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Abstract

Keyed homomorphic public key encryption (KHPKE) is a variant of homomorphic public key
encryption, where only users who have a homomorphic evaluation key can perform a homo-
morphic evaluation. Then, KHPKE satisfies the CCA2 security against users who do not have a
homomorphic evaluation key, while it satisfies the CCA1 security against users who have the key.
Thus far, several KHPKE schemes have been proposed under the standard Diffie-Hellman-type
assumptions and keyed fully homomorphic encryption (KFHE) schemes have also been proposed
from lattices although there are no KFHE schemes secure solely under the LWE assumption
in the standard model. As a natural extension, there is an identity-based variant of KHPKE;
however, the security is based on a q-type assumption and there are no attribute-based variants.
Moreover, there are no identity-based variants of KFHE schemes due to the complex design
of the known KFHE schemes. In this paper, we provide two constructions of attribute-based
variants. First, we propose an attribute-based KFHE (ABKFHE) scheme from lattices. We start
by designing the first KFHE scheme secure solely under the LWE assumption in the standard
model. Since the design is conceptually much simpler than known KFHE schemes, we replace
their building blocks with attribute-based ones and obtain the proposed ABKFHE schemes.
Next, we propose an efficient attribute-based KHPKE (ABKHE) scheme from a pair encoding
scheme (PES). Due to the benefit of PES, we obtain various ABKHE schemes that contain the
first identity-based KHPKE scheme secure under the standard k-linear assumption and the first
pairing-based ABKHE schemes supporting more expressive predicates.
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1 Introduction

1.1 Background

Given two ciphertexts ct(1) and ct(2) of (multiplicative) homomorphic encryption (HE), where they
are encryptions of µ(1) and µ(2), respectively, arbitrary users can compute an evaluated ciphertext
ct that is an encryption of µ(1) · µ(2). Given an arbitrary circuit C and ciphertexts ct(1), . . . , ct(L)

of fully homomorphic encryption (FHE), where they are encryptions of µ(1), . . . , µ(L), respectively,
arbitrary users can compute an evaluated ciphertext ctC that is an encryption of C(µ(1), . . . , µ(L)).
After Gentry [Gen09] proposed the first FHE scheme, several improved FHE schemes have been
proposed such as [Bra12, BGV12, BV11a, BV11b, BV14, GSW13, vGHV10]. The publicly com-
putable homomorphism provides several applications such as delegated computation and multi-
party computation. In contrast, the nature inherently prevents (F)HE schemes from achieving the
CCA2 security. Thus, several CCA1-secure (F)HE schemes have been proposed such as the Cramer-
Shoup-lite [CS98] and FHE schemes [CRRV17, DGM15, LMSV12, ZPS12]. However, Loftus et al.
showed that CCA1-secure FHE schemes may be vulnerable if there are ciphertext validity checking
oracles [LMSV12] as Bleichenbacher’s attack on RSA [Ble98].

To reconcile homomorphic operations and the chosen ciphertext security, Emura et al. intro-
duced a notion of keyed homomorphic public key encryption (KHPKE) [EHO+13]. As opposed to
(F)HE, only users who have a homomorphic evaluation key can compute evaluated ciphertexts of
KHPKE. The standard security requirement of KHPKE called the KH-CCA security ensures that a
KHPKE scheme satisfies the CCA2/CCA1 security against an adversary without/with a homomor-
phic evaluation key, respectively. Thus, the KH-CCA security is strictly stronger than the CCA1
security. Moreover, KH-CCA-secure KHPKE schemes are secure even in the presence of ciphertext
validity checking oracles [Emu21]. Libert et al. [LPJY14] proposed the first KH-CCA-secure multi-
plicative KHPKE scheme, then Jutla and Roy [JR15] and Emura et al. [EHN+18] proposed improved
schemes. Among them, Emura et al.’s scheme is the most efficient since it does not require pairing
unlike [JR15, LPJY14] and satisfies the KH-CCA security under the DDH assumption.

Lai et al. extended the notion of KHPKE and proposed the first keyed FHE (KFHE)
scheme [LDM+16] under the LWE assumption and iO [BGI+01]; however, it does not satisfy
the KH-CCA security but only the weaker security which is not CCA1 but only the CPA se-
curity against an adversary with a homomorphic evaluation key. Then, Sato et al. proposed
the first KH-CCA-secure KFHE scheme under the LWE assumption [SET22]. In particular, Sato
et al. followed the complex design methodology of Jutla and Roy’s KHPKE scheme [JR15]
based on a strong dual-system simulation-sound NIZK system for Diffie-Hellman languages. To
construct a strong dual-system simulation-sound NIZK system for FHE ciphertexts, Sato et
al. have to rely on either zk-SNARKs for arithmetic circuits based on knowledge assump-
tions [BBC+18, BCC+17, BCCT13, GGPR13, MBKM19, ZSZ+22] or zk-SNARKs for NP in the
(quantum) random oracle model [CMS19]. Thus, there are no known KFHE schemes whose KH-CCA
security is based solely on the LWE assumption in the standard model. Maeda and Nuida [MN22]
proposed a keyed two-level homomorphic encryption scheme that supports the additive homomor-
phism with a single multiplication under the SXDH assumption.

As another direction of the topic, Emura et al. constructed a pairing-based identity-based keyed
homomorphic encryption (IBKHE) scheme [EHN+18]. Although the scheme satisfies the adaptive
KH-CCA security, it is based on a q-type assumption. Thus far, there are no known pairing-
based IBKHE schemes under the standard assumptions although there are various pairing-based
homomorphic identity-based encryption (IBE) schemes under such assumptions [BB04, CLL+14,
CW14, Lew12, Wat05, Wat09]. Similarly, there are no known attribute-based keyed homomorphic
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encryption (ABKHE) schemes supporting more expressive predicates although the pair encoding
framework [Att14, Wee14] enables us to construct various pairing-based expressive attribute-based
encryption (ABE) schemes [AC16, AC17, Amb21, ABS17, Att16, CGW15, CG17, Tak21]. The ABE
schemes are adaptively secure under the q-ratio assumption and the standard k-linear assumption
for expressive and simple predicates, respectively. Moreover, there are no known identity-based
keyed fully homomorphic encryption (IBKFHE) schemes and attribute-based keyed fully homomor-
phic encryption (ABKFHE) schemes, while there are various known lattice-based identity-based and
attribute-based FHE schemes such as [BCTW16, CM15, GSW13, HK17, ML19, PD20]. These situ-
ations stem from the fact that known design methodologies of KHPKE and KFHE are too complex
to extend to identity/attribute-based settings. In other words, known constructions of KH-CCA-
secure K(F)HE schemes rely on specific techniques that are not common in the context of public
key encryption. For example, Emura et al. [EHN+18] introduced additional security notions for
universal2 hash proof system [CS02] and proved the KH-CCA security, where the additional security
notions have not been used in other papers. As we explained above, Jutla and Roy [JR15] and Sato
et al. [SET22] used strong dual-system simulation-sound NIZK systems that have been used only
in these papers.

1.2 Our Contribution

In this paper, we first propose a generic construction of ABKFHE whose building blocks can be
instantiated under the standard LWE assumption. For this purpose, we start by designing the
first KH-CCA-secure KFHE scheme solely based on the LWE assumption in the standard model
by modifying Canetti et al.’s CCA1-secure FHE scheme [CRRV17]. Specifically, Canetti et al.
constructed a CCA1-secure FHE scheme from multi-key FHE (MFHE) [AJJM20, CM15, LTV12,
MW16, PS16] and IBE, where MFHE schemes [AJJM20, MW16, PS16] are secure in the standard
model and there are various IBE schemes secure in the standard model such as [ABB10a, Yam17].
In addition to MFHE and IBE, we use only simple primitives and construct KFHE. Indeed, we
additionally use one-time signatures (OTS) and message authentication codes (MAC). The design
methodology is very simple since we just combine the Canetti-Halevi-Katz transformation [CHK04]
and the encrypt-then-MAC paradigm [BN08] which are the standard techniques to prove the CCA2
security of public/symmetric key encryption. As a result, the simplicity enables us to extend the
proposed KFHE scheme and obtain a KH-CCA-secure ABKFHE scheme supporting cross-attribute
evaluations by replacing IBE and MAC with delegatable ABE (DABE).

Unfortunately, the proposed ABKFHE scheme is not very efficient since the size of an eval-
uated ciphertext depends on the number of input ciphertexts although the feature is not the
disadvantage of the proposed ABKFHE scheme since the known CCA1-secure FHE scheme se-
cure solely under the LWE assumption in the standard model [CRRV17] and attribute-based
FHE schemes supporting cross-attribute evaluation [BCTW16, ML19, PD20] have similar fea-
tures. Thus, we overcome the issue by restricting the functionality and propose an effi-
cient ABKHE scheme that supports multiplicative homomorphism without cross-attribute eval-
uations. Specifically, we construct the proposed ABKHE scheme from a pair encoding scheme
(PES) [Att14, Wee14]. Due to the benefit of the pair encoding framework, we obtain adaptively
KH-CCA-secure ABKHE schemes for various expressive predicates under the q-ratio assumption
and those for simple predicates under the standard k-linear assumption using known PES such
as [AC16, AC17, Att14, Att16, Att19, AY15, CGW15, Tak21, Wee14]. The result includes the
first pairing-based IBKHE scheme under the standard k-linear assumption. Our design methodol-
ogy is similar to Emura et al.’s KHPKE scheme [EHN+18]. Although Emura et al.’s proof based
on the hash proof system [CS02] is complicated, we can simplify the proof by focusing on the
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Table 1: Comparison among keyed homomorphic encryption schemes

Scheme Homomorphism Access Control Complexity Assumption

LPJY14 [LPJY14] Multiplicative None DLIN

JR15 [JR15] Multiplicative None SXDH

LDM+16 [LDM+16] Fully None LWE + iO

EHN+18 [EHN+18]

Multiplicative

Additive

Multiplicative

None

None

Identity-based

DDH

DCR

q-ABDHE

SET22 [SET22] Fully None
LWE + Knowledge

LWE + (Q)ROM

MN22 [MN22] Two-Level None SXDH

This Work

Fully

Multiplicative

Multiplicative

Attribute-based

Identity-based

Attribute-based

LWE

k-Lin

k-Lin or q-ratio

DLIN stands for the decisional linear assumption. SXDH stands for the symmetric ex-
ternal Diffie-Hellman assumption. LWE stands for the learning with errors assumption.
iO stands for the indistinguishability obfuscation. DDH stands for the decisional Diffie-
Hellman assumption. DCR stands for the decisional composite residuosity assumption.
q-ABDHE stands for the truncated decisional augmented bilinear Diffie-Hellman expo-
nent assumption. Knowledge indicates the lattice-based knowledge assumption. (Q)ROM
stands for the (quantum) random oracle model. k-Lin stands for the k-linear assumption.
q-ratio stands for the q-ratio assumption.

matrix DDH assumption [EHK+17]. Then, as Emura et al. extended the Cramer-Shoup cryp-
tosystem [CS98] to their KHPKE scheme, we extend PES-based ABE schemes over dual system
groups [AC16, AC17, CGW15] to our proposed ABKHE schemes.

1.3 Technical Overview

In this section, we explain overviews of our proposed IBK(F)HE schemes denoted by ΠIBK(F)HE.

Notation. For non-negative integers a and b such that a < b, let [a] := {1, 2, . . . , a} and [a, b] :=
{a, a+1, . . . , b}. For a finite set S, let s←R S denote a uniform sampling from S and |S| denote the
size of S. “Probabilistic polynomial time” is abbreviated as “PPT”. For two security games Gamei
and Gamej , Gamei ≈c Gamej , Gamei ≈ Gamej , and Gamei ≡ Gamej indicate that Gamei and Gamej
are computationally indistinguishable, statistically indistinguishable, and identically distributed,
respectively.

1.3.1 Model

We briefly explain models of KHPKE, KFHE, and IBK(F)HE. See Sections 2.1 and 4 for a detailed
definition. Since KHPKE and KFHE follow the same model, we explain KFHE. A KFHE scheme
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has three types of keys, i.e., a public key KFHE.pk, a decryption key KFHE.dk, and a homomor-
phic evaluation key KFHE.hk. Although an encryptor encrypts a message only with KFHE.pk,
KFHE.dk and KFHE.hk are required to decrypt a ciphertext KFHE.ct and evaluate ciphertexts
KFHE.ct(1), . . . ,KFHE.ct(L), respectively. In the KH-CCA security game, an adversary can make
a homomorphic evaluation key reveal query and evaluation queries in addition to the traditional
decryption queries, where the adversary can receive hk and evaluated ciphertexts by the additional
queries. There are two restrictions for decryption queries to prevent trivial attacks. First, the
adversary is not allowed to make decryption queries after it receives both KFHE.hk and the chal-
lenge ciphertext. Briefly speaking, KFHE satisfy the CCA2 security against users who do not have
KFHE.hk, while it satisfies the CCA1 security against users who have KFHE.hk. Second, the chal-
lenger keeps a list L that contains the challenge ciphertext. When the adversary makes evaluation
queries on ciphertexts in L, the challenger puts evaluated ciphertexts on L. Then, the adversary
cannot make decryption queries on ciphertexts in L.

IBK(F)HE is almost the same with some exceptions. A decryption key dkid and a homomorphic
evaluation key hkid depend on an identity id. Unlike KFHE, dkid′ can decrypt a ciphertext ctid
and hkid′ can evaluate ciphertexts ct(1), . . . , ct(L) only if id = id′ holds. In the security game, the
adversary can make a decryption key reveal query and receive dkid as long as id ̸= id⋆, where id⋆ is
the challenge identity. Even when the adversary receives hkid such that id ̸= id⋆ and the challenge
ciphertext, it can still make decryption queries until it receives hkid⋆ .

1.3.2 Overview of IBKFHE

We explain an overview of ΠIBKFHE based on MFHE scheme ΠMFHE, hierarchical IBE (HIBE) scheme
ΠHIBE, a collision-resistant hash function H, and a one-time signature (OTS) scheme ΠOTS.

CCA1-secure FHE Scheme. We first review Canetti et al.’s CCA1-secure FHE scheme ΠFHE [CRRV17]
based on Brakerski et al.’s generic construction of IBFHE [BCTW16] from MFHE and IBE. The
scheme ΠFHE has FHE.pk = (MFHE.pp, IBE.mpk) and FHE.sk = IBE.msk. To encrypt a mes-
sage µ, an encryptor runs the key generation algorithm of MFHE; (MFHE.pk,MFHE.sk) ←
MFHE.KGen(MFHE.pp), samples a random identity rid ←R ID, and computes a pre-evaluated
ciphertext;

FHE.ct = (rid,MFHE.pk, IBE.ctrid,MFHE.ct),

where IBE.ctrid and MFHE.ct are encryptions of MFHE.sk and µ, respectively. To decrypt a
pre-evaluated FHE ciphertext FHE.ct, a decryptor computes an IBE secret key IBE.skrid by us-
ing FHE.sk = IBE.msk, recovers an MFHE secret key MFHE.sk by decrypting IBE.ctrid using
IBE.skrid, and recovers a message µ by decrypting MFHE.ct using MFHE.sk. To evaluate pre-

evaluated ciphertexts (FHE.ct(ℓ) = (rid(ℓ),MFHE.pk(ℓ), IBE.ct
(ℓ)

rid(ℓ)
,MFHE.ct(ℓ)))ℓ∈[L] for a circuit C,

where IBE.ct
(ℓ)

rid(ℓ)
and MFHE.ct(ℓ) are encryptions of MFHE.sk(ℓ) and µ(ℓ), respectively, an evaluator

computes MFHE.ctC which is an MFHE evaluated ciphertext of (MFHE.ct(ℓ))ℓ∈[L] for C and outputs

FHE.ctC =
(
(rid(ℓ),MFHE.pk(ℓ), IBE.ct

(ℓ)

rid(ℓ)
)ℓ∈[L],MFHE.ctC

)
.

To decrypt an evaluated FHE ciphertext FHE.ctC, a decryptor computes IBE secret keys IBE.sk
(ℓ)

rid(ℓ)

by using FHE.sk = IBE.msk and recovers MFHE secret keys MFHE.sk(ℓ) by decrypting IBE.ct
(ℓ)

rid(ℓ)

using IBE.sk
(ℓ)

rid(ℓ)
for ℓ ∈ [L], and recovers a message C((µ(ℓ))ℓ∈[L]) by decrypting MFHE.ctC using

(MFHE.sk(ℓ))ℓ∈[L].
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Let FHE.ct⋆ = (rid⋆,MFHE.pk⋆, IBE.ct⋆rid⋆ ,MFHE.ct⋆) be the challenge ciphertext. The CCA1
security of the FHE scheme ΠFHE follows from the CPA security of ΠMFHE and ΠIBE. In particular,
we first use the CPA security of IBE to ensure that IBE.ct⋆rid⋆ is indistinguishable from encryption of
a random string, then the CPA security of MFHE ensures that MFHE.ct⋆ is indistinguishable from an
encryption of a random string. We briefly explain the first reduction. In Phase 1, A does not know
rid⋆ sampled by C uniformly from an exponentially large space ID. Thus, all ciphertexts FHE.ct =
(rid,MFHE.pk, IBE.ctrid,MFHE.ct) on which the CCA1 adversary A makes decryption queries satisfy
rid ̸= rid⋆. Therefore, the reduction algorithm of IBE can answer all decryption queries.

KH-CCA-secure KFHE. By modifying ΠFHE, we construct the first KFHE scheme ΠKFHE whose
KH-CCA security is based solely on the LWE assumption in the standard model. At first, we apply
the CHK transform [CHK04] to pre-evaluated ciphertexts so that ΠKFHE satisfies the CCA2 security
against an adversary without KFHE.hk. Then, we have

KFHE.ct = (vk,MFHE.pk, IBE.ctvk,MFHE.ct, σ),

where a random identity rid is replaced by a verification key vk of ΠOTS that satisfies the strong
EUF-CMA security, and σ is a signature for a message (vk,MFHE.pk, IBE.ctvk,MFHE.ct). To eval-

uate pre-evaluated ciphertexts (KFHE.ct(ℓ) = (vk(ℓ),MFHE.pk(ℓ), IBE.ct
(ℓ)

vk(ℓ)
,MFHE.ct(ℓ), σ(ℓ)))ℓ∈[L],

we discard signatures1 (σ(ℓ))ℓ∈[L], apply the evaluation algorithm of ΠFHE, and obtain KFHE.ctC =

((vk(ℓ),MFHE.pk(ℓ), IBE.ct
(ℓ)

vk(ℓ)
)ℓ∈[L],MFHE.ctC) which is the same as FHE.ctC except rid(ℓ) are re-

placed with vk(ℓ).
Since we do not introduce a homomorphic evaluation key hk, the current scheme is still insecure.

What we have achieved so far is that the CHK transform ensures that the pre-evaluated ciphertexts
KFHE.ct satisfy the CCA2 security as long as it cannot be evaluated, while the CCA1 security
of ΠFHE ensures that the evaluated ciphertexts satisfy the CCA1 security. Thus, we design an
evaluation algorithm and a homomorphic evaluation key hk so that pre-evaluated ciphertexts cannot
be evaluated without hk and evaluated ciphertexts satisfy the CCA2 security against an adversary
without hk. In other words, we only have to focus on an adversary without hk. To this end, although
KFHE itself is a public key primitive, the treatment of hk is similar to a symmetric key primitive.
Therefore, we use a simple encrypt-then-MAC paradigm [BN08] for constructing a CCA2-secure
symmetric key encryption scheme to design ΠKFHE. We set hk as a secret key of MAC and an
evaluated ciphertext becomes

KFHE.ctC =
(
(vk(ℓ),MFHE.pk(ℓ), IBE.ct

(ℓ)

vk(ℓ)
)ℓ∈[L],MFHE.ctC, τ

)
,

where τ is a MAC tag of a message ((vk(ℓ),MFHE.pk(ℓ), IBE.ct
(ℓ)

vk(ℓ)
)ℓ∈[L],MFHE.ctC). A decryption

key dk consists of IBE.msk and a secret key of MAC. A decryptor first checks the validity of τ and
recovers a message C((µ(ℓ))ℓ∈[L]) in the same way as FHE.ctC. Since the strong EUF-CMA security
of MAC ensures that an adversary without hk cannot evaluate ciphertexts by itself, ΠKFHE satisfies
the CCA2 security against the adversary. Thus, ΠKFHE achieves the KH-CCA security.

KH-CCA-secure IBKFHE. Due to the simplicity of the above KFHE scheme ΠKFHE, we construct
a KH-CCA-secure IBKFHE scheme ΠIBKFHE by replacing several building blocks of ΠKFHE with
identity-based ones. In particular, we replace IBE of ΠKFHE by HIBE to construct CCA2-secure
IBE. Similarly, we also replace MAC with an identity-based signature (IBS) scheme, where we

1Since there are no MFHE.ct(1), . . . ,MFHE.ct(L) in an evaluated ciphertext KFHE.ctC, the signatures
(
σ(ℓ)

)
ℓ∈[L]

are useless in the sense that we cannot verify them.
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use a secret key of HIBE as a signature by following the Naor transform. However, the Naor
transform is insufficient since the resulting IBS scheme does not satisfy the strong EUF-CMA security.
Thus, we apply Huang et al.’s generic transformation [HWZ07] so that the identity-based signature
scheme satisfies the strong EUF-CMA security by combining with the strongly EUF-CMA-secure
one-time signature scheme ΠOTS. Then, we use a two-level HIBE scheme ΠHIBE to play the roles
of CCA2-secure IBE and strongly EUF-CMA-secure IBS. For an identity id, we set a decryption
key IBKFHE.dkid = HIBE.sk0∥id, a homomorphic evaluation key IBKFHE.hkid = HIBE.sk1∥id, a pre-
evaluated ciphertext

IBKFHE.ctid = (vk,MFHE.pk,HIBE.ct0∥id,vk,MFHE.ct, σ),

where HIBE.ct0∥id,vk and MFHE.ct are encryptions of MFHE.sk and µ, respectively, and an evaluated
ciphertext

IBKFHE.ctid,C =

(
(vk(ℓ),MFHE.pk(ℓ),HIBE.ct

(ℓ)

0∥id,vk(ℓ)
)ℓ∈[L]

MFHE.ctC,HIBE.sk1∥id,vk, σ

)
,

where σ is a signature of ((vk(ℓ),MFHE.pk(ℓ),HIBE.ct
(ℓ)

0∥id,vk(ℓ)
)ℓ∈[L],MFHE.ctC,HIBE.sk1∥id,vk) for vk

and (HIBE.sk1∥id,vk, σ) plays a role of strongly EUF-CMA-secure IBS for the message vk. The KH-CCA
security of ΠIBKFHE follows from the similar discussion as the case of ΠKFHE.

1.3.3 Overview of IBKHE

We first review a variant of a CPA-secure ElGamal encryption scheme. Then, we review an adap-
tively CPA-secure IBE scheme over dual system groups ΠDSG [CGW15, CW14] and Emura et al.’s
KH-CCA-secure KHPKE scheme ΠKHPKE [EHN+18], then explain an overview of our proposed adap-
tively KH-CCA-secure IBKHE scheme ΠIBKHE. See Sections 7.1 and 8.1.1 to check notations for cyclic
groups and bilinear groups, respectively.

CPA-secure PKE. Let (A,a⊥) ∈ Z(k+1)×k
p ×Zk+1

p denote an instance of the matrix distribution such

that A⊤a⊥ = 0. A variant of the ElGamal PKE scheme ΠPKE is described as follows:

PKE.pk = ([A], [A⊤u]), PKE.sk = u,

PKE.ct =
(
PKE.ct0 = [As], PKE.ctµ = µ · [s⊤A⊤u]

)
,

where u ←R Zk+1
p and s ←R Zk

p. We can correctly decrypt PKE.ct = (PKE.ct0,PKE.ctµ) and

recover a plaintext µ by using PKE.sk since we can compute [s⊤A⊤u] from PKE.ct0 and PKE.sk.
To prove the CPA security, we change the challenge ciphertext to be

PKE.ct⋆ =
(
PKE.ct⋆0 = [c], PKE.ct⋆µ = µ⋆ · [c⊤u]

)
,

where c ←R Zk+1
p . A cannot detect the change under the matrix DDH assumption. Then, even

an unbounded adversary A cannot learn µ⋆ from PKE.ct⋆. Specifically, although the unbounded A
can learn û such that u = û+ α̃a⊥ from [A] and [A⊤u], α̃ is distributed uniformly at random over
Zp from A’s view. Observe that

PKE.ct⋆µ = µ⋆ · [c⊤u] = µ⋆ · [c⊤(û+ α̃a⊥)] = µ⋆ · [c⊤û] · [c⊤a⊥]α̃. (1)
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Since c is distributed uniformly at random over Zk+1
p , it does not live in the span of A, i,e.,

c⊤a⊥ ̸= 0, with overwhelming probability. Thus, [c⊤a⊥] is a generator of G. Therefore, [c⊤a⊥]α̃ is
distributed uniformly at random over G from A’s view and masks µ⋆.

CPA-secure IBE Scheme ΠIBE. We review an IBE scheme ΠDSG over the dual system
group [CGW15, CW14] equipped with an asymmetric bilinear map e : G1 × G2 → GT as fol-
lows:

IBE.mpk =

(
IBE.pp =

(
[A]1, [W

⊤
1 A]1, [W

⊤
2 A]1

[B]2, [W1B]2, [W2B]2

)
, [A⊤u]T

)
, IBE.msk = u,

IBE.skid = ([Br]2, [u]2 · [(W1 + id ·W2)Br]2) ,

IBE.ctid =
(
IBE.ct0 = [As]1, IBE.ct1 = [(W⊤

1 + id ·W⊤
2 )As]1, IBE.ctT = µ · [s⊤A⊤u]T

)
,

where B ∈ Z(k+1)×k
p is a matrix sampled from the matrix distribution and W1,W2 ←R

Z(k+1)×(k+1)
p . IBE.mpk and IBE.ctid are similar to PKE.pk and PKE.ct, respectively, except that

the matrices W1,W2 are used to encode id. As the case of ΠPKE, ΠDSG is correct since we can
recover [s⊤A⊤u]T from (IBE.ct0, IBE.ct1) and IBE.skid by computing

e(IBE.ct0, [u]2 · [(W1 + id ·W2)Br]2)

e(IBE.ct1, [Br]2)
= [s⊤A⊤u]T .

To prove the adaptive CPA security of ΠIBE, we follow the proof of ΠPKE and change the challenge
ciphertext to be

IBE.ct⋆id⋆ =
(
IBE.ct0 = [c]1, IBE.ct1 = [(W⊤

1 + id⋆ ·W⊤
2 )c]1, IBE.ctT = µ⋆ · [c⊤u]T

)
, (2)

where c ←R Zk+1
p . A cannot detect the change under the matrix DDH assumption over G1.

However, unlike the case of ΠPKE, the unbounded A can still learn µ⋆ since it can receive IBE.skid
for id ̸= id⋆. In particular, the unbounded A can learn IBE.msk = u from IBE.mpk and IBE.skid.

The dual system encryption methodology [Wat09] enables us to circumvent the issue by using
the following semi-functional secret key

IBE.skid =
(
[Br]2, [u+ αida

⊥]2 · [(W1 + id ·W2)Br]2

)
,

where αid ←R Zp. Briefly speaking, the semi-functional IBE.skid is the same as the normal one
except that IBE.msk = u is replaced with u + αida

⊥. After we change the challenge ciphertext to
be (2), we change IBE.skid queried by A to be semi-functional one by one. When all IBE.skid which
A receives become semi-functional, it cannot learn IBE.msk = u but can learn only u+ αida

⊥. As
the proof of ΠPKE, A can learn û such that u = û+ α̃a⊥ from [A]1 and [A⊤u]T . Since u+ αida

⊥

which A learns from semi-functional IBE.skid does not help to learn α̃, α̃ is distributed uniformly
at random over Zp from A’s view. Thus, [c⊤a⊥]α̃ is distributed uniformly at random over G from
A’s view and masks µ⋆ as the proof of ΠPKE.

As we discussed, we can prove the CPA security of ΠIBE if we can change all IBE.skid
queried by A to be semi-functional. To complete the change, there is an inherent prop-
erty of the dual system technique. In particular, A itself cannot create IBE.ctid which
follows the same distribution as (2). More specifically, A cannot create IBE.ctid =(
IBE.ct0 = [c]1, IBE.ct1 = [(W⊤

1 + id ·W⊤
2 )c]1, IBE.ctT = µ · [c⊤u]T

)
if the discrete logarithm of

IBE.ct0, i.e., c ∈ Zk+1
p , does not live in the span of A, i.e., c⊤a⊥ ̸= 0. If A can create such

IBE.ctid, it can detect whether given IBE.skid is normal or semi-functional by decrypting the above
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IBE.ctid, where a decryption result of IBE.ctid by a semi-functional IBE.skid is not µ but µ·[c⊤a⊥]−αid

by following the similar calculation as (1).

KH-CCA-secure KHPKE. We review Emura et al.’s KHPKE scheme ΠKHPKE [EHN+18] by instanti-
ating the hash proof system under the matrix DDH assumption [EHK+17] as follows:

KHPKE.pk = ([A], ([A⊤uι]ι∈[0,3]),H),

KHPKE.dk = (uι)ι∈[0,3], KHPKE.hk = (uι)ι∈[2],

KHPKE.ct =

(
KHPKE.ct0 = [As], KHPKE.ctµ = µ · [s⊤A⊤u0]

KHPKE.π = [s⊤A⊤(u1 + h · u2)], KHPKE.π′ = [s⊤A⊤u3]

)
,

where u0,u1,u2,u3 ←R Zk+1
p , H is a collision-resistant hash function, and h = H(KHPKE.ct0,

KHPKE.ctµ,KHPKE.π
′). Briefly speaking, KHPKE.pk is the same as PKE.pk with four secret keys

(uι)ι∈[0,3]. Moreover, ΠKHPKE is a combination of the CCA1-secure Cramer-Shoup-lite and the CCA2-
secure Cramer-Shoup cryptosystem [CS98]; ΠKHPKE becomes the same as the former and the latter
by removing the elements depending on (u1,u2) and u3, respectively. As the case of ΠPKE, ΠKHPKE

is correct since the structure of ΠPKE enables us to recover [s⊤A⊤uι] from KHPKE.ct0 and uι. Given
a ciphertext KHPKE.ct = (KHPKE.ct0,KHPKE.ctµ,KHPKE.π,KHPKE.π

′), a decryptor first checks
the validities of KHPKE.π and KHPKE.π′ by using ([s⊤A⊤uι])ι∈[2] and [s⊤A⊤u3], respectively. If

they are valid, the decryptor recovers µ from KHPKE.ctµ and [s⊤A⊤u0]. To evaluate KHPKE.ct
(1) =

(KHPKE.ct
(1)
0 = [As(1)],KHPKE.ct

(1)
µ ,KHPKE.π(1),KHPKE.π′(1)) and KHPKE.ct(2) = (KHPKE.ct

(2)
0

= [As(2)],KHPKE.ct
(2)
µ ,KHPKE.π(2),KHPKE.π′(2)), an evaluator first checks the validities of

KHPKE.π(1) and KHPKE.π(2) by using ([(s(1))⊤A⊤uι])ι∈[2] and ([(s(2))⊤A⊤uι])ι∈[2], respectively.
If they are valid, the evaluator computes KHPKE.ct0 = [As],KHPKE.ctµ,KHPKE.π

′ by multiplying

KHPKE.ct
(1)
0 ,KHPKE.ct

(1)
µ ,KHPKE.π′(1) with KHPKE.ct

(2)
0 ,KHPKE.ct

(2)
µ ,KHPKE.π′(2), respectively,

and computes KHPKE.π from h = H(KHPKE.ct0,KHPKE.ctµ,KHPKE.π
′) and ([s⊤A⊤uι])ι∈[2].

Let KHPKE.ct⋆ denote a challenge ciphertext and KHPKE.ct(1) = KHPKE.ct⋆,KHPKE.ct(2),
. . . ,KHPKE.ct(D) denote ciphertexts in the list L. To prove the KH-CCA security, we change
distributions of the ciphertexts in L one by one so that they are independent of µ⋆. Here, we
explain how to change the distribution of KHPKE.ct⋆. For this purpose, we follow the proof of
ΠPKE and change the challenge ciphertext to be

KHPKE.ct⋆ = ([c], µ⋆ · [c⊤u0], [c
⊤(u1 + h⋆ · u2)], [c

⊤u3]), (3)

where c ←R Zk+1
p . A cannot detect the change under the matrix DDH assumption. We

note that we do not use the above KHPKE.ct⋆ but a normal encryption of µ⋆ to compute
KHPKE.ct(2), . . . ,KHPKE.ct(D) in the list L. Then, the distribution of KHPKE.ct⋆ does not de-
pend on µ⋆ since even an unbounded A cannot learn µ⋆ from KHPKE.ct⋆. As the proof of ΠPKE, A
can learn ûι such that uι = ûι + α̃ιa

⊥ from [A] and [A⊤uι] for ι ∈ [0, 3], respectively; however, α̃0

is distributed uniformly at random over Zp from A’s view. Thus, [c⊤a⊥]α̃0 is distributed uniformly
at random over G from A’s view and masks µ⋆ as the proof of ΠPKE.

To ensure that the unbounded A cannot learn α̃0, we have to care about A’s decryption queries
and evaluation queries which are not allowed in the case of ΠPKE. We call A’s decryption query
on KHPKE.ct = (KHPKE.ct0 = [c],KHPKE.ctµ,KHPKE.π,KHPKE.π

′) a critical decryption query if
KHPKE.π and KHPKE.π′ are valid, KHPKE.ct follows the same distribution as (3), and c does not
live in the span of A, i.e., c⊤a⊥ ̸= 0. If A can make a critical decryption query, the answer is
µ · [c⊤a⊥]α̃0 by following the similar calculation as (1) and A can learn α̃0. In contrast, answers to
decryption queries do not reveal the information of α0 if c lives in the span of A. The structures
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of the CCA1-secure Cramer-Shoup-lite and the CCA2-secure Cramer-Shoup cryptosystem [CS98]
ensure that A cannot make critical decryption queries since it cannot create valid KHPKE.π or
KHPKE.π′. If the unbounded A can create valid KHPKE.π and KHPKE.π′, and make critical
decryption queries, it has to know (α̃1, α̃2) and α̃3, respectively. We note that A can receive
KHPKE.hk = (u1,u2) in the KH-CCA security game and is allowed to make decryption queries
until it receives both KHPKE.hk and KHPKE.ct⋆. Thus, all we have to ensure is that A does not
know (α̃1, α̃2) or α̃3 until it receives both KHPKE.hk and KHPKE.ct⋆. At first, A cannot learn α̃3

until it receives KHPKE.ct⋆ thanks to the structure of the CCA1-secure Cramer-Shoup-lite [CS98].
When A makes a decryption query or an evaluation query on KHPKE.ct = (KHPKE.ct0, . . .) such
that the discrete logarithm of KHPKE.ct0 does not live in the span of A and the answer is ⊥, A
can eliminate a candidate of α̃3; however, it can eliminate only polynomially many numbers of
candidates throughout the security game. Thus, A cannot guess α̃3 with non-negligible probability.
Next, A cannot learn (α̃1, α̃2) until it receives KHPKE.hk thanks to the structure of the CCA2-secure
Cramer-Shoup cryptosytem [CS98]. Observe that KHPKE.ct⋆ reveals the value of α̃1 + h⋆α̃2 to the
unbounded A. Thus, A can learn (α̃ι)ι∈[2] if it learns the value of α̃1+hα̃2 for some h ̸= h⋆. When
A makes a decryption query on KHPKE.ct = (KHPKE.ct0, · · · ) such that the discrete logarithm of
KHPKE.ct0 does not live in the span of A and the answer is ⊥, A can eliminate a candidate of
(α̃1, α̃2); however, it can eliminate only polynomially many numbers of candidates throughout the
security game. Thus, A cannot guess (α̃1, α̃2) with non-negligible probability.

