,7y=6,7,=0, p=1, r= 17q2 =1, prqz =1

AXo 0000000000008000 I'Xe 2000022902202229
7 Rounds, Figure 22b
re=0,ry=6mr=1,p=1,r=1,¢ =27 prg® =27, C=27232
AXo 0000000000000100
I'Xg 0000a0000000a000 I'X, 0004040004000404

8 Rounds, Figure 22¢
ro=0ru=T,r=1p=1,r=2"38 2 =274 prg? =27787 C=2767

AXo 0000000000000040
I'X~ 9000000000009000 I'Xg 0008c00000000008

9 Rounds, Figure 23a
o=l =T =1, p=20 p=939% 2 _9-4 ;.2 91394 & _ 91056

AXo 0000010010000001 AX, 0000000000000090
I'Xg 9000000000009000 I'Xo 0008c00000000008

10 Rounds, Figure 23b

ro=1ry=8mr=1,p=2"% r=2"""2 ¢ =270 ppg® =271972
AXo 0000010010000001 AX, 00000000000000b0
I'Xy 000000b000b000LO I'X10 0900900900099909
11 Rounds, Figure 23c
Fo= 1,7y = 8,7y, =2, p=276 5 =271036 (2 _ o=887 .2 _ 9-26.36
AXo 0000040010000004 AX, 00000000000000b0
I'X10 0100000000000100 I'X1 000bb0Ob0O00bO00bD

Table 9: DL distinguishers for SKINNY-64-128 (Related-Tweakey)
8 Rounds, Figure 24
Ty = Oer = 877‘1, = 07 b= 17 T = 17q2 = 17 quQ =1

AT K 00000000000400000000000000020000
AXo 0000000000000000 I'Xg 0010170010001710

14 Rounds, Figure 25a
re =2 = 10,7 =2, p=2-% p=2"903 2 _9-10 .2 9-23.03

AT K 00000000400000000000000010000000
AXo 000000000000000c AXo 0000000000000000
I'X12 a00000000000a000 I'X14 0020020£02000220

15 Rounds, Figure 25b
Fo =3,y = 10,7y = 2, p= 271042 1 9=830 (2 5=10 .02 9-28.72

ATK c000000000000000£000000000000000
AXo 200000100d400d4000 AXs 0000000000000000
I'X13 a00000000000a000 I'Xs 00400£040£000£40
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(a) DL distinguisher for 6 rounds of SKINNY
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(b) DL distinguisher for 7 rounds of SKINNY

X0 Yo STKy Z W X, Y, STKi  Z W, Xy
444 () 444 444 (44 v im 4 vim 4 m
444 |sc| 444 § 44444 %ﬂ]‘ sc|[44 & 44 4 44 %“

[ AC |4 B2 4 AC oo
v’ rlalrr R el PSR vy o FrrrfurrrlS
i X, Yy STKy Zy Wi X; Yy STK; _Zy Wi X,
sC ? =% (| |sc ? BES ;':7
yryyier?) As| (dAdd - Tdd AC THale oo Pl \
uJ FarFand ) uJ lafclda] [V )
i X, Y, STK: Zs W, X5 Ys  STKs  Zs Ws X
1) ] 1) [] 7l () 7 () 4 .4 4
s . — !w»%;f :5;! —¢ -7 ﬁn
== c [s>2
U (074 afs| = 0 8RO, - 4444

i Xo Y, STK, Zy W Xi Vi ST, 4 Wi Xs
vy | 4 | 4 vy | H I
vy 2‘5 | 4 3 5@7 - | 4 >>>; | 4 4 2‘5 H7 EE >>>;

= =
y| ) vl (206 paww - wrry 0 e M B

(c) DL distinguisher for 8 rounds of SKINNY

Fig.22: DL distinguishers for 6 to 8 rounds of SKINNY-64 (Single-Tweakey) (I
difference | 4 linear mask)
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(b) DL distinguisher for 10 rounds of SKINNY

(c) DL distinguisher for 11 rounds of SKINNY

Fig. 23: DL distinguishers for 9 to 11 rounds of SKINNY-64 (Single-Tweakey) (I
difference |4 linear mask)
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Fig. 24: DL distinguisher for 8 rounds of SKINNY-64-128 (Related-Tweakey) (I
difference | 4 linear mask)
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Table 10: DL distinguishers for SKINNY-64-192 (Related-Tweakey)
10 Rounds, Figure 26a
Ty = O,T’M = 1077"1‘ = 07 P = 17 r= 17(12 = 17 prq2 =1
AT K 00000000000008000000000000000b000000000000000e00
AXo 0000000000000000 I'Xg 0010130010001310

16 Rounds, Figure 25a
ry = 77 ry = 7’ r, = 27 p= 272.427 r= 278.15’q2 — 2710’ pqu — 2720.57

ATK 0000000001000000000000000b0000000000000008000000
AXo 0000000000000200 AX7 0000000000000000
I'X4 3000000000003000 I'X16 00c00c0c0c000ccO

17 Rounds, Figure 25b
Fo =8,y = T,r =2, p= 2909 — 9 830 (2 _9-10 .02 5-27.59

ATK 020000000000000007000000000000000100000000000000
AXo 0900200000020020 AXg 0000000000000000
I'Xs 3000000000003000 I'Xq7 00c00c0c0c000ccO
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(b) DL distinguisher for 16 rounds of
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H Application to PRESENT

H.1 Brief Specification of PRESENT

PRESENT is a 64-bit block cipher supporting 80-bit and 128-bit keys designed
by Bogdanov et al. in 2007 [13]. The design is a minimalistic SPN construction
consisting of a round key addition, a 4-bit S-box layer, and a bit permutation
layer. The S-box is specified in Table 11. The bit permutation and the entire
round function are both illustrated in Figure 28. The full diffusion of PRESENT
is achieved after 4 rounds.

Table 11: S-box of PRESENT
T 01 2 3 45 6 7 89 abocdef

S(zr) ¢c 56 b 9 0 ad3ef 84712

8 10 12 14 lh 1? 20 22 44 Zh 28 3
9 11 13 15 21 23 29
V

llllllll.

k'lL'lL'lL\'ll"lk\'ll" l"’l""l"‘l'lll'yl'y‘W‘”

Fig. 28: Round function of PRESENT.

H.2 The DL Distinguishers of PRESENT
Table 12 briefly describes the DL distinguishers of PRESENT.
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Table 12: Specification of DL distinguishers for PRESENT

3 Rounds, Figure 29a
ro=0,ry=3m=0p=1r=1¢=1 pr¢® =1

AXo 9900000900900000 I'X3 1111111111111111

4 Rounds, Figure 29b

ro=0,ry=4,1m =0, p=1, r =278 ¢ =1 pr¢® =27°82

AXo 0000000000000090 I'X, 0010000000000000

5 Rounds, Figure 30

ro=0,ry=5m=0,p=1, r=2""19 ¢

— 1’ pqu — 2—1419

AXo 0000000000090000 I'X5 0010000000100010

6 Rounds, Figure 31
ro =0,ry=6,7,=0, p=1, r= 2_2‘85,q2 =1, p?"q2 =92728

AXo 0000000000000009 I'Xs 0800000008000800

7 Rounds, Figure 32

ro=0,ry="T1m,=0 p=1r=2"32 ¢ =1, pr¢® =27532

AXo 0000009000000000 I'X- 0800000008000800

8 Rounds, Figure 33

ro=0,ry=871=0 p=1,r=2"%%8 ¢> =1 pr¢®> =276

AXy 0000000000000090 I'X3s 0080000000800080

9 Rounds, Figure 34
ro=0,ry =971 =0, p=1,r=2"22 ¢ =1, prg® =279

AXo 0000009000000000 I'Xy 0020000000200020

10 Rounds, Figure 35

ro=1,ry =8, =1, p=2"% 7 =279 ¢2 =972 prq? = 271397

AXo 0000000000007007 AXq 0000000000000009
I'Xy 0000000000800000 I'X10 0020002000200000

11 Rounds, Figure 36

re=2,ru=9,1=0, p=270 r=271136 2 — 1 pre® =271736

AXo 0000000090090000 AXo 0000020000000000
I'Xn 0800000008000800 - -

12 Rounds, Figure 37
Fe=2 =0, =1, p=276, p =9 1177 (2 _0=6 .02 9-23.77

AXo 00000000700£0000 AXo 0000000200000000
I'X1 0800000008000800 I'Xqo 4044404440444044

13 Rounds, Figure 38

Fe=1,7y =8, =4, p=2"4 p=97901 g2 _o-14 .2 _ 9-27.01
AXp 9009000000000000 AXy 0000900000000000
I'Xy 0080000000000000 I'Xq3 4000400000004000
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(a) DL distinguisher for 3 rounds of PRESENT

$ Sebed $

‘SISIS sls|sls|s|s]s]s]s

y
4

slslslslslslslslsislsl@lslsls]s

(b) DL distinguisher for 4 rounds of PRESENT

Fig.29: DL distinguishers for 3-4 rounds of PRESENT (— differential — linear)
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Fig. 30: DL distinguisher for 5 rounds of PRESENT
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Fig. 31: DL distinguisher for 6 rounds of PRESENT
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Fig. 32: DL distinguisher for 7 rounds of PRESENT
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Fig. 33: DL distinguisher for 8 rounds of PRESENT (- differential — linear)
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Fig. 34: DL distinguisher for 9 rounds of PRESENT (- differential — linear)
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Fig. 35: DL distinguisher for 10 rounds of PRESENT (— differential — linear)
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Fig. 36: DL distinguisher for 11 rounds of PRESENT (— differential — linear)
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Fig. 37: DL distinguisher for 12 rounds of PRESENT (— differential — linear)
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Fig. 38: DL distinguisher for 13 rounds of PRESENT (— differential — linear)
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I Application to KNOT

1.1 Brief Specification of KNOT

KNOT was a round-2 candidate in the NIST Lightweight Cryptography project
designed by Zhang et al. [57]. Its core primitive is the KNOT permutation, avail-
able in three variants with 256-bit, 384-bit, or 512-bit state size, respectively.
The state is organized in 4 words of 64, 96, or 128 bits. We focus on the 256-bit
variant with 64-bit words used in the primary recommendation for LWC in the
following. Each of the variants uses a similar round function consisting of a round
constant addition, a bitsliced S-box layer (SubColumn), and a word-wise rotation
(ShiftRow). The number of rounds differs between the phases of the authenti-
cated encryption scheme and is 52 (initialization), 28 (data), or 32 (finalization).
The S-box is specified in Table 13, and its differential and linear properties are
given in Table 14 and Table 15, respectively. In the rotation layer of the 256-bit
variant, the words ag, a1, as, asz are rotated left as follows:

ag < ag K 0
a +—a K1
Qg — ag K 8
a3z < az K 25

Table 13: S-box of KNOT
T 01 2 3 45 6 7 8 9 abocdef

S(zr) 4 0a7bel1d9 f 6852 c 3

1.2 The DL Distinguishers of KNOT
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Table 14: DDT of KNOT’s S-box

123 45 678 9 abocdef

Ai\A, | 0

O AN NN NODODO FONOOONO
O AN AN AN NODODOFOONOOON
O N OO NOANFONOOONO
O N OO NOAANFTOONOOOAN
SO oo O IFF OO OFOOO I OO
SO NN IFTFANANODODODOOOOoOOo
SO N NOOANNOFOOO T OO
[=NeleoBeloNoNehoBoR=E el MBS
O AN FT OO NODODDODONOANANOAN
O NOFOoONOoODOODODOoOOoOANANANANO
SN OO oo AN JFOoOooOoOOoONANANANNO
O N OO ONO FTOONOANAANOAN
SO AN ANOOANNODOANNODOANAN
OO OO OO OO IFAANTFTOANAN
SO N NOOANNOFOOIFHFOOO
mooooooooooooooo
O NMIF LW ONMNMNWOO © QO O T O H

Table 15: LAT of KNOT’s S-box (scale: 2* - correlation)

M\X| 01 2 3456789 abecdef

OOOOOOOOOOOOOOR_VOOOO
mooooooooooooooo
O AN M OO~ 8.2 OT O H
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Table 16: Specification of DL distinguishers for KNOT-256 permutation

8 Rounds (I), Figure 39a
ro=0,ry=8mr=0p=1r=1,¢=1, pr¢ =1

AXy
0000000000000000
0000000000000000
0000000010000000
0000000010000000

I'Xy
0000000000000000
0000000000000000
0000000000080000
0000001000000000

8 Rounds (II), Figure 39b
ro=0,ry=81m.=0,p=1, r= 271, q2 =1, p?"q2 =271

AXy
0000000000000000
0000000000000001
0000000000000000
0000000000000000

I'Xs
0000800000000000
0000000000000000
0000000000000000
0000000000000000

15 Rounds (I), Figure 40a
ro=4,ry=9,1. =2, p= 2710, r= 273'20, q2 = 274,

prg? = 271720

AXo AXy
0000000000000000 0000000000000000
0000000000000000 0008000000000000
0000020000000000 0000000000000000
0000020000000000 0000000000000800

I'X13
0000000000000000
0000100000000000
0000000000000000
0000100000000000

I'X15
0000000000000000
0000000000000000
0010000000000000
0000000000000020

15 Rounds (II), Figure 40b

—1
ro =4,y =91 =2 p=2"1 r=

2—6A157 q2 — 2—6’

prq2 — 2—25.15

43)(0 43)(4
0000000000000000 0000000000000000
0000000000800000 0000010000000000
0000000000000000 0000000000000001
0000000000000000 0000000000020001

I'Xq3
0000000200000000
0000000000000000
0000000000000000
0000000200000000

I'X 15
0000020000000000
0000000000000000
0000000000000000
0000000000000000

23 Rounds , Figure 41

ro=6,ry =9,1, =8 p=2"2 r =273 2 =273 prqe?

— 2758.88

43)(0 43)(6

0000000000000000
0000000000000002
0004000002000000
0004000002000002

0000000000000000
2000000000000000
0000000000000000
0000000000200000

I'Xis
0000002000000000
0000004000000000
0000002000000000
0000004000000000

I'Xo3
0000010000000000
0000000000000002
0001000000000000
0000000002000002
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Fig. 39: DL distinguishers for 8 rounds of KNOT.
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7] active difference | unknown difference |4 active mask |4 unknown mask

Fig. 40: DL distinguishers for 15 rounds of KNOT.



Fig.41: DL distinguishers for 23 rounds of KNOT (7] active difference J un-
known difference 4 active mask |4 unknown mask).
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J Application to Simeck

J.1 Brief Specification of Simeck

Simeck is a family of lightweight block ciphers designed introduced in CHES 2015
[56]. The design is inspired by Simon and Speck [4], combining an AndRX round
function similar to Simon with a nonlinear key schedule as in Speck. The Simeck
family consists of several family members Simeck2n /4n operating on n-bit words
with a state size of 2n bits and a key size of 4n bits for n € {16, 24, 32}. In round
i, the 2n-bit input state of round i is split into two n-bit words (L;, R;) and
updated with a Feistel-based round function F' to produce (L;11, R;11) using
the n-bit round key K;. The round function is a quadratic Feistel function using
bitwise XOR (z®y), bitwise AND (z®y), and cyclic left-shifts by ¢ bits (z < ¢):

Riv1=1L;
Liy1=R®K,;®(L;©(L; b)) d (L; « 1),

as illustrated in Figure 42. The round key K is produced using a similar nonlin-
ear update function. The total number of rounds is 32 rounds for Simeck32-64
(also referred to as Simeck-32 for short), 36 rounds for Simeck48-96 (aka Simeck-
48), and 44 rounds for Simeck64-128 (aka Simeck-64). For a more detailed spec-
ification, we refer to the design paper [56].

O Ly R, oo
K, Y

— [ ——>D

&:)—??

- - e

Fig.42: Round function of Simeck-32.

J.2 The DL Distinguishers of Simeck
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Table 17: Specification of DL distinguishers for Simeck-32

7 Rounds, Figure 43
re=0,ry=7,1m=0,p=1r=1,¢>=1, prg> =1

AXo 00001000 I'Xr 00000400

14 Rounds, Figure 44
ro =1,y = 10,7 =3, p=2"2, 1 =27 T92 2 = 9=4 ppg? — 91392 ¢ _ 91335

AXo 00020005 AXy 00010002
I'Xn 80000000 I'X14 4000a000

Table 18: Specification of DL distinguishers for Simeck-48

8 Rounds, Figure 45
re=0ru=8r=0,p=1,r=1,¢=1,pr¢ =1

AXo 000000020000 I'Xg 000000010000
17 Rounds
P =1,y = 14,7 =2, p=2"2, 1 =298 2 =92 ppg? — 91389 G _ 91325
AXo 000010000020 AX, 000000000010
I'X15 000010000000 I'X17 000010000008

18 Rounds, Figure 46
TU = 27 T‘I\«i = 147 TL - 2’ p = 2747 r= 279897q2 = 2727 prqz = 271589

AXo 000020000050 AX, 000000000010
I'Xi6 000010000000 I'Xis 000010000008
19 Rounds
ro=2,ry=14,r, =3, p= 2_47 r= 2_9'89,q2 = 2_4, prq2 = 97178
AXo 000020000050 AXo 000000000010
I'X16 000010000000 I'Xq9 000008000014
20 Rounds
ro=3,ry =147, =3, p=2"% r=2798 ¢2 =27 ppg? = 27218
AXy 000050000080 AXs 000000000010
I'Xi7 000010000000 ' X0 000008000014
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Table 19: Specification of DL distinguishers for Simeck-64