KH-CCA-secure IBKHE Scheme ΠIBKHE. Hereafter, we explain an overview of our proposed
IBKHE scheme ΠIBKHE. Let IBE.skid[uι] denote id’s secret key of ΠIBE for a master secret key uι.
We combine ΠIBE and ΠKHPKE, and construct ΠIBKHE as follows:

mpk =
(
IBE.pp, ([A⊤uι]T )ι∈[0,2],H

)
, msk = (uι)ι∈[0,2],

dkid = (IBE.skid[uι])ι∈[0,2], hkid = (IBE.skid[uι])ι∈[2],

ctid =
(
IBE.ctid = (ct0, ct1, ctµ), π = [s⊤A⊤(u1 + h · u2)]T

)
,

where h = H(ct0, ct1, ctµ). Briefly speaking, mpk is the same as IBE.mpk with three master secret
keys (uι)ι∈[0,2], while KHPKE.pk is the same as PKE.pk with four secret keys (uι)ι∈[0,2]. As the

case of ΠKHPKE, ΠIBKHE is correct since the structure of ΠIBE enables us to recover [s⊤A⊤uι]T from
(ct0, ct1) and IBE.skid[uι].

To prove the adaptive KH-CCA security, we change distributions of the ciphertexts in L one by
one so that they are independent of µ⋆ as the case of ΠKHPKE. Here, we explain how to change the
distribution of the challenge ciphertext ct⋆id⋆ . As the proofs of ΠIBE and ΠKHPKE, we change the
challenge ciphertext to be

ct⋆id⋆ = ([c]1, [(W
⊤
1 + id⋆ ·W⊤

2 )c]1, µ
⋆ · [c⊤u0]T , [c

⊤(u1 + h⋆ · u2)]T ), (4)

where c←R Zk+1
p . The unbounded A can learn ûι such that uι = ûι+ α̃ιa

⊥ from [A]1 and [A⊤uι]T
for ι ∈ [0, 2], respectively. If A cannot learn α̃0, we can prove the security. Although A can receive
dkid = (IBE.skid[uι])ι∈[0,2] and still learn α̃0 from IBE.skid[u0], the dual system technique enables us
to circumvent the issue by changing all normal IBE.skid[u0] which A receives to be semi-functional
IBE.skid[u0 + α0,ida

⊥] as the case of ΠDSG. As the case of ΠKHPKE, the unbounded A may be able
to learn α̃0 via decryption queries.

We call A’s decryption query on ctid = (ct0 = [c]1, ct1, ctµ, π) a critical decryption query if
π is valid, ct follows the same distribution as (4), and c does not live in the span of A, i.e.,
c⊤a⊥ ̸= 0. As the case of ΠKHPKE, all we have to ensure is that A cannot make critical decryption
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queries until it receives both hkid⋆ and ct⋆id⋆ . Observe that the unbounded A can make critical
decryption queries since it can receive (IBE.skid[uι])ι∈[2] unlike the case of ΠKHPKE. On the surface,
the dual system technique seems to be sufficient to circumvent the issue by changing all normal
(IBE.skid[uι])ι∈[2] which A receives to be semi-functional (IBE.skid[uι])ι∈[2]; however, we cannot take
the approach directly since A can receive hkid⋆ = (IBE.skid⋆ [uι])ι∈[2] which we cannot change to be
semi-functional. Moreover, even when id ̸= id⋆ holds, we cannot also change hkid = (IBE.skid[uι])ι∈[2]
which A receives in Phase 1 to be semi-functional since we cannot detect whether id ̸= id⋆ holds.

To circumvent the issue, we divide A’s attack strategies into two types. We call a strategy Type-
1 if A receives hkid⋆ in Phase 1 and Type-2 otherwise. To prove the security against A of Type-2, we
change all normal (IBE.skid[uι])ι∈[2] whichA receives to be semi-functional (IBE.skid[uι+αι,ida

⊥])ι∈[2]
until A’s query to receive hkid⋆ . Since the definition of the Type-2 strategy ensures that A queries
to receive hkid⋆ only in Phase 2, we can detect whether id ̸= id⋆ holds and complete the change.
Since A cannot learn (α̃1, α̃2) until it receives both hkid⋆ and ct⋆id⋆ , it cannot create valid π and
make critical decryption queries. To prove the security against A of Type-1, we cannot change
(IBE.skid[uι])ι∈[2] which A receives to be semi-functional since we cannot detect whether id ̸= id⋆

holds upon A’s queries to receive hkid. Although we ensured that A cannot create KHPKE.π′ and
make critical decryption queries in the case of ΠKHPKE, there does not seem to be the corresponding
element in ctid on the surface. However, the inherent property of the dual system technique ensures
that A cannot make critical decryption queries. In particular, since A against ΠDSG cannot create
IBE.ctid to make critical decryption queries, A of Type-1 cannot also create ctid = (IBE.ctid, π) and
make critical decryption queries. Thus, we can prove the adaptive KH-CCA security of ΠIBKHE

against A of both types as the case of ΠKHPKE.

1.4 Organization

We aim to provide a generic construction of ABKFHE in Sections 3–6 and a pairing-based construc-
tion of ABKHE in Sections 7 and 8. In Section 2, we review cryptographic primitives which we will
use in this paper. In Section 3, we propose a generic construction of KFHE. In Section 4, we extend
the definition of IBKHE [EHN+18] and define ABK(F)HE. In Section 5, we define delegatable ABE
and provide a concrete construction under the LWE assumption. In Section 6, we propose a generic
construction of ABKFHE whose building blocks can be instantiated under the LWE assumption.
In Section 7, we revisit Emura et al.’s KHPKE scheme and give a simpler proof under the matrix
DDH assumption. In Section 8, we propose an efficient pairing-based ABKHE from pair encoding
schemes.

2 Cryptographic Primitives

2.1 Keyed Fully Homomorphic Encryption

A keyed fully homomorphic encryption (KFHE) scheme consists of four polynomial-time algorithms
ΠKFHE = (KFHE.KGen,KFHE.Enc,KFHE.Eval,KFHE.Dec) defined as follows.

KFHE.KGen(1λ)→ (KFHE.pk,KFHE.dk,KFHE.hk). On input the security parameter 1λ, it outputs
a public key KFHE.pk a decryption key KFHE.dk, and a homomorphic evaluation key KFHE.hk,
where KFHE.pk implicitly contains a message spaceM.

KFHE.Enc(KFHE.pk, µ)→ KFHE.ct. On input a KFHE.pk and a message µ ∈ M, it outputs a
pre-evaluated ciphertext KFHE.ct.
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KFHE.Eval(KFHE.pk,KFHE.hk, (KFHE.ct(ℓ))ℓ∈[L],C)→ KFHE.ctC/⊥. On input a KFHE.pk,

KFHE.hk, a tuple of L ciphertexts (KFHE.ct(ℓ))ℓ∈[L], and a circuit C :ML →M, it outputs
an evaluated ciphertext KFHE.ctC or a rejection symbol ⊥.

KFHE.Dec(KFHE.pk,KFHE.dk,KFHE.ct/KFHE.ctC)→ µ/⊥. On input a KFHE.pk, KFHE.dk and
KFHE.ct/KFHE.ctC, it outputs a decryption result µ ∈M or a rejection symbol ⊥.

Remark 1. A keyed homomorphic public key encryption (KHPKE) scheme ΠKHPKE =
(KHPKE.KGen,KHPKE.Enc,KHPKE.Eval,KHPKE.Dec) is defined in the same way except that
KHPKE.Eval does not take a circuit C as input since a KHPKE scheme supports only either multi-
plicative or additive homomorphism.

Definition 1 (Correctness). ΠKFHE = (KFHE.KGen,KFHE.Enc,KFHE.Eval,KFHE.Dec) satisfies
correctness if the following conditions hold with overwhelming probability:

• For every (KFHE.pk,KFHE.dk,KFHE.hk) ← KFHE.KGen(1λ) and µ ∈ M, it holds that
KFHE.Dec(KFHE.pk,KFHE.dk,KFHE.Enc(KFHE.pk, µ)) = µ.

• For every (KFHE.pk,KFHE.dk,KFHE.hk) ← KFHE.KGen(1λ), circuit C : ML → M,
and (µ(1), . . . , µ(L)) ∈ ML, it holds that KFHE.Dec(KFHE.pk,KFHE.dk,KFHE.ctC) =
C(µ(1), . . . , µ(L)), where KFHE.ctC ← KFHE.Eval(KFHE.pk,KFHE.hk, (KFHE.ct(ℓ))ℓ∈[L],C) and

KFHE.ct(ℓ) ← KFHE.Enc(KFHE.pk, µ(ℓ)) for every ℓ ∈ [L].

Definition 2 (Compactness). ΠKFHE = (KFHE.KGen,KFHE.Enc,KFHE.Eval,KFHE.Dec) satis-
fies compactness if there exists a polynomial poly such that |KFHE.ctC|, where KFHE.ctC ←
KFHE.Eval(KFHE.pk,KFHE.hk, (KFHE.ct(ℓ))ℓ∈[L],C), is independent of the size and depth of C and
at most L · poly(λ) for every security parameter λ.

Although we follow the syntax, correctness, and compactness of KFHE by following previous
works [EHN+18, SET22], we introduce a slightly stronger notion of the KH-CCA security. Specif-
ically, to introduce as strong requirement as possible, we consider the case that a pre-evaluated
ciphertext KFHE.ct and an evaluated ciphertext KFHE.ctC follow distinct distributions which are
easily detectable. Our proposed KFHE scheme in Section 3 and ABKFHE scheme in Section 6 satisfy
the condition.

Definition 3 (KH-CCA security). The KH-CCA security of ΠKFHE = (KFHE.KGen,KFHE.Enc,
KFHE.Eval,KFHE.Dec) is defined by the security game between a challenger C and an adversary
A as follows.

Init. C runs (KFHE.pk,KFHE.dk,KFHE.hk)← KFHE.KGen(1λ) and sends KFHE.pk to A.

Phase 1. A is allowed to make the following three types of queries to C.

Homomorphic Evaluation Key Reveal Query. Upon A’s query, C sends KFHE.hk to A.
Evaluation Query. Upon A’s query on ((KFHE.ct(ℓ))ℓ∈[L],C), C sends the result of

KFHE.Eval(KFHE.pk,KFHE.hk, (KFHE.ct(ℓ))ℓ∈[L],C) to A.
Decryption Query. Upon A’s query on KFHE.ct/KFHE.ctC, C sends the result of

KFHE.Dec(KFHE.pk,KFHE.dk,KFHE.ct/KFHE.ctC) to A.

Challenge Query. A is allowed to make the query only once. Upon A’s query on (µ⋆
0, µ

⋆
1) such

that |µ⋆
0| = |µ⋆

1|, C samples coin ←R {0, 1}, runs KFHE.ct⋆ ← KFHE.Enc(KFHE.pk, µ⋆
coin),

creates a list of ciphertexts L = {KFHE.ct⋆}, and sends KFHE.ct⋆ to A.
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Phase 2. A is allowed to make the same three types of queries to C as in Phase 1 with the following
exceptions.

Evaluation Query. If {KFHE.ct(ℓ)}ℓ∈[L]∩L ̸= ∅ holds and the evaluation result is not ⊥ but
KFHE.ctC, C updates a list L ← L ∪ {KFHE.ctC}.

Decryption Query. Upon A’s query on KFHE.ct, C outputs ⊥ if KFHE.ct = KFHE.ct⋆ holds.

Upon A’s query on KFHE.ctC, C outputs ⊥ if KFHE.ctC ∈ L holds. C also outputs ⊥ if
A has already made a homomorphic evaluation key reveal query.

Guess. A outputs ĉoin ∈ {0, 1} as a guess of coin and terminates the game.

If the advantage of A for breaking the KH-CCA security of ΠKFHE defined by AdvKH-CCA
ΠKFHE,A(λ) :=∣∣∣Pr [ĉoin = coin

]
− 1

2

∣∣∣is negligible in λ, ΠKFHE is said to satisfy the KH-CCA security.

Remark 2. If a pre-evaluated ciphertext KFHE.ct and an evaluated ciphertext KFHE.ctC follow the
same distribution, we change the restriction of decryption queries in Phase 2:

Decryption Query. Upon A’s query on KFHE.ct, C outputs ⊥ if KFHE.ct ∈ L holds. Otherwise,
C proceeds the same way as in Phase 1.

Specifically, in Definition 3, the adversary is allowed to make a decryption query on a pre-evaluated
ciphertext KFHE.ct ̸= KFHE.ct⋆ in Phase 2 even after A’s homomorphic evaluation key reveal query.
When a pre-evaluated ciphertext KFHE.ct and an evaluated ciphertext KFHE.ctC follow the same
distribution, we have to prohibit such queries since the queried KFHE.ct may be an evaluation result
of KFHE.ct⋆ by KFHE.hk.

Remark 3. We call A’s evaluation query on (KHPKE.ct(ℓ))ℓ∈[L] a dependent evaluation query if

the answer is stored in L. In other words, A’s dependent evaluation query on (KHPKE.ct(ℓ))ℓ∈[L]
satisfies {KHPKE.ct(ℓ)}ℓ∈[L]∩L ̸= ∅. Otherwise, we call A’s evaluation query on (KHPKE.ct(ℓ))ℓ∈[L]
an independent evaluation query.

2.2 Multi-Key Fully Homomorphic Encryption

A multi-key fully homomorphic encryption (MFHE) scheme consists of five polynomial-time algo-
rithms ΠMFHE = (MFHE.Setup,MFHE.KGen,MFHE.Enc,MFHE.Dec,MFHE.Eval) defined as follows.

MFHE.Setup(1λ)→ MFHE.pp. On input the security parameter 1λ, it outputs a public parameter
MFHE.pp. Although we do not explicitly describe, the following algorithms take MFHE.pp as
input.

MFHE.KGen→ (MFHE.pk,MFHE.sk). It outputs a public/secret key pair (MFHE.pk,MFHE.sk).

MFHE.Enc(MFHE.pk, µ)→ MFHE.ct. On input MFHE.pk and a message µ, it outputs a pre-
evaluated ciphertext MFHE.ct.

MFHE.Dec(MFHE.sk,MFHE.ct)→ µ/⊥. On input a secret key MFHE.sk and a pre-evaluated ci-
phertext MFHE.ct, it outputs a decryption result µ or a failure symbol ⊥.

MFHE.Eval((MFHE.pk(ℓ),MFHE.ct(ℓ))ℓ∈[L],C)→ MFHE.ctC. On input L public key/ciphertext pairs

(MFHE.pk(ℓ),MFHE.ct(ℓ))ℓ∈[L] and a circuit C, it outputs an evaluated ciphertext MFHE.ctC.
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MFHE.Dec((MFHE.sk(ℓ))ℓ∈[L],MFHE.ctC)→ µ/⊥. On input L secret keys (MFHE.sk(ℓ))ℓ∈[L] and an
evaluated ciphertext MFHE.ctC, it outputs a decryption result µ or a failure symbol ⊥.

Definition 4 (Correctness). ΠMFHE = (MFHE.Setup,MFHE.KGen,MFHE.Enc,MFHE.Dec,
MFHE.Eval) satisfies correctness if the following conditions hold with overwhelming probability:

• For every MFHE.pp ← MFHE.Setup(1λ), (MFHE.pk,MFHE.sk) ← MFHE.KGen, and µ ∈ M,
it holds that MFHE.Dec(MFHE.sk,MFHE.Enc(MFHE.pk, µ)) = µ.

• For every MFHE.pp ← MFHE.Setup(1λ), (MFHE.pk(ℓ),MFHE.sk(ℓ)) ← MFHE.KGen
for ℓ ∈ [L], a circuit C : ML → M, and (µ(1), . . . , µ(L)) ∈ ML, it
holds that MFHE.Dec((MFHE.sk(ℓ))ℓ∈[L],MFHE.Eval((MFHE.pk(ℓ),MFHE.ct(ℓ))ℓ∈[L],C)) =

C(µ(1), . . . , µ(L)), where KFHE.ct(ℓ) ← MFHE.Enc(MFHE.pk(ℓ), µ(ℓ)) for ℓ ∈ [L].

Definition 5 (Compactness). ΠMFHE = (MFHE.Setup,MFHE.KGen,MFHE.Enc,MFHE.Dec,
MFHE.Eval) satisfies compactness if there exists a polynomial poly such that |MFHE.ctC|, where
KFHE.ctC ← KFHE.Eval(KFHE.pk,KFHE.hk, (KFHE.ct(ℓ))ℓ∈[L],C), is independent of the size and
depth of C and at most L · poly(λ) for every security parameter λ.

Definition 6 (IND-CPA Security). The IND-CPA security of ΠMFHE = (MFHE.Setup,MFHE.KGen,
MFHE.Enc,MFHE.Dec,MFHE.Eval) is defined by the security game between a challenger C and an
adversary A as follows.

Init. C runs MFHE.pp ← MFHE.Setup(1λ) and (MFHE.pk,MFHE.sk) ← MFHE.KGen, and sends
(MFHE.pp,MFHE.pk) to A.

Challenge Query. A is allowed to make the query only once. Upon A’s query on (µ⋆
0, µ

⋆
1) such

that |µ⋆
0| = |µ⋆

1|, C samples coin ←R {0, 1}, runs MFHE.ct⋆ ← MFHE.Enc(MFHE.pk, µ⋆
coin),

and sends the challenge cipehrtext MFHE.ct⋆ to A.

Guess. A outputs ĉoin ∈ {0, 1} as a guess of coin and terminates the game.

If the advantage of A for breaking the IND-CPA security of ΠMFHE defined by AdvIND-CPA
ΠMFHE,A(λ) :=∣∣∣Pr [ĉoin = coin

]
− 1

2

∣∣∣ is negligible in λ, ΠMFHE is said to satisfy the IND-CPA security.

2.3 Identity-based Encryption

An identity-based encryption (IBE) scheme with an identity space ID consists of four polynomial-
time algorithms ΠIBE = (IBE.Setup, IBE.KGen, IBE.Enc, IBE.Dec) defined as follows.

IBE.Setup(1λ)→ (IBE.mpk, IBE.msk). On input the security parameter 1λ, it outputs a master pub-
lic/secret key pair (IBE.mpk, IBE.msk), where IBE.mpk implicitly contains a message spaceM.
Although we do not explicitly describe, the following algorithms take IBE.mpk as input.

IBE.Enc(id, µ)→ IBE.ctid. On input an identity id ∈ ID and a message µ ∈ M, it outputs a
ciphertext IBE.ctid for id.

IBE.KGen(IBE.msk, id)→ IBE.skid. On input a master secret key IBE.msk, it outputs a secret key
IBE.skid for id.

IBE.Dec(IBE.skid, IBE.ctid)→ µ/⊥. On input IBE.skid and IBE.ctid, it outputs a decryption result µ
or a failure symbol ⊥.
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Definition 7 (Correctness). ΠIBE = (IBE.Setup, IBE.KGen, IBE.Enc, IBE.Dec) is said to satisfy the
correctness if for every µ ∈ M, (IBE.mpk, IBE.msk) ← IBE.Setup(1λ), and id ∈ ID, it holds that
µ← IBE.Dec(IBE.skid, IBE.ctid) with overwhelming probability, where IBE.ctid ← IBE.Enc(id, µ) and
IBE.skid ← IBE.KGen(IBE.msk, id).

Definition 8 (Adaptive IND-CPA Security). The adaptive IND-CPA security of ΠIBE = (IBE.Setup,
IBE.KGen, IBE.Enc, IBE.Dec) is defined by the security game between a challenger C and an adversary
A as follows.

Init. C runs (IBE.mpk, IBE.msk)← IBE.Setup(1λ) and sends IBE.mpk to A.

Phase 1. A is allowed to make the following secret key reveal queries to C.

Secret Key Reveal Query. Upon A’s query on id ∈ ID, C runs IBE.skid ←
IBE.KGen(IBE.msk, id) and sends IBE.skid to A.

Challenge Query. A is allowed to make the query only once. Upon A’s query on (id⋆, µ⋆
0, µ

⋆
1)

such that |µ⋆
0| = |µ⋆

1|, C samples coin ←R {0, 1}, runs IBE.ct⋆id⋆ ← IBE.Enc(id⋆, µ⋆
coin), and

sends the challenge cipehrtext IBE.ct⋆id⋆ to A.

Phase 2. A is allowed to make secret key reveal queries as in Phase 1 except that C outputs ⊥ if
id = id⋆ holds.

Guess. A outputs ĉoin ∈ {0, 1} as a guess of coin and terminates the game.

If the advantage of A for breaking the adaptive IND-CPA security of ΠIBE defined by

AdvIND-CPA
ΠIBE,A (λ) :=

∣∣∣Pr [ĉoin = 0 | coin = 0
]
− Pr

[
ĉoin = 0 | coin = 1

]∣∣∣ is negligible in λ, ΠIBE is said

to satisfy the adaptive IND-CPA security.

Definition 9 (Adaptive OW-CPA Security). The adaptive OW-CPA security of ΠIBE = (IBE.Setup,
IBE.KGen, IBE.Enc, IBE.Dec) is defined by the security game between a challenger C and an adversary
A as follows.

Init. C runs (IBE.mpk, IBE.msk)← IBE.Setup(1λ) and sends IBE.mpk to A.

Phase 1. A is allowed to make the following secret key reveal queries to C.

Secret Key Reveal Query. Upon A’s query on id ∈ ID, C runs IBE.skid ←
IBE.KGen(IBE.msk, id) and sends IBE.skid to A.

Challenge Query. A is allowed to make the query only once. Upon A’s query on id⋆, C samples
µ⋆ ←R M, runs IBE.ct⋆id⋆ ← IBE.Enc(id⋆, µ⋆), and sends the challenge cipehrtext IBE.ct⋆id⋆ to
A.

Phase 2. A is allowed to make secret key reveal queries as in Phase 1 except that C outputs ⊥ if
id = id⋆ holds.

Guess. A outputs µ̂ ∈M as a guess of µ⋆ and terminates the game.

If the advantage of A for breaking the adaptive OW-CPA security of ΠIBE defined by

AdvOW-CPA
ΠIBE,A (λ) :=

∣∣∣Pr [µ̂ = µ]− 1
|M|

∣∣∣ is negligible in λ, ΠIBE is said to satisfy the adaptive OW-CPA

security.
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2.4 Attribute-based Encryption

An attribute-based encryption (ABE) scheme for a predicate f : X × Y → {0, 1} consists of four
polynomial-time algorithms ΠABE = (ABE.Setup,ABE.KGen,ABE.Enc,ABE.Dec) defined as follows.

ABE.Setup(1λ)→ (ABE.mpk,ABE.msk). On input the security parameter 1λ, it outputs a master
public/secret key pair (ABE.mpk,ABE.msk), where ABE.mpk implicitly contains a message
spaceM. Although we do not explicitly describe, the following algorithms take ABE.mpk as
input.

ABE.Enc(x, µ)→ ABE.ctx. On input a ciphertext attribute x ∈ X and a message µ, it outputs a
ciphertext ABE.ctx for x.

ABE.KGen(ABE.msk, y)→ ABE.sky. On input a master secret key DABE.msk and a key attribute
y ∈ Y , it outputs a secret key ABE.sky for y.

ABE.Dec(ABE.sky,ABE.ctx)→ µ/⊥. On input ABE.sky and ABE.ctx, it outputs a decryption result
µ or a failure symbol ⊥.

Definition 10 (Correctness). ΠDABE = (ABE.Setup,ABE.KGen,ABE.Enc,ABE.Dec) is said to sat-
isfy the correctness if for every µ ∈M, (ABE.mpk,ABE.msk)← ABE.Setup(1λ), and (x, y) ∈ X ×Y
such that f(x, y) = 1, it holds that µ← ABE.Dec(ABE.sky,ABE.ctx) with overwhelming probability,
where ABE.ctx ← ABE.Enc(x, µ) and ABE.sky ← ABE.KGen(ABE.msk, y).

Definition 11 (Selective IND-CPA Security). The selective IND-CPA security of ΠABE =
(ABE.Setup,ABE.KGen,ABE.Enc,ABE.Dec) is defined by the security game between a challenger
C and an adversary A as follows.

Init. A declares a challenge ciphertext attribute x⋆ to C. Then, C runs (ABE.mpk,ABE.msk) ←
ABE.Setup(1λ) and sends ABE.mpk to A.

Phase 1. A is allowed to make the following secret key reveal queries to C.

Secret Key Reveal Query. Upon A’s query on y ∈ Y, C outputs ⊥ if f(x⋆, y) = 1 holds.
Otherwise, C runs ABE.sky ← ABE.KGen(ABE.msk, y) and sends ABE.sky to A.

Challenge Query. A is allowed to make the query only once. Upon A’s query on (µ⋆
0, µ

⋆
1) such

that |µ⋆
0| = |µ⋆

1|, C samples coin ←R {0, 1}, runs ABE.ct⋆x⋆ ← ABE.Enc(x⋆, µ⋆
coin), and sends

the challenge cipehrtext ABE.ct⋆x⋆ to A.

Phase 2. A is allowed to make secret key reveal queries as in Phase 1.

Guess. A outputs ĉoin ∈ {0, 1} as a guess of coin and terminates the game.

If the advantage of A for breaking the selective IND-CPA security of ΠABE defined by

AdvIND-CPA
ΠABE,A (λ) :=

∣∣∣Pr [ĉoin = 0 | coin = 0
]
− Pr

[
ĉoin = 0 | coin = 1

]∣∣∣ is negligible in λ, ΠABE is said

to satisfy the selective IND-CPA security.
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2.5 One-time Signatures

A one-time signature (OTS) scheme consists of three polynomial-time algorithms ΠOTS =
(OTS.KGen,OTS.Sign,OTS.Ver) defined as follows.

OTS.KGen(1λ)→ (sigk, vk). On input the security parameter 1λ, it outputs a signing/verification
key pair (sigk, vk).

OTS.Sign(sigk, µ)→ σ. On input sigk and a message µ, it outputs a signature σ.

OTS.Ver(vk, µ, σ)→ 0/1. On input vk, µ, and σ, it outputs 0 which indicates “reject” or 1 which
indicates “accept”.

Definition 12 (Correctness). ΠOTS = (OTS.KGen,OTS.Sign,OTS.Ver) is said to satisfy
the correctness if for every µ ∈ M and (sigk, vk) ← OTS.KGen(1λ), it holds that
OTS.Ver(vk, µ,OTS.Sign(sigk, µ)) = 1 with overwhelming probability.

Definition 13 (Strong Q-EUF-CMA Security). The strong Q-EUF-CMA security of ΠOTS =
(OTS.KGen,OTS.Sign,OTS.Ver) is defined by the security game between a challenger C and an
adversary A as follows.

Init. C runs (sigk⟨q⟩, vk⟨q⟩)← OTS.KGen(1λ) for q ∈ [Q] and sends {vk⟨q⟩}q∈[Q] to A.

Sign Query. A is allowed to make the query only once for each q ∈ [Q]. Upon A’s query on
(q, µ⟨q⟩), C runs σ⟨q⟩ ← OTS.Sign(sigk⟨q⟩, µ⟨q⟩) and sends σ⟨q⟩ to A.

Forge. A outputs (µ⋆, σ⋆) which is not a pair of a queried message and a returned signature of
sign queries and terminates the game.

If the advantage of A for breaking the EUF-CMA security of ΠOTS defined by AdvQ-EUF-CMA
ΠOTS,A (λ) :=

Pr
[∑

q∈[Q]OTS.Ver(vk
⟨q⟩, µ⋆, σ⋆) ≥ 1

]
is negligible in λ, ΠOTS is said to satisfy the EUF-CMA se-

curity.

Remark 4. If Q = 1, we simply call the strong EUF-CMA security. Moreover, A does not make a
sign query on (1, µ) but on µ.

2.6 Message Authentication Codes

A message authentication code (MAC) scheme consists of three polynomial-time algorithms ΠMAC =
(MAC.KGen,MAC.TAG,MAC.Ver) defined as follows.

MAC.KGen(1λ)→ mk. On input the security parameter 1λ, it outputs a MAC secret key mk.

MAC.TAG(mk, µ)→ τ . On input mk and a message µ, it outputs a tag τ .

MAC.Ver(mk, µ, τ)→ 0/1. On input mk, µ, and τ , it outputs 0 which indicates “reject” or 1 which
indicates “accept”.

Definition 14 (Correctness). ΠMAC = (MAC.KGen,MAC.TAG,MAC.Ver) is said to sat-
isfy the correctness if for every µ ∈ M and mk ← MAC.KGen(1λ), it holds that
MAC.Ver(mk, µ,MAC.TAG(mk, µ)) = 1 with overwhelming probability.
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Definition 15 (Strong EUF-CMA Security). The strong EUF-CMA security of ΠMAC =
(MAC.KGen,MAC.TAG,MAC.Ver) is defined by the security game between a challenger C and an
adversary A as follows.

Init. C runs mk← MAC.KGen(1λ).

Tag Query. Upon A’s query on µ, C runs τ ← MAC.TAG(mk, µ) and sends τ to A.

Verify Query. Upon A’s query on (µ, τ), C sends a result of MAC.Ver(mk, µ, τ) to A.

Forge. A outputs (µ⋆, τ⋆) which is not a pair of a queried message and a returned MAC tag of tag
queries and terminates the game.

If the advantage of A for breaking the strong EUF-CMA security of ΠMAC defined by
AdvEUF-CMA

ΠMAC,A (λ) := Pr [MAC.Ver(mk, µ⋆, τ⋆) = 1] is negligible in λ, ΠMAC is said to satisfy the strong
EUF-CMA security.

2.7 Hash Function

Definition 16 (Collision Resistance). A family of hash functions H = {Hi : {0, 1}∗ →R}i satisfies
the collision resistance if any PPT adversary A which is given H ←R H cannot find x, x′ such that
x ̸= x′ ∧H(x) = H(x′) with non-negligible probability.

3 Generic Construction of KFHE

In this section, we propose a generic construction of keyed KFHE. We describe the generic con-
struction in Section 3.1 and prove its KH-CCA security in Section 3.2.

3.1 Construction

We follow the idea explained in Section 1.3.2 and propose a generic construction of KFHE from
MFHE, IBE, OTS, and MAC.

KFHE.KGen(1λ)→ (KFHE.pk,KFHE.dk,KFHE.hk). Run MFHE.pp ← MFHE.Setup(1λ), (IBE.mpk,
IBE.msk) ← IBE.Setup(1λ), and mk ← MAC.KGen(1λ). Choose a one-time signature scheme
ΠOTS. Output KFHE.pk = (MFHE.pp, IBE.mpk,ΠOTS), KFHE.dk = (IBE.msk,mk), and
KFHE.hk = mk.

KFHE.Enc(KFHE.pk, µ)→ KFHE.ct. Parse KFHE.pk = (MFHE.pp, IBE.mpk,ΠOTS). Run

– (MFHE.pk,MFHE.sk)← MFHE.KGen(1λ),

– MFHE.ct← MFHE.Enc(MFHE.pk, µ),

– (vk, sigk)← OTS.KGen(1λ),

– IBE.ctvk ← IBE.Enc(vk,MFHE.sk),

– σ ← Sign (sigk, (vk,MFHE.pk, IBE.ctvk,MFHE.ct)).

Output

KFHE.ct = (vk,MFHE.pk, IBE.ctvk,MFHE.ct, σ).

We say that a pre-evaluated ciphertext KFHE.ct is valid if σ is a valid signature for (vk,
MFHE.pk, IBE.ctvk,MFHE.ct).
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KFHE.Eval(KFHE.pk,KFHE.hk, (KFHE.ct(ℓ))ℓ∈[L],C)→ KFHE.ctC/⊥. Output ⊥ if there are in-

valid ciphertexts KFHE.ct(ℓ) for some ℓ ∈ [L]. Otherwise, parse KFHE.pk =

(MFHE.pp, IBE.mpk,ΠOTS), KFHE.hk = mk, and KFHE.ct(ℓ) = (vk(ℓ),MFHE.pk(ℓ), IBE.ct
(ℓ)

vk(ℓ)
,

MFHE.ct(ℓ), σ(ℓ)) for ℓ ∈ [L]. Run

– MFHE.ctC ← MFHE.Eval((MFHE.pk(ℓ),MFHE.ct(ℓ))ℓ∈[L],C),

– τ ← MAC.TAG(mk, ((vk(ℓ),MFHE.pk(ℓ), IBE.ct
(ℓ)

vk(ℓ)
)ℓ∈[L],MFHE.ctC)).

Output

KFHE.ctC =
(
(vk(ℓ),MFHE.pk(ℓ), IBE.ct

(ℓ)

vk(ℓ)
)ℓ∈[L],MFHE.ctC, τ

)
.

We say that an evaluated ciphertext KFHE.ctC is valid if τ is a valid MAC tag for ((vk(ℓ),

MFHE.pk(ℓ), IBE.ct
(ℓ)

vk(ℓ)
)ℓ∈[L],MFHE.ctC).

KFHE.Dec(KFHE.pk,KFHE.dk,KFHE.ct/KFHE.ctC)→ µ/⊥. Parse KFHE.pk =
(MFHE.pp, IBE.mpk,ΠOTS) and KFHE.dk = (IBE.msk,mk). Proceed as follows.

Case of Pre-evaluated Ciphertexts. Output ⊥ if KFHE.ct is invalid. Otherwise, parse
KFHE.ct = (vk,MFHE.pk, IBE.ctvk,MFHE.ct, σ). Run

∗ IBE.skvk ← IBE.KGen(IBE.msk, vk),

∗ MFHE.sk← IBE.Dec(IBE.skvk, IBE.ctvk),

and output µ← MFHE.Dec(MFHE.sk,MFHE.ct).

Case of Evaluated Ciphertexts. Output ⊥ if KFHE.ctC is invalid. Otherwise, parse

KFHE.ctC =
(
(vk(ℓ),MFHE.pk(ℓ), IBE.ct

(ℓ)

vk(ℓ)
)ℓ∈[L],MFHE.ctC, τ

)
. For ℓ ∈ [L], run

∗ IBE.skvk(ℓ) ← IBE.KGen(IBE.msk, vk(ℓ)),

∗ MFHE.sk(ℓ) ← IBE.Dec(IBE.skvk(ℓ) , IBE.ct
(ℓ)

vk(ℓ)
),

and output µ← MFHE.Dec((MFHE.sk(ℓ))ℓ∈[L],MFHE.ctC).

Theorem 1. If the underlying MFHE scheme ΠMFHE, IBE scheme ΠIBE, one-time signature scheme
ΠOTS, and MAC scheme ΠMAC satisfies the correctness, the proposed KFHE scheme ΠKFHE satisfies
the correctness.

Proof of Theorem 1. For every µ ∈M,

• (KFHE.pk,KFHE.dk,KFHE.hk)← KFHE.KGen(1λ);

– MFHE.pp← MFHE.Setup(1λ),

– (IBE.mpk, IBE.msk)← IBE.Setup(1λ),

– KFHE.pk = (MFHE.pp, IBE.mpk,ΠOTS), KFHE.dk = (IBE.msk,mk), and KFHE.hk = mk,

• KFHE.ct← KFHE.Enc(KFHE.pk, µ);

– (MFHE.pk,MFHE.sk)← MFHE.KGen(1λ),

– MFHE.ct← MFHE.Enc(MFHE.pk, µ),

– (vk, sigk)← OTS.KGen(1λ),
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– IBE.ctvk ← IBE.Enc(vk,MFHE.sk),

– σ ← Sign (sigk, (vk,MFHE.pk, IBE.ctvk,MFHE.ct)),

the correctness of ΠOTS ensures that OTS.Ver(vk, (vk,MFHE.pk, IBE.ctvk,MFHE.ct), σ) = 1 holds,
the correctness of ΠIBE ensures that IBE.Dec(IBE.KGen(IBE.msk, vk), IBE.ctvk) = MFHE.sk holds,
and the correctness of ΠMFHE ensures that MFHE.Dec(MFHE.sk,MFHE.ct) = µ holds. Thus,
KFHE.Dec(KFHE.pk,KFHE.dk,KFHE.ct) = µ holds.