10 Rounds, Figure 47
ro=0,ry=10,1,=0, p=1,r=1,¢ =1, pr¢® =1

AXo 0000000000000010 I'Xg 0000000000000002
24 Rounds

Fo =3y =1T,7 =4, p=2-1 p =213 2 _9-8 ;.2 9251

AXo 00000040000008e0 AX3 0000002000000000

I' X520 0000001200000004 I'Xo4 0000000000000010

25 Rounds, Figure 48
Ty =3,Tu = 17, r,=29, p= 274, T = 2713‘14, q2 = 27107 qu2 = 2727'14

AXy 00000040000008e0 AXs 0000002000000000
I'Xo9 0000001200000004 I'Xos 0000001080000018

26 Rounds, Figure 49
ro=5,my =16,r, =5, p=27"%0 p =271 g2 = 278 ppg® = 279055

AXo 0000001000000020 AXs 0000008000000050
I'Xoy 0000000e00000004 I' X6 000000040000000e

- ————
Ly Rs

! Fx N
ﬁ Lg Rg E:/jw

Fig. 43: DL distinguisher for 7-round Simeck-32 (7] active difference | unknown
difference |4 active mask 4 unknown mask).
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Fig. 48: DL distinguisher for 25-round Simeck-64 (7] active difference | unknown
difference |4 active mask 4 unknown mask).
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K Application to LBlock and LBlock-s

K.1 Brief Specification of LBlock

LBlock is a block cipher with a 64-bit block size and an 80-bit key size, introduced
in ACNS 2011 [55]. As shown in Figure 50a, the round function of LBlock is a 2-
branch balanced Feistel structure that applies an 8-bit left rotation to the right
branch. The round function uses 8 different 4 x 4 S-boxes, denoted by S; for
0 < i < 7. Notably, the differential uniformity and linearity of the S-boxes are
the same, being 4 and 8, respectively. LBlock achieves full nibble-wise diffusion
after 8 rounds. LBlock-s is a simplified version of LBlock, employing exactly the
same structure as LBlock, except that it only uses the S-box Sy for all nibbles in
the round function. The DDT, LAT, DLCT, and DDLCT of Sy are given in Table 20,
Table 21, Table 22, and Table 23, respectively.

T 0123456789abcdef
So(z) e9£f0d4ab128376¢chH
Si(r) 4be9fd0a7c562813
S2(x) 1e7cfd06b593248a
S3(x) 768b0f3e9acdb241
Si(r) e5£072cd1849bab63
Ss(x) 2dbcfe097a631845
Ss(x)yb94e0fadbcb573812
Si(r)daf0ed9b218375¢c6

(a) The round function of LBlock.

(b) S-boxes of LBlock.

Fig. 50: LBlock block cipher.

K.2 The DL Distinguishers of LBlock and LBlock-s
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Table 20: DDT of the S-box Sy in LBlock

Ai\A, | 0

123 45 678 9 abocdef
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S AN NOANODOoOANANNODOoODOOAAN
S OO FOFOONONODONOAN
OFF O OO OO OoOOoONMNANANN
S oo o oo o oo FOoOoOFAANANAN
O AN ANOOANNOANNODOoODOoOOANAN
OO IF F OO ONONONOANO
SO oo N AN NOoODOoODOoOoOOoOANAAANNAN
COO0OOIFFIF FOOOOO O OO
O AN NOANODOoOANANNODOANAN OO
S OO F OO IFONONONONO
OF F OO OO IF FHOOOO
MOOOOOOOOOOOOOOO
O NMIF LW ONMNMNWOO © QO O T O H

Table 21: LAT of S-box Sy in LBlock (scale: 2% - correlation)

AM\X| 01 2 3 45 6 7 8 9 abcde f

6 0 00 0OOOO0OO0OO0OO0OO0OO0OO0O0OO

-8 0 0 4-4 44

4 4 44 -8
4
0-8 00000 8 4

00 0 O
0 0 0

-4 4 4-4 4 0 0 0 -8

-4 4

-8

4 4 4 4 4 44

-8 0
4 -4 4 4 00 8-8-4-4-4-4

00008 08 0O0O0OO0OO0S8DO0

00 0 O

-4 4-4 08 00
-4 4 4 4
-8 8 8 8 00 00

-8 4 -4 -4 -4 -4
08 00 0-80 0 4

0 0 0

-4 4 4

000 O0O0O0TO0TO O

-4 4 0 0 0 0 4-4-4 4

-4 4
-4 -4 4
08 000 0 O0 8

-8
00 00

-8

0 0

-4 4 0 0-8 0
-4

-4

-4

-4

00 8 0

4 4 4 4 4

-4 4
-8 0 8 0 0 0 O0O0 O 8 0 8

4 -4-4-4 0000 4 4-4-4

0 0-8 8

-4 4-8 0 0 0

-4

-4

0 8 000 8 00 4

0 0-8 0 4-4 4 4

-4 4 4 -4 444

0

2
3

5
6
7

9
a
b
c

e
f
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Table 22:

DLCT of S-box &y in LBlock

A\X| O 1 2 3 4 5 6 7 8 9 a b c d e f

0 |16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

1 |16-16 0 0 8 -8 8-8 000000 00

2 |16-16 0 0 8 -8 8-8 00000000

3 |16 16 -16-16 0 0 0 0 0 0 0 0 0O 0 0 0

4 |16 0 0 0-8-8-88 880 0-8-8200

5 |16 0 0 0-8 8-8-800 8 8-8-8200

6 (16 0 0 0-8 8-8-88 8 000 0-8-8

7 |16 0 0 0-8-8-828 00 8 80 0-8-8

8 |16 0-16 0 0 0 0 0 0 0 0 0 0 0 0 0

9 |16 0 016 0 0 0 0-8-8-8-8 020 00

a |16 0 0-16 0 0 0 0 00 0 0 8 -8 8 -8

b (16 016 0 0 0 0 0 -8 -8-8-8 8-8 8 -8

c (66 0 0 0 0 0 0O 0 O0O-8-80 0-8 8

d |6 0 0 0 0 0O 0 O0O-8-8000 0-8 8

e (16 0 0 0 0 0 0 0 O 0-8-8-8 8 0 0

£ |16 0 0 0 0 0 0 0-8-800-8 280 0

Table 23: DDLCT of S-box Sy in LBlock

A\X| 0 1 2 3 4 5 6 7 8 9 a b c d e f
0 |256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256
1 /256 -32 0 32 16 -48 16 -16 64 -64 -32 32 0 0 0 -32
2 256 -32 0 32 16 -48 16 -16 -64 -64 -32 -32 0 O 0 -32
3 |256 64 0 64 O O O -64 32 32 -32 32 0 0 0 -64
4 (256 32 0 -32 -80 16 -80 -16 32 32 0 0 -32 -64 -32 -32
5 256 0 0 -64 -64 -32 64 32 0 0 32 32 -32 64 0 -32
6 |256 64 0 0 -32 -64 32 0 0 0 32 32 -64 -32 -32 0
7 256 32 0 -32 48 -16 48 16 0 0 -32 -32 -64 32 0 0
8 256 0 0 -64 -16 -16 -16 -16 -16 -16 -16 -16 0 0 0 -64
9 |256 32 -64 -32 -16 -16 -16 16 -32 -32 -32 -32 0 0 -32 0
a |26 0 -32 32 -32 32 64 -16 -16 -16 -16 0 0 -32 0
b [256 -64 -64 0 32 -32 32 -32 -32 -32 -32 32 0 0 -64 64
c |26 0 64 0 -16 16 -16 -48 -16 -16 -16 -16 -32 0 -32 0
d [256 32 -64 -32 -16 16 -16 -16 -32 -32 -32 -32 -32 0 0 0
e 256 -32 0 32 -32 0 -32 -32 -16 -16 -16 -16 0 -32 -32 -32
£ |256 0 0 0 -32 0 -32 0 -32 -32 -32 -32 0 -32 0 -32
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Table 24: Specification of the DL Distinguishers for LBlock-s.