For every circuit C :ML →M, (µ(1), . . . , µ(L)) ∈ML,

• (KFHE.pk,KFHE.dk,KFHE.hk)← KFHE.KGen(1λ);

– MFHE.pp← MFHE.Setup(1λ),

– (IBE.mpk, IBE.msk)← IBE.Setup(1λ),

– KFHE.pk = (MFHE.pp, IBE.mpk,ΠOTS), KFHE.dk = (IBE.msk,mk), and KFHE.hk = mk,

• KFHE.ct(ℓ) ← KFHE.Enc(KFHE.pk, µ(ℓ)) for ℓ ∈ [L];

– (MFHE.pk(ℓ),MFHE.sk(ℓ))← MFHE.KGen(1λ),

– MFHE.ct(ℓ) ← MFHE.Enc(MFHE.pk(ℓ), µ(ℓ)),

– (vk(ℓ), sigk(ℓ))← OTS.KGen(1λ),

– IBE.ct
(ℓ)

vk(ℓ)
← IBE.Enc(vk(ℓ),MFHE.sk(ℓ)),

– σ(ℓ) ← Sign
(
sigk(ℓ), (vk(ℓ),MFHE.pk(ℓ), IBE.ct

(ℓ)
vk ,MFHE.ct(ℓ))

)
,

– KFHE.ct(ℓ) = (vk(ℓ),MFHE.pk(ℓ), IBE.ct
(ℓ)

vk(ℓ)
,MFHE.ct(ℓ), σ(ℓ)),

• KFHE.ctC ← KFHE.Eval(KFHE.pk,KFHE.hk, (KFHE.ct(ℓ))ℓ∈[L],C);

– MFHE.ctC ← MFHE.Eval((MFHE.pk(ℓ),MFHE.ct(ℓ))ℓ∈[L],C),

– τ ← MAC.TAG(mk, ((vk(ℓ),MFHE.pk(ℓ), IBE.ct
(ℓ)

vk(ℓ)
)ℓ∈[L],MFHE.ctC)),

– KFHE.ctC =
(
(vk(ℓ),MFHE.pk(ℓ), IBE.ct

(ℓ)

vk(ℓ)
)ℓ∈[L]MFHE.ctC, τ

)
,

the correctness of ΠMAC ensures that MAC.Ver(mk, ((vk(ℓ),MFHE.pk(ℓ), IBE.ct
(ℓ)

vk(ℓ)
)ℓ∈[L],MFHE.ctC),

τ) = 1 holds, the correctness of ΠIBE ensures that IBE.Dec(IBE.KGen(IBE.msk, vk(ℓ)), IBE.ct
(ℓ)

vk(ℓ)
) =

MFHE.sk(ℓ) holds, and the correctness of ΠMFHE ensures that MFHE.Dec((MFHE.sk(ℓ))ℓ∈[L],

MFHE.ctC) = C((µ(ℓ))ℓ∈[L]). Thus, KFHE.Dec(KFHE.pk,KFHE.dk,KFHE.ctC) = C((µ(ℓ))ℓ∈[L])
holds.

Theorem 2. The proposed KFHE scheme ΠKFHE satisfies compactness if the underlying MFHE
scheme satisfies compactness.

Proof of Theorem 2. For every λ,

• (KFHE.pk,KFHE.dk,KFHE.hk)← KFHE.KGen(1λ);

– MFHE.pp← MFHE.Setup(1λ),

– (IBE.mpk, IBE.msk)← IBE.Setup(1λ),
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– KFHE.pk = (MFHE.pp, IBE.mpk,ΠOTS), KFHE.dk = (IBE.msk,mk), and KFHE.hk = mk,

• KFHE.ct(ℓ) ← KFHE.Enc(KFHE.pk, µ(ℓ)) for ℓ ∈ [L];

– (MFHE.pk(ℓ),MFHE.sk(ℓ))← MFHE.KGen(1λ),

– MFHE.ct(ℓ) ← MFHE.Enc(MFHE.pk(ℓ), µ(ℓ)),

– (vk(ℓ), sigk(ℓ))← OTS.KGen(1λ),

– IBE.ct
(ℓ)

vk(ℓ)
← IBE.Enc(vk(ℓ),MFHE.sk(ℓ)),

– σ(ℓ) ← Sign
(
sigk(ℓ), (vk(ℓ),MFHE.pk(ℓ), IBE.ct

(ℓ)
vk ,MFHE.ct(ℓ))

)
,

– KFHE.ct(ℓ) = (vk(ℓ),MFHE.pk(ℓ), IBE.ct
(ℓ)

vk(ℓ)
,MFHE.ct(ℓ), σ(ℓ)),

• KFHE.ctC ← KFHE.Eval(KFHE.pk,KFHE.hk, (KFHE.ct(ℓ))ℓ∈[L],C);

– MFHE.ctC ← MFHE.Eval((MFHE.pk(ℓ),MFHE.ct(ℓ))ℓ∈[L],C),

– τ ← MAC.TAG(mk, ((vk(ℓ),MFHE.pk(ℓ), IBE.ct
(ℓ)

vk(ℓ)
)ℓ∈[L],MFHE.ctC)),

– KFHE.ctC =
(
(vk(ℓ),MFHE.pk(ℓ), IBE.ct

(ℓ)

vk(ℓ)
)ℓ∈[L]MFHE.ctC, τ

)
,

the compactness of ΠMFHE ensures that |MFHE.ctC| is independent of the size and depth of C and

at most L · poly(λ), and |(vk(ℓ),MFHE.pk(ℓ), IBE.ct
(ℓ)

vk(ℓ)
)ℓ∈[L]| and |τ | are independent of the size and

depth of C and at most L ·poly(λ). Thus, |KFHE.ctC| is independent of the size and depth of C and
at most L · poly(λ).

3.2 Security

Theorem 3 (KH-CCA Security of ΠKFHE). If the underlying MFHE scheme ΠMFHE satisfies the
IND-CPA security, IBE scheme ΠIBE satisfies the selective IND-CPA security, one-time signature
scheme ΠOTS and MAC scheme ΠMAC satisfy the strong EUF-CMA security, the proposed KFHE
scheme ΠKFHE satisfies the KH-CCA security.

Although we already explained the intuition of a proof in Section 1.3.2, we provide a more
detailed overview. We prove Theorem 3 by using a sequence of games Game0, · · · ,Game3. Let
KFHE.ct⋆ = (vk⋆,MFHE.pk⋆, IBE.ct⋆vk⋆ ,MFHE.ct⋆, σ⋆) denote a challenge ciphertext. We can prove
Theorem 3 when MFHE.ct⋆ which is an encryption of µ⋆

coin becomes indistinguishable from an
encryption of a random string based on the IND-CPA security of ΠMFHE in Game3. To prove the
task, we change IBE.ct⋆vk⋆ which is an encryption of MFHE.sk⋆ to be an encryption of a random
string in Game3, where the selective IND-CPA security of ΠIBE ensures Game2 ≈c Game3. For this
purpose, we have to ensure that the challenger C does not use an IBE secret key IBE.skvk⋆ to answer
all the adversary A’s decryption queries. In other words, what all we have to ensure is that A does
not make decryption queries on pre-evaluated ciphertexts KFHE.ct = (vk, · · · ) such that vk = vk⋆

and evaluated ciphertexts KFHE.ctC = ((vk(ℓ), · · ·)ℓ∈[L], · · · ) such that vk⋆ ∈ (vk(ℓ))ℓ∈[L]. We can
prove the claim for pre-evaluated ciphertexts (resp. evaluated ciphertexts) in Game1 (resp. Game2)
by following the CHK transformation [CHK04] (resp. the encrypt-then-MAC paradigm [BN08]).
In particular, the strong EUF-CMA security of ΠOTS (resp. ΠMAC) ensures Game0 ≈c Game1 (resp.
Game1 ≈c Game2).

Proof of Theorem 3. We prove the theorem by using a sequence of games Game0, · · · ,Game4, where
Ei denotes an event that A wins in Gamei.
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Game0. This is the KH-CCA security game between the challenger C and the adversary A. Hereafter,
let

KFHE.ct⋆ = (vk⋆,MFHE.pk⋆, IBE.ct⋆vk⋆ ,MFHE.ct⋆, σ⋆).

denote a challenge ciphertext, where IBE.ct⋆vk⋆ and MFHE.ct⋆ are encryptions of MFHE.sk⋆

and µ⋆
coin, respectively. Due to the definition of the KH-CCA security game, C stores the

challenge ciphertext KFHE.ct⋆ and its evaluation results in the list L.

Game1. This is the same as Game0 except that upon A’s evaluation queries and decryption
queries on pre-evaluated ciphertexts. Upon A’s evaluation queries on ((KFHE.ct(ℓ) =
(vk(ℓ), · · · , σ(ℓ)))ℓ∈[L],C) such that vk⋆ ∈ (vk(ℓ))ℓ∈[L] ∧ KFHE.ct⋆ /∈ (KFHE.ct(ℓ))ℓ∈[L], C al-
ways outputs ⊥. Upon A’s decryption queries on KFHE.ct = (vk, · · · , σ) such that vk = vk⋆,
C always outputs ⊥.
The output is not ⊥ only if σ(ℓ) and σ are valid signatures accepted by vk⋆. The strong
EUF-CMA security of ΠOTS ensures that A cannot forge a signature σ(ℓ) or σ. Thus, Game1 ≈c

Game2 holds.

Lemma 1 (Game0 ≈c Game1). If ΠOTS satisfies the strong EUF-CMA security, Game0 and Game1
are computationally indistinguishable for any PPT A.

Proof of Lemma 1. Let F1 denote an event that A makes an evaluation query on ((KFHE.ct(ℓ) =

(vk(ℓ),MFHE.pk(ℓ), IBE.ct
(ℓ)

vk(ℓ)
,MFHE.ct(ℓ), σ(ℓ)))ℓ∈[L],C) such that

vk⋆ ∈ (vk(ℓ))ℓ∈[L] ∧ KFHE.ct⋆ /∈ (KFHE.ct(ℓ))ℓ∈[L]∧∑
ℓ∈[L]

OTS.Ver(vk(ℓ), (vk(ℓ),MFHE.pk(ℓ), IBE.ct
(ℓ)

vk(ℓ)
,MFHE.ct(ℓ)), σ(ℓ)) = L

or a decryption query on a pre-evaluated ciphertext KFHE.ct = (vk,MFHE.pk, IBE.ctvk,MFHE.ct, σ)
such that

vk = vk⋆ ∧ KFHE.ct ̸= KFHE.ct⋆ ∧ OTS.Ver(vk, (vk,MFHE.pk, IBE.ctvk,MFHE.ct), σ) = 1.

If
∑

ℓ∈[L]OTS.Ver(vk
(ℓ), (vk(ℓ),MFHE.pk(ℓ), IBE.ct

(ℓ)

vk(ℓ)
,MFHE.ct(ℓ)), σ(ℓ)) < L holds upon A’s evalu-

ation query, there is an invalid pre-evaluated ciphertext in (KFHE.ct(ℓ))ℓ∈[L] and the design of ΠKFHE

ensures that an answer to the query is ⊥. If KFHE.ct = KFHE.ct⋆ holds upon A’s decryption query,
the definition of the KH-CCA security ensures that an answer to the query is ⊥. If OTS.Ver(vk⋆, (vk⋆,
MFHE.pk, IBE.ctvk,MFHE.ct), σ) = 0 holds upon A’s decryption query, the pre-evaluated cipher-
text KFHE.ct is invalid and the design of ΠKFHE ensures that an answer to the query is ⊥. Thus,
Game0 = Game1 holds if F1 does not occur. Therefore, it holds that Pr[E0] ≤ Pr[E1] + Pr[F1].

We construct a reduction algorithm B1 which interacts with A against ΠKFHE and breaks the
strong EUF-CMA security of ΠOTS. After B1 receives vk⋆ from C in the strong EUF-CMA security
game of ΠOTS, it runs MFHE.pp ← MFHE.Setup(1λ), (IBE.mpk, IBE.msk) ← IBE.Setup(1λ), and
mk ← MAC.KGen(1λ), and sends KFHE.pk = (MFHE.pp, IBE.mpk,ΠOTS) to A. Since B1 knows
KFHE.dk = (IBE.msk,mk) and KFHE.hk = mk, it can properly answer all A’s homomorphic eval-
uation key reveal query, evaluation queries, and decryption queries on evaluated ciphertexts until
F1 occurs.

Upon A’s challenge query on (µ⋆
0, µ

⋆
1), B1 samples coin ←R {0, 1}, runs

(MFHE.pk⋆,MFHE.sk⋆) ← MFHE.KGen(1λ), MFHE.ct⋆ ← MFHE.Enc(MFHE.pk⋆, µ⋆
coin), and

24



IBE.ct⋆vk⋆ ← IBE.Enc(vk⋆,MFHE.sk⋆), makes a sign query on (vk⋆,MFHE.pk⋆, IBE.ct⋆vk⋆ ,MFHE.ct⋆)
to C and receives σ⋆, and sends KFHE.ct⋆ = (vk⋆,MFHE.pk⋆, IBE.ct⋆vk⋆ ,MFHE.ct⋆, σ⋆) to A.

Upon A’s evaluation query on ((KFHE.ct(ℓ))ℓ∈[L],C), B1 can check whether F1 occurs. If∑
ℓ∈[L]OTS.Ver(vk

(ℓ), (vk(ℓ),MFHE.pk(ℓ), IBE.ct
(ℓ)

vk(ℓ)
,MFHE.ct(ℓ)), σ(ℓ)) < L holds, B1 sends ⊥ to

A due to the design of ΠKFHE. If (vk⋆ /∈ (vk(ℓ))ℓ∈[L] ∨ KFHE.ct⋆ ∈ (KFHE.ct(ℓ))ℓ∈[L]) ∧∑
ℓ∈[L]OTS.Ver(vk

(ℓ), (vk(ℓ),MFHE.pk(ℓ), IBE.ct
(ℓ)

vk(ℓ)
,MFHE.ct(ℓ)), σ(ℓ)) = L holds, B1 sends the re-

sult of KFHE.Eval(KFHE.pk,KFHE.hk, (KFHE.ct(ℓ))ℓ∈[L],C) to A. Upon A’s decryption query
on a pre-evaluated ciphertext KFHE.ct, B1 can check whether F1 occurs. If KFHE.ct =
KFHE.ct⋆ ∨ OTS.Ver(vk, (vk,MFHE.pk, IBE.ctvk,MFHE.ct), σ) = 0 holds, B1 sends ⊥ to A due
to the definition of the KH-CCA security and the design of ΠKFHE. If vk ̸= vk⋆ ∧ KFHE.ct ̸=
KFHE.ct⋆ ∧ OTS.Ver(vk⋆, (vk,MFHE.pk, IBE.ctvk,MFHE.ct), σ) = 1 holds, B1 sends the result of
KFHE.Dec(KFHE.pk,KFHE.dk,KFHE.ct) to A. Otherwise, if F1 occurs, B1 knows KFHE.ct =
(vk,MFHE.pk, IBE.ctvk,MFHE.ct, σ) such that vk = vk⋆ ∧ KFHE.ct ̸= KFHE.ct⋆ ∧ OTS.Ver(vk⋆, (vk,
MFHE.pk, IBE.ctvk,MFHE.ct), σ) = 1. Then, B1 sends ((vk,MFHE.pk, IBE.ctvk,MFHE.ct), σ) to C as
a pair of a message and a forged signature. Since the condition KFHE.ct ̸= KFHE.ct⋆ ensures that
((vk,MFHE.pk, IBE.ctvk,MFHE.ct), σ) is not a pair of a queried message and a returned signature,
while the condition OTS.Ver(vk⋆, (vk,MFHE.pk, IBE.ctvk,MFHE.ct), σ) = 1 ensures that σ is a valid
signature of a message (vk,MFHE.pk, IBE.ctvk,MFHE.ct), B1 breaks the strong EUF-CMA security
of ΠOTS with probability 1 if F1 occurs. Therefore, it holds that

Pr[E0] ≤ Pr[E1] + AdvEUF-CMA
ΠOTS,B1

(λ).

Game2. This is the same as Game1 except that upon A’s decryption queries on evaluated ciphertexts
KFHE.ctC = ((vk(ℓ), · · ·)ℓ∈[L], · · · , τ) such that vk⋆ ∈ {vk(ℓ)}ℓ∈[L], C always outputs ⊥.
The output is not ⊥ only if τ is a valid forged tag. The strong EUF-CMA security of ΠMAC

ensures that A cannot forge a tag τ . Thus, Game2 ≈c Game3 holds.

Lemma 2 (Game1 ≈c Game2). If ΠMAC satisfies the strong EUF-CMA security, Game1 and Game2
are computationally indistinguishable for any PPT A.

Proof of Lemma 2. Let F2 denote an event that A makes a decryption query on an evaluated

ciphertext KFHE.ctC = ((vk(ℓ),MFHE.pk(ℓ), IBE.ct
(ℓ)

vk(ℓ)
)ℓ∈[L],MFHE.ctC, τ) such that

vk⋆ ∈ {vk(ℓ)}ℓ∈[L] ∧ KFHE.ctC /∈ L∧

MAC.Ver(mk, ((vk(ℓ),MFHE.pk(ℓ), IBE.ct
(ℓ)

vk(ℓ)
)ℓ∈[L],MFHE.ctC), τ) = 1.

If KFHE.ctC ∈ L holds, the definition of the KH-CCA security ensures that an answer to the query

is ⊥. If MAC.Ver(mk, ((vk(ℓ),MFHE.pk(ℓ), IBE.ct
(ℓ)

vk(ℓ)
)ℓ∈[L],MFHE.ctC), τ) = 0 holds, the evaluated

ciphertext is invalid and the design of ΠKFHE ensures that the answer to the query is ⊥. Thus,
Game1 = Game2 holds if F2 does not occur. Therefore, it holds that Pr[E1] ≤ Pr[E2] + Pr[F2].

We construct a reduction algorithm B2 which interacts with A against ΠKFHE and breaks the
strong EUF-CMA security of ΠMAC with C. Since A can make decryption queries only until it
makes a homomorphic evaluation key reveal query, A does not make a homomorphic evaluation
key reveal query during the reduction. After B2 begins the strong EUF-CMA security game of ΠMAC,
it runs MFHE.pp← MFHE.Setup(1λ) and (IBE.mpk, IBE.msk)← IBE.Setup(1λ), chooses a one-time
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signature scheme ΠOTS, and sends KFHE.pk = (MFHE.pp, IBE.mpk,ΠOTS) to A. B2 answers the
challenge query in the same way as in Game1.

Upon A’s evaluation query on ((KFHE.ct(ℓ) = (vk(ℓ),MFHE.pk(ℓ), IBE.ct
(ℓ)

vk(ℓ)
,

MFHE.ct(ℓ), σ(ℓ)))ℓ∈[L],C), B2 sends ⊥ to A if vk⋆ ∈ (vk(ℓ))ℓ∈[L] ∧ KFHE.ct⋆ /∈
(KFHE.ct(ℓ))ℓ∈[L] holds as we modified in Game1. B2 also sends ⊥ to A if∑

ℓ∈[L]OTS.Ver(vk
(ℓ), (vk(ℓ),MFHE.pk(ℓ), IBE.ct

(ℓ)

vk(ℓ)
,MFHE.ct(ℓ)), σ(ℓ)) < L holds since

there is an invalid pre-evaluated ciphertext in (KFHE.ct(ℓ))ℓ∈[L]. Otherwise, B2 runs

MFHE.ctC ← MFHE.Eval((MFHE.pk(ℓ),MFHE.ct(ℓ))ℓ∈[L],C), makes a tag query on ((vk(ℓ),

MFHE.pk(ℓ), IBE.ct
(ℓ)

vk(ℓ)
)ℓ∈[L],MFHE.ctC) and receives τ , and sends KFHE.ctC = ((vk(ℓ),

MFHE.pk(ℓ), IBE.ct
(ℓ)

vk(ℓ)
)ℓ∈[L],MFHE.ctC, τ) to A.

Upon A’s decryption query on a pre-evaluated ciphertext KFHE.ct = (vk, · · · ), B2 sends
⊥ to A if vk = vk⋆ holds as we modified in Game1. Otherwise, B2 sends the result of
KFHE.Dec(KFHE.pk,KFHE.dk = (IBE.msk,⊥),KFHE.ct) to A, where the answer is properly dis-
tributed since mk is not required. Upon A’s decryption query on an evaluated ciphertext

KFHE.ctC = ((vk(ℓ),MFHE.pk(ℓ), IBE.ct
(ℓ)

vk(ℓ)
)ℓ∈[L],MFHE.ctC, τ), B2 can check whether F2 occurs by

making a verification query on (((vk(ℓ),MFHE.pk(ℓ), IBE.ct
(ℓ)

vk(ℓ)
)ℓ∈[L],MFHE.ctC), τ) to C and receiv-

ing the result of MAC.Ver(mk, ((vk(ℓ),MFHE.pk(ℓ), IBE.ct
(ℓ)

vk(ℓ)
)ℓ∈[L],MFHE.ctC), τ). If KFHE.ctC ∈

L∨MAC.Ver(mk, ((vk(ℓ),MFHE.pk(ℓ), IBE.ct
(ℓ)

vk(ℓ)
)ℓ∈[L],MFHE.ctC), τ) = 0 holds, B2 sends ⊥ to A due

to the definition of the KH-CCA security and the design of ΠKFHE. If vk
⋆ /∈ {vk(ℓ)}ℓ∈[L]∧KFHE.ctC /∈

L ∧MAC.Ver(mk, ((vk(ℓ),MFHE.pk(ℓ), IBE.ct
(ℓ)

vk(ℓ)
)ℓ∈[L],MFHE.ctC), τ) = 1 holds, B2 sends the result

of MFHE.Dec((IBE.Dec(IBE.KGen(IBE.msk, vk(ℓ)), IBE.ct
(ℓ)

vk(ℓ)
))ℓ∈[L],MFHE.ctC) to A. Otherwise, if

F2 occurs, B2 knows KFHE.ctC = ((vk(ℓ),MFHE.pk(ℓ), IBE.ct
(ℓ)

vk(ℓ)
)ℓ∈[L],MFHE.ctC, τ) such that vk⋆ ∈

{vk(ℓ)}ℓ∈[L] ∧ KFHE.ctC /∈ L ∧ MAC.Ver(mk, ((vk(ℓ),MFHE.pk(ℓ), IBE.ct
(ℓ)

vk(ℓ)
)ℓ∈[L],MFHE.ctC), τ) =

1. Then, B2 sends (((vk(ℓ),MFHE.pk(ℓ), IBE.ct
(ℓ)

vk(ℓ)
)ℓ∈[L],MFHE.ctC), τ) to C as a pair of a

message and a forged tag. Since the condition KFHE.ctC ̸∈ L ensures that (((vk(ℓ),

MFHE.pk(ℓ), IBE.ct
(ℓ)

vk(ℓ)
)ℓ∈[L],MFHE.ctC), τ) is not a pair of a queried message and a returned tag,

while the condition MAC.Ver(mk, ((vk(ℓ),MFHE.pk(ℓ), IBE.ct
(ℓ)

vk(ℓ)
)ℓ∈[L],MFHE.ctC), τ) = 1 ensures

that τ is a valid tag of a message ((vk(ℓ),MFHE.pk(ℓ), IBE.ct
(ℓ)

vk(ℓ)
)ℓ∈[L],MFHE.ctC), B2 breaks the

strong EUF-CMA security of ΠMAC with probability 1 if F2 occurs. Therefore, it holds that

Pr[E1] ≤ Pr[E2] + AdvEUF-CMA
ΠMAC,B2

(λ).

Game3. This is the same as Game2 except that IBE.ct
⋆
vk⋆ is an encryption of a random string sampled

independently from MFHE.sk⋆.

The selective IND-CPA security of the IBE scheme ΠIBE ensures that Game2 ≈c Game3 holds.
In short, the reduction algorithm runs (vk⋆, sigk⋆) ← OTS.KGen(1λ) at the beginning of the
security game, and declares vk⋆ as the challenge identity of the IBE security game. In the
challenge phase, the reduction algorithm runs (MFHE.pk⋆,MFHE.sk⋆) ← MFHE.KGen(1λ),
samples a random string µ⋆ whose length is the same as MFHE.sk⋆ but the distribution is
independent of MFHE.sk⋆. Then, the reduction algorithm declares (MFHE.sk⋆, µ⋆) as the
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challenge messages in the IBE security game and receives IBE.ct⋆vk⋆ from the IBE challenger.
The reduction algorithm can create the other elements of the challenge ciphertext by itself.
Due to the changes in Game1 and Game2, the reduction algorithm can answer all A’s de-
cryption queries by receiving IBE secret keys of vk such that vk ̸= vk⋆. Thus, it holds that
Game3 ≈c Game4.

Lemma 3 (Game2 ≈c Game3). If ΠIBE satisfies the selective IND-CPA security, Game2 and Game3
are computationally indistinguishable for any PPT A.

Proof of Lemma 3. We construct a reduction algorithm B3 which interacts with A against ΠKFHE

and breaks the selective IND-CPA security of ΠIBE. At the beginning of the game, B3 runs
(vk⋆, sigk⋆)← OTS.KGen(1λ) and declares vk⋆ to C as the challenge identity of the selective IND-CPA
security game of ΠIBE. After B3 receives IBE.mpk from C, it runs MFHE.pp ← MFHE.Setup(1λ)
and mk ← MAC.KGen(1λ), chooses a one-time signature scheme ΠOTS, and sends KFHE.pk =
(MFHE.pp, IBE.mpk,ΠOTS) to A. Since B3 knows KFHE.hk = mk, it can properly answer all A’s
homomorphic evaluation key reveal query and evaluation queries.

Upon A’s decryption query on a pre-evaluated ciphertext KFHE.ct = (vk,MFHE.pk,
IBE.ctvk,MFHE.ct, σ), B3 sends ⊥ to A if vk = vk⋆ holds due to the modification in Game1. B3
also sends ⊥ to A if OTS.Ver(vk, (vk,MFHE.pk, IBE.ctvk,MFHE.ct), σ) = 0 holds due to the design
of ΠKFHE. Otherwise, B3 makes an IBE secret key reveal query on vk to C and receives IBE.skvk,
then sends the result of MFHE.Dec(IBE.Dec(IBE.skvk, IBE.ctvk),MFHE.ct) to A. Upon A’s decryp-
tion query on an evaluated ciphertext KFHE.ctC = ((vk(ℓ),MFHE.pk(ℓ), IBE.ct

(ℓ)

vk(ℓ)
)ℓ∈[L],MFHE.ctC,

τ), B3 sends ⊥ to A if vk⋆ ∈ {vk(ℓ)}ℓ∈[L] holds due to the modification in Game2. B3 also sends ⊥
to A if

∑
ℓ∈[L]OTS.Ver(vk

(ℓ), (vk(ℓ),MFHE.pk(ℓ), IBE.ct
(ℓ)

vk(ℓ)
,MFHE.ct(ℓ)), σ(ℓ)) < L holds due to the

design of ΠKFHE. Otherwise, B3 makes secret key reveal queries on vk(ℓ) to C and receives IBE.skvk(ℓ)

for ℓ ∈ [L], then sends the result of MFHE.Dec((IBE.Dec(IBE.skvk(ℓ) , IBE.ct
(ℓ)

vk(ℓ)
))ℓ∈[L],MFHE.ctC) to

A.
Upon A’s challenge query on (µ⋆

0, µ
⋆
1), B3 samples coin ←R {0, 1}, runs

(MFHE.pk⋆,MFHE.sk⋆) ← MFHE.KGen(1λ) and MFHE.ct⋆ ← MFHE.Enc(MFHE.pk⋆, µ⋆
coin), makes

an IBE challenge query on (MFHE.sk⋆, µ⋆) to C, where µ⋆ is a random string with the same length as
MFHE.sk⋆, receives IBE.ct⋆vk⋆ , further runs σ

⋆ ← Sign
(
sigk⋆, (vk⋆,MFHE.pk⋆, IBE.ct⋆vk⋆ ,MFHE.ct⋆)

)
,

and sends KFHE.ct⋆ = (vk⋆,MFHE.pk⋆, IBE.ct⋆vk⋆ ,MFHE.ct⋆, σ⋆) to A. After B3 receives ĉoin from

A, B3 sends 0 to C if ĉoin = coin and 1 to C otherwise.
Although B3 makes secret key reveal queries to C for answering A’s decryption queries, the

modifications in Game1 and Game2 ensure that B3 does not make a secret key reveal query on vk⋆.
If IBE.ct⋆vk⋆ is an encryption of MFHE.sk⋆ (resp. µ⋆), KFHE.ct⋆ follow the distribution in Game2
(resp. Game3). Therefore, it holds that

|Pr[E2]− Pr[E3]| ≤ AdvIND-CPA
ΠIBE,B3

(λ).

Lemma 4 (KH-CCA Security in Game3). If ΠMFHE satisfies the IND-CPA security, ΠKFHE satisfies
the KH-CCA security in Game3.

Proof of Lemma 4. We construct a reduction algorithm B4 which interacts with A against ΠKFHE

and breaks the IND-CPA security of ΠMFHE. After B4 receives (MFHE.pp,MFHE.pk⋆) from C, it
runs (IBE.mpk, IBE.msk)← IBE.Setup(1λ) and mk← MAC.KGen(1λ), chooses a one-time signature
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scheme ΠOTS, and sends KFHE.pk = (MFHE.pp, IBE.mpk,ΠOTS) to A. Since B4 knows KFHE.dk =
(IBE.msk,mk) and KFHE.hk = mk, it can properly answer all A’s homomorphic evaluation key
reveal query, evaluation queries, and decryption queries.

Upon A’s challenge query on (µ⋆
0, µ

⋆
1), B3 samples coin←R {0, 1} and µ⋆ ←RM, makes a chal-

lenge query on the same (µ⋆
0, µ

⋆
1) to C and receives MFHE.ct⋆, runs (vk⋆, sigk⋆) ← OTS.KGen(1λ),

IBE.ct⋆id⋆ ← IBE.Enc(vk⋆, µ⋆), and σ⋆ ← Sign(sigk⋆, (vk⋆,MFHE.pk⋆, IBE.ct⋆vk⋆ ,MFHE.ct⋆)), then

sends KFHE.ct⋆ = (vk⋆,MFHE.pk⋆, IBE.ct⋆vk⋆ ,MFHE.ct⋆, σ⋆) to A. After B4 receives ĉoin from A, B4
sends the same ĉoin to C.

If MFHE.ct⋆ is an encryption of µ⋆
0 (resp. µ⋆

1), KFHE.ct
⋆ is also an encryption of µ⋆

0 (resp. µ⋆
1).

Therefore, it holds that ∣∣∣∣Pr[E3]−
1

2

∣∣∣∣ ≤ AdvIND-CPA
ΠMFHE,B4

(λ).

We complete the proof of Theorem 3 since it holds that

AdvKH-CCA
ΠKFHE,A(λ) =

∣∣∣∣Pr[E0]−
1

2

∣∣∣∣
≤
∑
i∈[3]

|Pr[Ei−1]− Pr[Ei]|+
∣∣∣∣Pr[E3]−

1

2

∣∣∣∣
≤ AdvEUF-CMA

ΠOTS,B1
(λ) + AdvEUF-CMA

ΠMAC,B2
(λ) + AdvIND-CPA

ΠIBE,B3
(λ) + AdvIND-CPA

ΠMFHE,B4
(λ).

4 Attribute-based Keyed (Fully) Homomorphic Encryption

We define attribute-based keyed fully homomorphic encryption (ABKFHE). An attribute-based
keyed fully homomorphic encryption (ABKFHE) scheme for a predicate f : X ×Y → {0, 1} consists
of five polynomial-time algorithms ΠABKFHE = (Setup,KGen,Enc,Eval,Dec):

Setup(1λ)→ (mpk,msk). On input the security parameter 1λ, it outputs a master public/secret key
pair (mpk,msk), where mpk implicitly contains a message spaceM.

KGen(mpk,msk, y)→ (dky, hky). On input a mpk, msk, and a key attribute y ∈ Y , it outputs a
decryption key dky and a homomorphic evaluation key hky for y.

Enc(mpk, x, µ)→ ctx. On input a mpk, a ciphertext attribute x ∈ X , and a message µ ∈ M, it
outputs a pre-evaluated ciphertext ctx for x.

Eval(mpk, hky, (ct
(ℓ)

x(ℓ))ℓ∈[L],C)→ ctx,C/⊥. On input a mpk, hky for y, a circuit C : ML → M,

and a tuple of L ciphertexts (ct
(ℓ)

x(ℓ))ℓ∈[L], it outputs an evaluated ciphertext ctx,C for x =

(x(1), . . . , x(L)) or a rejection symbol ⊥.

Dec(mpk, dky, ctx/ctx,C)→ µ/⊥. On input a mpk, dky and ctx/ctx,C, it outputs a decryption result
µ ∈M or a rejection symbol ⊥.

It is required that an ΠABKFHE satisfies both correctness and compactness.
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Definition 17 (Correctness). For a vector of ciphertext attributes x = (x(1), . . . , x(L)) ∈ XL and
a key attribute y ∈ Y, we use the notation f(x, y) = 1 if it holds that f(x(ℓ), y) = 1 for all ℓ ∈ [L].
ΠABKFHE = (Setup,KGen,Enc,Eval,Dec) satisfies correctness if the following conditions hold with
overwhelming probability:

• For every (mpk,msk) ← Setup(1λ), (x, y) ∈ X × Y such that f(x, y) = 1, (dky, hky) ←
KGen(mpk,msk, y), and µ ∈M, it holds that Dec(mpk, dky,Enc(mpk, x, µ)) = µ.

• For every (mpk,msk) ← Setup(1λ), (x = (x(1), . . . , x(L)), y, y′) ∈ XL × Y2 such that
f(x, y) = f(x, y′) = 1, (dky, hky) ← KGen(mpk,msk, y), (dky′ , hky′) ← KGen(mpk,msk, y′),
circuit C : ML → M, and (µ(1), . . . , µ(L)) ∈ ML, it holds that Dec(mpk, dky, ctx,C) =

C(µ(1), . . . , µ(L)) with overwhelming probability, where ctx,C ← Eval(mpk, hky′ , (ct
(ℓ)

x(ℓ))ℓ∈[L],C)

and ct
(ℓ)

x(ℓ) ← Enc(mpk, x(ℓ), µ(ℓ)) for every ℓ ∈ [L].

Definition 18 (Compactness). ΠABKFHE = (Setup,KGen,Enc,Eval,Dec) satisfies compactness if

there exists a polynomial poly such that |ctx,C|, where ctx,C ← Eval(mpk, hky, (ct
(ℓ)

x(ℓ))ℓ∈[L],C), is
independent of the size and depth of C and at most L · poly(λ) for every security parameter λ.

Remark 5. An attribute-based keyed homomorphic encryption (ABKHE) scheme ΠABKHE = (Setup,
KGen,Enc,Eval,Dec) is defined in the same way except the Eval algorithm in two points. At first,
since we will construct a fully compact ABKHE scheme ΠABKHE in the sense that a pre-evaluated

ciphertext ctx and an evaluated ciphertext ctx,C follow the same distribution, ct
(1)

x(1) , . . . , ct
(L)

x(L) which

are inputs of Eval satisfy x = x(1) = · · · = x(L). Next, since we will construct an ABKHE scheme
ΠABKHE with multiplicative homomorphism, Eval does not take a circuit C as input. The correctness

ensures that a decryption result of ctx ← Eval(mpk, hky, (ct
(ℓ)
x )ℓ∈[L]) is a product of decryption results

of ct
(ℓ)
x .

We define the KH-CCA security for ABKFHE by following Definition 3.

Definition 19 (KH-CCA security). The adaptive KH-CCA security of ΠABKFHE = (Setup,KGen,Enc,
Eval,Dec) is defined by the security game between a challenger C and an adversary A as follows.

Init. C runs (mpk,msk)← Setup(1λ) and sends mpk to A.

Phase 1. A is allowed to make the following four types of queries to C.

Decryption Key Reveal Query. Upon A’s query on y ∈ Y, C runs (dky, hky) ←
KGen(mpk,msk, y) and sends dky to A.

Homomorphic Evaluation Key Reveal Query. Upon A’s query on y ∈ Y, C runs (dky,
hky)← KGen(mpk,msk, y) and sends hky to A.

Evaluation Query. Upon A’s query on (y, (ct
(ℓ)

x(ℓ))ℓ∈[L],C), C runs (dky, hky) ← KGen(mpk,

msk, y) and sends the result of Eval(mpk, hky, (ct
(ℓ)

x(ℓ))ℓ∈[L],C) to A.
Decryption Query. Upon A’s query on (y, ctx/ctx,C), C runs (dky, hky)← KGen(mpk,msk,

y) and sends the result of Dec(mpk, dky, ctx/ctx,C) to A.

Challenge Query. A is allowed to make the query only once. Upon A’s query on (x⋆, µ⋆
0, µ

⋆
1) such

that |µ⋆
0| = |µ⋆

1|, C outputs ⊥ if A has already made a decryption key reveal query on y such
that f(x⋆, y) = 1. Otherwise, C samples coin ←R {0, 1}, runs ct⋆x⋆ ← Enc(mpk, x⋆, µ⋆

coin),
creates a list of ciphertexts L = {ct⋆x⋆}, and sends ct⋆x⋆ to A.
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Phase 2. A is allowed to make the same four types of queries to C as in Phase 1 with the following
exceptions.

Decryption Key Reveal Query. Upon A’s query on y ∈ Y, C outputs ⊥ if f(x⋆, y) = 1
holds.

Evaluation Query. If {ct(ℓ)
x(ℓ)}ℓ∈[L]∩L ̸= ∅ holds and the evaluation result is not ⊥ but ctx,C,

C updates a list L ← L ∪ {ctx,C}.
Decryption Query. Upon A’s query on (y, ctx), C outputs ⊥ if ctx = ct⋆x⋆ holds.

Upon A’s query on (y, ctx,C), C outputs ⊥ if ctx,C ∈ L holds. C also outputs ⊥ if
f(x⋆, y) = 1 holds and A has already made a homomorphic evaluation key reveal query
on y′ such that f(x⋆, y′) = 1 .

Guess. A outputs ĉoin ∈ {0, 1} as a guess of coin and terminates the game.

If the advantage of A for breaking the KH-CCA security of ΠABKFHE defined by AdvKH-CCA
ΠABKFHE,A(λ) :=∣∣∣Pr [ĉoin = coin

]
− 1

2

∣∣∣is negligible in λ, ΠABKFHE is said to satisfy the adaptive KH-CCA security.

The selective KH-CCA security is the same except that A declares x⋆ at the beginning of the security
game.

Remark 6. Since a pre-evaluated ciphertext and an evaluated ciphertext of ABKHE follow the same
distribution as we claimed in Remark 5, we change the restriction of decryption queries in Phase 2
as we claimed in Remark 2:

Decryption Query. Upon A’s query on (y, ctx), C outputs ⊥ if ctx ∈ L holds. C also outputs ⊥
if f(x⋆, y) = 1 holds and A has already made a homomorphic evaluation key reveal query on
y′ such that f(x⋆, y′) = 1. Otherwise, C proceeds the same way as in Phase 1.

Remark 7. As in Remark 3, we call A’s evaluation query on (y, (ct
(ℓ)

x(ℓ))ℓ∈[L]) a dependent eval-
uation query if the answer is stored in L. In other words, A’s dependent evaluation query on

(y, (ct
(ℓ)

x(ℓ))ℓ∈[L] satisfies {ct
(ℓ)

x(ℓ)}ℓ∈[L]∩L ̸= ∅. Otherwise, we call A’s evaluation query on (ct
(ℓ)

x(ℓ))ℓ∈[L]
an independent evaluation query.

5 Delegatable Attribute-based Encryption

In this section, we define delegatable attribute-based encryption (DABE) which is suitable for a
building block of ABKFHE. In Section 5.1, we provide the definition of DABE. In Section 5.2, we
review basic knowledge of lattice-based cryptography. In Section 5.3, we construct a DABE scheme
by combining with Yamada’s adaptively secure IBE scheme [Yam17] and Boneh et al.’s selectively
secure ABE scheme [BGG+14]. In Section 5.4, we prove the security. Since the construction
of the proposed DABE scheme is straightforward, experts of lattice-based cryptography can skip
Sections 5.2–5.4.

5.1 Definition

In this paper, let ΠDABE = (DABE.Setup,DABE.KGen,DABE.Enc,DABE.Dec) denote a DABE
scheme for a predicate f : X × Y → {0, 1} with a two-level hierarchical structure, where ci-
phertext attributes live in (X × {0, 1}) × ID, while key attributes live in either Y × {0, 1} or
(Y × {0, 1}) × ID. A ciphertext DABE.ct(x,b),id for ((x, b), id) can be decrypted by a secret key
DABE.sk(y,b′),id′ for ((y, b

′), id′) iff f(x, y) = 1 ∧ b = b′ ∧ id = id′ holds, while DABE.sk(y,b′),id′ can be
computed from DABE.sk(y,b′) for (y, b

′).
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DABE.Setup(1λ)→ (DABE.mpk,DABE.msk). On input the security parameter 1λ, it outputs a mas-
ter public/secret key pair (DABE.mpk,DABE.msk), where DABE.mpk implicitly contains a
message space M. Although we do not explicitly describe, the following algorithms take
DABE.mpk as input.

DABE.Enc((x, b), id, µ)→ DABE.ctx,b,id. On input a ciphertext attribute ((x, b), id) ∈ (X ×{0, 1})×
ID and a message µ ∈M, it outputs a ciphertext DABE.ct(x,b),id for ((x, b), id).

DABE.KGen(DABE.skY , Y
′)→ DABE.skY ′ . On input a secret key DABE.skY for a key attribute Y

and another key attribute Y ′, it outputs a secret key DABE.skY ′ for Y ′, where DABE.skY =
DABE.msk holds if Y ′ ∈ Y × {0, 1}, and DABE.skY = DABE.msk ∨ Y ∈ Y × {0, 1} holds if
Y ′ ∈ (Y × {0, 1})× ID.

DABE.Dec(DABE.sk(y,b′),id′ ,DABE.ct(x,b),id)→ µ/⊥. On input DABE.sk(y,b′),id′ and DABE.ct(x,b),id,
it outputs a decryption result µ or a failure symbol ⊥.

Definition 20 (Correctness). ΠDABE = (DABE.Setup,DABE.KGen,DABE.Enc,DABE.Dec) is said
to satisfy the correctness if for every µ ∈ M, (DABE.mpk,DABE.msk) ← DABE.Setup(1λ),
(x, y) ∈ X × Y such that f(x, y) = 1, b ∈ {0, 1}, and id ∈ ID, it holds that µ ←
DABE.Dec(DABE.sk(y,b),id,DABE.ct(x,b),id) with overwhelming probability, where DABE.ct(x,b),id ←
DABE.Enc((x, b), id, µ), DABE.sky,b ← DABE.KGen(DABE.msk, (y, b)), and DABE.sk(y,b),id ←
DABE.KGen(DABE.sky,b, ((y, b), id)).

We define two security notions called selective IND-CPA security and second-level adaptive
OW-CPA security depending the value of b ∈ {0, 1}. Let ((x⋆, b⋆), id⋆) denote a challenge ciphertext
attribute. A DABE scheme satisfies the selective IND-CPA security if b⋆ = 0 and the second-level
adaptive OW-CPA security if b⋆ = 1. The selective IND-CPA security follows the traditional defini-
tion of IND-CPA security, where the adversary declares the target ciphertext attribute ((x⋆, 0), id⋆)
at the beginning of the security game. The second-level adaptive OW-CPA security follows the
traditional definition of the OW-CPA security, where the adversary declares the first level of the
target ciphertext attribute (x⋆, 1) at the beginning of the security game and declares the second
level id⋆ in the challenge phase.

Definition 21 (Selective IND-CPA Security). The selective IND-CPA security of ΠDABE =
(DABE.Setup,DABE.KGen,DABE.Enc,DABE.Dec) is defined by the security game between a chal-
lenger C and an adversary A as follows.

Init. A declares a challenge ciphertext attribute ((x⋆, 0), id⋆) to C. Then, C runs
(DABE.mpk,DABE.msk)← DABE.Setup(1λ) and sends DABE.mpk to A.

Phase 1. A is allowed to make the following secret key reveal queries to C.

– Secret Key Reveal Query. Upon A’s query on (y, b) ∈ Y × {0, 1}, C out-
puts ⊥ if f(x⋆, y) = 1 ∧ b = 0 holds. Otherwise, C runs DABE.sk(y,b) ←
DABE.KGen(DABE.msk, (y, b)) and sends DABE.sk(y,b) to A. Upon A’s query on
((y, b), id) ∈ (Y × {0, 1}) × ID, C outputs ⊥ if f(x⋆, y) = 1 ∧ b = 0 ∧ id⋆ = id holds.
Otherwise, C runs DABE.sk(y,b) ← DABE.KGen(DABE.msk, (y, b)) and DABE.sk(y,b),id ←
DABE.KGen(DABE.sk(y,b), ((y, b), id)), and sends DABE.sk(y,b),id to A.

Challenge Query. A is allowed to make the query only once. Upon A’s query on (µ⋆
0, µ

⋆
1) such that

|µ⋆
0| = |µ⋆

1|, C samples coin←R {0, 1}, runs DABE.ct⋆(x⋆,0),id⋆ ← DABE.Enc(((x⋆, 0), id⋆), µ⋆
coin),

and sends the challenge cipehrtext DABE.ct⋆(x⋆,0),id⋆ to A.

31



Phase 2. A is allowed to make secret key reveal queries as in Phase 1.

Guess. A outputs ĉoin ∈ {0, 1} as a guess of coin and terminates the game.

If the advantage of A for breaking the selective IND-CPA security of ΠDABE defined by

AdvIND-CPA
ΠDABE,A(λ) :=

∣∣∣Pr [ĉoin = 0 | coin = 0
]
− Pr

[
ĉoin = 0 | coin = 1

]∣∣∣ is negligible in λ, ΠDABE is

said to satisfy the selective IND-CPA security.

Definition 22 (Second-level Adaptive OW-CPA Security). The second-level adaptive OW-CPA
security of ΠDABE = (DABE.Setup,DABE.KGen,DABE.Enc,DABE.Dec) is defined by the security
game between a challenger C and an adversary A as follows.

Init. A declares the first level of a challenge ciphertext attribute (x⋆, 1) to C. Then, C runs
(DABE.mpk,DABE.msk)← DABE.Setup(1λ) and sends DABE.mpk to A.

Phase 1. A is allowed to make the following secret key reveal queries to C.

– Secret Key Reveal Query. Upon A’s query on (y, b) ∈ Y × {0, 1}, C out-
puts ⊥ if f(x⋆, y) = 1 ∧ b = 1 holds. Otherwise, C runs DABE.sk(y,b) ←
DABE.KGen(DABE.msk, (y, b)) and sends DABE.sk(y,b) to A. Upon A’s query on
((y, b), id) ∈ (Y × {0, 1}) × ID, C runs DABE.sk(y,b) ← DABE.KGen(DABE.msk, (y, b))
and DABE.sk(y,b),id ← DABE.KGen(DABE.sk(y,b), ((y, b), id)), and sends DABE.sk(y,b),id to
A.

Challenge Query. A is allowed to make the query only once. Upon A’s query on id⋆ to declare
the second level of a challenge ciphertext attribute, C outputs ⊥ if A made secret key reveal
queries on ((y, 1), id) in Phase 1 such that f(x⋆, y) = 1 ∧ id⋆ = id. Otherwise, C samples
µ⋆ ←R M, runs DABE.ct⋆(x⋆,1),id⋆ ← DABE.Enc(((x⋆, 1), id⋆), µ⋆), and sends the challenge
cipehrtext DABE.ct⋆(x⋆,1),id⋆ to A.

Phase 2. A is allowed to make secret key reveal queries as in Phase 1 except that C outputs ⊥
upon A’s queries on ((y, 1), id) such that f(x⋆, y) = 1 ∧ id⋆ = id.

Guess. A outputs µ̂ as a guess of µ⋆ and terminates the game.

If the advantage of A for breaking the second-level adaptive OW-CPA security of ΠDABE defined

by AdvOW-CPA
ΠDABE,A(λ) :=

∣∣∣Pr [µ̂ = µ⋆]− 1
|M|

∣∣∣ is negligible in λ, ΠDABE is said to satisfy the second-level

adaptive OW-CPA security.

5.2 Preliminaries on Lattices-based Cryptography

5.2.1 Discrete Gaussian Distribution

For a positve integer m, let DZm,σ denote a discrete Gaussian distribution over Zm with a parameter
σ > 0. We will use the following facts.

Lemma 5 (Lemma 2.5 of [Reg05]). It holds that Pr[∥z∥ > σ
√
m : z← DZm,σ] ≤ 2−2m.

Lemma 6 (Lemma 1 of [KY16]). Let q,m,m′ be positive integers and r be a positive real such
that r > max{ω(

√
logm), ω(

√
logm′)}. For b ∈ Zm

q , z ← DZm,r, V ∈ Zm×m′
, and positive real

s > ∥V∥2, there exists a PPT algorithm ReRand such that V⊤b+y← ReRand(B,b+z, r, s), where
y is distributed statistically close to DZm′ ,2rs.
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5.2.2 Learning with Errors

We use the learning with errors (LWE) assumption to prove the security.

Definition 23 (LWE Assumption [Reg05]). For positive integers n = n(λ) and m = m(n), a
prime integer q = q(n) > 2, a real number α ∈ (0, 1), an advantage for solving the LWE problem
LWEn,m,q,α by an algorithm A is defined to be

Adv
LWEn,m,q,α

A (λ) :=
∣∣∣Pr[A(A,A⊤s+ z)→ 1

]
− Pr[A(A,w + z)→ 1]

∣∣∣ ,
where A←R Zn×m

q , s←R Zn
q , z← DZm,αq, and w←R Zm

q . We say that the LWEn,m,q,α assumption

holds if Adv
LWEn,m,q,α

A (λ) is negligible for all PPT A.

5.2.3 Gadget Matrix

For m > n⌈log q⌉, a full-rank matrix G ∈ Zn×m
q is called a gadget matrix, where there exists

a deterministic polynomial time algorithm G−1 which takes U ∈ Zn×m
q as input and outputs

V = G−1(U) such that V ∈ {0, 1}m×m and it holds that GV = U.

5.2.4 Trapdoor and Sampling Algorithms

Let n,m, and q be positive integers and A ∈ Zn×m
q . For a matrix V ∈ Zn×m′

q , let A−1
σ (V)

denote a probability distribution according to the discrete Gaussian (DZm,σ)
m′

conditioned on
A · A−1

σ (V) = V. We use A−1
σ to denote a σ-trapdoor for A, where we can use it to sample

A−1
σ (V) for any V ∈ Zn×m′

q in polynomial time. If there is a subscript such A0, we use notations

A−1
0,σ(V) and A−1

0,σ.

Lemma 7 ([ABB10a, ABB10b, BLP+13, CHKP12, GPV08, MP12]). The following facts are known
for trapdoors and sampling algorithms.

1. Given A−1
σ , one can obtain A−1

σ′ for any σ′ ≥ σ.

2. Given A−1
σ , one can obtain [A ∥ B]−1

σ and [B ∥ A]−1
σ for any B.

3. Given A ∈ Zn×m
q and R ∈ Zm×m with m ≥ n⌈log q⌉, and a full-rank H ∈ Zn×n

q , one can
obtain [A ∥ AR+HG]−1

σ for σ = m · ∥R∥∞ · ω(
√
logm).

4. Given A−1
σ for A ∈ Zn×m

q , one can randomize it and obtain A−1
σ′ for any σ′ = σ·ω(

√
m logm).

5. There exists an efficient algorithm TrapGen(n,m, q) that outputs (A,A−1
σ ), where A ∈ Zn×m

q

for some m = O(n log q) and is statistically close to uniform, and σ = ω(
√
n log q logm).

5.2.5 Full-rank Difference Map

Agrawal et al. [ABB10a] introduced a notion of full-rank difference map to construct selectively
secure IBE scheme under the LWE assumption. For a positive integer n and a prime integer q,
there is an efficiently computable map FRD : Zn

q → Zn×n
q called the full-rank difference map, where

FRD(u)− FRD(v) is full-rank for all distinct u and v.
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5.2.6 Randomness Extraction

We use the following variant of the leftover hash lemma.

Lemma 8 ([ABB10a]). Let n,m,m′, and q be a positive integer such that m > (n + 1) log2 q +
ω(log n), m′ = m′(n) is polynomial in n, and q > 2 is a prime number. For all vector e ∈ Zm

q , it

holds that (A,B,R⊤e) ≈ (A,AR,R⊤e), where A ←R Zn×m
q , B ←R Zn×m′

q , R ←R {−1, 1}m×m′

mod q.

5.2.7 Key Homomorphic Computation

PubEval(y, (B1, . . . ,Bℓ))→ By : On input a function y ∈ Y and matrices B1, . . . ,Bℓ ∈ Zn×m
q ,

output a matrix By.

CTEval(y, (xi,Bi, ci)i∈[ℓ])→ cy : On input a function y ∈ Y , x1, . . . , xℓ ∈ Zq, matrices B1, . . . ,Bℓ ∈
Zn×m
q , and vectors ci = [Bi + xiG]⊤s + zi ∈ Zm

q for some s ∈ Zn
q and zi ∈ Zm such that

∥z∥ ≤ δ, output cy ∈ Zm
q .

TrapEval(y, (x⋆i ,Ri)i∈[ℓ],A)→ Ry : On input a function y ∈ Y , x⋆1, . . . , x⋆ℓ ∈ Zq, random matrices
R1, . . . ,Rℓ ∈ {−1, 1}m×m, and a matrix A ∈ Zn×m

q , output Ry.

Lemma 9. If the following conditions hold for a family of function Y = {y : Zℓ
q → Zq} and

αY : Z → Z, we say that evaluation algorithms (PubEval,CTEval,TrapEval) are αY-enabling for a
function class Y:

• For By ← PubEval(y, (B1, . . . ,Bℓ)) and cy ← CTEval(y, (xi,Bi, ci)i∈[ℓ]), there exists a vector

zy such that cy = [By + y(x1, . . . , xℓ)G]⊤s+ zy and ∥zy∥ ≤ δ · αY(n).

• For By ← PubEval(y, (AR1− x⋆1G, . . . ,ARℓ− x⋆ℓG)) and Ry ← TrapEval(y, (x⋆i ,Ri)i∈[ℓ],A),
it holds that ARy − y(x⋆1, . . . , x

⋆
ℓ )G = By.

• If we set R1, . . . ,Rℓ ←R {−1, 1}m×m, it holds that ∥Ry∥2 ≤ αY(n) with overwhelming prob-
ability, where Ry ← TrapEval(y, (x⋆i ,Ri)i∈[ℓ],A).

5.2.8 Yamada’s IBE Scheme

We review a multi-bit encryption variant of Yamada’s IBE scheme denoted by ΠYam.

IBE.Setup(1λ)→ (IBE.mpk, IBE.msk). Run (A,A−1
σ ) ← TrapGen(n,m, q), sample random ma-

trices D0,D1, . . . ,DK ←R Zn×m
q and U ←R Zn×log |M|

q , and outputs IBE.mpk =

(A,D0,D1, . . . ,DK ,U) and IBE.msk = A−1
σ0

, whereM = {0, 1}log |M| is a message space.

IBE.Enc(id, µ⃗)→ IBE.ctid. Parse IBE.mpk = (A,D0,D1, . . . ,DK ,U) and µ⃗ = (µ1, . . . , µlog |M|).
Compute Did ← PubEval(id, (D1, . . . ,DK)), sample s ←R Zn

q , z0, z1 ← DZ2m,α′q, and
z2 ← DZlog |M|,αq, and output IBE.ctid = (c0, c1, c2), where

c0 = A⊤s+ z0, c1 = [D0 +Did]
⊤s+ z1, c2 = U⊤s+ z2 + µ⃗

⌊q
2

⌋
.

IBE.KGen(IBE.msk, id)→ IBE.skid. Parse IBE.mpk = (A,D0,D1, . . . ,DK ,U) and IBE.msk = A−1
σ0

.
Compute Did ← PubEval(id, (D1, . . . ,Dk)), [A | D0 + Did]

−1
σ0

from A−1
σ0

, randomize it and
output IBE.skid = [A | D0 +Did]

−1
σ1

.
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IBE.Dec(IBE.skid, IBE.ctid)→ µ⃗/⊥. Parse IBE.skid = [A | D0 + Did]
−1
σ1

and IBE.ctid = (c0, c1, c2).
Compute Did ← PubEval(id, (D1, . . . ,DK)), [A | D0 +Did]

−1
σ1

(U) from [A | D0 +Did]
−1
σ1

, and
c′ = c2− ([A | D0+Did]

−1
σ1

(U))⊤ · [c0 ∥ c1]. Parse c′ = [c′1, . . . , c
′
log |M|]. For i ∈ [log |M|], set

µi = 0 if |c′i| < q/4 and µi = 1 otherwise.

Theorem 4. Yamada’s IBE scheme ΠYam satisfies the correctness and the adaptive IND-CPA se-
curity under the LWEn,m,q,α assumption.

5.2.9 Boneh et al.’s ABE Scheme

We review a multi-bit encryption variant of Boneh et al.’s ABE scheme denoted by ΠBGG+.

ABE.Setup(1λ)→ (ABE.mpk,ABE.msk). Run (A,A−1
σ0

)← TrapGen(n,m, q), sample random matri-

ces B1, . . . ,BJ ←R Zn×m
q and U←R Zn×log |M|

q , and outputs ABE.mpk = (A,B1, . . . ,BJ ,U)

and ABE.msk = A−1
σ0

, whereM = {0, 1}log |M| is a message space.

ABE.Enc(x⃗, µ⃗)→ ABE.ctx. Parse ABE.mpk = (A,B1, . . . ,BJ ,U), x⃗ = (x1, . . . , xJ), and µ⃗ =
(µ1, . . . , µlog |M|). Sample s ←R Zn

q , R1, . . . ,RJ ←R {−1, 1}m×m, z0 ← DZm,αq, and
z2 ← DZlog |M|,αq, and output ABE.ctx⃗ = (c0, c1, c2), where

c0 = A⊤s+ z0, c1 = [B1 + x1G | · · · | BJ + xJG]⊤s+ [R1 | · · · | RJ ]
⊤z0,

c2 = U⊤s+ z2 + µ⃗
⌊q
2

⌋
.

ABE.KGen(ABE.msk, y)→ ABE.sky. Parse ABE.msk = A−1
σ0

. Compute By ←
PubEval(y, (B1, . . . ,BJ)), [A | By]

−1
σ0

from A−1
σ0

, randomize it and output ABE.sky =
[A | By]

−1
σ1

.

ABE.Dec(ABE.sky,ABE.ctx⃗)→ µ⃗/⊥. Parse ABE.sky = [A | By]
−1
σ1

, ABE.ctx⃗ = (c0, c1, c2), and
further parse c1 = [c1,1 ∥ · · · ∥ c1,J ], where c1,1, . . . , c1,J ∈ Zm

q . Compute c1,y ←
CTEval(y, (xj ,Bj , c1,j)j∈[J ]), [A | By]

−1
σ1

(U) from [A | By]
−1
σ1

, and c′ = c2−([A | By]
−1
σ1

(U))⊤ ·
[c0 ∥ c1,y]. Parse c′ = [c′1, . . . , c

′
log |M|]. For i ∈ [log |M|], set µi = 0 if |c′i| < q/4 and µi = 1

otherwise.

Theorem 5. Boneh et al.’s ABE scheme ΠABE satisfies the correctness and the selective IND-CPA
security under the LWEn,m,q,α assumption.

5.3 Construction

We construct a DABE scheme defined in Section 5.1 by combining with Yamada’s IBE scheme
ΠYam [Yam17] and Boneh et al.’s ABE scheme ΠBGG+ [BGG+14].

DABE.Setup(1λ)→ (DABE.mpk,DABE.msk). Run (A0,A
−1
0,σ), (A1,A

−1
1,σ)← TrapGen(n,m, q), sam-

ple random matrices B1, . . . ,BJ ,D0,D1, . . . ,DK ←R Zn×m
q and U ←R Zn×log |M|

q , and out-

puts DABE.mpk = (A0,A1,B1, . . . ,BJ ,D0,D1, . . . ,DK ,U) and DABE.msk = (A−1
0,σ0

,A−1
1,σ0

),

whereM = {0, 1}log |M| is a message space.

DABE.Enc(((x⃗, b), id), µ⃗)→ DABE.ct(x⃗,b),id. Parse DABE.mpk = (A0,A1,B1, . . . ,BJ ,D0,D1, . . . ,
DK ,U) and µ⃗ = (µ1, . . . , µlog |M|). Sample s ←R Zn

q and R1,1, . . . ,R1,J ←R {−1, 1}m×m.
Proceed as follows:
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Case of b = 0. Sample R2 ←R {−1, 1}m×m, z0 ← DZ2m,αq, and z3 ← DZlog |M|,αq, and output
DABE.ct(x⃗,0),id = (c0, c1, c2, c3);

c0 = A⊤
0 s+ z0, c1 = [B1 + x1G | · · · | BJ + xJG]⊤s+ [R1,1 | · · · | R1,J ]

⊤z0,

c2 = [D0 + FRD(id)G]⊤s+R⊤
2 z0, c3 = U⊤s+ z3 + µ⃗

⌊q
2

⌋
.

Case of b = 1. Compute Did ← PubEval(id, (D1, . . . ,DK)), sample z0, z2 ← DZ2m,α′q, and
z3 ← DZlog |M|,αq, and output DABE.ct(x⃗,1),id = (c0, c1, c2, c3);

c0 = A⊤
1 s+ z0, c1 = [B1 + x1G | · · · | BJ + xJG]⊤s+ [R1,1 | · · · | R1,J ]

⊤z0,

c2 = [D0 +Did]
⊤s+ z1, c4 = U⊤s+ z3 + µ⃗

⌊q
2

⌋
.

DABE.KGen(DABE.skY , Y
′)→ DABE.skY ′ . Parse DABE.mpk = (A0,A1,B1, . . . ,BJ ,D0,D1, . . . ,

DK ,U) and DABE.msk = (A−1
0,σ0

,A−1
1,σ0

). Proceed as follows:

Case of DABE.skY = DABE.msk and Y ′ = (y, b). Compute By ← PubEval(y, (B1, . . . ,BJ)),
[Ab | By]

−1
σ0

from A−1
b,σ0

, randomize it and output DABE.sk(y,b) = [Ab | By]
−1
σ1

.

Case of Y = (y, 0) and Y ′ = (y, 0, id). Compute [A | By | D0 + FRD(id)G]−1
σ1

from
DABE.sk(y,0) = [A | By]

−1
σ1

, and output DABE.sk(y,0),id = [A | By | D0 +
FRD(id)G]−1

σ1
(U).

Case of Y = (y, 1) and Y ′ = (y, 1, id). Compute Did ← PubEval(id, (D1, . . . ,DK)), [A | By |
D0 + Did]

−1
σ1

from DABE.sk(y,1) = [A | By]
−1
σ1

, and output DABE.sk(y,1),id = [A | By |
D0 +Did]

−1
σ1

(U).

DABE.Dec(DABE.sk(y,b′),id′ ,DABE.ct(x⃗,b),id)→ µ⃗/⊥. Parse DABE.ct(x⃗,b),id = (c0, c1, c2, c3) and fur-
ther parse c1 = [c1,1 ∥ · · · ∥ c1,J ], where c1,1, . . . , c1,J ∈ Zm

q . Compute c1,y ←
CTEval(y, (xj ,Bj , c1,j)j∈[J ]) and c′ = c3 − DABE.sk⊤(y,b),id · [c0 ∥ c1,y ∥ c2]. Parse c′ =

[c′1, . . . , c
′
log |M|]. For i ∈ [log |M|], set µi = 0 if |c′i| < q/4 and µi = 1 otherwise.

5.4 Security

Theorem 6. If Boneh et al.’s ABE scheme ΠABE satisfies the selective IND-CPA security, the
proposed DABE scheme ΠDABE satisfies the selective IND-CPA security.

Proof of Theorem 6. We construct a reduction algorithm B which interacts with A in the selective
IND-CPA security game of ΠDABE and breaks the selective IND-CPA security of ΠABE. At the
beginning of the selective IND-CPA security game of DABE, A declares the challenge ciphertext
attribute ((x⃗⋆, 0), id⋆) to C in the selective IND-CPA security game of ΠBGG+. Then, B declares
x⃗⋆ as the challenge ciphertext attribute of the selective IND-CPA security game of Boneh et al.’s
ΠBGG+. After B receives ABE.mpk = (A,B1, . . . ,BJ ,U), it sets A0 = A, runs (A1,A

−1
1,σ0

) ←
TrapGen(n,m, q), samplesR2 ←R {−1, 1}m×m andD1, . . . ,DK ←R Zn×m

q , computesD0 = A0R2−
FRD(id⋆)G, and sends DABE.mpk = (A0,A1,B1, . . . ,BJ ,D0,D1, . . . ,DK ,U) to A.

Upon A’s secret key reveal query on (y, 0) such that f(x⃗⋆, y) = 0 (resp. ((y, 0), id) such that
f(x⃗⋆, y) = 0 ∧ id = id⋆), B makes a secret key reveal query on y, receives ABE.sky = [A0 | By]

−1
σ1

from C, sets DABE.sk(y,0) = [A0 | By]
−1
σ1

(resp. DABE.sk(y,0),id = [A0 | By | D0+FRD(id)G]−1
σ1

(U)),
and sends it to A. Upon A’s secret key reveal query on ((y, 0), id) such that id ̸= id⋆, computes [A0 |
A0R2+(FRD(id)−FRD(id⋆))G]−1

σ1
= [A0 | D0+FRD(id)G]−1

σ1
from R2, [A0 | D0+FRD(id)G]−1

σ1
(U)
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from [A0 | D0+FRD(id)G]−1
σ1

, and sends DABE.sk(y,0),id = [A0 | D0+FRD(id)G]−1
σ1

(U) to A. Upon
A’s secret key reveal query on (y, 1) or ((y, 1), id), B answers in the same way as the real scheme
since it knows A−1

1,σ0
.

Upon A’s challenge query on (µ⃗⋆
0, µ⃗

⋆
1), B makes a challenge query on (µ⃗⋆

0, µ⃗
⋆
1) to C, and receives

the ABE challenge ciphertext ABE.ct⋆x⃗⋆ = (c′0, c
′
1, c

′
2). B sets c0 = c′0, c1 = c′1, c3 = c′2, computes

c2 = R⊤
2 c

′
0, and sends the DABE challenge ciphertext DABE.ct⋆(x⃗⋆,0),id⋆ = (c0, c1, c2, c3) to A. After

B receives ĉoin from A, B sends the same ĉoin to C and terminates the game.
Due to the design of ΠDABE, all elements created by B follow the same distribution as the real

scheme. Although B makes secret key reveal queries on y upon A’s secret key reveal query on (y, 0)
such that f(x⃗⋆, y) = 0 or ((y, 0), id) such that f(x⃗⋆, y) = 0∧ id = id⋆, they are allowed in the security
game of ΠBGG+ due to the condition f(x⃗⋆, y) = 0. Although B modifies the way for creating D0, a
variant of the leftover hash lemma (Lemma 8) ensures that A0R2 is statistically close to uniform.
Thus, the distribution of D0 = A0R2 − FRD(id⋆)G is also statistically close to uniform. Although
B modifies the way for answering A’s secret key reveal queries on ((y, 0), id) such that id ̸= id⋆,
DABE.sk(y,0),id = [A0 | D0 + FRD(id)G]−1

σ1
(U) follow the same distribution as the real scheme due

to Lemma 7. Moreover, B can compute [A0 | A0R2+(FRD(id)−FRD(id⋆))G]−1
σ1

from R2 since the
definition of the full-rank difference map ensures that FRD(id)− FRD(id⋆) is full-rank if id ̸= id⋆. If
coin = 0, c′0 = A⊤

0 s+ z0 holds. Then, we have

c2 = R⊤
2 c

′
0 = (A0R2)

⊤s+R⊤
2 z0 = [D0 + FRD(id⋆)G]⊤s+R⊤

2 z0

which follows the same distribution as the real scheme. If coin = 1, c′0 ←R Zm
q holds. Then, a

variant of the leftover hash lemma (Lemma 8) ensures that c2 = R⊤
2 c

′
0 is statistically close to

uniform. Thus, B perfectly simulates the real security game from A’s view. Since B wins the DABE
security game with overwhelming probability if A wins the ABE security game, we complete the
proof.

Theorem 7. If Yamada.’s IBE scheme ΠYam satisfies the adaptive OW-CPA security, the proposed
DABE scheme ΠDABE satisfies the second-level adaptive OW-CPA security.

Proof of Theorem 7. We construct a reduction algorithm B which interacts with A in the second-
level adaptive OW-CPA security game of ΠDABE and breaks the adaptive OW-CPA security of ΠYam.
At the beginning of the second-level adaptive OW-CPA security game of DABE, A declares the first-
level challenge ciphertext attribute (x⃗⋆, 1), where x⃗⋆ = (x⋆1, . . . , x

⋆
J). After B receives IBE.mpk =

(A,D0,D1, . . . ,DK ,U) from C in the adaptive OW-CPA security game of ΠYam, it setsA1 = A, runs
(A0,A

−1
0,σ0

)← TrapGen(n,m, q), samples R1,1, . . . ,R1,J ←R {−1, 1}m×m, computes B1 = A1R1,1−
x⋆1G, . . . ,BJ = A1R1,J − x⋆JG, and sends DABE.mpk = (A0,A1,B1, . . . ,BJ ,D0,D1, . . . ,DK ,U)
to A.

Upon A’s secret key reveal query on ((y, 1), id) such that f(x⃗⋆, y) = 1, B makes a secret key
reveal query on id, receives IBE.skid = [A1 | D0 +Did]

−1
σ1

from C, sets DABE.sk(y,1),id = [A1 | By |
D0 +Did]

−1
σ1

(U), and sends it to A. Upon A’s secret key reveal query on (y, 1) (resp. ((y, 1), id))
such that f(x⃗⋆, y) = 0, B runs Ry ← TrapEval(y, (x⋆j ,R1,j)j∈[J ],A1), computes [A1 | By]

−1
σ1

from

Ry, sets DABE.sk(y,1) = [A1 | By]
−1
σ1

(resp. DABE.sk(y,1),id = [A1 | By | D0+Did]
−1
σ1

(U)), and sends
it to A. Upon A’s secret key reveal query on (y, 0) or ((y, 0), id), B answers in the same way as the
real scheme since it knows A−1

1,σ0
.

Upon A’s challenge query on id⋆, B makes a challenge query on id⋆ to C, and receives the IBE
challenge ciphertext IBE.ct⋆id⋆ = (c′0, c

′
1, c

′
2). B sets c0 = c′0, c2 = c′1, c3 = c′2, computes c1 = [R1,1 |

· · · | R1,J ]
⊤c′0, and sends the DABE challenge ciphertext DABE.ct⋆(x⃗⋆,1),id⋆ = (c0, c1, c2, c3) to A.

After B receives ̂⃗µ from A, B sends the same ̂⃗µ to C and terminates the game.
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Due to the design of the proposed DABE scheme, all elements created by B follow the same
distribution as the real scheme. Although B makes secret key reveal queries on id uponA’s secret key
reveal query on ((y, 1), id) such that f(x⃗⋆, y) = 1, they are allowed in the security game of ΠYam since
the definition of the second-level adaptive OW-CPA security ensures that id ̸= id⋆ holds. Although
B modifies the way for creating B1, . . . ,BJ , a variant of the leftover hash lemma (Lemma 8)
ensures that A1R1,1, . . . ,A1R1,J are statistically close to uniform. Thus, the distribution of B1 =
A1R1,1−x⋆1G, . . . ,BJ = A1R1,J−x⋆JG are also statistically close to uniform. Although B modifies
the way for answering A’s secret key reveal queries on (y, 1) and ((y, 1), id) such that f(x⃗⋆, y) = 0,
DABE.sk(y,1) = [A1 | By]

−1
σ1

and DABE.sk(y,1),id = [A1 | By | D0 + Did]
−1
σ1

(U) follow the same
distribution as the real scheme due to Lemmata 7 and 9. Moreover, B can compute [A1 | By]

−1
σ1

from Ry since Lemma 9 ensures that By = A1Ry − y(x⋆1, . . . , x
⋆
J)G and y(x⋆1, . . . , x

⋆
J) ̸= 0. Since

it holds that c′0 = A⊤
1 s+ z0, we have

c1 = [R1,1 | · · · | R1,J ]
⊤c′0

= [A1R1,1 | · · · | A1R1,J ]
⊤s+ [R1,1 | · · · | R1,J ]

⊤z0

= [B1 + x⋆1G | · · · | BJ + x⋆JG]⊤s+ [R1,1 | · · · | R1,J ]
⊤z0

which follows the same distribution as the real scheme. Thus, B perfectly simulates the real security
game from A’s view. Since B wins the DABE security game with overwhelming probability if A
wins the IBE security game, we complete the proof.

6 Generic Construction of ABKFHE

In this section, we propose a generic construction of ABKFHE scheme ΠABKFHE. In Section 6.1, we
provide a construction of ΠABKFHE. In Section 6.2, we prove the selective KH-CCA security.

6.1 Construction

We extend the idea explained in Section 1.3.2 and propose a generic construction of ABKFHE from
MFHE, DABE, and OTS.

Setup(1λ)→ (mpk,msk). Run MFHE.pp ← MFHE.Setup(1λ) and (DABE.mpk,DABE.msk) ←
DABE.Setup(1λ). Choose a one-time signature scheme ΠOTS, Output mpk =
(MFHE.pp,DABE.mpk,ΠOTS) and msk = DABE.msk.