7 Rounds
SAEFRIN{0},ry=0,ry=7,7.=0,p=1,r=1,¢°=1, pr¢>=1,C=1
AXo 0000000005000000 AX3 00000000000000A0
8 Rounds
re=0,ry =81 =0 p=1,r=2""2¢> =1 prg®> =271 C=2"14
AXo 000000000a000000 I'Xg 0000000000010000
9 Rounds
Fo =1y =87 =0, p=22, p =212 (2 _ 1 ppg? = 27342 ¢ = 9345
AXo 0000000a00000001 AXy 000000000000000a
I'Xg 0000000000000100
10 Rounds
ro =1y =8 =1, p=2"2, r =2 142 2 =972 ppg? — 9542 & — 9-543
AXop 000000a001000000 AXq 00000000000000a0
I'Xg 0000000000001000 I'X10 0010000070000000
11 Rounds
ro =2y =8 =1, p=21 =212 2 = 972 ppg? — 9 T2 & _ 9743
AXo 000000100900000a AXo 0000000000000a00
I'X10 0000000000000001 I'Xi1 0000010000000007
12 Rounds
P =2 =8 =2, p=2t p = A2 2 9=t 2 9942 & _ 9942
AXo 000000100900000a AXo 0000000000000200
I'X10 0000000000000001 I'X11 0000010000000007
13 Rounds
Fe =2y =9, =2, p=2-1 p =9 118 (2 _9-d p2 9-1210 & 9-12.10
AXo 0200000030100000 AXo 0000000000000030
I'X11 0000000010000000 I'X13 00b0000080000010
14 Rounds
re=2ry=9,m =3 p=2"" r=2"%% ¢ =27 prg® =2714%
AXo 000000100900000a AXo 0000000000000a00
I'Xq1 0100000000000000 I'Xi4 0000700000000b01
15 Rounds
Fe =3y =90,7 =3, p=2"5, §=27680 (2 _9-1 ;.2 _ 9-18.80
AXo 90a000000000c110 AX3 0000000020000000
I'X12 1000000000000000 I'X15 00700000b0000010
16 Rounds
Fo = Ay =9, =3, p=2"5, 1 =208 g2 — 98 ;2 _ 92280
AXo 000090a081100000 AXy 00a0000000000000
I'X13 0000000000001000 I'X16 10500000770000b0
17 Rounds
P = Ay = 0,7 =4, p=278 p=27680 ;2 _9-ld .2 92880
AXo 0a00000901100008 AXy 00000a0000000000
I'X13 0000000000000001 I'X17 £00705000c310b07
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Table 25: Specification of the DL Distinguishers for LBlock.

7 Rounds
SAERIN{0},ry=0,ry=7,7,=0,p=1,r=1,¢°=1, pr>=1,C=1
AXop 0000000005000000 AX3 00000000000000A0
8 Rounds
ro=0,ry=871=0 p=1,7r=2"20¢> =1 prg? =272 C=27200
AXo 00000000000000a0 I'Xg 0000000020000000
9 Rounds
ro=0,r =91 =0, p=1,1r=2""%¢" =1, pr¢® =27>%,C=275%
AXo 0000000000000030 I'Xg 0000000010000000
10 Rounds
ro =1,y =8, =1, p=2-2, 1 =220 2 _9-2 .02 9-6.00 & _ 9—6.03
AXo 000000a00e000000 AX, 00000000000000a0
I'Xg 0000000000001000 I'X10 0010000020000000
11 Rounds
ro =2y =8 =1, p=24 r =220 2 _ 92 ;2 9=800 & _ 9-8.04
AXo 000000010a000001 AXo 000000000000000a
I'X10 0000000001000000 I'Xq1 00000001000000a0
12 Rounds
ro=2,ry=8,1.=2, p= 2747 r=2"200 42 = 2747 prq® = 271900 C =27998
AXo b0000000000080a0 AXs 0000000000002000
I'X10 0000000000000010 I'X14 0004000000901000
13 Rounds
Fe =2y =0, =2, p=21 p=97389 2 _9-4 5.2 9-1189 & 9-1154
AXo 0100000030200000 AX, 0000000000000030
I'X11 0000000010000000 I'X43 0030000020000010
14 Rounds
Fo =2y =9 =3, p=2"1 r=2"T1T 2 =971 ppg? = 271517
AXop 000000700400000a AXo 0000000000000a00
I'Xq1 0100000000000000 I'X14 0000a00000000901
15 Rounds
rv=3,ru=9,1m =3, p= 274, r= 2*7‘13, q2 = 2*8, prq2 = 271913
AXo 00200000000a0100 AX3 0000000a00000000
I'X12 0000000000000100 I'Xs5 01000008b00b0010
16 Rounds
P =3 =0, =4, p=2"5, p=2"T18 2 =98 g2 — 92313
AXop 000a010000012020 AX3 000000000a000000
I'X12 0000010000000000 I'X16 01000008b00b0010
17 Rounds
Fo = Ay = O, =4, p=2"8, p =2 T15 g2 9=l .2 9-29.15
AXo 0a00000a20e00001 AXy 0002000000000000
I'X13 0000000001000000 I'X,7 e0900£008604010c
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L Application to WARP

L.1 Brief Specification of WARP

WARRP is a block cipher with 128-bit plaintext and key designed by Banik et al.
[2]. Tt performs 40 full rounds plus 1 partial round to produce the ciphertext.
The internal state of WARP is organized in nibbles X = Xy||--- || X31, where
X; € {0,1}*. WARP splits the 128-bit key K into two 64-bit halves K = K°||K!,
where K(r—1) mod2 g y5ed as the rth round-key. The ith nibble of the round
input X"~ and round-key K (=1 m0d2) ip round r are denoted by Xi(rfl)

and Ki(b)7 where 1 <r <41, b€ {0,1}, and 0 <4 < 15.

Xo X1 Xp X3 X4 X5 Xg X7 Xg Xg X10X11X12X13X14X15X16X17X18X19X20X21X22X23X24X25X26X27X28X29X30X31

5
P S T
KO Kgb) O)4 Kg’) Kg’) KEb) Kg’) Kg’) K§b> ;éb) K% Kﬁ Kf’% Kf’; Kf’i Kgbg

5 S
< &

=

re-

/ ’ / / / / ’ / ’ / / / / ’ / / / ’ / / ’ ’ ’ ’ / / / / / ’ ’ ’
Xo X1 Xp X3 Xy X5 Xg X7 Xg Xg X10X11X12X13X14X15X16%17X18%190X20%21X22X03 %24 X05 %06 X07X28X590X30 X531

Fig.51: The round function of WARP.

The round function of WARP, illustrated in Figure 51, first applies an S-box
S : {0,1}* — {0,1}* (Table 27) as well as the round-key and round-constant
addition on each of two consecutive nibbles of internal state. Next, a nibble
permutation 7 (Table 26) is applied, except in the last round.

Table 26: Nibble permutation m of WARP.
$‘0123456789101112131415

Tr(m)‘3162914112218272302542310

x |16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
m(z) |15 22 13 30 17 28 5 24 11 18 19 16 9 20 7 26

Table 27: 4-bit S-box S of WARP.
x |01 23456789 abcdef
S(z)l]c a d 3 eb f 78915024686
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Table 28: DDT of WARP’s S-box.

123 45 678 9 abocdef
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Table 29: LAT of WARP’s S-box (scale: 2 - correlation).

M\X| 01 2 3456789 abecdef

OOOOOOOOOOOA_VOOOOOOOO
mooooooooooooooo
O AN M OO~ 8.2 OT O H
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Table 30: DLCT of WARP’s S-box.

A\X| O 1 2 3 4 5 6 7 8 9 a b c d e f
0 |16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
1 |16 8 080 00 08 0 0-8 0 0-8-8
2 |16 0 16 0 0-16 0-16 0 0 0 0 0 0 0 O
3 |16 0 0 08 08 00 8-80-8-8200
4 |16 0 0 0 8 0-8 0 8 0 0-8 0 0-8-8
5 |16 0 0 0 0 0 0-16 0-8 0 8 -8 0 8 0
6 |16 8 0 8 0 00 0 0-8-808-80 0
7 |16 8 0-8-8 0-816 00 0 0 0 0 0 0
8 |16 0 0 0 0-16 0 0 0 0 0 0 0 0 0 O
9 |16 0 0 0 8 0-8 0 0 0-8-80 8-80
a |16 8 0-8-8 16 -8 0-8 0 8 0 0-8 0 8
b |16 -8 0 8 0 0 0 0-8 8 0 0-8 0 0 -8
c |16 8 080 00 0O0O0-8-808-820
d |16 0-166 0 0 0 0 0 0-8 0 8 -8 0 8 0
e |16 0 0 0-8 0 8 0-8-8 00 8 0 0-8
f |16 0-166 0 0 0 0 0-8 0 8 0 0-8 0 8

Table 31: DDLCT of WARP’s S-box.

A\Xo| 0 1 2 3 4 5 6 7 8 9 a b ¢ d e f
0 |256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256
1 |256 0 64 0O 0 -96 0 -96 16 -48 -16 -16 16 -16 -16 -48
2 (256 64 0 -64 64 0 -64 0 64 0 -64FEEE] 0 o4 FEEEY -64
3 |256 48 -64 16 16 -32 -48 32 0 48 -32 -16 16 -32 -16 O
4 256 0 64 0 0 -96 0 -96 16 16 -16 -16 -48 -16 -16 -48
5 |256 -32 0 -96 -32 64 -96 64 0 0 0 -64 0 0 -64 0O
6 |256 16 -64 -48 -48 -32 16 32 0 16 -32 -16 -48 -32 -16 0
7 |256 -32 64 32 -32 0 32 -64 -32 64 -32 64 -64 -32 64 -32
8 256 0 0 0 0O O O O O O0-64 -64 0 0 -64 -64
9 |256 0 64 0 0 -96 0 -96 -16 16 -48 -16 -48 16 -16 -16
a 256 -32[BE) 32 -32 64 -32 64 -64 64 64 64 64 -64 64 64
b [256 48 -64 16 16 -32 48 32 -32 16 0 -16 -48 0 -16 -32
c |256 0 64 0 0 -96 0 -96 -16 -48 -48 -16 16 16 -16 -16
d |256 -96 0 -32 -96 64 32 64 64 0 0O 0O 0 -64 0 O
e |256 16 -64 -48 -48 -32 16 32 -32 48 0 -16 16 0 -16 -32
f |256 64 64 0 -64 64 0O 0 -96 0 32 0 0 -9 0 32
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L.2 The DL Distinguishers of WARP

Table 32: Specification of DL distinguishers for 11 to 22 rounds of WARP.
11 Rounds, Figure 52a
re=0,ry =111, =0, p=1,r=1, ¢*>=1, pr¢? =1
AXp 00020000000000000000000000000000 1" X713 00000000000000000002000000000000
12 Rounds, Figure 52b
re=1,ry=11,r, =0, p=272 r=1, ¢*=1, pr¢®> =272
AX, 00000000002900000000000000000000 A X; 00020000000000000000000000000000
I'X12 00000000000000000002000000000000
13 Rounds, Figure 53a
Ty = 17TM = 117TL = 17 pP= 2_27 T = 1, q2 = 2_27 qu2 = 2_4
AXp 00000000000000002900000000000000 A X3 00000000000000020000000000000000
I"'X12 00000000000000020000000000000000 "X 13 00000000002000000000000400000000
14 Rounds, Figure 53b
re=2ry=1l,r, =1, p=2""% r=1, =272, prg®> =275
AX, 00000000000000020000000012000000 A X2 00020000000000000000000000000000
I"X13 00000000000000000002000000000000 [I"'X14 00000000000004000000000000000020
15 Rounds, Figure 54a
re=2ry=11r =2, p=2"% r=1, ¢? =274, pr¢g> =278
AXp 00000000000000020000000012000000 A X2 00020000000000000000000000000000
I"X 13 00000000000000000002000000000000 ['X 15 00004002000000000000000009000000
16 Rounds, Figure 54b
re=3,ry =11, =2, p=2"% r=27300 42 =974 prs? =271
AXp 000000000000000200000000a£f000000 A X5 00000000000000200000000000000000
I"'X14 00000000000000020000000000000000 I X316 00020900000000000000000040000000
17 Rounds, Figure 55a
ro=3ry=11,r, =3, p=2"*% r=2"3% ¢ =278 prg® =271

AXo 000000000000000a00000000a£000000  AX3 00000000000000200000000000000000
I'X14 00000000000000020000000000000000 "X ;7 08000000000820200000000000000400
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Table 33: Specification of DL distinguishers for 18 to 22 rounds of WARP.

18 Rounds, Figure 55b
re=4,ry =117, =3, p=27% r=27300 42 =278 prg?

— 2719.00

AXy 29000004000000000000000000002100 AX4 00000000000000000000000000000020
I"X15 0000000000000000000000000000000b 1" X158 0000000000000500050000000005e0b0

19 Rounds, Figure 55c
re=4,ry =111, =4, p=2"1" p=27300 42978 ,r4?

— 9—25.00

AXp 00124200000200000000020000000042  AX4 00000000000000000002000000000000
I"X15 b0000000000000000000000000000000 I'X19 0000000000000500050000000005€0b0

20 Rounds, Figure 56a
ro =By = 11,7 =4, p=2-1 p=2-300 (2 _o-14 .02 9-31.00

AXy 00124200000200000000020000000042 A X5 00000000000000000000000000000020
I'X16 0000000000000000000000000000000b "X 29 0000500003000003700b009002000000

21 Rounds,Figure 56b
ro =By = 11,7 =5, p=2-24 p=2-300 (2 _ o014 .02 9—41.00

AX, 00000200000000420012420000020000 A X5 00000000000000200000000000000000
I"X16 000000000000000b0000000000000000 ' X32; 00£00502000c006005600c00b01£0c07

22 Rounds, Figure 56¢
Fo =6,y = 10,7 = 6, p=2"24 p=97300 (2924 ;.2 9-51.00

AX( 00040024290000002100002104210400 A Xs 00000000000000200000000000000000
1I"X16 0000000000000000b000000000000000 1" X22 0060050c000c006007600c00b06c0CcO7
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Fig.52: DL distinguishers for 11 to 12 rounds of WARP
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(b) 14

round WARP

13-

(a)

Fig.53: DL distinguishers for 13 to 14 rounds of WARP
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Fig. 54: DL distinguishers for 15 to 16 rounds of WARP
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Fig. 55: DL distinguishers for 17 to 19 rounds of WARP
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Fig.56: DL distinguishers for 20 to 22 rounds of WARP
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M Application to CLEFIA

M.1 Brief Specification of CLEFIA

CLEFIA [49] is a 128-bit block cipher supporting 128-bit, 192-bit, and 256-bit
keys. CLEFIA was designed by a team from Sony Corporation and published at
FSE 2007 by Shirai et al. It is internationally standardized in ISO/IEC 29192-2.
Depending on the key size, the number of rounds is 18 (128-bit key), 22 (192-bit
key), or 26 (256-bit key). The round function of CLEFIA uses the generalized
Feistel structure with four 32-bit branches in which two 32-bit functions F;, and
Fy are applied in parallel (Figure 57). Fy and Fj follow the SP structure and
perform three basic operations, including sub-key addition, application of four
8-bit S-boxes in parallel, and diffusing the output bytes of the S-box layer by
applying a 4 x 4 MDS matrix over Fos. CLEFIA employs two different S-boxes
which are used in different order in Fyy and F;. The diffusion layer was designed
based on the new Diffusion Switching Mechanism technique [48,49] to obtain a
larger minimum number of active S-boxes. The Hadamard-type MDS matrices
are specified in Figure 57b. The 8-bit S-boxes Sy, S7 are specified as follows. For
So, the 4-bit S-boxes 55y, S5 (see Figure 57¢) are applied to the input halves;
then each half is updated by adding 2 times the other half; then SS; and SS3
are applied. The other S-box 57 is defined using modular inversion, like AES.

(a) Round function

01 02 04 06 01 08 02 Oa
02 01 06 04 08 01 O0a 02
Mo = 04060102’ My = 02 0a 01 08
06 04 02 01 0a 02 08 01
(b) Specification of CLEFIA’s matrices
T 0123456789abcdef = 0123456789abcdef

SSo(z) e6ca872fb14059d3 SSy(r)640d2ba3d39cef8751
SSi(zr)yp85eab6dcf72310d9 SSi(z)a26d345e0789bfcl

(c) Specification of CLEFIA’s helper S-boxes for So

Fig.57: CLEFIA round function.
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M.2 The DL Distinguishers of CLEFIA

Table 34: DL distinguishers for 4 to 9 rounds of CLEFIA (with final permutation).

4 Rounds
ro=0,7m=4,r1=0,p=1, r=1,9q=1, prq2:1

AXy 00000000000000010000000000000000 "X 4 00000000010000000000000000000000

5 Rounds

r70=0,7 =51r1=0, p=1, r=2"2%g=1, pr¢g® =228

AXy 00000000000800000000000000000000  I"X5 00000000381c8e920000000000000000

6 Rounds

ro = 077’m = 577‘1 = 17 p= 1, r= 272A687q2 _ 2,439

, pqu — 27707

AX(y 00000000000800000000000000000000 -
I"X5 00000000381c8e920000000000000000 I'Xg 381c8€920000000000000000£5000000

7 Rounds

— 274.68’ r= 272.68 — 274.39 — 2711.75

ro=1,rm=5m=1,p , ¢ , prq’

AX, 000000000000000000080000d77e2bfc  AX; 00000000000800000000000000000000
I"Xs 00000000381c8e920000000000000000 "X, 381c8e920000000000000000£5000000

8 Rounds

:2—26.36’ :2—2.687 q2 , quQ

Fo=2,"m=5"m=1p . — 9439 . 9—13.95 — 9—33.43

AXy d77e2bfcbe919d960000000000080000 A X> 00000000000800000000000000000000
I"X7 00000000381c8e920000000000000000 I'Xg 381c8e920000000000000000£5000000

9 Rounds

26.36 __0—3 2
,T=277 ¢

_ 2—2593 r= 2—13495 _ 2—5529
= s = =

ro=2,"m =5,r1 =2, p=2" 7prq2

AXo 2bfcd77e9d96be910000000000000008 AXo 00000000000000080000000000000000
I"X7 00000000£11200000000000000000000 I'X9 0000000000ae00ee69bf£fc00£1120000
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N Application to TWINE

N.1 Brief Specification of TWINE

TWINE is a 64-bit block cipher designed by Suzaki et al. [52] which supports key
sizes of 80 and 128 bits. This cipher uses a Type-2 generalized Feistel structure
with 16 4-bit branches. Both variants apply 36 rounds of the round function
illustrated in Figure 58. The round function includes a nonlinear layer consisting

of 8 parallel applications of the same 4-bit S-box and a diffusion layer permuting
the 16 nibbles.