Enc(mpk, x, µ)→ ctx. Parse mpk = (MFHE.pp,DABE.mpk,ΠOTS). Run

– (MFHE.pk,MFHE.sk)← MFHE.KGen(1λ),

– MFHE.ct← MFHE.Enc(MFHE.pk, µ),

– (vk, sigk)← OTS.KGen(1λ),

– DABE.ct(x,0),vk ← DABE.Enc(((x, 0), vk),MFHE.sk),

– σ ← Sign
(
sigk, (vk,MFHE.pk,DABE.ct(x,0),vk,MFHE.ct)

)
.

Output

ctx = (vk,MFHE.pk,DABE.ct(x,0),vk,MFHE.ct, σ).

We say that a pre-evaluated ciphertext ctx is valid if σ is a valid signature for (vk,
MFHE.pk,DABE.ct(x,0),vk,MFHE.ct).
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KGen(mpk,msk, y)→ (dky, hky). Pares mpk = (MFHE.pp,DABE.mpk,ΠOTS) and msk = DABE.msk.
Run

– DABE.sk(y,0) ← DABE.KGen(DABE.msk, (y, 0)),

– DABE.sk(y,1) ← DABE.KGen(DABE.msk, (y, 1)).

Output dky = DABE.sk(y,0) and hky = DABE.sk(y,1).

Eval(mpk, hky, (ct
(ℓ)

x(ℓ))ℓ∈[L],C)→ ctx,C/⊥. Output ⊥ if f(x, y) = 0 holds or there are invalid ci-

phertexts ct
(ℓ)

x(ℓ) for some ℓ ∈ [L]. Otherwise, parse mpk = (MFHE.pp,DABE.mpk,ΠOTS),

hky = DABE.sk(y,1), and ct
(ℓ)

x(ℓ) = (vk(ℓ),MFHE.pk(ℓ),DABE.ct
(ℓ)

(x(ℓ),0),vk(ℓ)
,MFHE.ct(ℓ), σ(ℓ)) for

ℓ ∈ [L]. Run

– MFHE.ctC ← MFHE.Eval((MFHE.pk(ℓ),MFHE.ct(ℓ))ℓ∈[L],C),

– (vk, sigk)← OTS.KGen(1λ),

– DABE.sk(y,1),vk ← DABE.KGen(DABE.sk(y,1), ((y, 1), vk)),

– σ ← Sign
(
sigk, ((vk(ℓ),MFHE.pk(ℓ),DABE.ct

(ℓ)

(x(ℓ),0),vk(ℓ)
)ℓ∈[L],MFHE.ctC,DABE.sk(y,1),vk)

)
.

Output

ctx,C =
(
(vk(ℓ),MFHE.pk(ℓ),DABE.ct

(ℓ)

(x(ℓ),0),vk(ℓ)
)ℓ∈[L],MFHE.ctC, vk,DABE.sk(y,1),vk, σ

)
.

We say that an evaluated ciphertext ctx(ℓ),C is valid if f(x, y) = 1 holds, DABE.sk(y,1),vk

is a valid DABE secret key for ((y, 1), vk), and σ is a valid signature for ((vk(ℓ),

MFHE.pk(ℓ),DABE.ct
(ℓ)

(x(ℓ),0),vk(ℓ)
)ℓ∈[L],MFHE.ctC,DABE.sk(y,1),vk).

Dec(mpk, dky, ctx/ctx,C)→ µ/⊥. Parse mpk = (MFHE.pp,DABE.mpk,ΠOTS) and dky =
DABE.sk(y,0). Proceed as follows.

Case of Pre-evaluated Ciphertexts. Output ⊥ if f(x, y) = 0 holds or ctx is invalid. Otherwise,
parse ctx = (vk,MFHE.pk,DABE.ct(x,0),vk,MFHE.ct, σ). Run

∗ DABE.sk(y,0),vk ← DABE.KGen(DABE.sk(y,0), ((y, 0), vk)),

∗ MFHE.sk← DABE.Dec(DABE.sk(y,0),vk,DABE.ct(x,0),vk),

and output µ← MFHE.Dec(MFHE.sk,MFHE.ct).

Case of Evaluated Ciphertexts. Output ⊥ if f(x, y) = 0 holds or ctx,C is invalid.

Otherwise, parse ctx,C = ((vk(ℓ),MFHE.pk(ℓ),DABE.ct
(ℓ)

(x(ℓ),0),vk(ℓ)
)ℓ∈[L],MFHE.ctC,

vk,DABE.sk(y,1),vk, σ). For ℓ ∈ [L], run

∗ DABE.sk(y,0),vk(ℓ) ← DABE.KGen(DABE.sk(y,0), ((y, 0), vk
(ℓ))),

∗ MFHE.sk(ℓ) ← DABE.Dec(DABE.sk(y,0),vk(ℓ) ,DABE.ct
(ℓ)

(x(ℓ),0),vk(ℓ)
),

and output µ← MFHE.Dec((MFHE.sk(ℓ))ℓ∈[L],MFHE.ctC).

Theorem 8. The proposed ABKFHE scheme ΠABKFHE satisfies correctness if the underlying MFHE
scheme ΠMFHE, DABE scheme ΠDABE, and one-time signature scheme ΠOTS satisfy correctness.
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Proof of Theorem 8. For every µ ∈M, (x, y) ∈ X × Y such that f(x, y) = 1,

• (mpk,msk)← Setup(1λ);

– MFHE.pp← MFHE.Setup(1λ),

– (DABE.mpk,DABE.msk)← DABE.Setup(1λ),

– mpk = (MFHE.pp,DABE.mpk,ΠOTS) and msk = DABE.msk,

• ctx ← Enc(mpk, x, µ);

– (MFHE.pk,MFHE.sk)← MFHE.KGen(1λ),

– MFHE.ct← MFHE.Enc(MFHE.pk, µ),

– (vk, sigk)← OTS.KGen(1λ),

– DABE.ct(x,0),vk ← DABE.Enc(((x, 0), vk),MFHE.sk),

– σ ← Sign
(
sigk, (vk,MFHE.pk,DABE.ct(x,0),vk,MFHE.ct)

)
.

– ctx = (vk,MFHE.pk,DABE.ct(x,0),vk,MFHE.ct, σ),

• dky ← KGen(mpk,msk, y);

– DABE.sk(y,0) ← DABE.KGen(DABE.msk, (y, 0)),

– dky = DABE.sk(y,0),

the correctness of ΠOTS ensures that OTS.Ver(vk, (vk,MFHE.pk,
DABE.ct(x,0),vk,MFHE.ct), σ) = 1 holds, the correctness of ΠDABE ensures that
DABE.Dec(DABE.KGen(DABE.sk(y,0), ((y, 0), vk)),DABE.ct(x,0),vk) = MFHE.sk holds, and
the correctness of ΠMFHE ensures that MFHE.Dec(MFHE.sk,MFHE.ct) = µ holds. Thus,
Dec(mpk, dky, ctx) = µ holds.

For every circuit C :ML →M, (µ(1), . . . , µ(L)) ∈ML, (x, y) ∈ X × Y such that f(x, y) = 1,

• (mpk,msk)← Setup(1λ);

– MFHE.pp← MFHE.Setup(1λ),

– (DABE.mpk,DABE.msk)← DABE.Setup(1λ),

– mpk = (MFHE.pp,DABE.mpk,ΠOTS) and msk = DABE.msk,

• ct
(ℓ)

x(ℓ) ← Enc(mpk, µ(ℓ)) for ℓ ∈ [L];

– (MFHE.pk(ℓ),MFHE.sk(ℓ))← MFHE.KGen(1λ),

– MFHE.ct(ℓ) ← MFHE.Enc(MFHE.pk(ℓ), µ(ℓ)),

– (vk(ℓ), sigk(ℓ))← OTS.KGen(1λ),

– DABE.ct
(ℓ)

(x(ℓ),0),vk(ℓ)
← DABE.Enc(((x(ℓ), 0), vk(ℓ)),MFHE.sk(ℓ)),

– σ(ℓ) ← Sign
(
sigk(ℓ), (vk(ℓ),MFHE.pk(ℓ),DABE.ct

(ℓ)

(x(ℓ),0),vk(ℓ)
,MFHE.ct(ℓ))

)
,

– ct
(ℓ)

x(ℓ) = (vk(ℓ),MFHE.pk(ℓ),DABE.ct
(ℓ)

(x(ℓ),0),vk(ℓ)
,MFHE.ct(ℓ), σ(ℓ)),

• dky ← KGen(mpk,msk, y);

– DABE.sk(y,0) ← DABE.KGen(DABE.msk, (y, 0)),
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– dky = DABE.sk(y,0),

• hky′ ← KGen(mpk,msk, y′);

– DABE.sk(y′,1) ← DABE.KGen(DABE.msk, (y′, 1)),

– hky′ = DABE.sk(y,1),

• ctx,C ← Eval(mpk, hky′ , (ct
(ℓ)

x(ℓ))ℓ∈[L],C);

– MFHE.ctC ← MFHE.Eval((MFHE.pk(ℓ),MFHE.ct(ℓ))ℓ∈[L],C),

– (vk, sigk)← OTS.KGen(1λ),

– DABE.sk(y′,1),vk ← DABE.KGen(DABE.sk(y′,1), ((y
′, 1), vk)),

– σ ← Sign
(
sigk, ((vk(ℓ),MFHE.pk(ℓ),DABE.ct

(ℓ)

(x(ℓ),0),vk(ℓ)
)ℓ∈[L],MFHE.ctC,DABE.sk(y′,1),vk)

)
,

– ctx,C =
(
(vk(ℓ),MFHE.pk(ℓ),DABE.ct

(ℓ)

(x(ℓ),0),vk(ℓ)
)ℓ∈[L],MFHE.ctC, vk,DABE.sk(y,1),vk, σ

)
,

the correctness of ΠDABE ensures that DABE.sk(y′,1),vk is a valid DABE se-

cret key for ((y′, 1), vk), the correctness of ΠOTS ensures that OTS.Ver(vk, ((vk(ℓ),

MFHE.pk(ℓ),DABE.ct
(ℓ)

(x(ℓ),0),vk(ℓ)
)ℓ∈[L],MFHE.ctC,DABE.sk(y′,1),vk), σ) = 1 holds, the correctness

of ΠDABE ensures that DABE.Dec(DABE.KGen(DABE.sk(y,0), ((y, 0), vk
(ℓ))),DABE.ct(x(ℓ),0),vk(ℓ)) =

MFHE.sk(ℓ) holds, and the correctness of ΠMFHE ensures that MFHE.Dec((MFHE.sk(ℓ))ℓ∈[L],

MFHE.ct) = C((µ(ℓ))ℓ∈[L]) holds. Thus, Dec(mpk, dky, ctx,C) = C((µ(ℓ))ℓ∈[L]) holds.

Theorem 9. The proposed ABKFHE scheme ΠABKFHE satisfies compactness if the underlying MFHE
scheme satisfies compactness.

Proof of Theorem 9. For every λ,

• (mpk,msk)← Setup(1λ);

– MFHE.pp← MFHE.Setup(1λ),

– (DABE.mpk,DABE.msk)← DABE.Setup(1λ),

– mpk = (MFHE.pp,DABE.mpk,ΠOTS) and msk = DABE.msk,

• ct
(ℓ)

x(ℓ) ← Enc(mpk, µ(ℓ)) for ℓ ∈ [L];

– (MFHE.pk(ℓ),MFHE.sk(ℓ))← MFHE.KGen(1λ),

– MFHE.ct(ℓ) ← MFHE.Enc(MFHE.pk(ℓ), µ(ℓ)),

– (vk(ℓ), sigk(ℓ))← OTS.KGen(1λ),

– DABE.ct
(ℓ)

(x(ℓ),0),vk(ℓ)
← DABE.Enc(((x(ℓ), 0), vk(ℓ)),MFHE.sk(ℓ)),

– σ(ℓ) ← Sign
(
sigk(ℓ), (vk(ℓ),MFHE.pk(ℓ),DABE.ct

(ℓ)

(x(ℓ),0),vk(ℓ)
,MFHE.ct(ℓ))

)
,

– ct
(ℓ)

x(ℓ) = (vk(ℓ),MFHE.pk(ℓ),DABE.ct
(ℓ)

(x(ℓ),0),vk(ℓ)
,MFHE.ct(ℓ), σ(ℓ)),

• ctx,C ← Eval(mpk, hky′ , (ct
(ℓ)

x(ℓ))ℓ∈[L],C);
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– MFHE.ctC ← MFHE.Eval((MFHE.pk(ℓ),MFHE.ct(ℓ))ℓ∈[L],C),

– (vk, sigk)← OTS.KGen(1λ),

– DABE.sk(y′,1),vk ← DABE.KGen(DABE.sk(y′,1), ((y
′, 1), vk)),

– σ ← Sign
(
sigk, ((vk(ℓ),MFHE.pk(ℓ),DABE.ct

(ℓ)

(x(ℓ),0),vk(ℓ)
)ℓ∈[L],MFHE.ctC,DABE.sk(y′,1),vk)

)
,

– ctx,C =
(
(vk(ℓ),MFHE.pk(ℓ),DABE.ct

(ℓ)

(x(ℓ),0),vk(ℓ)
)ℓ∈[L],MFHE.ctC, vk,DABE.sk(y,1),vk, σ

)
,

the compactness of ΠMFHE ensures that |MFHE.ctC| is independent of the size and depth of C and

at most L · poly(λ), and |(vk(ℓ),MFHE.pk(ℓ),DABE.ct
(ℓ)

(x(ℓ),0),vk(ℓ)
)ℓ∈[L]| and |(vk,DABE.sk(y,1),vk, σ)|

are independent of the size and depth of C and at most L · poly(λ). Thus, |ctx,C| is independent of
the size and depth of C and at most L · poly(λ).

6.2 Security

Theorem 10. The proposed ABKFHE scheme ΠABKFHE satisfies the selective KH-CCA security if
the underlying MFHE scheme ΠMFHE satisfies the IND-CPA security, DABE scheme ΠDABE satisfies
the selective IND-CPA security and the second-level adaptive OW-CPA security, and OTS scheme
ΠOTS satisfies the strong EUF-CMA security.

We extend the intuition of ΠIBKFHE explained in Section 1.3.2 and prove The-
orem 10 by using a sequence of games Game0, · · · ,Game4. Let KFHE.ct⋆ =
(vk⋆,MFHE.pk⋆,DABE.ct⋆(x⋆,0),vk⋆ ,MFHE.ct⋆, σ⋆) denote a challenge ciphertext. We can prove
Theorem 3 when MFHE.ct⋆ which is an encryption of µ⋆

coin becomes indistinguishable from an
encryption of a random string based on the IND-CPA security of ΠMFHE in Game4. To prove the
task, we change DABE.ct⋆(x⋆,0),vk⋆ which is an encryption of MFHE.sk⋆ to be an encryption of a
random string in Game4, where the selective IND-CPA security of ΠDABE ensures Game3 ≈c Game4.
For this purpose, we have to ensure that the challenger C does not use DABE secret keys
DABE.sk(y,0) and DABE.sk(y,0),vk⋆ such that f(x⋆, y) = 1 to answer all the adversary A’s queries.
Observe that DABE.sk(y,0) such that f(x⋆, y) = 0 (resp. DABE.sk(y,1)) suffice to answer A’s
decryption key reveal queries (resp. homomorphic evaluation key reveal queries). In other words,
what all we have to ensure is that A does not make decryption queries on pre-evaluated ciphertexts
ctx = (vk, · · · ) such that vk = vk⋆ and evaluated ciphertexts ctx,C = ((vk(ℓ), · · ·)ℓ∈[L], · · · ) such that

vk⋆ ∈ (vk(ℓ))ℓ∈[L]. We can prove the claim for pre-evaluated ciphertexts in Game1 by following
the CHK transformation [CHK04]. In particular, the strong EUF-CMA security of ΠOTS ensures
Game0 ≈c Game1. We prove the claim for evaluated ciphertexts in Game3 by showing that the
second-level adaptive OW-CPA security of ΠDABE ensures Game2 ≈c Game3 since A cannot create
valid DABE secret keys DABE.sk(y,1),vk such that f(x⋆, y) = 1. For this purpose, we have to ensure
that C does not use DABE secret keys DABE.sk(y,1) and DABE.sk(y,1),vk such that f(x⋆, y) = 1 to
answer all the adversary A’s queries. Observe that DABE.sk(y,0) (resp. DABE.sk(y,1) such that
f(x⋆, y) = 0) suffice to answer A’s decryption key reveal queries (resp. homomorphic evaluation
key reveal queries). However, C may create DABE.sk(y,1),vk such that f(x⋆, y) = 1 to answer A’s
evaluation queries. Let ct

⟨i⟩
x,C = (· · · , vk⟨i⟩, · · · ) denote i-th answer to A’s evaluation queries. We

show that A cannot make a decryption query on an evaluated ciphertext ctx,C = (· · · , vk, · · · ) such
that vk ∈ (vk⟨i⟩)i∈[QEval], where QEval denotes the maximum number of A’s evaluation queries and
the strong QEval-EUF-CMA security of ΠOTS and ensures Game1 ≈c Game2. Then, we can conclude
that A cannot create valid DABE secret keys DABE.sk(y,1),vk such that f(x⋆, y) = 1.

Proof of Theorem 10. We prove the theorem by using a sequence of games Game0, · · · ,Game4.
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Game0. This is the selective KH-CCA security game between the challenger C and the adversary A.
Hereafter, let

ct⋆x⋆ = (vk⋆,MFHE.pk⋆,DABE.ct⋆(x⋆,0),vk⋆ ,MFHE.ct⋆, σ⋆)

denote a challenge ciphertext, where DABE.ct⋆(x⋆,0),vk⋆ and MFHE.ct⋆ are encryptions of

MFHE.sk⋆ and µ⋆
coin, respectively. Due to the definition of the selective KH-CCA security

game, C stores the challenge ciphertext ct⋆x⋆ and its evaluation results in the list L.

Game1. This is the same as Game0 except that upon A’s evaluation queries and decryp-

tion queries on pre-evaluated ciphertexts. Upon A’s evaluation queries on (y, (ct
(ℓ)

x(ℓ) =

(vk(ℓ), · · · , σ(ℓ)))ℓ∈[L],C) such that vk⋆ ∈ (vk(ℓ))ℓ∈[L] ∧ ct⋆x⋆ /∈ (ct
(ℓ)

x(ℓ))ℓ∈[L], C always outputs
⊥. Upon A’s decryption queries on (y, ctx = (vk, · · · , σ)) such that vk = vk⋆, C always
outputs ⊥.
The output is not ⊥ only if σ(ℓ) and σ are valid signatures accepted by vk⋆. The strong
EUF-CMA security of ΠOTS ensures that A cannot forge a signature σ(ℓ) or σ. Thus, Game1 ≈c

Game2 holds.

Lemma 10 (Game0 ≈c Game1). If ΠOTS satisfies the strong EUF-CMA security, Game0 and Game1
are computationally indistinguishable for any PPT A.

Proof of Lemma 10. Let F1 denote an event that A makes an evaluation query on (y, (ct
(ℓ)

x(ℓ) =

(vk(ℓ),MFHE.pk(ℓ),DABE.ct
(ℓ)

(x(ℓ),0),vk(ℓ)
,MFHE.ct(ℓ), σ(ℓ)))ℓ∈[L],C) such that

vk⋆ ∈ (vk(ℓ))ℓ∈[L] ∧ ct⋆x⋆ /∈ (ct
(ℓ)

x(ℓ))ℓ∈[L]∧∑
ℓ∈[L]

OTS.Ver(vk(ℓ), (vk(ℓ),MFHE.pk(ℓ),DABE.ct
(ℓ)

(x(ℓ),0),vk(ℓ)
,MFHE.ct(ℓ)), σ(ℓ)) = L

or a decryption query on a pre-evaluated ciphertext ctx =
(vk,MFHE.pk,DABE.ct(x,0),vk,MFHE.ct, σ) such that

vk = vk⋆ ∧ ctx ̸= ct⋆x⋆ ∧ OTS.Ver(vk, (vk,MFHE.pk,DABE.ct(x,0),vk,MFHE.ct), σ) = 1.

If
∑

ℓ∈[L]OTS.Ver(vk
(ℓ), (vk(ℓ),MFHE.pk(ℓ),DABE.ct

(ℓ)

(x(ℓ),0),vk(ℓ)
,MFHE.ct(ℓ)), σ(ℓ)) < L holds upon

A’s evaluation query, there is an invalid pre-evaluated ciphertext in (ct
(ℓ)

x(ℓ))ℓ∈[L] and the design
of ΠABKFHE ensures that an answer to the query is ⊥. If ctx = ct⋆x⋆ holds upon A’s decryption
query, the definition of the selective KH-CCA security ensures that an answer to the query is ⊥.
If OTS.Ver(vk⋆, (vk⋆,MFHE.pk, IBE.ctvk,MFHE.ct), σ) = 0 holds upon A’s decryption query, the
pre-evaluated ciphertext KFHE.ct is invalid and the design of ΠKFHE ensures that an answer to
the query is ⊥. Thus, Game0 = Game1 holds if F1 does not occur. Therefore, it holds that
Pr[E0] ≤ Pr[E1] + Pr[F1].

We construct a reduction algorithm B1 which interacts with A against ΠABKFHE and breaks
the strong EUF-CMA security of ΠOTS. After B1 receives vk⋆ from C in the strong EUF-CMA
security game of ΠOTS, it runs MFHE.pp ← MFHE.Setup(1λ) and (DABE.mpk,DABE.msk) ←
DABE.Setup(1λ), and sends mpk = (MFHE.pp,DABE.mpk,ΠOTS) to A. Since B1 knows msk =
DABE.msk, it can properly answer all A’s secret key reveal queries, homomorphic evaluation key
reveal queries, evaluation queries, and decryption queries on evaluated ciphertexts.
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Upon A’s challenge query on (µ⋆
0, µ

⋆
1), B1 samples coin ←R {0, 1}, runs

(MFHE.pk⋆,MFHE.sk⋆) ← MFHE.KGen(1λ), MFHE.ct⋆ ← MFHE.Enc(MFHE.pk⋆, µ⋆
coin),

and DABE.ct⋆(x⋆,0),vk⋆ ← DABE.Enc(((x⋆, 0), vk⋆),MFHE.sk⋆), makes a sign query on (vk⋆,

MFHE.pk⋆,DABE.ct⋆(x⋆,0),vk⋆ ,MFHE.ct⋆) to C and receives σ⋆, and sends ct⋆x⋆ = (vk⋆,MFHE.pk⋆,

DABE.ct⋆(x⋆,0),vk⋆ ,MFHE.ct⋆, σ⋆) to A.
Upon A’s evaluation query on (y, (ct

(ℓ)

x(ℓ))ℓ∈[L],C), B1 can check whether F1 occurs. If∑
ℓ∈[L]OTS.Ver(vk

(ℓ), (vk(ℓ),MFHE.pk(ℓ),DABE.ct
(ℓ)

(x(ℓ),0),vk(ℓ)
,MFHE.ct(ℓ)), σ(ℓ)) < L holds, B1 sends

⊥ to A due to the design of ΠABKFHE. If (vk⋆ /∈ (vk(ℓ))ℓ∈[L] ∨ ct⋆x⋆ ∈ (ct
(ℓ)

x(ℓ))ℓ∈[L]) ∧∑
ℓ∈[L]OTS.Ver(vk

(ℓ), (vk(ℓ),MFHE.pk(ℓ),DABE.ct
(ℓ)

(x(ℓ),0),vk(ℓ)
,MFHE.ct(ℓ)), σ(ℓ)) = L holds, B1 sends

the result of Eval(mpk,DABE(DABE.msk, (y, 1)), (ct
(ℓ)

x(ℓ))ℓ∈[L],C) to A. Upon A’s decryption
query on a pre-evaluated ciphertexts ctx, B1 can check whether F1 occurs. If ctx =
ct⋆x⋆ ∨ OTS.Ver(vk, (vk,MFHE.pk,DABE.ct(x,0),vk,MFHE.ct), σ) = 0 holds, B1 sends ⊥ to A
due to the definition of the selective KH-CCA security and the design of ΠABKFHE. If
vk ̸= vk⋆ ∧ ctx ̸= ct⋆x⋆ ∧ OTS.Ver(vk, (vk,MFHE.pk,DABE.ct(x,0),vk,MFHE.ct), σ) = 1 holds,
B1 sends the result of Dec(mpk,DABE.KGen(DABEmsk, (y, 0)), ctx) to A. Otherwise, if F1

occurs, B1 knows ctx = (vk,MFHE.pk,DABE.ct(x,0),vk,MFHE.ct, σ) such that vk = vk⋆ ∧
ctx ̸= ct⋆x⋆ ∧ OTS.Ver(vk, (vk,MFHE.pk,DABE.ct(x,0),vk,MFHE.ct), σ) = 1. Then, B1 sends ((vk,
MFHE.pk,DABE.ct(x,0),vk,MFHE.ct), σ) to C as a pair of a message and a forged signature.
Since the condition ctx ̸= ct⋆x⋆ ensures that ((vk,MFHE.pk,DABE.ct(x,0),vk,MFHE.ct), σ) is not
a pair of a queried message and a returned signature, while the condition OTS.Ver(vk, (vk,
MFHE.pk,DABE.ct(x,0),vk,MFHE.ct), σ) = 1 ensures that σ is a valid signature of a message (vk,
MFHE.pk,DABE.ct(x,0),vk,MFHE.ct), B1 breaks the strong EUF-CMA security of ΠOTS with proba-
bility 1 if F1 occurs. Therefore, it holds that

Pr[E0] ≤ Pr[E1] + AdvEUF-CMA
ΠOTS,B1

(λ).

Game2. Let QEval denote the maximum number of A’s evaluation queries on (y, (ct
(ℓ)

x(ℓ))ℓ∈[L],C)

such that f(x⋆, y) = 1 and ct
⟨i⟩
x,C = (· · · , vk⟨i⟩, · · · ) denote i-th answer to them. This is the

same as Game1 except that upon A’s decryption queries on evaluated ciphertexts ctx,C =

(· · · , vk, · · · , σ) such that vk ∈ {vk⟨i⟩}i∈[QEval] ∧ ctx,C /∈ {ct⟨i⟩x,C}i∈[QEval], C always outputs ⊥.

The output is not ⊥ only if σ is a valid signature accepted by some {vk⟨i⟩}i∈[QEval]. The
strong QEval-EUF-CMA security of ΠOTS ensures that A cannot forge a signature σ. Thus,
Game1 ≈c Game2 holds.

Lemma 11 (Game1 ≈c Game2). If ΠOTS satisfies the strong QEval-EUF-CMA security, Game1
and Game2 are computationally indistinguishable for any PPT A making at most QEval evaluation

queries on (y, (ct
(ℓ)

x(ℓ))ℓ∈[L],C) such that f(x⋆, y) = 1.

Proof of Lemma 11. Let F2 denote an event that A makes a decryption query on an evaluated ci-

phertext ctx,C = ((vk(ℓ),MFHE.pk(ℓ),DABE.ct
(ℓ)

(x(ℓ),0),vk(ℓ)
)ℓ∈[L],MFHE.ctC, vk,DABE.sk(y,1),vk, σ) such

that

vk ∈ {vk⟨i⟩}i∈[QEval] ∧ ctx,C /∈ {ct⟨i⟩x,C}i∈[QEval]∧
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OTS.Ver(vk, ((vk(ℓ),MFHE.pk(ℓ),DABE.ct
(ℓ)

(x(ℓ),0),vk(ℓ)
)ℓ∈[L],MFHE.ctC, vk,DABE.sk(y,1),vk), σ) = 1.

If OTS.Ver(vk, ((vk(ℓ),MFHE.pk(ℓ),DABE.ct
(ℓ)

(x(ℓ),0),vk(ℓ)
)ℓ∈[L],MFHE.ctC, vk,DABE.sk(y,1),vk), σ) = 0

holds, the evaluated ciphertext is invalid and the design of ΠABKFHE ensures that an answer to
the query is ⊥. Thus, Game1 = Game2 holds if F2 does not occur. Therefore, it holds that
Pr[E1] ≤ Pr[E2] + Pr[F2].

We construct a reduction algorithm B2 which interacts with A against ΠABKFHE and breaks the
strongQEval-EUF-CMA security of ΠOTS. After B2 receives x⋆ fromA, B2 receives {vk⟨i⟩}i∈[QEval] from

C. Then, it runs MFHE.pp ← MFHE.Setup(1λ) and (DABE.mpk,DABE.msk) ← DABE.Setup(1λ),
and sends mpk = (MFHE.pp,DABE.mpk,ΠOTS) to A. Since B1 knows msk = DABE.msk, it can
properly answer all A’s secret key reveal queries, homomorphic evaluation key reveal queries, eval-

uation queries on (y, (ct
(ℓ)

x(ℓ))ℓ∈[L],C) such that f(x⋆, y) = 0, and decryption queries on pre-evaluated
ciphertexts. B3 answers the challenge query in the same way as in Game1.

Upon A’s i-th evaluation query on (y, (ct
(ℓ)

x(ℓ))ℓ∈[L],C) such that f(x⋆, y) =

1, B2 runs MFHE.ct
⟨i⟩
C ← MFHE.Eval((MFHE.pk(ℓ),MFHE.ct(ℓ))ℓ∈[L],C) and

DABE.sk
⟨i⟩
(y,1),vk⟨i⟩

← DABE.KGen(DABE.sk(y,1), ((y, 1), vk
⟨i⟩)), makes a sign query on (i, ((vk(ℓ),

MFHE.pk(ℓ),DABE.ct
(ℓ)

(x(ℓ),0),vk(ℓ)
)ℓ∈[L],MFHE.ct

⟨i⟩
C ,DABE.sk

⟨i⟩
(y,1),vk⟨i⟩

)) to C and receives σ⟨i⟩, and

sends ct
⟨i⟩
x,C = ((vk(ℓ),MFHE.pk(ℓ),DABE.ct

(ℓ)

(x(ℓ),0),vk(ℓ)
)ℓ∈[L],MFHE.ct

⟨i⟩
C , vk⟨i⟩,DABE.sk

⟨i⟩
(y,1),vk⟨i⟩

, σ⟨i⟩)

to A.
Upon A’s decryption query on an evaluated ciphertexts ctx,C, B2 can check whether F2 occurs.

If OTS.Ver(vk, ((vk(ℓ),MFHE.pk(ℓ),DABE.ct
(ℓ)

(x(ℓ),0),vk(ℓ)
)ℓ∈[L],MFHE.ctC, vk,DABE.sk(y,1),vk), σ) = 0

holds, B2 sends ⊥ to A due to the design of ΠABKFHE. If (vk /∈ {vk⟨i⟩}i∈[QEval] ∨ ctx,C ∈
{ct⟨i⟩x,C}i∈[QEval]) ∧ OTS.Ver(vk, ((vk(ℓ),MFHE.pk(ℓ),DABE.ct

(ℓ)

(x(ℓ),0),vk(ℓ)
)ℓ∈[L],MFHE.ctC, vk,

DABE.sk(y,1),vk), σ) = 1, B1 sends the result of Dec(mpk,DABE.KGen(DABEmsk, (y, 0)), ctx) to A.
Otherwise, if F2 occurs, B1 knows ctx,C = ((vk(ℓ),MFHE.pk(ℓ),DABE.ct

(ℓ)

(x(ℓ),0),vk(ℓ)
)ℓ∈[L],MFHE.ctC,

vk,DABE.sk(y,1),vk, σ) such that vk ∈ {vk⟨i⟩}i∈[QEval] ∧ ctx,C /∈ {ct⟨i⟩x,C}i∈[QEval] ∧
OTS.Ver(vk, ((vk(ℓ),MFHE.pk(ℓ),DABE.ct

(ℓ)

(x(ℓ),0),vk(ℓ)
)ℓ∈[L],MFHE.ctC, vk,DABE.sk(y,1),vk), σ) = 1.

Then, B2 sends (((vk(ℓ),MFHE.pk(ℓ),DABE.ct
(ℓ)

(x(ℓ),0),vk(ℓ)
)ℓ∈[L],MFHE.ctC, vk,DABE.sk(y,1),vk), σ)

to C as a pair of a message and a forged signature. Since the condition ctx,C /∈
{ct⟨i⟩x,C}i∈[QEval] ensures that ((vk,MFHE.pk,DABE.ct(x,0),vk,MFHE.ct), σ) is not a pair of

a queried message and a returned signature, while the condition vk ∈ {vk⟨i⟩}i∈[QEval] ∧
OTS.Ver(vk, ((vk(ℓ),MFHE.pk(ℓ),DABE.ct

(ℓ)

(x(ℓ),0),vk(ℓ)
)ℓ∈[L],MFHE.ctC, vk,DABE.sk(y,1),vk), σ) = 1 en-

sures that σ is a valid signature of a message ((vk(ℓ),MFHE.pk(ℓ),DABE.ct
(ℓ)

(x(ℓ),0),vk(ℓ)
)ℓ∈[L],MFHE.ctC,

vk,DABE.sk(y,1),vk), B2 breaks the strong QEval-EUF-CMA security of ΠOTS with probability 1 if F2

occurs. Therefore, it holds that

Pr[E1] ≤ Pr[E2] + AdvQEval-EUF-CMA
ΠOTS,B2

(λ).

Game3. This is the same as Game2 except that upon A’s decryption queries on evaluated ciphertexts
ctx,C = ((vk(ℓ), · · ·)ℓ∈[L], · · · ,DABE.sk(y,1),vk, · · · ) such that f(x⋆, y) = 1 ∧ vk⋆ ∈ {vk(ℓ)}ℓ∈[L], C
always outputs ⊥.
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The output is not ⊥ only if DABE.sk(y,1),vk is a valid DABE secret key. The definition of
the selective KH-CCA security ensures that A does not make a homomorphic evaluation key
reveal query on y such that f(x⋆, y) = 1 if it can make decryption queries. The second-level
adaptive OW-CPA security of ΠDABE ensures that A cannot create a valid DABE secret key.
Thus, Game2 ≈c Game3 holds.

Lemma 12 (Game2 ≈c Game3). If ΠDABE satisfies the second-level adaptive OW-CPA security,
Game1 and Game2 are computationally indistinguishable for any PPT A.

Proof of Lemma 12. As in Game2, let QEval denote the maximum number of A’s evaluation queries

on (y, (ct
(ℓ)

x(ℓ))ℓ∈[L],C) such that f(x⋆, y) = 1 and ct
⟨i⟩
x,C = (· · · , vk⟨i⟩, · · · ) denote i-th answer to them

Let F3 denote an event that A makes a decryption query on an evaluated ciphertext ctx,C = ((vk(ℓ),

MFHE.pk(ℓ),DABE.ct
(ℓ)

(x(ℓ),0),vk(ℓ)
)ℓ∈[L],MFHE.ctC, vk,DABE.sk(y,1),vk, σ) such that

f(x⋆, y) = 1 ∧ vk⋆ ∈ {vk(ℓ)}ℓ∈[L] ∧ (vk /∈ {vk⟨i⟩}i∈[QEval] ∨ ctx,C ∈ {ct
⟨i⟩
x,C}i∈[QEval]) ∧ ctx,C /∈ L

and DABE.sk(y,1),vk is a valid DABE secret key. If vk ∈ {vk⟨i⟩}i∈[QEval] ∧ ctx,C /∈ {ct⟨i⟩x,C}i∈[QEval]

holds, an answer to the query is ⊥ as we modified in Game2. If ctx,C ∈ L holds, an answer to the
query is ⊥ due to the definition of the selective KH-CCA security. If DABE.sk(y,1),vk is an invalid
DABE secret key, the evaluated ciphertext is invalid and and the design of ΠABKFHE ensures that
an answer to the query is ⊥. Thus, Game2 = Game3 holds if F3 does not occur. Therefore, it
holds that Pr[E2] ≤ Pr[E3] + Pr[F3]. We call A’s decryption query a critical decryption query if
F3 occurs. Hereafter, let ctx,C = (· · · , v̂k,DABE.sk

(y,1),v̂k
, · · · ) denote an evaluated ciphertext on

which A makes a critical decryption query.
We construct a reduction algorithm B3 which interacts with A against ΠABKFHE and breaks the

second-level adaptive OW-CPA security of ΠDABE. After B3 receives x⋆ from A, it declares (x⋆, 1)
to C and receives DABE.mpk. Then, it runs MFHE.pp ← MFHE.Setup(1λ), chooses a one-time
signature scheme ΠOTS, and sends mpk = (MFHE.pp,DABE.mpk,ΠOTS) to A. Upon A’s decryption
key reveal query (resp. homomorphic evaluation key reveal query) on y, B3 makes a DABE secret
key reveal query on (y, 0) (resp. (y, 1)) to C and receives DABE.sk(y,0) (resp. DABE.sk(y,1)), and
sends it to A. Upon A’s decryption query on a pre-evaluated ciphertext (y, ctx), B3 makes a DABE
secret key reveal query on (y, 0) to C and receives DABE.sk(y,0), and answers in the same way as in
Game2. B3 answers A’s challenge query in the same way as in Game2.