(a) Round function.

z |01 23456789 abcdef

S(z)lc 0 £ a 2 b 958 3d71e64

(b) 4-bit S-box S of TWINE.

Fig.58: The round function of TWINE.

N.2 The DL Distinguishers of TWINE
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Table 35: DDT of TWINE’s S-box.

123 45 678 9 abocdef

Ai\A, | 0

O NOIF NODODOANNNOOOANO
S oN AN NONOoOOoOOoO oo FANANO
OO N OANOANNO IFANOOAN
O F OO OO N NONOANOANANO
O ANO FTOODODDODONANONOAN
O AN F OO NODODONODONOANAN
O N OO ANANANFOONONO OO
S OO NODOoOOoONOIFNOANANOAN
S o NANOANNODOANIFANOOOO
SO OO NN ANONDODOONODO AN H
S AN ANOODOIFTANANNDODODODODODOOAN
SO NODOoODCOOoOANANANODANANANO T O
SO NOANANOANFNOODONOO
O NOoONOIFOoOOoONOoODOANANN OO
O OO OO ANNOANONOO F ANAN
mooooooooooooooo
O NMIF LW ONMNMNWOO © QO O T O H

Table 36: LAT of TWINE’s S-box (scale: 2% - correlation).

MOOOOOOOOOOOOOOO
O - ANMIP LI ONMNMWOO @ O 0T O H
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Table 37: DLCT of TWINE’s S-box.

A\X| 0O 1 2 3 4 5 6 7 8 9 a b c d e f
0 |16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
1t |16 0 0 00 0-8-8-8 10 0-820 80 8
2 |16 08 0 0 0-8 0 0-8 8 88 0 0 0
3 |16 08 0 -8 8 8 0 0 0 0-8 0 0-8 0
4 |16 8 8 0 0 -8 0 8 -8 8 0 0 0 0 0 0
5 |16 0 8 8 8 0 0 -8 8 0-8 00 0 0 0
6 |16 8 8 8 -8 0 0 0 0-8 0 0 0 8 0 0
7 |16 0 8 0 0 -8 0 0 0 0-8 0-8 0 -8 8
8 |16 8 0 0 0 0 -8 0 8 0 0 0 8 -8 -8 0
9 |16 0 0 8 0 8 0 0 -8 -8-8 0 0 -8 0 0
a |16 8 0 8 0 0 8 -8 0 0 0 0-8 0 0 -8
b (16 0 0 0 -8 0-8 00 8 -8 00 0 8 -8
c |16 8 08 0 0 0 0-8 0 0 8 0 0 -8 -8
d (16 0 0 0 8 -8 0 0 0-8 0-8 8 0 0 -8
e |16 8 0 08 -8 0-8 00 8 0 0-8 0 0
£ |16 0 0-8 0 0 0 8 0 0 0 -8-8-8 8 0

Table 38: DDLCT of TWINE’s S-box.
A \ Ao ‘ 0 1 2 3 4 5 6 7 8 9 a b c d e f

256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256
256 16 -32 -32 0 16 -16 -16 -32 -16 -32 32 -48 -32 0 -64
256 -32 -32 16 -32 -32 32 -48 0 32 -32 -16 -48 -16 -16 -32
256 -16 0 -64 -16 -32 -32 0 32 -32 0 -16 48 -48 0 16
256 0 0 -16 64 0 -16 0 -16 -16 -32 -48 0 -32 32 -48
256 -32 -16 16 -32 16 -16 -32 -32 -64 0 0 -64 16 -32 16
256 32 -16 -32 32 -32 -16 -64 -16 -32 -48 -16 0 -16 -32 0
256 -32 -32 -16 -16 32 0 0 -32 -32 -48 0 16 -32 -48 -16
256 -6 EM 32 0 0 0 0 -16 -16 0 64 -16 0 -16 0
256 32 0 -16 0 -16 0 O 16 -16 -16 -32 0 -48 -64 -32
256 -32 16 0 -16 -32 -48 16 -32 16 -64 -32 -32 -32 -16 32
256 -16 0 -32 0 -64 -32 16 -32 -32 -16 0 0 16 -16 -48
256 -16 -32 32 -16 -48 -16 -32 -16 -32 32 0 0 -64 -16 -32
256 16 -32 -16 -48 0 -64 -48 -32 0 16 -16 0 0 -32 0
256 -32 -16 -32 -32 48 0 0 -64 16 16 -16 -32 0 0 -16
256 -64 16 -32 -16 -16 -32 -48 16 -32 -32 -32 16 32 0 -32

o

Hh O &0 T P © 00 N0 O WN =
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Table 39: 3-DLCT of TWINE’s S-box.

A\ Ao

0

1

2

3

4

5

6

7

8

9

a

b

C

d

e

£

o

Hh O &0 T ® © 00 ~NO 0 WN =

4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096

4096
-480
-384
-480
-256
-256
-288
-224
-256
-352
-352

-64
-320
-192
-192

4096
-160

-64
-320

-96
-256
-352
-288
-192
-448
-320
-352
-320
-448
-128
-352

4096
32
-288
-288
-512
-256
-96
-256
-384
-320
-384
-160
-256
-352
-256
-320

4096
-256
-384
-224

-160 (B2

-160
-352
-192
-448
-256
-224
-384
-448
-192
-352

-64

4096
-480
-320
-192

-256

-64
-256
-160
-192

-32
-288
-352
-384
-320
-256

4096
-256
-384
-128
-416

-96
-256
-192
-352
-384
-192
-352
-192
-160
-320
-416

4096
-320
32
-480
-256
-320
-320
-256
-384
-224
-96
-448
-160
-192
-288
-384

4096
-192
-416
-256
-224
-128
-448

-64

-64
-192
-256
-352
-416
-320
-352
-416

4096
-320
-256
-320
-320

-416
-448
-320
-288
-384
-224

64
-192
-224
-352

4096
-192
-416
-352
-192

-64
-160
-224
-192
-448
-224
-192
-128
-384
-384

4096
-224
-288
-352
-256
-192

-64
-416
-224
-448
-288
-224
-480

-96
-320
-224

4096
-256
-384
-224
-128
-416
-384
-256
-480
-160

-32

-64
-320
-480
-192
-320

4096
-320
-288

32
-96
-480
-288
-480
-256
-288
-256
-288
-256
-352
-352
-128

4096
-352
-192
-288
-320
-384
-448
-384

-96
-288
-320
-320
-224
-128

0
-352

4096
-320

-64
-224
-320
-256
-256
-224
-256

-64
-512
-352
-224
-480
-416
-128
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Table 40: Specification of DL distinguishers for TWINE.

7 Rounds, Figure 59a
5,)\ c F%, Tu :O,TM = 777'L :()7 pP= la r= 17q2 = 17 qu2 =1

AXo 0600000000000000 I'Xy 0000000000000A00

8 Rounds, Figure 59b
ro=0,ry =871 =0 p=1,r=2"18¢> =1 prg* =278

AXo 0000000000000800 I'Xg 0000000000000002

9 Rounds, Figure 60a

ro=0,ry=91,=0, p=1,r=2"8 ¢ =1 pr¢®> =27582
AXo 0000000000000004 I'Xg 0005000000000000
10 Rounds, Figure 60b
ro=1,ry=91r=0 p=2"2 r=2"% 2 =1 pr¢> =275
AXo 0000a70000000000 AXy 0000000a00000000

I'X10 0000000000000001

11 Rounds, Figure 61a
Ty = 177'1\1 = 9,1"1, = 1, p= 2727 r= 276‘497(12 = 2727 prq2 — 2*1049

AXo 000000000000a700 AXq 000000000000000a
I'Xi0 00000a0000000000 I'Xq1 000000010000a000
12 Rounds, Figure 61b
ro=1,ry=10,r, =1, p=272 r =271 2 =272 prg® = 27114
AXo 0000a70000000000 I'X11 0a00000000000000
AX, 0000000a00000000 I'Xi2 a000010000000000
13 Rounds, Figure 62a
ro =Ly =10,m =2, p=27% r =275 g2 = 97 prg? — g1
AXo 00a7000000000000 AXy 0a00000000000000
I'X11 0000000200000000 I'X13 0200c00000000a00
14 Rounds, Figure 62b
re=2,ry=10,r, =2, p=2"% r=27764 (2 =274 prg? = 271564
AXo 0000000a00790000 AXo 0000000000000a00
I'Xi2 00000000000a0000 I'X14 0a0000c000000200

15 Rounds, Figure 63a
ro=2,ry =10,r, =3, p= 2_47 r=27"749 q2 = 2_8, prq2 = 971949

AXo 0000000000000a79 AXo 000000000a000000
I'Xqo 000000000000000a I'Xys 01a000d4001000800

16 Rounds, Figure 63b
ro=3,ry = 10,1, =3, p= 2_87 r= 2_7'6'47 q2 = 2_8, prq2 = 9723.64

AXo 00000000a7009807 AXs 000000000a000000
I'X13 000000000000000a I'X16 01a000d001000800

17 Rounds, Figure 63c

Fo =3,y = 10,7, = 4, p= 27300 5 =078 42— 9-14 .2 9-29.62
AXo 0000a70000000798 AXs 0000000000000a00
I'Xq3 00000000000a0000 I'Xi7 0c001a0d0c061020

111



S0l X1 [Esal sl I InN G e Bal Ao M) X1 Eadnl XS] S X Xo [ BBl X3 (X4 [ X5 |[ X6 (X7 [ Xg|[Xp X0/ Xa1] X12 %13 [ X14 [ X015

Aol X1 Xz X3 [XaliXsi[Xgl X7 [XgliXo! Xp|[XalX2|X5] X14 X1, Ko/ Kol X3 [ X4l X5 [Xel X7 [XgliXpl X10 X11 X712 X93][X74] X1
|

(a) 7-round TWINE. (b) 8-round TWINE.

Fig.59: DL distinguishers for 7 to 8 rounds of TWINE (— differential — linear).
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Xol x IEEIXIEXgT X5 [EXG0 [ FXET ot o] BEIH X0 2] Xa3] Xial Xa5 o X a0 [ 1 gl X6 T o I %o I ] a2 a3 (X4l X5

(a) 9-round TWINE. (b) 10-round TWINE.

Fig. 60: DL distinguishers for 9 to 10 rounds of TWINE (- differential — linear).
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. .
20 24 28 32 36 40 44 48 52 56 60

X X (Xl X3 Xy X5 Xg X7 Xz Xo Xj0[Xqq X2 Xi3 (X4 Xq5 Xo X Xo X3 [Xgl X5 [Xgl X7 | Xg [XglXj0 Xq1 X2 X13 X14 Xp5

~

ONRXININ0N X3 [ Xq | X5 X5 (X7 X X9 Xi0 X11 X12 X13 X14 X35 Xp X1 X3 | X3 Xy Xp Xe X7 Xg | Xg Xjo X11 [X921 53|kl X1

Xo [ X [ Xz [ X3| Xa B Xe | X7 | Xs |Xp| X0 X121l X2 X153/ X014 X5 Xo B X2 | X3 | Xa | Xp | Xe | X7 | Xg | Xg Xi0 Xq1 Xi2 X3 Xia Xy

(a) 11-round TWINE. (b) 12-round TWINE.

Fig.61: DL distinguishers for 11 to 12 rounds of TWINE (- differential — linear).
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36,

52 56 60
Xg Xo X190 X11 X12 X13 X14 X135

0,4, 8 12 16 20 24
Xo X1 X Xz X4 X5 X [X7

X1 Xp X3 X4 X5 Xg X7 Xg Xp Xio Xl X12 Xi13 X14 X1

X X X X3 X X X7 X3 X Xjo X1 X2 X3 X4 X5 X X X X3 Xy X5 X Xp Xg X9 X Xi1 X2 Xq3 X4 X5
042 e 20 2 T aE a2 e o W s 52 56 60 Lo S T - L e (T B Pt S I 0
ecee cces cece ccce eces coee

(a) 13-round TWINE. (b) 14-round TWINE.

Fig. 62: DL distinguishers for 13 to 14 rounds of TWINE (- differential — linear).
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X5 Xo Xio X X1z ¥ig Xia Xig

Xr Xs Xo Xio Xiy Xi2 Xig Xia Xig

Xo XX X Xa X Xg X Xs Xo Xio Mip Xi2 Nig Xia Xis X XX N X Ns Xg N Xy Xo Xio Mg Xio Nig Xia Xis X X% Xy X N5 X N X5 N Xig Xip Xi2 g Xig Xip

Xo XX X Xa X Xg X Xs Xo Xio N Xi2 Mg Xia Nis %o X5 Xi X N Xp Ns KXo Xio N Xz Xis X X5 N X% X5 X X X X X % X0 Xii X2 Xis X Xis

(a) 15-round TWINE. (b) 16-round TWINE. (¢) 17-round TWINE.

Fig. 63: DL distinguishers for 15 to 17 rounds of TWINE (- differential — linear).
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ooe
1216 20 28 32 36 40 44 48 52 56 60

X3 Xy X5 Xg X7 Xg Xg X0 X11 X2 X33 Xi4 Xp5

O
Xo X

X0 X Xp X3 Xy X5 Xg X7 Xg X9 Xjo Xp1 X2 X13 X34 X5

Xo X1 Xp X3 X4 [X5| Xg X7 Xg Xg Xjp Xi1 X12 X33 X14 Xi5

X0 X SN X3 [ Xa | X5 |[Xe X7 | Xg | Xg Xio|lX11 X12 X3 BNl X5

Xl X1 [ X3 | Xy X5 [ Xg X7 Xg X9 Xj0 X11 X12 X13 X34 X315

Xo X1 [ Xa X3 X4 X5 Xg X7 Xg [Xg X10 X11 X12 X13 X14 Xi5

0" a8 2 e 20 24 98 82 36 40 4d 48 52 56 60
ccee eces  cecee

Flg 64: The 13-round DL distinguisher of TWINE in Example 2 (— differential — linear). p =
274, 7 =273 (for AX,[5] =4,I'X11[15] =5), ¢° =27%, prg® =271,
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O Encoding S-boxes

The S-box Analyzer [31], a SageMath [47] module, is an open-source tool de-
signed to efficiently encode the differential, linear, and integral properties of S-
boxes through MILP, SMT/SAT, and CP models. It has been applied for differ-
ential, integral, impossible-differential, zero-correlation, and boomerang attacks
on various block ciphers, as detailed in [20-31]. The tool is openly available to
the public at: https://github.com/hadipourh/sboxanalyzer

We also added some new features regarding differential-linear analysis to the
S-box Analyzer, e.g., deriving the DLCT, DDLCT, and encoding the DLCT tables.
Listing 1.1, and Listing 1.2 briefly demonstrates how to use the S-box Analyzer
to derive the CP constraints modeling the DDT, LAT?, deterministic differential /-
linear behavior and also the DLCT of S-boxes.

sage: from sboxanalyzer import *
sage: from sage.crypto.sboxes import KNOT as sa
sage: sa = SboxAnalyzer (sa)

# Model the DDT

sage: cnf, milp = sa.minimized_diff_constraints()
Time used to simplify the constraints: 0.01 seconds
Number of constraints: 37

Input: aOllailla2|la3; a0: msb

Output: bO|Ib1|[b2||b3; bO: msb

Weight: 3.0000 p0 + 2.0000 pi1

sage: pretty_print(milp)
[’- pO - pl >= -17,
’- a0 - a2 + b0 + pO >= -1,
a0 - b0 - bl + p0 >= -1’7,
’- a3 - b0 - bl + p0 >= -2’7,
a2 + b0 - bl + p0 >= 07,
a0 - a2 + bl + p0 >= 0°,
’- a2 - b0 - b3 + p0O >= -2,
’a2 + bl - b2 + pl >= 0°,
’- a0 + bl + b2 + pl >= 0°,
’- a0 - al + a2 + a3 - b0 >= -2,
a0 - al + a2 + a3 + b0 >= 0’7,
a0 + al + a2 - a3 + bl >= 07,
a0 - al - a2 - bl - b2 >= -3’7,
a0 + al - a2 - bl + b2 >= -1,
a0 + a2 + bl + b2 - b3 >= 0,
’- a0 - b0 + bl - b2 + b3 >= -2,
- al - a3 + b0 + bl + p0 >= -1,
b0 + bl - b2 - b3 - pl >= -2,
’- al + a2 - a3 - b0 + pl >= -2,
’- a0 + al + a2 - bl + pl >= -1’7,
’al + a2 + a3 - bl + pl >= 0°,
a0 - a2 + b0 - bl + pl >= -1,
’- a0 - a3 - b0 - b3 + pl >= -3’7,
’- b0 + bl - b2 - b3 + pl >= -2,
’- b0 + bl + b2 + b3 + pl >= 0°,
al + a3 + b0 - bl + b2 - b3 >= -1’7,
’- a0 - a2 + a3 - b0 - bl + b3 >= -3’7,
’al - a2 - a3 + b0 + b2 + b3 >= -1°,
’al + a2 + a3 + bl + p0 - pl >= 07,
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a2 + bl + b2 + b3 + p0 - pl >= 07,

a0 + b0 + bl + b3 - p0O + p1l >= 0°,

’al - a2 - a3 + b0 - bl - b2 - b3 >= -4°’,
’- al - a2 - a3 + b0 - bl + b2 - b3 >= -4’,
’al - a2 + a3 + b0 - bl - b2 + b3 >= -2,
’- al - a2 + a3 + b0 - bl + b2 + b3 >= -2’7,
’- al - a2 - a3 + b0 - bl - b2 + b3 >= -4°,
- al - a2 + a3 + b0 - bl - b2 - b3 >= -4°]