Upon A’s evaluation query on (y, (ct
(ℓ)

x(ℓ) = (vk(ℓ),MFHE.pk(ℓ),DABE.ct
(ℓ)

(x(ℓ),0),vk(ℓ)
,MFHE.ct(ℓ),

σ(ℓ)))ℓ∈[L],C), B3 sends ⊥ to A if vk⋆ ∈ (vk(ℓ))ℓ∈[L] ∧ ct⋆x⋆ /∈ (ct
(ℓ)

x(ℓ))ℓ∈[L] holds as we modified

in Game1. Otherwise, B3 runs MFHE.ctC ← MFHE.Eval((MFHE.pk(ℓ),MFHE.ct(ℓ))ℓ∈[L],C) and

(vk, sigk)← OTS.KGen(1λ), makes a DABE secret key reveal query on ((y, 1), vk) to C and receives

DABE.sk(y,1),vk, further runs σ ← Sign(sigk, ((vk(ℓ),MFHE.pk(ℓ),DABE.ct
(ℓ)

(x(ℓ),0),vk(ℓ)
)ℓ∈[L],MFHE.ctC,

DABE.sk(y,1),vk)), and sends ctx,C = ((vk(ℓ),MFHE.pk(ℓ),DABE.ct
(ℓ)

(x(ℓ),0),vk(ℓ)
)ℓ∈[L],MFHE.ctC,

vk,DABE.sk(y,1),vk, σ) to A.
Upon A’s decryption query on an evaluated ciphertext (y′, ctx,C), B3 can check whether F3

occurs. If vk ∈ {vk⟨i⟩}i∈[QEval] ∧ ctx,C /∈ {ct⟨i⟩x,C}i∈[QEval] holds, B3 sends ⊥ to A as we modified in
Game2. B3 also sends ⊥ to A if ctx,C ∈ L holds due to the definition of the selective KH-CCA
security. If DABE.sk(y,1),vk is an invalid DABE secret key, B3 sends ⊥ to A due to the design of

ΠABKFHE. If f(x
⋆, y) = 0∨vk⋆ /∈ {vk(ℓ)}ℓ∈[L] holds and DABE.sk(y,1),vk is a valid DABE secret key, B3
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makes a DABE secret key reveal query on (y, 0) and receives DABE.sk(y,0), then sends the result of
Dec(mpk, dky = DABE.sk(y,0), ctx,C) toA. Otherwise, if F3 occurs, B3 knows a valid DABE secret key

DABE.sk
(y,1),v̂k

. Then, B3 makes a DABE challenge query on v̂k to C and receives the DABE challenge

ciphertext DABE.ct⋆
(x⋆,1),v̂k

, sends the result of DABE.Dec(DABE.sk
(y,1),v̂k

,DABE.ct⋆
(x⋆,1),v̂k

) to C. If
F3 occurs, f(x⋆, y) = 1 holds. Thus, B3 can break the second-level adaptive OW-CPA security with
overwhelming probability if B3 never makes a DABE secret key reveal query on (y, 1) or ((y, 1), v̂k)
such that f(x⋆, y) = 1. Although B3 makes a DABE secret key reveal query on (y, 1) upon A’s
homomorphic evaluation key reveal query on y, it holds that f(x⋆, y) = 0 since the definition of the
selective KH-CCA security ensures that A cannot make decryption queries after A’s homomorphic
evaluation key reveal query on y such that f(x⋆, y) = 1.

What only we have to check is that B3 does not make a DABE secret key reveal
query on ((y, 1), v̂k) such that f(x⋆, y) = 1 upon A’s evaluation queries. Observe that
F3 occurs when A makes a critical decryption query on an evaluated ciphertext ctx,C =

((vk(ℓ), · · ·)ℓ∈[L], · · · , v̂k,DABE.sk(y,1),v̂k, · · · ) such that f(x⋆, y) = 1 ∧ vk⋆ ∈ {vk(ℓ)}ℓ∈[L] ∧ (v̂k /∈

{vk⟨i⟩}i∈[QEval] ∨ ctx,C ∈ {ct
⟨i⟩
x,C}i∈[QEval]) ∧ ctx,C /∈ L and DABE.sk(y,1),vk is a valid DABE secret key.

Moreover, B3 makes DABE secret key reveal queries on ((y, 1), vk⟨i⟩) for i ∈ [QEval] upon A’s evalu-
ation query on (y, (ct

(ℓ)

x(ℓ) = (vk(ℓ), · · ·)ℓ∈[L],C) only if vk⋆ /∈ (vk(ℓ))ℓ∈[L] ∨ ct⋆x⋆ ∈ (ct
(ℓ)

x(ℓ))ℓ∈[L] holds. If

A’s critical decryption query satisfies v̂k /∈ {vk⟨i⟩}i∈[QEval], B3 does not make a DABE secret key reveal

query on ((y, 1), v̂k). Hereafter, we focus on the other case that A’s critical decryption query satis-

fies f(x⋆, y) = 1∧vk⋆ ∈ {vk(ℓ)}ℓ∈[L]∧ctx,C ∈ {ct
⟨i⟩
x,C}i∈[QEval]∧ctx,C /∈ L and DABE.sk(y,1),vk is a valid

DABE secret key. If A’s critical decryption query satisfies vk⋆ ∈ {vk(ℓ)}ℓ∈[L]∧ctx,C ∈ {ct
⟨i⟩
x,C}i∈[QEval],

A has made an evaluation query on (y, (ct
(ℓ)

x(ℓ) = (vk(ℓ), · · ·)ℓ∈[L],C) such that vk⋆ ∈ (vk(ℓ))ℓ∈[L]. Nev-

ertheless, the evaluation query has to satisfy ct⋆x⋆ ∈ (ct
(ℓ)

x(ℓ))ℓ∈[L]; in other words, the answer to the
evaluation query has to satisfy ctx,C ∈ L. Since F3 never happens in this case, we can conclude that

B3 does not make a DABE secret key reveal query on ((y, 1), v̂k) such that f(x⋆, y) = 1. Therefore,
it holds that

Pr[E2] ≤ Pr[E3] + AdvOW-CPA
ΠDABE,B3

(λ) + negl(λ).

Game4. This is the same as Game3 except that DABE.ct
⋆
(x⋆,0),vk⋆ is an encryption of a random string

sampled independently from MFHE.sk⋆.

The selective IND-CPA security of the ΠDABE ensures that Game3 ≈c Game4 holds. In
short, the reduction algorithm runs (vk⋆, sigk⋆) ← OTS.KGen(1λ) at the beginning of the
security game. After A declares the challenge attribute x⋆ in the selective KH-CCA se-
curity game, the reduction algorithm declares (x⋆, 0, vk⋆) as the challenge ciphertext at-
tribute of DABE security game. In the challenge phase, the reduction algorithm runs
(MFHE.pk⋆,MFHE.sk⋆) ← MFHE.KGen(1λ), samples a random string µ⋆ whose length is the
same as MFHE.sk⋆ but the distribution is independent of MFHE.sk⋆. Then, the reduction
algorithm declares (MFHE.sk⋆, µ⋆) as the challenge messages in the DABE security game
and receives the challenge ciphertext DABE.ct⋆(x⋆,0,vk⋆) from the DABE challenger. The re-
duction algorithm can create the other elements of the challenge ciphertext by itself. Due
to the modifications in Game1,Game2, and Game3, the reduction algorithm can answer all
A’s queries by making DABE secret key reveal queries on (y, b) or ((y, b), vk) such that
f(x⋆, y) = 0 ∨ b = 1 ∨ vk ̸= vk⋆. Thus, it holds that Game3 ≈c Game4.
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Lemma 13 (Game3 ≈c Game4). If ΠDABE satisfies the selective IND-CPA security, Game3 and
Game4 are computationally indistinguishable for any PPT A.

Proof of Lemma 13. We construct a reduction algorithm B4 which interacts with A against ΠABKFHE

and breaks the selective IND-CPA security of ΠDABE. At the beginning of the game, B3 runs
(vk⋆, sigk⋆)← OTS.KGen(1λ). After B4 receives x⋆ from A, it declares ((x⋆, 0), vk⋆) to C and receives
DABE.mpk. Then, it runsMFHE.pp← MFHE.Setup(1λ), chooses a one-time signature scheme ΠOTS,
and sends mpk = (MFHE.pp,DABE.mpk,ΠOTS) to A. Upon A’s decryption key reveal query (resp.
homomorphic evaluation key reveal query) on y, B4 makes a DABE secret key reveal query on (y, 0)
(resp. (y, 1)) to C and receives DABE.sk(y,0) (resp. DABE.sk(y,1)), and sends it to A. Upon A’s
evaluation query on (y, (ct

(ℓ)

x(ℓ))ℓ∈[L],C), B4 makes a DABE secret key reveal query on (y, 1) to C and

receives DABE.sk(y,1), then sends the result of Eval(mpk, hky = DABE.sk(y,1), (ct
(ℓ)

x(ℓ))ℓ∈[L],C) to A.
Upon A’s decryption query on a pre-evaluated ciphertext (y, ctx = (vk,MFHE.pk,

DABE.ct(x,0),vk,MFHE.ct, σ)), B4 sends ⊥ to A if vk = vk⋆ holds as we modified in Game1.
B4 also sends ⊥ to A if OTS.Ver(vk, (vk,MFHE.pk,DABE.ct(x,0),vk,MFHE.ct), σ) holds due
to the definition of the selective KH-CCA security. Otherwise, B4 makes a DABE secret
key reveal query on ((y, 0), vk) to C and receives DABE.sk(y,0),vk, then sends the result of
MFHE.Dec(DABE.Dec(DABE.sk(y,0),vk,DABE.ct(x,0),vk),MFHE.ct) to A. Upon A’s decryption query

on an evaluated ciphertext (y, ctx,C = ((vk(ℓ),MFHE.pk(ℓ),DABE.ct
(ℓ)

(x(ℓ),0),vk(ℓ)
)ℓ∈[L],MFHE.ctC,

vk,DABE.sk(y′,1),vk, σ)), B4 sends ⊥ to A if f(x⋆, y) = 1 ∧ vk⋆ ∈ {vk(ℓ)}ℓ∈[L] holds as we mod-
ified in Game3. B3 also sends ⊥ to A if ctx,C ∈ L holds due to the definition of the selec-
tive KH-CCA security. B3 also sends ⊥ to A if DABE.sk(y′,1),vk is an invalid DABE secret key

or OTS.Ver(vk, ((vk(ℓ),MFHE.pk(ℓ),DABE.ct
(ℓ)

(x(ℓ),0),vk(ℓ)
)ℓ∈[L],MFHE.ctC, vk,DABE.sk(y′,1),vk), σ) = 0

holds due to the design of ΠABKFHE. Otherwise, B4 makes DABE secret key reveal queries
on ((y, 0), vk(ℓ)) to C and receives DABE.sk(y,0),vk(ℓ) for ℓ ∈ [L], then sends the result of

MFHE.Dec((DABE.Dec(DABE.sk(y,0),vk(ℓ))ℓ∈[L],DABE.ct
(ℓ)

(x,0),vk(ℓ)
),MFHE.ct) to A.

Upon A’s challenge query on (µ⋆
0, µ

⋆
1), B4 samples coin ←R {0, 1}, runs

(MFHE.pk⋆,MFHE.sk⋆) ← MFHE.KGen(1λ) and MFHE.ct⋆ ← MFHE.Enc(MFHE.pk⋆, µ⋆
coin),

makes a DABE challenge query on (MFHE.sk⋆, µ⋆) to C, where µ⋆ is a random string
with the same length as MFHE.sk⋆, receives DABE.ct⋆(x⋆,0),vk⋆ , further runs σ⋆ ←
Sign(sigk⋆, (vk⋆,MFHE.pk⋆,DABE.ct⋆(x⋆,0),vk⋆ ,MFHE.ct⋆)), and sends ct⋆x⋆ = (vk⋆,MFHE.pk⋆,

DABE.ct⋆(x⋆,0),vk⋆ ,MFHE.ct⋆, σ⋆) to A. After B4 receives ĉoin from A, B4 sends 0 to C if ĉoin = coin
and 1 to C otherwise.

Although B4 makes a DABE secret key reveal queries on (y, 0) to C upon A’s decryption key
reveal query on y, the definition of the selective KH-CCA security ensures that f(x⋆, y) = 0. Al-
though B4 makes a DABE secret key reveal queries on ((y, 0), vk) to C upon A’s decryption query
on a pre-evaluated ciphertext (y, ctx = (vk, · · · )), the modification in Game1 ensures that vk ̸= vk⋆.
Although B4 makes DABE secret key reveal queries on ((y, 0), vk(ℓ))ℓ∈[L] to C upon A’s decryp-

tion query on an evaluated ciphertext (y, ctx,C = ((vk(ℓ), · · ·)ℓ∈[L], · · · )), the modification in Game3
ensures that f(x⋆, y) = 0 ∨ vk ̸= vk⋆. Thus, it holds that

|Pr[E3]− Pr[E4]| ≤ AdvIND-CPA
ΠDABE,B4

(λ).

Lemma 14 (Selective KH-CCA Security in Game4). If ΠMFHE satisfies the IND-CPA security,
ΠABKFHE satisfies the selective KH-CCA security in Game4.
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Proof of Lemma 14. We construct a reduction algorithm B5 which interacts with A against ΠABKFHE

and breaks the IND-CPA security of ΠMFHE. After B5 receives (MFHE.pp,MFHE.pk⋆) from C, it runs
(DABE.mpk,DABE.msk)← DABE.Setup(1λ), chooses a one-time signature scheme ΠOTS, and sends
mpk = (MFHE.pp,DABE.mpk,ΠOTS) to A. Since B5 knows DABE.msk, it can properly answer all
A’s decryption key reveal queries, homomorphic evaluation key reveal queries, evaluation queries,
and decryption queries.

Upon A’s challenge query on (µ⋆
0, µ

⋆
1), B5 samples coin ←R {0, 1} and µ⋆ ←R M,

makes a MFHE challenge query on the same (µ⋆
0, µ

⋆
1) to C and receives MFHE.ct⋆, runs

(vk⋆, sigk⋆) ← OTS.KGen(1λ), DABE.ct⋆(x⋆,0),vk⋆ ← DABE.Enc(((x⋆, 0), vk⋆), µ⋆), and σ⋆ ←
Sign(sigk⋆, (vk⋆,MFHE.pk⋆,DABE.ct⋆(x⋆,0),vk⋆ ,MFHE.ct⋆)), then sends ct⋆x⋆ = (vk⋆,MFHE.pk⋆,

DABE.ct⋆(x⋆,0),vk⋆ ,MFHE.ct⋆, σ⋆) to A. After B5 receives ĉoin from A, B5 sends the same ĉoin to C.
If MFHE.ct⋆ is an encryption of µ⋆

0 (resp. µ⋆
1), ct⋆x⋆ is also an encryption of µ⋆

0 (resp. µ⋆
1).

Therefore, it holds that ∣∣∣∣Pr[E4]−
1

2

∣∣∣∣ ≤ AdvIND-CPA
ΠMFHE,B5

(λ).

We complete the proof of Theorem 3 since it holds that

AdvKH-CCA
ΠABKFHE,A(λ)

=

∣∣∣∣Pr[E0]−
1

2

∣∣∣∣
≤
∑
i∈[4]

|Pr[Ei−1]− Pr[Ei]|+
∣∣∣∣Pr[E4]−

1

2

∣∣∣∣
≤ AdvEUF-CMA

ΠOTS,B1
(λ) + AdvQEval-EUF-CMA

ΠOTS,B2
(λ) + AdvOW-CPA

ΠDABE,B3
(λ) + AdvIND-CPA

ΠDABE,B4
(λ) + AdvIND-CPA

ΠMFHE,B5
(λ).

7 Emura et al.’s KHPKE Scheme under the Matrix DDH Assump-
tion

In this section, we provide a simpler proof of Emura et al.’s KHPKE scheme ΠKHPKE [EHN+18] if
it is instantiated under the matrix DDH assumption. In Section 7.1, we review cyclic groups and
the matrix DDH assumption. In Section 7.2, we review Emura et al.’s KHPKE scheme instantiated
under the matrix DDH assumption. In Section 7.3, we prove the KH-CCA security.

7.1 Cyclic Groups

Let Ĝ be a cyclic group generator that takes the security parameter 1λ as input, and outputs
(p,G, g), where p is a Θ(λ)-bit prime number, G is a cyclic group of order p, and g is a generator
of G. For simplicity, let Ĝ(1λ) := (p,G, g) denote the output of Ĝ(1λ). Let 1G denote an identity
element of G. For a ∈ Zp and a = (a1, . . . , ad) ∈ Zd

p, let [a] := ga ∈ G1 and [a] := ([a1], . . . , [ad]) ∈
Gd

1. We use the same notation for a matrix [A]. Let Dk be an efficiently sampleable matrix

distribution [EHK+17] that outputs (A,a⊥) ∈ Z(k+1)×k
p ×Zk+1

p such that A⊤ ·a⊥ = 0 and a⊥ ̸= 0.
We use the following matrix DDH assumption to prove the KH-CCA security of Emura et al.’s

KHPKE scheme ΠKHPKE.
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Definition 24 (Matrix DDH Assumption). For a cyclic group Ĝ(1λ) = (p,G, g), an advantage for
solving the matrix DDH problem by an algorithm A is defined to be

AdvmDDHG
A (λ) :=

∣∣∣Pr[A(Ĝ(1λ), [A], [As])→ 1
]
− Pr

[
A(Ĝ(1λ), [A], [v])→ 1

]∣∣∣ ,
where (A,a⊥) ← Dk, s ←R Zk

p, and v ←R Zk+1
p . We say that the matrix DDH assumption holds

if it is negligible for all PPT A.

7.2 Scheme

We describe Emura et al.’s KHPKE scheme [EHN+18] ΠKHPKE instantiated under the matrix DDH
assumption.

KHPKE.KGen(1λ)→ (KHPKE.pk,KHPKE.dk,KHPKE.hk). Run (p,G, g) ← Ĝ(1λ) and choose a
collision-resistant hash function H ←R H, where H : {0, 1}∗ → Zp. Sample (A,a⊥) ← Dk

and random vectors (uι)ι∈[0,3] ←R Zk+1
p , then output

KHPKE.pk :=
(
Ĝ(1λ), [A], ([A⊤uι])ι∈[0,3],H

)
,

KHPKE.dk := (uι)ι∈[0,3], and KHPKE.hk := (uι)ι∈[2].

KHPKE.Enc(KHPKE.pk, µ)→ KHPKE.ct. Sample s ←R Zk
p and output KHPKE.ct :=

(KHPKE.ct0,KHPKE.ctµ,KHPKE.π,KHPKE.π
′);

KHPKE.ct0 = [As], KHPKE.ctµ = µ · [s⊤A⊤u0] KHPKE.π = [s⊤A⊤(u1 + h · u2)],

KHPKE.π′ = [s⊤A⊤u3],

where h = H(KHPKE.ct0,KHPKE.ctµ,KHPKE.π
′).

KHPKE.Eval(KHPKE.pk,KHPKE.hk, (KHPKE.ct(ℓ))ℓ∈[L])→ KHPKE.ct/⊥. Parse KHPKE.hk =

(uι)ι∈[2] and KHPKE.ct(ℓ) = (KHPKE.ct
(ℓ)
0 = [c(ℓ)],KHPKE.ct

(ℓ)
µ ,KHPKE.π(ℓ),KHPKE.π′(ℓ)).

Output ⊥ if there is some ℓ ∈ [L] which does not satisfy

KHPKE.π(ℓ) = [(c(ℓ))⊤ · (u1 + h(ℓ) · u2)], (5)

where h(ℓ) = H(KHPKE.ct
(ℓ)
0 ,KHPKE.ct

(ℓ)
µ ,KHPKE.π′(ℓ)). Otherwise, run

KHPKE.ct(0) ← KHPKE.Enc(KHPKE.pk, 1G) and output KHPKE.ct :=
(KHPKE.ct0,KHPKE.ctµ,KHPKE.π,KHPKE.π

′);

KHPKE.ct0 =
∏

ℓ∈[0,L]

KHPKE.ct
(ℓ)
0 , KHPKE.ctµ =

∏
ℓ∈[0,L]

KHPKE.ct(ℓ)µ ,

KHPKE.π = [c⊤ · (u1 + h · u2)], KHPKE.π′ =
∏

ℓ∈[0,L]

KHPKE.π′(ℓ),

where KHPKE.ct0 = [c] and h = H(KHPKE.ct0,KHPKE.ctµ,KHPKE.π
′).

KHPKE.Dec(KHPKE.pk,KHPKE.dk,KHPKE.ct)→ µ/⊥. Parse KHPKE.dk = (uι)ι∈[0,3] and
KHPKE.ct = (KHPKE.ct0 = [c],KHPKE.ctµ,KHPKE.π,KHPKE.π

′). Output ⊥ if KHPKE.ct
does not simultaneously satisfy the condition (5) and

KHPKE.π′ = [c⊤u3]. (6)

Otherwise, output KHPKE.ctµ/[c
⊤u0].
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7.3 Security

In this section, we prove that Emura et al.’s KHPKE scheme ΠKHPKE [EHN+18] instantiated under
the matrix DDH assumption satisfies the KH-CCA security.

Theorem 11. ΠKHPKE satisfies the KH-CCA security under the matrix DDH assumption.

We provide a simpler proof than the original paper [EHN+18]. Indeed, although Section 4.3
of [EHN+13], which is an ePrint version of [EHN+18], which discusses the KH-CCA security takes
15 pages long, Section 7.3 of this paper takes only 6 pages long. We want to claim that we do not
provide an essential improvement on Emura et al.’s proof. We obtain a simpler proof by focusing
on the matrix DDH assumption, while Emura et al. proved the KH-CCA security from a universal2
hash proof system [CS02]. However, the refined proof enables us to understand the essence of a
proof of our proposed ABKHE scheme in Section 8.

Although we already explained the intuition of a proof in Section 1.3.3, we provide a more
detailed overview. We call A’s decryption query on KHPKE.ct = (KHPKE.ct0 = [c], . . .) a critical
decryption query if KHPKE.ct satisfies the conditions (5) and (6), KHPKE.ct /∈ L holds, and c does
not live in the span of A. Let KHPKE.ct⋆ = (KHPKE.ct⋆0,KHPKE.ct

⋆
µ,KHPKE.π

⋆,KHPKE.π′⋆) de-
note a challenge ciphertext for a message µ⋆

coin, where h
⋆ = H(KHPKE.ct⋆0,KHPKE.ct

⋆
µ,KHPKE.π

′⋆).
Let D denote the number of ciphertexts in L at the end of the game, where the challenge ciphertext
KHPKE.ct⋆ is the first ciphertext and A makes D−1 dependent evaluation queries. Let KHPKE.ct[d]

= (KHPKE.ct
[d]
0 ,KHPKE.ct

[d]
µ ,KHPKE.π[d],KHPKE.π′[d]) denote d-th ciphertext in L and treat it as

an encryption of µ[d], where KHPKE.ct[1] = KHPKE.ct⋆ and µ[1] = µ⋆
coin.

We prove Theorem 11 by using a sequence of games
Game0,Game1,Game2,Game3,1,Game4,1,Game5,1,Game3,2, . . . ,Game3,D,Game4,D, where it holds
that Game0 ≈c Game1 = Game2 ≈c Game3,1 and Game5,d−1 ≈c Game3,d ≈ Game4,d ≈c Game5,d
for d ∈ [D]. Observe that A which is given the challenge ciphertext KHPKE.ct⋆

= (KHPKE.ct⋆0,KHPKE.ct
⋆
µ,KHPKE.π

⋆,KHPKE.π′⋆) can randomize it and compute

(KHPKE.ct⋆0,KHPKE.ct
⋆
µ,KHPKE.π

′⋆) such that the decryption result is µ⋆
coin by ignoring the

condition (5) and (KHPKE.ct⋆0,KHPKE.ct
⋆
µ,KHPKE.π

′⋆) ̸= (KHPKE.ct⋆0,KHPKE.ct
⋆
µ,KHPKE.π

′⋆)

holds. If it holds that H(KHPKE.ct⋆0,KHPKE.ct
⋆
µ,KHPKE.π

′⋆) = h⋆, a decryption result

of a ciphertext (KHPKE.ct⋆0,KHPKE.ct
⋆
µ,KHPKE.π

⋆,KHPKE.π′⋆) is µ⋆
coin without ignor-

ing the condition (5) and (KHPKE.ct⋆0,KHPKE.ct
⋆
µ,KHPKE.π

⋆,KHPKE.π′⋆) ̸= KHPKE.ct⋆

holds. Thus, A can break the KH-CCA security by making a decryption query on
(KHPKE.ct⋆0,KHPKE.ct

⋆
µ,KHPKE.π

⋆,KHPKE.π′⋆). In Game1, we use the collision resistance

of H and prevent the attack. In Game2, we change how to compute KHPKE.ct[d] for d ∈ [2, D] so
that the distribution of KHPKE.ct[d] does not depend on KHPKE.ct[1], . . . ,KHPKE.ct[d−1]. Since
the change is conceptual, Game1 and Game2 follow the same distribution from A’s view.

In Game2, all ciphertexts KHPKE.ct[1] = KHPKE.ct⋆, . . . ,KHPKE.ct[D] ∈ L depend on
µ⋆
coin. In Game3,d,Game4,d,Game5,d for d ∈ [D], we change distributions of ciphertexts

KHPKE.ct[1], . . . ,KHPKE.ct[D] so that all the ciphertexts KHPKE.ct[1], . . . ,KHPKE.ct[D] are inde-
pendent of µ⋆

coin. We can complete the change by following security proofs of CCA1-secure Cramer-
Shoup-lite and the CCA2-secure Cramer-Shoup cryptosystem [CS98].

Proof of Theorem 11. We use the following sequence of games.

Game0. This is the KH-CCA security game. Hereafter, let KHPKE.ct⋆ =
(KHPKE.ct⋆0,KHPKE.ct

⋆
µ,KHPKE.π

⋆,KHPKE.π′⋆) denote a challenge ciphertext for a
message µ⋆

coin, where h⋆ = H(KHPKE.ct⋆0,KHPKE.ct
⋆
µ,KHPKE.π

′⋆).
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Game1. This is the same as Game0 except that a collision does not occur for a hash function H
among all ciphertexts that appeared in the security game.

The collision resistance of H ensures that Game0 ≈c Game1 holds.

Game2. This is the same as Game1 except the answers to dependent evaluation queries so that
the distribution of ciphertexts KHPKE.ct[1] = KHPKE.ct⋆, . . . ,KHPKE.ct[D] ∈ L are inde-
pendent. In Game1, C runs Eval algorithm with inputs KHPKE.ct[1], . . . ,KHPKE.ct[d−1] that
are answers to A’s challenge query and dependent evaluation queries, and creates an eval-
uated ciphertext KHPKE.ct[d]. In Game2, upon A’s challenge query, C runs KHPKE.Enc

algorithm and creates two ciphertexts KHPKE.ct⋆ and ˜KHPKE.ct⋆ in the same way as in
Game1, sends KHPKE.ct⋆ to A as the challenge ciphertext, and stores both ciphertexts

(KHPKE.ct⋆, ˜KHPKE.ct⋆) ∈ L. UponA’s first dependent evaluation query, C runs KHPKE.Eval
algorithm with inputs ˜KHPKE.ct[1] in place of KHPKE.ct[1] that is the answer to A’s challenge
query and creates two evaluated ciphertexts KHPKE.ct[2] and ˜KHPKE.ct[2] in the same way
as in Game1, sends KHPKE.ct

[2] to A as the answer to the evaluation query, and stores both

ciphertexts (KHPKE.ct[2], ˜KHPKE.ct[2]) ∈ L. In the same way, upon A’s (d− 1)-th dependent

evaluation query, C runs Eval algorithm with inputs ˜KHPKE.ct[1], . . . , ˜KHPKE.ct[d−1] in place
of KHPKE.ct[1], . . . ,KHPKE.ct[d−1] that are the answers to A’s challenge query and dependent

evaluation queries, and creates two evaluated ciphertexts KHPKE.ct[d] and ˜KHPKE.ct[d] in the
same way as in Game1, sends KHPKE.ct[d] to A as the answer to the evaluation query, and

stores both ciphertexts (KHPKE.ct[d], ˜KHPKE.ct[d]) ∈ L. In Game1 and Game2, all ciphertexts

KHPKE.ct[d] and ˜KHPKE.ct[d] follow the same distribution for d ∈ [D].

From now on, we change a distribution of d-th ciphertext KHPKE.ct[d] = (· · · ,KHPKE.ct[d]µ ,

· · · ) ∈ L for d ∈ [D] one by one so that KHPKE.ct
[d]
µ is independent of the other elements of

KHPKE.ct[d] and distributed uniformly at random over G. For this purpose, we use the following
sequence of games Game3,d,Game4,d,Game5,d for d ∈ [D], where Game5,0 = Game2 and the proof
terminates in Game4,D.

Game3,d. This is the same as Game5,d−1 except C’s answer to the challenge query if d = 1 and
a dependent evaluation query if d ∈ [2, D]. If d = 1, C creates the challenge ciphertext
KHPKE.ct⋆ = (KHPKE.ct⋆0,KHPKE.ct

⋆
µ,KHPKE.π

⋆,KHPKE.π′⋆);

KHPKE.ct⋆0 = [c], KHPKE.ct⋆µ = µ⋆
coin · [c⊤u0] KHPKE.π⋆ = [c⊤(u1 + h⋆ · u2)],

KHPKE.π′⋆ = [c⊤u3],
(7)

where c ←R Zk+1
p and h⋆ = H(KHPKE.ct⋆0,KHPKE.ct

⋆
µ,KHPKE.π

′⋆). If d ∈ [2, D], C creates

KHPKE.ct(0) to compute KHPKE.ct[d] in the same way as (7) except that µ⋆
coin is replaced

with 1G. We note that C creates ˜KHPKE.ct[1], . . . , ˜KHPKE.ct[D] in the same way as in Game2.

We can prove Game5,d−1 ≈c Game3,d under the matrix DDH assumption.

Lemma 15 (Game5,d−1 ≈c Game3,d). If the matrix DDH assumption holds, Game5,d−1 and Game3,d
are computationally indistinguishable for any PPT A.
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Proof of Lemma 15. We show that for any PPT adversary A that breaks the KH-CCA security of
ΠKHPKE, there exists a reduction algorithm B1 that solves the matrix DDH assumption, where

|Pr[E5,d−1]− Pr[E3,d]| ≤ AdvmDDHG
B1

(λ). (8)

We prove only for d = 1 since proofs for the other cases are essentially the same. B1 receives
(G(1λ), [A], [v]) which is an instance of the matrix DDH problem, where (A,a⊥)← Dk, v = As for
s←R Zk

p or v ←R Zk+1
p . B1 chooses a collision-resistant hash function H ←R H, samples random

vectors (uι)ι∈[0,3] ←R Zk+1
p , then sends KHPKE.pk = (Ĝ(1λ), [A], ([A⊤uι])ι∈[0,3],H) to A. Since

B1 knows (uι)ι∈[0,3], it can answer all A’s homomorphic evaluation key reveal query, decryption
queries, and evaluation queries.

Upon A’s challenge query on (µ⋆
0, µ

⋆
1), B1 samples coin ←R {0, 1} and creates the challenge

ciphertext KHPKE.ct⋆ = (KHPKE.ct⋆0,KHPKE.ct
⋆
µ,KHPKE.π

⋆,KHPKE.π′⋆);

KHPKE.ct⋆0 = [v], KHPKE.ct⋆µ = µ⋆
coin · [v⊤u0], KHPKE.π⋆ = [v⊤(u1 + h⋆ · u2)],

KHPKE.π′⋆ = [v⊤u3],
(9)

where h⋆ = H(KHPKE.ct⋆0,KHPKE.ct
⋆
µ,KHPKE.π

′⋆). The challenge ciphertext KHPKE.ct⋆ is dis-

tributed as in Game5,0 (resp. Game3,1) if v = As (resp. v ←R Zk+1
p ). Thus, the inequality (8)

holds.

Game4,d. This is the same as Game3,d except C’s answer to the challenge query if d = 1 and a

(d − 1)-th dependent evaluation query if d ∈ [2, D] by setting KHPKE.ct
[d]
µ ←R G. Since the

d-th ciphertext KHPKE.ct[d] ∈ L becomes independent of µ⋆
coin in Game4,d, A’s advantage in

Game4,D is exactly 0.

Lemma 16 (Game3,d ≈ Game4,d). It holds that

Pr[E3,d] = Pr[E4,d]

with overwhelming probability.

We will prove Lemma 16 at the end of the proof.

Game5,d. This is the same as Game4,d except C’s answer to the challenge query if d = 1 and
a dependent evaluation query if d ∈ [2, D]. If d = 1, C creates the challenge ciphertext
KHPKE.ct⋆ = (KHPKE.ct⋆0,KHPKE.ct

⋆
µ,KHPKE.π

⋆,KHPKE.π′⋆) in the same way as the real

scheme except that KHPKE.ct⋆µ ←R G is unchanged. If d ∈ [2, D], C creates KHPKE.ct(0) =

(KHPKE.ct
(0)
0 ,KHPKE.ct

(0)
µ ,KHPKE.π(0),KHPKE.π′(0)) to compute KHPKE.ct[d] in the same

way as the real scheme except that KHPKE.ct
(0)
µ ←R G is unchanged.

We can prove Game4,d ≈c Game5,d under the matrix DDH assumption.

Lemma 17 (Game4,d ≈c Game5,d). If the matrix DDH assumption holds, Game4,d and Game5,d are
computationally indistinguishable for any PPT A.

We can prove Lemma 17 essentially in the same way as Lemma 15. For example, the only
difference for d = 1 is that the reduction algorithm creates the challenge ciphertext in the same
way as (9) except KHPKE.ct⋆µ ←R G if d = 1. Then, the reduction algorithm simulates Game4,d if

v←R Zk+1
p and Game5,d if v = As.
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To conclude the proof of Theorem 11, we prove Lemma 16.

Proof of Lemma 16. We prove only for d = 1 since proofs for the other cases are essentially the same.
For this purpose, we show that even when A is computationally unbounded, Game3,d ≡ Game4,d
holds with overwhelming probability. For this purpose, we construct a simulator that behaves as C in
Game3,d from A’s view. The simulator runs (p,G, g)← Ĝ(1λ) and chooses a collision-resistant hash
function H ←R H. The simulator samples (A,a⊥)← Dk, random vectors û0,u1,u2,u3 ←R Zk+1

p ,

and random α̃0 ←R Zp, then sets u0 = û0 + α̃0a
⊥. Nevertheless, the simulator does not use

u0 but û0 to simulate the game except for creating KHPKE.ct[d] ∈ L. At first, the simulator
sends KHPKE.pk = (Ĝ(1λ), [A], [A⊤û0], [A

⊤u1], [A
⊤u2], [A

⊤u3],H) to A. KHPKE.pk is properly
distributed since it holds that

[A⊤û0] = [A⊤(u0 − α̃0a
⊥)] = [A⊤u0] · [A⊤a⊥]−α̃0 = [A⊤u0]. (10)

The simulator answers A’s homomorphic evaluation key reveal query and evaluation queries by
using u1,u2 as in Game3,d, while it answers A’s decryption queries by using u1,u2,u3 and û0. We
will discuss the validity later.

Upon A’s challenge query on (µ⋆
0, µ

⋆
1), the simulator samples coin ←R {0, 1} and creates the

challenge ciphertext KHPKE.ct⋆ = (KHPKE.ct⋆0,KHPKE.ct
⋆
µ,KHPKE.π

⋆,KHPKE.π′⋆) in the same
way as in Game3,d;

KHPKE.ct⋆0 = [c], KHPKE.ct⋆µ = µ⋆
coin · [c⊤u0], KHPKE.π⋆ = [c⊤(u1 + h⋆ · u2)],

KHPKE.π′⋆ = [c⊤u3],

where h⋆ = H(KHPKE.ct⋆0,KHPKE.ct
⋆
µ,KHPKE.π

′⋆). Observe that KHPKE.ct⋆µ is the only element
that the simulator uses u0 to create and

KHPKE.ct⋆µ = µ⋆
coin · [c⊤(û0 + α̃0a

⊥)] = µ⋆
coin · [c⊤û0] · [c⊤a⊥]α̃0

holds. Since [c⊤a⊥] is a generator of G with overwhelming probability and KHPKE.ct⋆µ is the only
element which depends on α̃0 in the security game, KHPKE.ct⋆µ is distributed uniformly at random
over G as in Game4,d.

Finally, we check that the simulator’s answers to decryption queries are valid although û0 ̸= u0

is used. For this purpose, we divide A’s attack strategies into two types called Type-1 and Type-2
which are defined as follows:

• A is called Type-1 if it makes a homomorphic evaluation key reveal query in Phase 1.

• A is called Type-2 if it does not make a homomorphic evaluation key reveal query in Phase
1.

By definition, Type-1 and Type-2 are mutually exclusive and cover all possible strategies of A.
We show that the simulator’s answers against A of Type-1 (resp. Type-2) are valid by following
the proof of the CCA1-secure Cramer-Shoup-lite (resp. CCA2-secure Cramer-Shoup cryptosys-
tem) [CS98].

Case of Type-1. Since A of Type-1 makes a homomorphic evaluation key reveal query in Phase 1,
it is allowed to make decryption queries only in Phase 1. Upon A’s decryption query on KHPKE.ct =
(KHPKE.ct0 = [c′],KHPKE.ctµ,KHPKE.π,KHPKE.π

′), the simulator’s answer is valid when c′⊤u0 =

c′⊤û0 holds. Thus, the answer is invalid when c′ does not live in the span of A and the answer is not
⊥. In other words, the simulator cannot answer A’s critical decryption queries validly. When the
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computationally unbounded A receives KHPKE.pk, it can compute û3 such that A⊤u3 = A⊤û3,
where u3 = û3 + α̃3a

⊥. If the answer to A’s decryption query is not ⊥, KHPKE.π′ = [c′⊤u3] holds
due to the condition (6). If c′ does not live in the span of A, a computationally unbounded A’s
ability to make a critical decryption query is equivalent to the knowledge of α̃3 ∈ Zp. Although A of
Type-1 can learn α̃3 when it receives the challenge ciphertext KHPKE.ct⋆, it is not allowed to make
decryption queries in Phase 2. The only way for A to learn α̃3 is making decryption queries in Phase
1 such that c′ does not live in the span of A. Although A can eliminate a candidate of α̃3 ∈ Zp by
making a decryption query and the answer is ⊥, there are exponentially many candidates and A is
allowed to make only a polynomial number of queries. Thus, the simulator’s answers to decryption
queries are valid with probability 1 − QDec/q, where QDec denotes the number of A’s decryption
queries.

Case of Type-2. Since A of Type-2 does not make a homomorphic evaluation key reveal query
in Phase 1, it is allowed to make decryption queries until it makes a homomorphic evaluation
key reveal query in Phase 2. When the computationally unbounded A receives KHPKE.pk, it can
compute ûι for ι ∈ [2] such that A⊤uι = A⊤ûι, where uι = ûι + α̃ιa

⊥. When the computationally
unbounded A receives the challenge ciphertext KHPKE.ct⋆, it learns the value of α̃1 + h⋆ · α̃2 since
it holds that

KHPKE.π⋆ = [c⊤(û1 + α̃1a
⊥) + h⋆ · (û2 + α̃2a

⊥)] = [c⊤û1 + h⋆ · û2] · [c⊤a⊥]α̃1+h⋆·α̃2 .

If the answer to A’s decryption query is not ⊥, KHPKE.π = [c′⊤(u1 + h · u2)] holds due to the
condition (5). If c′ does not live in the span of A, A learns the value of α̃1+h · α̃2, where the change
in Game1 ensures that h ̸= h⋆ holds. Then, a computationally unbounded A’s ability to make a
critical decryption query is equivalent to the knowledge of (α̃1, α̃2) ∈ Z2

p. A cannot learn α̃1+h · α̃2

for any h from answers to dependent evaluation queries since the change in Game2 ensures that the

discrete logarithm of KHPKE.ct
[d]
0 lives in the span of A. (If d ∈ [2, D], the change in Game5,d−1

is also required to ensure the fact.) Although A of Type-2 can learn α1, α2 when it makes a
homomorphic evaluation key reveal query in Phase 2, it is not allowed to make decryption queries
after the query. The only way for A to learn (α̃1, α̃2) is making decryption queries and evaluation
queries such that c′ does not live in the span ofA. AlthoughA can eliminate a candidate of α̃1+h·α̃2

for some h by making a decryption query or an evaluation query and the answer is ⊥, there are
exponentially many candidates and A is allowed to make only polynomial number of queries. Thus,
the simulator’s answers to decryption queries are valid with probability 1− (QDec+QEval)/q, where
QDec (resp. QEval) denotes the number of A’s decryption (resp. evaluation) queries.

8 Pairing-based Construction of ABKHE

In this section, we propose a pairing-based ABKHE scheme ΠABKHE from a pair encoding scheme
(PES) by combining with an ABE schemes over dual system groups ΠDSG [AC16, AC17, CGW15]
and Emura et al.’s KHPKE scheme ΠKHPKE. In Section 8.1, we review bilinear groups and the PES.
In Section 8.2, we provide a construction of ΠABKHE. In Section 8.3, we prove the adaptive KH-CCA
security.
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8.1 Preliminaries on Pairing-based Cryptography

8.1.1 Bilinear Groups

Let G be a bilinear group generator which takes the security parameter 1λ as input, and outputs
(p,G1,G2,GT , g1, g2, e), where p is a Θ(λ)-bit prime number, G1,G2, and GT are cyclic groups of
order p, g1 and g2 are generators of G1 and G2, respectively, and e : G1×G2 → GT is an efficiently
computable non-degenerate bilinear map. For simplicity, let G(1λ) := (p,G1,G2,GT , g1, g2, e) de-
note the output of G(1λ). Let 1T denote an identity element of GT . As in Section 7.1, we use
the notations [A]1, [A]2, and [A]T for G1,G2, and GT , respectively. For matrices A and B of
compatible dimensions, let e([A]1, [B]2) = [A⊤B]T .

For a matrix distribution Dk which we explained in Section 7.1, we use the following property.

Lemma 18 (Basis Lemma [CGW15]). For (A,a⊥), (B,b⊥)← Dk, a
⊥ does not live in the span of

B, b⊥ does not live in the span of A, and a⊥
⊤
b ̸= 0 simultaneously hold with probability 1− 1/p.

We use the following complexity assumptions to prove the adaptive KH-CCA security of the
proposed ABKHE scheme.

Definition 25 (m-fold Matrix DDH Assumption). For bilinear groups G(1λ) =
(p,G1,G2,GT , g1, g2, e) and a polynomially bounded m, an advantage for solving the m-fold
matrix DDH problem over G1 by an algorithm A is defined to be

Adv
mDDHG1
A (λ) :=

∣∣∣Pr[A(G(1λ), [A]1, [AS]1)→ 1
]
− Pr

[
A(G(1λ), [A]1, [V]1)→ 1

]∣∣∣ ,
where (A,a⊥) ← Dk, S ←R Zk×m

p , and V ←R Z(k+1)×m
p . We say that the m-fold matrix DDH

assumption over G1 holds if it is negligible for all PPT A. We also define the m-fold matrix DDH
assumption over G2.

Remark 8. A 1-fold matrix DDH assumption is the matrix DDH assumption as in Definition 24.
For a polynomially bounded m, the m-fold matrix DDH assumption is computationally equivalent
to the matrix DDH assumption [AC16, EHK+17].

Definition 26 ((d1, d2)-q-ratio Assumption [AC17]). For bilinear groups G(1λ) =
(p,G1,G2,GT , g1, g2, e), let

D1 := ([ui]1)i∈[0,d2] ∪
{[

ui
ujvk

]
1

}
i,j∈[d2],i ̸=j,k∈[d1]

, D2 := ([vi]2)i∈[d1] ∪
{[

vi
vjuk

]
2

}
i,j∈[d1],i ̸=j,k∈[d2]

,

where u0, u1, . . . , ud2 , v1, . . . , vd1 ←R Z∗
p. An advantage for solving the (d1, d2)-q-ratio problem by

an algorithm A is defined to be

Adv
(d1,d2)-q-ratio
A (λ) :=

∣∣∣Pr[A(G(1λ),D1,D2, [1/u0]2)→ 1
]
− Pr

[
A(G(1λ),D1,D2, [u

′]2)→ 1
]∣∣∣ ,

where u′ ←R Zp. We say that the (d1, d2)-q-ratio assumption holds if it is negligible for all PPT A.

8.1.2 Pair Encoding Scheme

We review a pair encoding scheme (PES) by following [AC16, AC17, Att14, Tak21]. A PES
for a predicate f : X × Y → {0, 1} consists of the following four polynomial time algorithms
(Param,EncK,EncC,Pair) defined as follows.
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Param(par)→ n. On input par, Param outputs n ∈ Zp that specifies the number of common vari-
ables denoted by b := (b1, . . . , bn).

EncC(x, p)→ (w1, w2, c). On input x ∈ X and p, EncC outputs a vector of w3 ciphertext-encoding
polynomials c = (c1, . . . , cw3) in non-lone ciphertext-encoding variables s0 and s = (s1, s1, . . . ,
sw1) and lone ciphertext-encoding variables ŝ = (ŝ1, . . . , ŝw2). The t-th polynomial is given
by

ct :=
∑
i∈[w2]

ηt,iŝi +
∑

i∈[0,w1],j∈[n]

ηt,i,jsibj

for t ∈ [w3], where ηt,i, ηt,i,j ∈ Zp.

EncK(y, p)→ (m1,m2,k). On input y ∈ Y and p, EncK outputs a vector of m3 key-encoding
polynomials k = (k1, . . . , km3) in non-lone key-encoding variables r = (r1, . . . , rm1) and lone
key-encoding variables α and r̂ = (r̂1, . . . , r̂m2). The t′-th polynomial is given by

kt′ := ϕt′α+
∑

i′∈[m2]

ϕt′,i′ r̂i′ +
∑

i′∈[m1],j∈[n]

ϕt′,i′,jri′bj

for t′ ∈ [m3], where ϕt′ , ϕt′,i′ , ϕt′,i′,j ∈ Zp.

Pair(x, y, p)→ (E,E). On input x ∈ X , y ∈ Y , and p, Pair outputs two matrices E and E of size
(w1 + 1)×m3 and w3 ×m1, respectively.

Definition 27. PES = (Param,EncK,EncC,Pair) for a predicate f is correct if for all (p, par),
x ∈ X and y ∈ Y such that f(x, y) = 1, it holds that

s⊤Ek− c⊤Er =
∑

i∈[0,w1],t′∈[m3]

Ei,t′sikt′ −
∑

t∈[w3],i′∈[m1]

Et,i′ctri′ = αs0,

where Ei,t′ denote a (i, t′)-th element of E and Et,i′ denote a (t, i′)-th element of E.

Remark 9. For example, a PES for IBE has two common variables (b1, b2), one ciphertext-encoding
polynomial c = s(b1 + id · b2) and one key-encoding polynomial k = α+ r(b1 + id · b2). The scheme
is correct since it holds that sk − cr = αs.

We review the definitions of the perfect security [Att14] and the symbolic security [AC17].
Intuitively, the perfect security ensures that given non-lone variables s0, s, r, ciphertext-encoding
polynomials c = (c1, . . . , cw3), and key-encoding polynomials k = (k1, . . . , km3), the distributions
do not change regardless of the value of α.

Definition 28 (Perfect Security [Att14]). A PES = (Param,EncK,EncC,Pair) for a predicate f :
X × Y → {0, 1} satisfies the perfect security if for all x ∈ X and y ∈ Y such that f(x, y) = 0, it
holds that  s0, s, r

(
∑

i∈[w2]
ηt,iŝi +

∑
i∈[0,w1],j∈[n] ηt,i,jsibj)t∈[w3]

(
∑

i′∈[m2]
ϕt′,i′ r̂i′ +

∑
i′∈[m1],j∈[n] ϕt′,i′,jri′bj)t′∈[m3]


≡

 s0, s, r
(
∑

i∈[w2]
ηt,iŝi +

∑
i∈[0,w1],j∈[n] ηt,i,jsibj)t∈[w3]

(ϕt′α+
∑

i′∈[m2]
ϕt′,i′ r̂i′ +

∑
i′∈[m1],j∈[n] ϕt′,i′,jri′bj)t′∈[m3]


(11)

where s0 ←R Zp, s←R Zw1
p , r←R Zm1

p , ŝ←R Zw2
p , r̂←R Zm2

p , b←R Zn
p ,α←R Zp, and the boxed

part denote a change between the left and the right distribution.
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Theorem 12 ([AC16, CG17, CGW15, Tak21]). If there is a PES = (Param,EncK,EncC,Pair) for
a predicate f satisfying the perfect security, there is an adaptively secure ABE scheme for the same
predicate f under the standard matrix DDH assumption over G1 and G2.

Next, we describe the symbolic security which captures more expressive predicates f than the
perfect security.

Definition 29 (Symbolic Security [AC17]). A PES = (Param,EncK,EncC,Pair) for a predicate
f : X × Y → {0, 1} satisfies (d1, d2)-selective symbolic security for positive integers d1 and d2 if
for all x ∈ X and y ∈ Y such that f(x, y) = 0, there exist three deterministic polynomial-time
algorithms EncB, EncS, and EncR;

EncB(x)→ (B1, . . . ,Bn) ∈ (Zd1×d2
p )n

EncR(x, y)→ (r1, . . . , rm1 ,a, r̂1, . . . , r̂m2) ∈ (Zd1
p )m1 × (Zd2

p )m2+1

EncS(x)→ (s0, s1, . . . , sw1 , ŝ1, . . . , ŝw2) ∈ (Zd2
p )w1+1 × (Zd1

p )w2

such that ⟨s0,a⟩ ̸= 0, and if we substitute

si : s
⊤
i , ŝi : ŝ

⊤
i , sibj : Bjs

⊤
i , ri′ : ri′ , α : a, r̂i′ : r̂i′ , ri′bj : ri′Bj ,

for z ∈ [w2], i ∈ [0, w1], j ∈ [n], z′ ∈ [m2], and i′ ∈ [m1] in all ciphertext-encoding polynomials
output by EncC(x, p) and all key-encoding polynomials output by EncK(y, p), then they evaluate to
0.

Similarly, the PES satisfies (d1, d2)-co-selective symbolic security if there exist EncB, EncR, and
EncS as above except that inputs of these three algorithms are y, y, and (x, y), respectively. Finally,
the PES satisfies (d1, d2)-symbolic security if it satisfies (d′1, d

′
2)-selective symbolic security such that

d′1 ≤ d1, d
′
2 ≤ d2 and (d′′1, d

′′
2)-selective symbolic security such that d′′1 ≤ d1, d

′′
2 ≤ d2.

Theorem 13 ([AC17]). If there is a PES = (Param,EncC,EncK,Pair) for a predicate f satisfying
the (d1, d2)-symbolic security, there is an adaptively secure ABE scheme for the same predicate f
under the (d1, d2)-q-ratio assumption.

8.2 Construction

We construct an ABKHE scheme ΠABKHE from PES = (Param,EncC,EncK,Pair) for a predicate
f : X × Y → {0, 1}. Let ΠDSG denote an ABE scheme from PES over dual system groups [AC16,
AC17, CGW15]. Briefly speaking, ΠABKHE is based on ΠDSG with three master secret keys (uι)ι∈[0,2]
by combining with Emura et al.’s KHPKE scheme ΠKHPKE [EHN+18]. A ciphertext of ΠABKHE is
described as ctx = (ABE.ctx, π), where ABE.ctx is a ciphertext of ΠDSG and π will play the same
role as KHPKE.π in ΠKHPKE. Let sky,ι denote a secret key of ΠDSG for a master secret key uι. Then,
a decryption key and a homomorphic evaluation key are described as dky = (sky,ι)ι∈[0,2] and dky =
(sky,ι)ι∈[2], respectively.

By following ABE scheme ΠDSG from PES over dual system groups [AC16, AC17, CGW15],
mpk contains group elements [A]1, [B]2, ([W

⊤
j A]1, [WjB]2)j∈[n], while msk contains group elements

([uι]2)ι∈[0,2]. Then, an ABE ciphertext ABE.ctx is computed by [Asi]1, [Asw1+i]1, and [W⊤
j Asi]1

that represent non-lone ciphertext-encoding variables si, lone ciphertext-encoding variables ŝi, and
multiplications of common variables and non-lone ciphertext-encoding variable sibj , respectively.
Similarly, an ι-th secret key sky,ι is computed by [Brι,i′ ]2, [uι]2 and [Brι,m1+i′ ]2, and [WjBrι,i′ ]2
that represent non-lone key-encoding variables ri′ , lone key-encoding variables α and r̂i′ , and mul-
tiplications of common variables and non-lone key-encoding variable ri′bj , respectively.

58



Setup(1λ)→ (mpk,msk). Run (p,G1,G2,GT , g1, g2, e) ← G(1λ) and n ← Param(par), and choose
a collision-resistant hash function H ←R H, where H : {0, 1}∗ → Zp. Sample

(A,a⊥), (B,b⊥) ← Dk, uniformly random matrices W1, . . . ,Wn ←R Z(k+1)×(k+1)
p , and ran-

dom vectors (uι)ι∈[0,2] ←R Zk+1
p , then output

mpk :=
(
G(1λ), [A]1, [B]2, ([W

⊤
j A]1, [WjB]2)j∈[n], ([A

⊤uι]T )ι∈[0,2],H
)

and msk := ([uι]2)ι∈[0,2].

Enc(mpk, x, µ)→ ctx. Run EncC(x, p) to obtain w3 key-encoding polynomials (c1, . . . , cw3), sample
s0, s1, . . . , sw1+w2 ←R Zk

p, and output ctx := ((ct0,i)i∈[0,w1], (ct1,t)t∈[w3], ctT , π);

ct0,i := [Asi]1, ct1,t :=
∏

i∈[w2]

[Asw1+i]
ηt,i
1 ·

∏
i∈[0,w1],j∈[n]

[W⊤
j Asi]

ηt,i,j
1 ,

ctT := µ · [s⊤0 A⊤u0]T , π := [s⊤0 A
⊤(u1 + h · u2)]T ,

where h = H((ct0,i)i∈[0,w1], ctT ).

KGen(mpk,msk, y)→ (dky, hky). Run EncK(y, p) to obtain m3 key-encoding polynomials
(k1, . . . , km3), sample rι,1, . . . , rι,m1+m2 ←R Zk

p, and compute sky,ι := ((skι,0,i′)i′∈[m1],
(skι,1,t′)t′∈[m3]) for ι ∈ [0, 2];

skι,0,i′ := [Brι,i′ ]2,

skι,1,t′ := [uι]
ϕt′
2 ·

∏
i′∈[m2]

[Brι,m1+i′ ]
ϕt′,i′
2 ·

∏
i′∈[m1],j∈[n]

[WjBrι,i′ ]
ϕt′,i′,j
2 . (12)

Output dky := (sky,ι)ι∈[0,2] and hky := (sky,ι)ι∈[2].

Eval(mpk, hky, (ct
(ℓ)
x )ℓ∈[L])→ ctx/⊥. Output ⊥ if f(x, y) = 0 holds. Otherwise, parse hky =

((skι,0,i′)i′∈[m1], (skι,1,t′)t′∈[m3])ι∈[2] and ct
(ℓ)
x = ((ct

(ℓ)
0,i)i∈[0,w1], (ct

(ℓ)
1,t)t∈[w3], ct

(ℓ)
T , π(ℓ)), run

(E,E) ← Pair(x, y, p), and check whether the following conditions simultaneously hold for
all ℓ ∈ [L]:

– Compute sky := ((sk0,i′)i′∈[m1], (sk1,t)t′∈[m3]) in the same way as (12) except that uι is
replaced with a zero vector. It holds that∏

i∈[0,w1],t′∈[m3]

e(ct
(ℓ)
0,i , sk1,t′)

Ei,t′ =
∏

t∈[w3],i′∈[m1]

e(ct
(ℓ)
1,t, sk0,i′)

Et,i′ . (13)

– It holds that ∏
i∈[0,w1],t′∈[m3]

e(ct
(ℓ)
0,i , sk1,1,t′ · sk

h(ℓ)

2,1,t′)
Ei,t′∏

t∈[w3],i′∈[m1]
e(ct

(ℓ)
1,t, sk1,0,i′ · sk

h(ℓ)

2,0,i′)
Et,i′

= π, (14)

where h(ℓ) = H((ct
(ℓ)
0,i)i∈[0,w1], ct

(ℓ)
T ).
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If one of the conditions does not hold for some ℓ ∈ [L], output ⊥. Otherwise, run ct
(0)
x ←

Enc(mpk, x, 1T ) and output ctx := ((ct0,i)i∈[0,w1], (ct1,t)t∈[w3], ctT , π);

ct0,i :=
∏

ℓ∈[0,L]

ct
(ℓ)
0,i , ct1,t :=

∏
ℓ∈[0,L]

ct
(ℓ)
1,t, ctT :=

∏
ℓ∈[0,L]

ct
(ℓ)
T ,

π :=

∏
i∈[0,w1],t′∈[m3]

e(ct0,i, sk1,1,t · skh2,1,t′)
Ei,t′∏

t∈[w3],i′∈[m1]
e(ct1,t, sk1,0,i′ · skh2,0,i′)

Et,i′
,

where h = H((ct0,i)i∈[0,w1], ctT ).

Dec(mpk, dky, ctx)→ µ/⊥. Output ⊥ if f(x, y) = 0 holds. Otherwise, parse dky = ((skι,0,i′)i′∈[m1],

(skι,1,t′)t′∈[m3])ι∈[0,2] and ctx = ((ct0,i)i∈[0,w1], (ct1,t)t∈[w3], ctT , π), run (E,E) ← Pair(x, y, p),
and check whether the conditions (13) and (14) simultaneously hold. If one of the conditions
does not hold, output ⊥. Otherwise, output

ctT ·
∏

t∈[w3],i′∈[m1]
e(ct1,t, sk0,0,i′)

Et,i′∏
i∈[0,w1],t′∈[m3]

e(ct0,i, sk0,1,t′)
Ei,t′

.

Theorem 14. The proposed ABKHE scheme ΠABKHE satisfies correctness if the PES = (Param,
EncC,EncK,Pair) for f satisfies the correctness.

Proof of Theorem 14. If it holds that∏
i∈[0,w1],t′∈[m3]

e(ct0,i, skι,1,t′)
Ei,t′∏

t∈[w3],i′∈[m1]
e(ct1,t, skι,0,i′)

Et,i′
= [s⊤0 A

⊤uι]T (15)

for any ctx = ((ct0,i)i∈[0,w1], (ct1,t)t∈[w3], ctT , π) ← Enc(mpk, x, µ) and (((skι,0,i′)i′∈[m1],
(skι,1,t′)t′∈[m3]))ι∈[0,2], ((skι,0,i′)i′∈[m1], (skι,1,t′)t′∈[m3]))ι∈[2])← KGen(mpk,msk, y) such that f(x, y) =
1, we can complete the proof. We will prove the quality (15) at the end of the proof.

The equality (15) implies the condition (13) by setting uι as a zero vector. The equality (15)
also implies the condition (14) since it holds that∏

i∈[0,w1],t′∈[m3]
e(ct

(ℓ)
0,i , sk1,1,t′ · sk

h(ℓ)

2,1,t′)
Ei,t′∏

t∈[w3],i′∈[m1]
e(ct

(ℓ)
1,t, sk1,0,i′ · sk

h(ℓ)

2,0,i′)
Et,i′

=

∏
i∈[0,w1],t′∈[m3]

e(ct
(ℓ)
0,i , sk1,1,t′)

Ei,t′∏
t∈[w3],i′∈[m1]

e(ct
(ℓ)
1,t, sk1,0,i′)

Et,i′
·

∏i∈[0,w1],t′∈[m3]
e(ct

(ℓ)
0,i , sk2,1,t′)

Ei,t′∏
t∈[w3],i′∈[m1]

e(ct
(ℓ)
1,t, sk2,0,i′)

Et,i′

h(ℓ)

= [s⊤0 A
⊤u1]T · [s⊤0 A⊤u2]

h(ℓ)

T = π.

Thus, the Eval and Dec do not output ⊥.
For (ct

(ℓ)
x )ℓ∈[L] which is an input of Eval and ct

(0)
x which is created during Eval, let

ct
(ℓ)
0,i = [As

(ℓ)
i ]1, ct

(ℓ)
1,t =

∏
i∈[w2]

[As
(ℓ)
w1+i]

ηt,i
1 ·

∏
i∈[0,w1],j∈[n]

[W⊤
j As

(ℓ)
i ]

ηt,i,j
1 ,

ct
(ℓ)
T = µ(ℓ) · [(s(ℓ)0 )⊤A⊤u0]T , π(ℓ) = [(s

(ℓ)
0 )⊤A⊤(u1 + h(ℓ) · u2)]T ,
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where h(ℓ) = H((ct
(ℓ)
0,i)i∈[0,w1], ct

(ℓ)
T ) for ℓ ∈ [0, L]. Let ctx = ((ct0,i)i∈[0,w1], (ct1,t)t∈[w3], ctT , π) denote

an output of Eval and si =
∑

ℓ∈[0,L] s
(ℓ)
i . Then, we have

ct0,i =
∏

ℓ∈[0,L]

[As
(ℓ)
i ]1 = [Asi]1,

ct1,t =
∏

ℓ∈[0,L]

ct
(ℓ)
1,t =

∏
i∈[w2]

[Asw1+i]
ηt,i
1 ·

∏
i∈[0,w1],j∈[n]

[W⊤
j Asi]

ηt,i,j
1 ,

ctT =
∏

ℓ∈[0,L]

ct
(ℓ)
T =

∏
ℓ∈[L]

µ(ℓ)

 · [s⊤0 A⊤u0]T .

Moreover, as the case of the condition (14), we have

π =

∏
i∈[0,w1],t′∈[m3]

e(ct0,i, sk1,1,t · skh2,1,t′)
Ei,t′∏

t∈[w3],i′∈[m1]
e(ct1,t, sk1,0,i′ · skh2,0,i′)

Et,i′
= [s⊤0 A

⊤(u1 + h · u2)]T ,

where h = H((ct0,i)i∈[0,w1], ctT ). Thus, an output of Eval follow the same distribution as an output

of Enc for a plaintext
∏

ℓ∈[L] µ
(ℓ). Finally, the equality (15) implies that an output of Dec is µ.

To conclude the proof, we prove the equality (15). Observe that the left-hand side the equality
(15) satisfies∏

i∈[0,w1],t′∈[m3]
e(ct0,i, skι,1,t′)

Ei,t′∏
t∈[w3],i′∈[m1]

e(ct1,t, skι,0,i′)
Et,i′

=

∏
i∈[0,w1],t′∈[m3]

e([Asi]1, [uι]
ϕt′
2 ·

∏
i′∈[m2]

[Brι,m1+i′ ]
ϕt′,i′
2 ·

∏
i′∈[m2],j∈[n][WjBrι,i′ ]

ϕt′,i′,j
2 )Ei,t′∏

t∈[w3],i′∈[m1]
e(
∏

i∈[w2]
[Asw1+i]

ηt,i
1 ·

∏
i∈[0,w1],j∈[n][W

⊤
j Asi]

ηt,i,j
1 , [Brι,i′ ]2)

Et,i′
.

Moreover, the discrete logarithm of the value with base e(g1, g2) is

∑
i∈[0,w1],t′∈[m3]

Ei,t′ · s⊤i A⊤ ·

ϕt′uι +
∑

i′∈[m2]

ϕt′,i′Brι,m1+i′ +
∑

i′∈[m1],j∈[n]

ϕt′,i′,jWjBrι,i′


−

∑
t∈[w3],i′∈[m1]

Et,i′ ·

 ∑
i∈[w2]

ηt,is
⊤
w1+iA

⊤ +
∑

i∈[0,w1],j∈[n]

ηt,i,js
⊤
i A

⊤Wj

 ·Brι,i′ .

Thus, if we substitute

si : Asi, ŝi : Asw1+i, sibj : W
⊤
j Asi,

α : uι, ri′ : Brι,i′ , r̂i′ : Brι,m1+i′ , ri′bj : WjBrι,i′ ,

the correctness of PES implies the equality (15).

8.3 Security

In this section, we prove that the proposed ABKHE scheme ΠABKHE satisfies the adaptive KH-CCA
security.
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Theorem 15. If the PES = (Param,EncC,EncK,Pair) for f satisfies the perfect security and the
symbolic security, ΠABKHE satisfies the adaptive KH-CCA security under the matrix DDH assump-
tion and the q-ratio assumption, respectively.

We will prove Theorem 15 in the case of perfect security since proof for symbolic security is
essentially the same.

8.3.1 Semi-functional Distributions

To prove Theorem 15, we prepare auxiliary semi-functional distributions for a ciphertext and an
ABE secret key by following [AC16, CGW15].

Semi-functional Ciphertext. A semi-functional ciphertext ctx for x encrypting µ is defined as ctx =
((ct0,i)i∈[0,w1], (ct1,t)t∈[w3], ctT , π);

ct0,i := [ci]1, ct1,t :=
∏

i∈[w2]

[cw1+i]
ηt,i
1 ·

∏
i∈[0,w1],j∈[n]

[W⊤
j ci]

ηt,i,j
1 ,

ctT := µ · [c⊤0 u0]T , π := [c⊤0 (u1 + h · u2)]T ,

where c0, c1, . . . , cw1+w2 ←R Zk+1
p and h = H((ct0,i)i∈[0,w1], ctT ).

Semi-functional Secret Key. An ι-th semi-functional secret key sky,ι for y is defined as sky,ι =
((skι,0,i′)i′∈[m1], (skι,1,t′)t′∈[m3]);

skι,0,i′ = [Brι,i′ ]2,

skι,1,t′ = [uι + αι,ya
⊥]

ϕt′
2 ·

∏
i′∈[m2]

[Brι,m1+i′ ]
ϕt′,i′
2 ·

∏
i′∈[m2],j∈[n]

[WjBrι,i′ ]
ϕt′,i′,j
2 ,

where rι,1, . . . , rι,m1+m2 ←R Zk
p and αι,y ←R Zp.

Intuitively, a normal ciphertext (resp. secret key) is a special case of a semi-functional ciphertext
(resp. secret key) only if ci lives in the span of A and c⊤0 a

⊥ = 0 holds (resp. αι,y = 0), while
such situations occur only with negligible probability. For a semi-functional ctx = ((ct0,i)i∈[0,w1],
(ct1,t)t∈[w3], ctT , π) and a semi-functional sky,ι = ((skι,0,i′)i′∈[m1], (skι,1,t′)t′∈[m3]), the equation (15)
becomes ∏

i∈[0,w1],t′∈[m3]
e(ct0,i, skι,1,t′)

Ei,t′∏
t∈[w3],i′∈[m1]

e(ct1,t, skι,0,i′)
Et,i′

= [c⊤0 (uι + αι,ya
⊥)]T = [c⊤0 uι]T · [c⊤0 a⊥]

αι,y

T .

Therefore, the correctness does not hold since it holds that c⊤0 a
⊥ ̸= 0 ∧ α̃ι ̸= 0 which implies

[c⊤0 a
⊥]

αι,y

T ̸= 1T with overwhelming probability. On the other hand, the correctness holds if either
ctx or sky,ι follows a normal distribution.

8.3.2 Proof of Theorem 15

Although we already explained the intuition of a proof in Section 1.3.3, we provide a more detailed
overview. We call A’s decryption query on (y, ctx = ((ct0,i = ci)i∈[0,w1], · · · )) a critical decryption
query if ctx is valid, ctx /∈ L holds, and c0 does not live in the span of A. We call A’s homomorphic
evaluation key reveal query on y a critical homomorphic evaluation key reveal query if f(x⋆, y) = 1
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Table 2: Distributions of ciphertexts ct
[1]
x⋆ = ct⋆x⋆ , . . . , ct

[D]
x⋆ ∈ L in Game3,d, . . . ,Game9,d

ct
[1]
x⋆ , . . . , ct

[d−1]
x⋆ ct

[d]
x⋆ ct

[d+1]
x⋆ , . . . , ct

[D]
x⋆

Game3,d
normal encryptions

of random strings

semi-functional

encryption of µ[d]

normal encryptions

of µ[d+1], . . . , µ[D]

Game4,d
normal encryptions

of random strings

semi-functional

encryption of µ[d]

normal encryptions

of µ[d+1], . . . , µ[D]

Game5,d
normal encryptions

of random strings

semi-functional

encryption of µ[d]

normal encryptions

of µ[d+1], . . . , µ[D]

Game6,d
normal encryptions

of random strings

semi-functional

encryption of a

random string

normal encryptions

of µ[d+1], . . . , µ[D]

Game7,d
normal encryptions

of random strings

semi-functional

encryption of a

random string

normal encryptions

of µ[d+1], . . . , µ[D]

Game8,d
normal encryptions

of random strings

semi-functional

encryption of a

random string

normal encryptions

of µ[d+1], . . . , µ[D]

Game9,d
normal encryptions

of random strings

normal encryption

of a random string

normal encryptions

of µ[d+1], . . . , µ[D]

holds. Let ct⋆x⋆ = ((ct⋆0,i)i∈[0,w1], (ct
⋆
1,t)t∈[w3], ct

⋆
T , π

⋆) denote a challenge ciphertext for a challenge
ciphertext attribute x⋆ and a message µ⋆

coin, where h⋆ = H((ct⋆0,i)i∈[0,w1], ct
⋆
T ). Let D denote

the number of ciphertexts in L at the end of the game, where the challenge ciphertext ct⋆x⋆ is

the first ciphertext and A makes D − 1 dependent evaluation queries. Let ct
[d]
x⋆ = ((ct

[d]
0,i)i∈[0,w1],

(ct
[d]
1,t)t∈[w3], ct

[d]
T , π[d]) denote d-th ciphertext in L and treat it as an encryption of µ[d], where

ct
[1]
x⋆ = ct⋆x⋆ and µ[1] = µ⋆

coin.
We prove Theorem 15 by using a sequence of games

Game0,Game1,Game2,Game3,1, . . . ,Game9,1,Game3,2, . . . ,Game3,D, . . . ,Game6,D, where it holds
that Game0 ≈c Game1 = Game2 ≈c Game3,1 and Game9,d−1 ≈c Game3,d ≈c · · · ≈c Game5,d ≈
Game6,d ≈c · · · ≈c Game9,d. The roles of Game1 and Game2 are essentially the same as in
the proof of Theorem 11. Given the challenge cipehrtext ct⋆x⋆ , A can randomize it and com-
pute ((ct⋆0,i)i∈[0,w1], (ct

⋆
1,t)t∈[w3], ct

⋆
T ) such that the decryption result is µ⋆

coin by ignoring the
condition (14) and ((ct⋆0,i)i∈[0,w1], (ct

⋆
1,t)t∈[w3], ct

⋆
T ) ̸= ((ct⋆0,i)i∈[0,w1], (ct

⋆
1,t)t∈[w3], ct

⋆
T ) holds. If

it holds that H((ct⋆0,i)i∈[0,w1], ct
⋆
T ) = h⋆, a decryption result of a cipehrtext ((ct⋆0,i)i∈[0,w1],

(ct⋆1,t)t∈[w3], ct
⋆
T , π

⋆) is µ⋆
coin and ((ct⋆0,i)i∈[0,w1], (ct

⋆
1,t)t∈[w3], ct

⋆
T , π

⋆) ̸= ct⋆x⋆ holds. In Game1, we
use the collision resistance of H and prevent the attack. In Game2, we change how to compute

ct
[d]
x⋆ for d ∈ [2, D] so that the distribution of ct

[d]
x⋆ does not depend on ct

[d′]
x⋆ for d′ ∈ [d− 1]. Game1

and Game2 follow the same distribution from A’s view.
The role of Game3,d,Game6,d, and Game9,d in a proof of ΠABKHE (Theorem 15) are similar

to Game3,d, Game4,d, and Game5,d in the proof of ΠKHPKE (Theorem 11). As illustrated in Ta-
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ble 2, we change the distributions of ciphertexts ct
[d]
x⋆ ∈ L in Game3,d,Game6,d, and Game9,d, where

ct
[1]
x⋆ , . . . , ct

[d−1]
x⋆ (resp. ct

[d+1]
x⋆ , . . . , ct

[D]
x⋆ ) are always normal encryptions of random strings (resp.

normal encryptions of µ[d+1], . . . , µ[D]) in Game3,d, . . . ,Game9,d. In particular, ct
[d]
x⋆ is a normal en-

cryption of µ[d] in Game9,d−1, while it becomes a semi-functional encryption of µ[d] in Game3,d,
a semi-functional encryption of a random string in Game6,d, and a normal encryption of a ran-
dom string in Game9,d. As the proof of Lemma 15, the (w1 + w2)-fold matrix DDH assump-
tion over G1 ensures that Game9,d−1 ≈c Game3,d holds by following the dual system technique of
ΠDSG [AC16, CGW15]. However, unlike the case of ΠKHPKE (Lemma 15), we cannot immediately
prove Game3,d ≈ Game6,d in the sense that computationally unbounded A can distinguish a semi-
functional encryption of µ[d] and that of a random string. In the proof of ΠKHPKE (Lemma 15),
we proved the indistinguishability based on the fact that u0 was not revealed to A and A cannot
make critical decryption queries. In contrast, the computationally unbounded A against ΠABKHE

can make a decryption key reveal query (resp. homomorphic evaluation key reveal query) on y
such that f(x⋆, y) = 0 and recover u0 (resp. recover u1,u2 and make a critical decryption query).