# Model the squared LAT

sage: cnf, milp = sa.minimized_linear_constraints ()
Time used to simplify the constraints: 0.01 seconds
Number of constraints: 34

Input: aOllallla2|la3; a0: msb

Output: bO||b1|Ib2]|[b3; bO: msb

Weight: 4.0000 p0 + 2.0000 pi

sage: pretty_print(milp)
[’- pO - p1 >= -1,
’al + a3 - p0 >= 07,
’al - a3 - b2 + p0 >= -1,
’- a0 - al - b3 + p0 >= -27,
’- al + b2 - b3 + p0 >= -1,
’- a0 + al + a3 + pl >= 07,
’al - a2 + b2 + pl >= 0°,
’al - bl + b2 + pl >= 0°,
’a3 - b2 + b3 + pl >= 0°,
- al + b2 + b3 + pl >= 0°,
’- a0 + al + a3 - b0 + b2 >= -1’7,
’al + a2 - a3 + bl + b2 >= 07,
’- a0 + al - b0 + b2 + b3 >= -1’7,
’al + a3 - b0 + b2 + b3 >= 07,
’- a0 - al - b0 - bl + p0 >= -3’7,
’- a0 - a3 + b0 + bl + p0 >= -1,
’- a0 - a2 - b0 - b2 + p0 >= -3’7,
’- a0 + a2 + b0 - b3 + p0 >= -1,
a0 + a3 + b0 - b3 + p0 >= 07,
’- al - a2 + bl - b3 + p0 >= -2’7,
a0 + a3 - b2 - b3 + p0 >= -1,
a0 - a3 + b0 + b3 + p0 >= 07,
’al + a3 + b0 + b3 - pl >= 07,
’a3 + b0 + b2 + b3 - pl >= 07,
- al - a3 - b2 - b3 + pl >= -3’7,
a0 + al + a2 - b0 + b2 - b3 >= -1’7,
’a0 - a2 - a3 - b0 + bl + p0 >= -2’7,
- al + a2 - a3 - bl - b2 + p0 >= -3°,
’- a2 - a3 - bl + b2 - b3 + p0 >= -3°,
’- al - a3 - b0 - bl + b3 + p0 >= -3’7,
a0 - al - b0 + bl + b3 + p0 >= -1’7,
a0 + a2 - b0 - b2 + b3 + pO >= -1’7,
- al - a2 - bl - b2 + b3 + p0 >= -3°,
’- al + a2 + bl - b2 + b3 + p0 >= -1’]

# Model the deterministic differential behavior

sage: detdiff = sa.encode_deterministic_differential_behavior ()
sage: cpdetdiff = sa.generate_cp_constraints(detdiff)

Input: a0|lallla2|la3; a0: msb

Output: bO||b1||b2][b3; bO: msb

119



sage: print(cpdetdiff)

if (a0==0/\al==0/\a2==0/\a3==0) then (b0=0/\b1=0/\b2=0/\b3=0)
elseif (a0==0/\al==0/\a2==0/\a3==1) then (b0=-1/\b1=1/\b2=-1/\b3=-1)
elseif (a0==0/\al==1/\a2==0/\a3==0) then (b0=1/\bl=-1/\b2=-1/\b3=-1)
elseif (a0==1/\al==0/\a2==0/\a3==0) then (b0=1/\b1=1/\b2=-1/\b3=-1)
elseif (a0==1/\al==0/\a2==0/\al3==1) then (b0=-1/\b1=0/\b2=-1/\b3=-1)
elseif (a0==1/\al==1/\a2==0/\a3==0) then (b0=0/\bl=-1/\b2=-1/\b3=-1)
else (b0=-1/\bl=-1/\b2=-1/\b3=-1)

endif

# Model the deterministic linear behavior

sage: detlin = sa.encode_deterministic_linear_behavior ()

sage: cpdetlin = sa.generate_cp_constraints(detlin)

Input: aOllallla2|la3; a0: msb

Output: bO||b1|Ib2]|[b3; bO: msb

sage: print(cpdetlin)

if (a0==0/\al==0/\a2==0/\a3==0) then (b0=0/\b1=0/\b2=0/\b3=0)
elseif (a0==0/\al==0/\a2==1/\a3==0) then (b0=1/\bl=-1/\b2=-1/\b3=-1)
elseif (a0==1/\al==0/\a2==0/\a3==0) then (b0=1/\b1=-1/\b2=1/\b3=-1)
elseif (a0==1/\al==0/\a2==1/\a3==0) then (b0=0/\bl=-1/\b2=-1/\b3=1)
else (b0=-1/\bl=-1/\b2=-1/\b3=-1)

endif

Listing 1.1: Encoding differential-linear behavior of S-boxes in S-box Analyzer
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sage: dlct
sage: sa.
16 16 16 16
16 0 0 0
16 -8 -8 0
16 0 -8 -8
16 0 -8 0
16 0 -8 0
16 -8 8 -8
16 0 8 0
16 0 0 O
16 -8 0 -8
16 0 0 8
16 8 0 O
16 0 0 -8
16 -8 0 0
16 0 0 O
16 8 0 8

sa.differential_linear_connectivity_table ()
print_table(dlct)

16
16

o

=
O O O OO’ ®® OO o oo

0

# Model the DLCT

sage:

Number of constraints:

a0llallla2]lla3;
bO|Ib1l||b2]|[b3;
pretty_print (milp)

Input:

Output:
sage:

[’- a2
al
a0
al
al +
a1 -
’- a3
a0
a0
Jao -
Da@ =

9=

9=

9

al
a0 +
’- a0
’a20 -
a0 +
a0
a0
a0
a0
a0 +
a0
220 -
Jao -
’- a0
a0
a0 +
’- a0
a2
)ao -
a0 +
’- a0
)ao -
220 -

9=

) _

) —

Listing 1.2:

- bo
a2
al
a2

+ o+ o+

al +
+ a2

a3 +

al -
- a2
- bl
a2 -
al -
+ a2
a2 +
al +

+
+
+
a
b
+

a
a

a

b
a

o
a
a

s

a

+
b

b2
a3
a2
a3
3_
0 +
b1
a3
a2

3_
a3
2 +
a2
1+
3 +
a3
a2
a2
a3

b1
3 +
3 +
b2
a3
2 +
a3
b2
0 +

a3 -

b2

a3 -
a2 -

Encoding differential-linear behavior of S-boxes in S-box Analyzer

16 16 16 16 16
0O 0 ©0 o o0
0 8 -8 0 -8

-8 8 0 0 o0
0 -8 0 -16 0
0 -8 0 0 0
0 -8 0 0 -8

-8 -8 -8 o o0
0O 0 0 -16 O

-8 0 -8 0 8
8 0 O 0 o0
0O 0 8 0 -8
0O 0 -8 16 0

-8 0 O 0 8
8 0 8 0 o0
0O 0 ©0 0 -8

34
al:
b0 :

msb
msb

+ b3 >= -1’2,
- bl + b2 >=
+ a3 - b3 >= -1
- b2 - b3 >= -3
b2 + b3 >= -1’,
b2 + b3 >= -1°,
+ b2 + b3 >= -1
+ b0 - bl - b2
+ a3 + b0 + bl
b0 - bl - b2 -
b0 + bl - b2 -
+ b0 - bl + b2
a3 + b0 + bl -
+ a3 - b0 - bl
b2 - b3 >= -1°,
b0 - bl - b2 -
- b0 + bl - b2
- a3 + b0 + b1l
- a3 - b0 - bl
+ b0 - bl - b2
b3 >= -1’,

+ b2 - b3 >=
b0 + bl - b3
b0 - bl - b3
+ b3 >= -1’,
- b0 + bl -
a3 - b0 - bl
- bl + b2 >=
+ b3 >= -1,
b3 >= -17,
b0 + bl >= -1°,
+ b3 >= -1,

bl + b2 >= -1,
b3 >= -1°]

=il

-1
>=
>=

-3

16 16 16 16 16
0 o0 0O 0 ©0
0o 8 0O 0 O
0 0 0 -8 0
8 0 o 0 8
8 0 -16 0 8
0 0 0O 0 ©
0o 8 0 -8 0
0O 0 16 0 O
0 -8 0O 8 0

-8 0 0 -8 -8

-8 -8 0 0 -8
0 -8 0O 0 ©
0 0 -16 8 O

-8 -8 0O =B =B

-8 0 o 0 -8

)
>

)

)s
>= -4,
- b3 >= -3’7,
b3 >= -5,
b3 >= -3’7,
+ b3 >= -2,
b2 - b3 >= -2’7,
- b2 - b3 >=
b3 >= -3’7,
- b3 >= -57,
= b2l >= =3
- b3 >= -57,
>= =27,

,!

_27’

_2)’
>= -2,

_2)’

’:

121

[y

O O MO O 0w o OO’

cnf,milp=sa.minimized_differential_linear_constraints(subtab1e=’star’)
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