To resolve the issue, we want to use the dual system technique of ΠDSG [AC16, CGW15] and
change some of ABE secret keys sky,ι such that f(x⋆, y) = 0 to be semi-functional so that the
computationally unbounded A cannot recover u0,u1, and u2. What we have to care is that we
cannot change all ABE secret keys sky,ι which A receives to be semi-functional since A against
ΠABKHE can receive sky,ι such that f(x⋆, y) = 1 unlike the case of ΠDSG. In particular, the definition
of the adaptive KH-CCA security ensures that A cannot make decryption key reveal queries on y such
f(x⋆, y) = 1; thus, all sky,0 A receives satisfy f(x⋆, y) = 0. In contrast, A can make homomorphic
evaluation key reveal queries on y and receives sky,1, sky,2 such that f(x⋆, y) = 1. Thus, we try to
change only the required ABE secret keys sky,ι to be semi-functional. To this end, we divide A’s
attack strategies into two types called Type-1 and Type-2 which are defined as follows:

• A is called Type-1 if it makes a critical homomorphic evaluation key reveal query in Phase 1.

• A is called Type-2 if it does not make a critical homomorphic evaluation key reveal query in
Phase 1.

By definition, Type-1 and Type-2 are mutually exclusive and cover all possible strategies of A. Dur-
ing the proof of ΠKHPKE (Lemma 16), we used a similar division and proved the indistinguishability
of KHPKE.ct[d]. In contrast, we use the division and employ distinct game sequences depending on
A’s types. In Game4,d, we change all sky,0 A receives to be semi-functional regardless of Type-1
and Type-2. Since f(x⋆, y) = 0 holds as we explained above, the (m1 + m2)-fold matrix DDH
assumption over G2 ensures that Game3,d ≈c Game4,d holds by following the dual system technique
of ΠDSG [AC16, CGW15]. In Game5,d, we change sky,1 and sky,2 A receives to be semi-functional
until A makes the first homomorphic evaluation key reveal query only if A is Type-2. Observe
that we cannot apply the same change to A of Type-1 since we do not know whether f(x⋆, y) = 0
holds upon A’s homomorphic evaluation key reveal queries in Phase 1. In contrast, the definition
of Type-2 ensures that A of Type-2 makes critical homomorphic evaluation key reveal queries only
in Phase 2. Thus, we can check when A makes the first critical homomorphic evaluation key reveal
query. Then, the (m1+m2)-fold matrix DDH assumption over G2 ensures that Game4,d ≈c Game5,d
holds by following the dual system technique of ΠDSG [AC16, CGW15]. Finally, we can conclude
that A cannot recover u0 since all sky,0 A receives are semi-functional, while the above changes
ensure that A cannot make critical decryption queries. Thus, we can prove Game5,d ≈ Game6,d.
Afterward, we change all sky,ι to be normal in Game7,d and Game8,d. Then, we change a distribution

of ct
[d]
x⋆ in Game9,d. We can prove Game6,d ≈c Game7,d ≈c Game8,d (resp. Game8,d ≈c Game9,d) in the
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Table 3: Distributions of ABE secret keys sky,0, sky,1, and sky,2 in Game3,d, . . . ,Game9,d

sky,0
sky,1 and sky,2 until

the critical hky query

sky,1 and sky,2 after

the critical hky query

Game3,d normal normal normal

Game4,d semi-functional normal normal

Game5,d semi-functional semi-functional normal

Game6,d semi-functional semi-functional normal

Game7,d semi-functional normal normal

Game8,d normal normal normal

Game9,d normal normal normal

same way as Game5,d ≈c Game4,d ≈c Game3,d (resp. Game3,d ≈c Game9,d−1). Table 3 summarizes
distributions of sky,ι in each game.

Proof of Theorem 15. We use the following sequence of games.

Game0. This is the adaptive KH-CCA security game. Hereafter, let ct⋆x⋆ = ((ct⋆0,i)i∈[0,w1],
(ct⋆1,t)t∈[w3], ct

⋆
T , π

⋆) denote a challenge ciphertext for a challenge ciphertext attribute x⋆ and
a message µ⋆

coin, where h⋆ = H((ct⋆0,i)i∈[0,w1], ct
⋆
T ).

Game1. This is the same as Game0 except that a collision does not occur for a hash function H
among all ciphertexts that appeared in the security game.

The collision resistance of H ensures that Game0 ≈c Game1 holds.

Game2. This is the same as Game1 except the answers to dependent evaluation queries so that the

distributions of ct
[1]
x⋆ = ct⋆x⋆ , . . . , ct

[D]
x⋆ ∈ L are independent. In Game1, C runs Eval algorithm

with inputs ct[1], . . . , ct[d−1] that are answers to A’s challenge query and dependent evaluation
queries, and creates an evaluated ciphertext ct[d]. In Game2, upon A’s challenge query, C runs
Enc algorithm and creates two ciphertexts ct⋆ and c̃t⋆ in the same way as in Game1, sends
ct⋆ to A as the challenge ciphertext, and stores both ciphertexts (ct⋆, c̃t⋆) ∈ L. Upon A’s
first dependent evaluation query, C runs Eval algorithm with inputs c̃t[1] in place of ct[1] that

is the answer to A’s challenge query, and creates two evaluated ciphertexts ct[2] and c̃t[2] in
the same way as in Game1, sends ct

[2] to A as the answer to the evaluation query, and stores

both ciphertexts (ct[2], c̃t[2]) ∈ L. In the same way, upon A’s (d− 1)-th dependent evaluation

query, C runs Eval algorithm with inputs c̃t[1], . . . , c̃t[d−1] in place of ct[1], . . . , ct[d−1] that
are the answers to A’s challenge query and dependent evaluation queries, and creates two

evaluated ciphertexts ct[d] and c̃t[d] in the same way as in Game1, sends ct[d] to A as the

answer to the evaluation query, and stores both ciphertexts (ct[d], c̃t[d]) ∈ L. In Game1 and

Game2, all ciphertexts ct
[d] and c̃t[d] follow the same distribution for d ∈ [D].

From now on, we change a distribution of d-th ciphertext ct
[d]
x⋆ = (· · · , ct[d]T , · · · ) ∈ L for d ∈ [D]

one by one so that ct
[d]
T is independent of the other elements of ct

[d]
x⋆ and distributed uniformly at

random over GT . For this purpose, we use the following sequence of games Game3,d, . . . ,Game9,d
for d ∈ [D], where Game9,0 = Game2 and the proof terminates in Game6,D.
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Game3,d. This is the same as Game9,d−1 except C’s answer to the challenge query if d = 1 and a
dependent evaluation query if d ∈ [2, D]. In particular, C creates the challenge ciphertext ct⋆x⋆

as a semi-functional encryption of µ⋆
coin if d = 1 and ct(0) as a semi-functional encryption of

1T if d ∈ [2, D], while C creates c̃t[1], . . . , c̃t[D] in the same way as in Game2,d.

We can prove Game9,d−1 ≈c Game3,d under the matrix DDH assumption over G1 by following
the dual system technique of ΠDSG [AC16, CGW15].

Lemma 19 (Game9,d−1 ≈c Game3,d). If the matrix DDH assumption over G1 holds, Game9,d−1 and
Game3,d are computationally indistinguishable for any PPT A.

We will prove Lemma 19 in Section 8.3.3.

Game4,d. This is the same as Game3,d except that C answers semi-functional sky,0 upon A’s decryp-
tion key reveal queries on y. We note that C still uses normal sky,0 to answer A’s decryption
queries as in Game3,d.

Since f(x⋆, y) = 0 holds due to the definition of the adaptive KH-CCA security game, we can
prove Game3,d ≈c Game4,d under the matrix DDH assumption over G2 by following the dual
system technique of ΠDSG [AC16, CGW15].

Lemma 20 (Game3,d ≈c Game4,d). If the PES satisfies the perfect security and the matrix DDH
assumption over G2 holds, Game3,d and Game4,d are computationally indistinguishable for any PPT
A.

We will prove Lemma 20 in Section 8.3.4. Intuitively, Lemma 20 implies that the dual system
technique of ΠDSG [AC16, CGW15] is required that A cannot create any semi-functional ciphertexts
ctx in Phase 1. Otherwise, it can distinguish normal and semi-functional sky,0 such that f(x, y) = 1,
where the fact contradicts to the proofs of ΠDSG [AC16, CGW15].

Game5,d. If A follows the Type-1 strategy, this is the same as Game4,d. Otherwise, this is the
same as Game4,d except that C answers semi-functional sky,1 and sky,2 upon A’s decryption
key reveal queries and homomorphic evaluation key reveal queries on y until the first critical
homomorphic evaluation key reveal query. We note that C still uses normal sky,1 and sky,2 to
answer A’s decryption queries and evaluation queries as in Game4,d.

Since f(x⋆, y) = 0 holds due to the definitions of the adaptive KH-CCA security and A’s
Type-2 strategy, we can prove Game4,d ≈c Game5,d under the matrix DDH assumption over
G2 by following the dual system technique of ΠDSG [AC16, CGW15].

Lemma 21 (Game4,d ≈c Game5,d). If the PES satisfies the perfect security and the matrix DDH
assumption over G2 holds, Game4,d and Game5,d are computationally indistinguishable for any PPT
A.

We will prove Lemma 21 in Section 8.3.4.

Game6,d. This is the same as Game5,d except C’s answer to the challenge query if d = 1 and a

(d − 1)-th dependent evaluation query if d ∈ [2, D] by setting ct
[d]
T ←R GT . Since the d-th

ciphertext ct
[d]
x⋆ ∈ L is independent of µ⋆

coin in Game6,d, A’s advantage in Game6,D is exactly
0.
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Lemma 22 (Game5,d ≈ Game6,d). It holds that

|Pr[E5,d − Pr[E6,d]]| ≤ negl(λ)

with overwhelming probability.

We will prove Lemma 22 at the end of the proof.

Game7,d. If A follows the Type-1 strategy, this is the same as Game6,d. Otherwise, this is the same
as Game6,d except that C always answers normal sky,1 and sky,2 upon A’s decryption key
reveal queries and homomorphic evaluation key reveal queries on y.

By following the proof of Game4,d ≈c Game5,d (Lemma 21), Game6,d ≈c Game7,d holds under
the matrix DDH assumption over G2.

Lemma 23 (Game6,d ≈c Game7,d). If the PES satisfies the perfect security and the matrix DDH
assumption over G2 holds, Game6,d and Game7,d are computationally indistinguishable for any PPT
A.

We will prove Lemma 23 in Section 8.3.4.

Game8,d. This is the same as Game7,d except that C always answers normal sky,0 uponA’s decryption
key reveal queries on y.

By following the proof of Game3,d ≈c Game4,d (Lemma 20), Game7,d ≈c Game8,d holds under
the matrix DDH assumption over G2.

Lemma 24 (Game7,d ≈c Game8,d). If the PES satisfies the perfect security and the matrix DDH
assumption over G2 holds, Game7,d and Game8,d are computationally indistinguishable for any PPT
A.

We will prove Lemma 24 in Section 8.3.4.

Game9,d. This is the same as Game8,d except C’s answer to the challenge query if d = 1 and a

dependent evaluation query if d ∈ [2, D]. In particular, C sets ct
[d]
x⋆ as a normal encryption of

a random string µ[d] ←R GT .

By following the proof of Game9,d−1 ≈c Game3,d (Lemma 19), Game8,d ≈c Game9,d holds under
the matrix DDH assumption over G1.

Lemma 25 (Game8,d ≈c Game9,d). If the matrix DDH assumption over G1 holds, Game8,d and
Game9,d are computationally indistinguishable for any PPT A.

We will prove Lemma 25 in Section 8.3.3.

To conclude the proof of Theorem 15, we prove Lemma 22.

Proof of Lemma 22. We prove only for d = 1 since proofs for the other cases are essentially
the same. For this purpose, we construct a simulator that behaves as C in Game5,d from A’s
view. The simulator runs (p,G1,G2,GT , g1, g2, e) ← G(1λ) and n ← Param(par), and choose
a collision-resistant hash function H ←R H, where H : {0, 1}∗ → Zp. The simulator samples

(A,a⊥), (B,b⊥)← Dk, uniformly random matrices W1, . . . ,Wn ←R Z(k+1)×(k+1)
p , random vectors

(uι)ι∈[0,2] ←R Zk+1
p , and random α̃0 ←R Zp, then sets u0 = û0+ α̃0a

⊥. Nevertheless, the simulator

67



does not use u0 but û0 to simulate the game except for creating ct
[d]
x⋆ ∈ L. At first, the simulator

sends mpk = (G(1λ), [A]1, [B]2, ([W
⊤
j A]1, [WjB]2)j∈[n], ([A

⊤uι]T )ι∈[0,2],H) to A. mpk is properly
distributed since it holds that

[A⊤û0] = [A⊤(u0 − α̃0a
⊥)] = [A⊤u0] · [A⊤a⊥]−α̃0 = [A⊤u0]. (16)

The simulator answers A’s homomorphic evaluation key reveal queries and evaluation queries by
using u1,u2 as in Game5,d, while it answers A’s decryption key reveal queries and decryption queries
by using u1,u2 and û0. We will discuss the validity later.

Upon A’s challenge query on (x⋆, µ⋆
0, µ

⋆
1), the simulator samples coin←R {0, 1} and creates the

challenge ciphertext ct⋆x⋆ = ((ct⋆0,i)i∈[0,w1], (ct
⋆
1,t)t∈[w3], ct

⋆
T , π

⋆) in the same way as in Game5,d;

ct⋆0,i = [ci]1, ct⋆1,t =
∏

i∈[w2]

[cw1+i]
ηt,i
1 ·

∏
i∈[0,w1],j∈[n]

[W⊤
j ci]

ηt,i,j
1 ,

ct⋆T = µ⋆
coin · [c⊤0 u0]T , π⋆ = [c⊤0 (u1 + h̃ · u2)]T ,

where h⋆ = H((ct⋆0,i)i∈[0,w1], ct
⋆
T ). Observe that ct⋆T is the only element which the simulator uses

u0 to create and

ct⋆T = µ⋆
coin · [c⊤0 (û0 + α̃0a

⊥)]T = µ⋆
coin · [c⊤0 û0]T · [c⊤0 a⊥]

α̃0
T

holds. Since [c⊤a⊥] is a generator of G with overwhelming probability and ct⋆T is the only element
which depends on α̃0 in the security game, ct⋆T is distributed uniformly at random over GT as in
Game6,d.

Finally, we check that the simulator’s answers to decryption key reveal queries and decryption
queries are valid although û0 ̸= u0 is used. The modification in Game4,d ensures that all sk0,ι =
((sk0,0,i′)i′∈[m1], (sk0,1,t′)t′∈[m3]) which A receives follow semi-functional distributions. Then, it holds
that

sk0,1,t′ = [û0 + α0,ya
⊥]

ϕt′
2 ·

∏
i′∈[m2]

[Brι,m1+i′ ]
ϕt′,i′
2 ·

∏
i′∈[m2],j∈[n]

[WjBrι,i′ ]
ϕt′,i′,j
2

= [u0 + (α0,y − α̃0)a
⊥]

ϕt′
2 ·

∏
i′∈[m2]

[Brι,m1+i′ ]
ϕt′,i′
2 ·

∏
i′∈[m2],j∈[n]

[WjBrι,i′ ]
ϕt′,i′,j
2 ,

where α0,y − α̃0 is distributed uniformly at random over Zp as in Game5,d due to the randomness
of α0,y. We check the validities of decryption queries depending on whether A follows Type-1 or
Type-2.

Case of Type-1. Since A of Type-1 makes a critical homomorphic evaluation key reveal query in
Phase 1, it is allowed to make decryption queries only in Phase 1. Upon A’s decryption query on
ctx = ((ct0,i = [c′i]1)i∈[0,w1], (ct1,t)t∈[w3], ctT , π), the simulator’s answer is valid when c′0

⊤u0 = c′0
⊤û0

holds. Thus, the answer is invalid only when c′0 does not live in the span of A and the answer is not
⊥. In other words, the simulator cannot answer A’s critical decryption queries in a valid way. Since
the dual system technique of ΠDSG [AC16, CGW15] implies that A cannot create semi-functional
ciphertexts by itself, the only way for A to create semi-functional ciphertexts is evaluating the
challenge ciphertext ct⋆x⋆ . Thus, A of Type-1 which is allowed to make decryption queries only in
Phase 1 cannot make critical decryption queries. Thus, Game5,d ≈ Game6,d holds.

Case of Type-2. Since A of Type-2 does not make a critical homomorphic evaluation key reveal
query in Phase 1, it is allowed to make decryption queries until it makes the first critical homo-
morphic evaluation key reveal query in Phase 2. When the computationally unbounded A receives
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mpk, it can compute ûι for ι ∈ [2] such that A⊤uι = A⊤ûι, where uι = ûι + α̃ιa
⊥. Since the

modification in Game5,d ensures that all sky,1 and sky,2 which A of Type-2 receives follow semi-
functional distributions, α̃1 and α̃2 are distributed uniformly at random over Zp from A’s view.
When the computationally unbounded A receives the challenge ciphertext ct⋆x⋆ , it learns the value
of α̃1 + h⋆ · α̃2 since it holds that

π⋆ = [c⊤0 (û1 + α̃1a
⊥) + h⋆ · (û2 + α̃2a

⊥)]T = [c⊤0 û1 + h⋆ · û2] · [c⊤0 a⊥]
α̃1+h⋆·α̃2
T .

If the answer to A’s decryption query on ctx = ((ct0,i = [c′i]1)i∈[0,w1], (ct1,t)t∈[w3], ctT , π) is not ⊥,
π = [c′0

⊤(u1 + h · u2)]1 holds due to the condition (14). If c′0 does not live in the span of A, A
learns the value of α̃1 + h · α̃2, where the change in Game1 ensures that h ̸= h⋆ holds. Then, a
computationally unbounded A’s ability to make a critical decryption query is equivalent to the
knowledge of (α̃1, α̃2) ∈ Z2

p. A cannot learn α̃1 + h · α̃2 for any h from answers to dependent

evaluation queries since the change in Game2 ensures that the discrete logarithm of ct
[d]
0,0 lives in the

span of A. (If d ∈ [2, D], the change in Game5,d−1 is also required to ensure the fact.) Although A of
Type-2 can learn (α̃1, α̃2) when it makes the first critical homomorphic evaluation key reveal query
in Phase 2, it is not allowed to make decryption queries after the query. The only way for A to
learn (α̃1, α̃2) is making decryption queries and evaluation queries such that c′0 does not live in the
span of A. Although A can eliminate a candidate of α̃1+h · α̃2 for some h by making a decryption
query or an evaluation query and the answer is ⊥, there are exponentially many candidates and
A is allowed to make only polynomial number of queries. Thus, Game5,d ≈ Game6,d holds with
probability 1 − (QDec + QEval)/q, where QDec (resp. QEval) denotes the number of A’s decryption
(resp. evaluation) queries.

8.3.3 Ciphertext Indistinguishability

We prove Lemmata 19 and 25.

Proof of Lemma 19. We show that for any PPT adversary A that breaks the adaptive KH-CCA
security of ΠABKHE, there exists a reduction algorithm B1 that solves the (w1 + w2)-fold matrix
DDH assumption over G1, where

|Pr[E9,d−1]− Pr[E3,d]| ≤ Adv
mDDHG1
B1

(λ). (17)

We prove only for d = 1 since proofs for the other cases are essentially the same. B1 re-
ceives (G(1λ), [A]1, [V]1) which is an instance of the (w1 + w2)-fold matrix DDH problem over

G1, where (A,a⊥) ← Dk, V = AS for S ←R Zk×(w1+w2)
p or V ←R Z(k+1)×(w1+w2)

p . B1
chooses a collision-resistant hash function H ←R H, samples (B,b⊥) ← Dk, random matri-

ces W1, . . . ,Wn ←R Z(k+1)×(k+1)
p , and random vectors (uι)ι∈[0,2] ←R Zk+1

p , then sends mpk =(
G(1λ), [A]1, [B]2, ([W

⊤
j A]1, [WjB]2)j∈[n], ([A

⊤uι]T )ι∈[0,2],H
)
to A. Since B1 knows (uι)ι∈[0,2], it

can answer all A’s decryption key reveal queries, homomorphic evaluation key reveal queries, de-
cryption queries, and evaluation queries by creating normal sky,0, sky,1, and sky,2.

Upon A’s challenge query on (x⋆, µ⋆
0, µ

⋆
1), B1 samples coin ←R {0, 1} and creates ct⋆x⋆ =

((ct⋆0,i)i∈[0,w1], (ct
⋆
1,t)t∈[w3], ct

⋆
T , π

⋆);

ct⋆0,i = [vi]1, ct⋆1,t =
∏

i∈[w2]

[vw1+i]
ηt,i
1 ·

∏
i∈[0,w1],j∈[n]

[W⊤
j vi]

ηt,i,j
1 ,

ct⋆T = µ · [v⊤
0 u0]T , π = [v⊤

0 (u1 + h · u2)]T ,

(18)
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where h⋆ = H((ct⋆0,i)i∈[0,w1], ct
⋆
T ) and vi is an i-th column vector of V. The challenge ciphertext

ct⋆x⋆ is distributed as in Game9,0 (resp. Game3,1) if V = AS (resp. V ←R Z(k+1)×(w1+w2)
p ). Thus,

the inequality (17) holds.

Proof of Lemma 25. We can show that for any PPT adversary A that breaks the adaptive KH-CCA
security of ΠABKHE, there exists a reduction algorithm B9 that solves the (w1 + w2)-fold matrix
DDH assumption over G1, where

|Pr[E8,d]− Pr[E9,d]| ≤ Adv
mDDHG1
B9

(λ). (19)

The proof is almost the same as the proof of Lemma 19. After B9 receives (G(1λ), [A]1, [V]1),
it sends mpk to A in the same way as B1. B9 answers all A’s decryption key reveal queries,
homomorphic evaluation key reveal queries, decryption queries, and evaluation queries in the same
way as B1. Although B9 cannot create semi-functional sky,0, sky,1, and sky,2 since it does not know
a⊥, normal sky,0, sky,1, and sky,2 are sufficient for answering the queries due to the changes in
Game7,d and Game8,d. If d = 1, B9 answers A’s challenge query in the same way as (18) except
ct⋆T ←R GT . The challenge ciphertext ct⋆x⋆ is distributed as in Game9,1 (resp. Game8,1) if V = AS

(resp. V←R Z(k+1)×(w1+w2)
p ). Thus, the inequality (19) holds.

8.3.4 Key Indistinguishability

We prove Lemmata 20, 21, 23, and 24. For this purpose, we use the following auxiliary distributions
for ABE secret keys sky,ι.

Pseudo-normal Secret Key. An ι-th semi-functional secret key sky,ι for y is defined as sky,ι =
((skι,0,i′)i′∈[m1], (skι,1,t′)t′∈[m3]);

skι,0,i′ = [dι,i′ ]2, skι,1,t′ = [uι]
ϕt′
2 ·

∏
i′∈[m2]

[dι,m1+i′ ]
ϕt′,i′
2 ·

∏
i′∈[m2],j∈[n]

[Wjdι,i′ ]
ϕt′,i′,j
2 ,

where dι,1, . . . ,dι,m1+m2 ←R Zk+1
p .

Pseudo-SF Secret Key. An ι-th semi-functional secret key sky,ι for y is defined as sky,ι =
((skι,0,i′)i′∈[m1], (skι,1,t′)t′∈[m3]);

skι,0,i′ = [dι,i′ ]2, skι,1,t′ = [uι + αι,ya
⊥]

ϕt′
2 ·

∏
i′∈[m2]

[dι,m1+i′ ]
ϕt′,i′
2 ·

∏
i′∈[m2],j∈[n]

[Wjdι,i′ ]
ϕt′,i′,j
2 ,

where dι,1, . . . ,dι,m1+m2 ←R Zk+1
p and αι,y ←R Zp.

Proof of Lemma 20. We use the following games Game3,d,ζ,1, Game3,d,ζ,2, and Game3,d,ζ,3 for ζ ∈
[Qdk], where Qdk denotes the number of A’s decryption key reveal queries, Game3,d,0,3 = Game3,d,
and Game3,d,Qdk,3 = Game4,d.

Game3,d,ζ,1. This is the same as Game3,d,ζ−1,3 except that C answers pseudo-normal sky,0 upon A’s
ζ-th decryption key reveal queries on y.

Game3,d,ζ,2. This is the same as Game3,d,ζ,1 except that C answers pseudo-SF sky,0 upon A’s ζ-th
decryption key reveal queries on y.

Game3,d,ζ,3. This is the same as Game3,d,ζ,2 except that C answers semi-functional sky,0 upon A’s
ζ-th decryption key reveal queries on y.
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Table 4: Distributions of ABE secret keys sky,0 to answer A’s decryption key reveal queries in
Game3,d,ζ,1, Game3,d,ζ,2, and Game3,d,ζ,3

before ζ-th query ζ-th query after ζ-th query

Game3,d,ζ,1 semi-functional pseudo-normal normal

Game3,d,ζ,2 semi-functional pseudo-SF normal

Game3,d,ζ,3 semi-functional semi-functional normal

Table 4 summarizes distributions of sky,0 in each game. To prove Game3,d ≈c Game4,d, we show
that Game3,d,ζ−1,3 ≈c Game3,d,ζ,1 ≡ Game3,d,ζ,2 ≈c Game3,d,ζ,3.

Lemma 26 (Game3,d,ζ−1,3 ≈c Game3,d,ζ,1). If the matrix DDH assumption over G2 holds,
Game3,d,ζ−1,3 and Game3,d,ζ,1 are computationally indistinguishable for any PPT A.

Proof of Lemma 26. We prove only for d = 1 since proofs for the other cases are essentially the same.
We show that for any PPT adversary A that breaks the adaptive KH-CCA security of ΠABKHE, there
exists a reduction algorithm B3,1 that solves the (m1 +m2)-fold matrix DDH assumption over G2,
where

|Pr[E3,d,ζ−1,3]− Pr[E3,d,ζ,1]| ≤ Adv
mDDHG2
B3,1

(λ). (20)

B3,1 receives (G(1λ), [B]2, [V]2) which is an instance of the (m1 +m2)-fold matrix DDH prob-

lem over G2, where (B,b⊥) ← Dk, V = BR for R ←R Zk×(m1+m2)
p or V ←R Z(k+1)×(m1+m2)

p .
B3,1 chooses a collision-resistant hash function H ←R H, samples (A,a⊥) ← Dk, random

matrices W1, . . . ,Wn ←R Z(k+1)×(k+1)
p , and random vectors (uι)ι∈[0,2] ←R Zk+1

p , then sends

mpk = (G(1λ), [A]1, [B]2, ([W
⊤
j A]1, [WjB]2)j∈[n], ([A

⊤uι]T )ι∈[0,2],H) to A. Since B3,1 knows
(uι)ι∈[2], it can answer all A’s homomorphic evaluation key reveal queries and evaluation queries by
creating normal sky,1, and sky,2. Since B3,1 knows (uι)ι∈[0,2], it can answer all A’s decryption key
reveal queries after the ζ-th query and decryption queries by creating normal sky,0, sky,1, and sky,2.
Since B3,1 knows (uι)ι∈[0,2] and a⊥, it can answer all A’s decryption key reveal queries before the
ζ-th query by creating semi-functional sky,0 and normal sky,1 and sky,2. Since B3,1 knows (uι)ι∈[0,2]
and W1, . . . ,Wn, it can answer A’s challenge query by creating semi-functional ct⋆x⋆ .

Upon A’s ζ-th decryption key reveal query on y, B3,1 creates normal sky,1 and sky,2, and sky,0 =
((sk0,0,i′)i′∈[m1], (sk0,1,t′)t′∈[m3]);

sk0,0,i′ = [vi′ ]2, sk0,1,t′ = [u0]
ϕt′
2 ·

∏
i′∈[m2]

[vm1+i′ ]
ϕt′,i′
2 ·

∏
i′∈[m2],j∈[n]

[Wjvi′ ]
ϕt′,i′,j
2 , (21)

where vi is an i-th column vector of V. The ζ-th sky,0 is distributed as in Game3,d,ζ−1,3 (resp.

Game3,d,ζ,1) if V = BR (resp. V←R Z(k+1)×(m1+m2)
p ). Thus, the inequality (20) holds.

Lemma 27 (Game3,d,ζ,1 ≡ Game3,d,ζ,2). If the PES satisfies the perfect security, Game3,d,ζ,1 and
Game3,d,ζ,2 follow the same distribution from A′s view.

Proof of Lemma 27. We prove only for d = 1 since proofs for the other cases are essentially the same.
In Game3,1,ζ,1, the challenge ciphertext ct

⋆
x⋆ = ((ct⋆0,i)i∈[0,w1], (ct

⋆
1,t)t∈[w3], ct

⋆
T , π

⋆) is semi-functional;

ct⋆0,i = [ci]1, ct⋆1,t =
∏

i∈[w2]

[cw1+i]
ηt,i
1 ·

∏
i∈[0,w1],j∈[n]

[W⊤
j ci]

ηt,i,j
1 ,

71



ct⋆T = µ · [c⊤0 u0]T , π⋆ = [c⊤0 (u1 + h · u2)]T ,

where c0, c1, . . . , cw1+w2 ←R Zk+1
p and h = H((ct⋆0,i)i∈[0,w1], ct

⋆
T ). Due to the basis lemma

(Lemma 18), the distribution is identical to

ct⋆0,i = [Asi + sib
⊥]1, ct⋆1,t =

∏
i∈[w2]

[Asw1+i + ŝib
⊥]

ηt,i
1 ·

∏
i∈[0,w1],j∈[n]

[W⊤
j (Asi + sib

⊥)]
ηt,i,j
1 ,

ct⋆T = µ · [(As0 + s0b
⊥)⊤u0]T , π⋆ = [(As0 + s0b

⊥)⊤(u1 + h · u2)]T ,

with overwhelming probability, where s0, s1, . . . , sw1+w2 ←R Zk
p and s0, s1, . . . , sw1 , ŝ1, . . . , ŝw2 ←R

Zp. Similarly, the distribution of ζ-th pseudo-normal sky,0 = ((sk0,0,i′)i′∈[m1], (sk0,1,t′)t′∈[m3]) in
Game3,1,ζ,1 is identical to

sk0,0,i′ = [Bri′ + ri′a
⊥]2,

sk0,1,t′ = [u0]
ϕt′
2 ·

∏
i′∈[m2]

[Brm1+i′ + r̂i′a
⊥]

ϕt′,i′
2 ·

∏
i′∈[m2],j∈[n]

[Wj(Bri′ + ri′a
⊥)]

ϕt′,i′,j
2 ,

with overwhelming probability, where r1, . . . , rm1+m2 ←R Zk
p and r1, . . . , rm1 , r̂1, . . . , r̂m2 ←R Zp.

In Game3,1,ζ,1, each W1, . . . ,Wn is sampled according to W1, . . . ,Wn ←R Z(k+1)×(k+1)
p . The

distribution is identical to

W1 = W̃1 + b1(a
⊥⊤

b⊥)−1ab⊥⊤
, . . . ,Wn = W̃n + bn(a

⊥⊤
b⊥)−1ab⊥⊤

where W̃1, . . . ,W̃n ←R Z(k+1)×(k+1)
p and b1, . . . , bn ←R Zp. Since it holds that

W⊤
j A = W̃⊤

j A+ bj(a
⊥⊤

b⊥)−1b⊥a⊥
⊤
A = W̃⊤

j A,

WjB = W̃jB+ bj(a
⊥⊤

b⊥)−1a⊥b⊥⊤
B = W̃jB,

mpk that contains [W⊤
1 A]1, . . . , [W

⊤
nA]1, [W1B]2, . . . , [WnB]2 does not depend on b1, . . . , bn.

Thus, the only elements that depend on b1, . . . , bn are ct⋆x⋆ and ζ-th pseudo-normal sky,0. Since it
holds that

W⊤
j b

⊥ = W̃⊤
j b

⊥ + bj(a
⊥⊤

b⊥)−1b⊥(a⊥
⊤
b⊥) = W̃⊤

j b
⊥ + bjb

⊥,

Wja
⊥ = W̃ja

⊥ + bj(a
⊥⊤

b⊥)−1a⊥(b⊥⊤
a⊥) = W̃ja

⊥ + bja
⊥,

we have

ct⋆1,t =
∏

i∈[w2]

[Asw1+i]
ηt,i
1 ·

∏
i∈[0,w1],j∈[n]

[W̃⊤
j (Asi + sib

⊥)]
ηt,i,j
1

· [b⊥]

∑
i∈[w2]

ηt,iŝi+
∑

i∈[0,w1],j∈[n] ηt,i,jsibj
1 ,

sk0,1,t′ = [u0]
ϕt′
2 ·

∏
i′∈[m2]

[Brm1+i′ ]
ϕt′,i′
2 ·

∏
i′∈[m2],j∈[n]

[W̃j(Bri′ + ri′a
⊥)]

ϕt′,i′,j
2

· [a⊥]
∑

i′∈[m2]
ϕt′,i′ r̂i′+

∑
i′∈[m2],j∈[n] ϕt′,i′,jribj

2 .

Observe that even when we do not know all of (s0, s1, . . . , sw1 , ŝ1, . . . , ŝw2 , r1, . . . , rm1 , r̂1, . . . , r̂m2),
(s0, s1, . . . , sw1 , r1, . . . , rm1 , (

∑
i∈[w2]

ηt,iŝi +
∑

i∈[0,w1],j∈[n] ηt,i,jsibj)t∈[w3], (
∑

i′∈[m2]
ϕt′,i′ r̂i′ +
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∑
i′∈[m1],j∈[n] ϕt′,i′,jri′bj)t′∈[m3]) are sufficient for simulating the semi-functional challenge

ciphertext ct⋆x⋆ and ζ-th pseudo-normal sky,0. Since it holds that f(x⋆, y) = 0 and all
s0, s1, . . . , sw1 , ŝ1, . . . , ŝw2 , r1, . . . , rm1 , r̂1, . . . , r̂m2 are sampled according to the uniform distribu-
tion over Zp, the perfect security of PES ensures that ct⋆x⋆ and ζ-th sky,0 are identically distributed
by simulating with (s0, s, r, (

∑
i∈[w2]

ηt,iŝi+
∑

i∈[0,w1],j∈[n] ηt,i,jsibj)t∈[w3], (ϕt′α0,y+
∑

i′∈[m2]
ϕt′,i′ r̂i′+∑

i′∈[m1],j∈[n] ϕt′,i′,jri′bj)t′∈[m3]), where α0,y ←R Zp. Then, we have

sk0,1,t′ = [u0]
ϕt′
2 ·

∏
i′∈[m2]

[Brm1+i′ ]
ϕt′,i′
2 ·

∏
i′∈[m2],j∈[n]

[W̃j(Bri′ + ri′a
⊥)]

ϕt′,i′,j
2

· [a⊥]
ϕt′α0,y+

∑
i′∈[m2]

ϕt′,i′ r̂i′+
∑

i′∈[m2],j∈[n] ϕt′,i′,jribj
2

= [u0 + α0,ya
⊥]

ϕt′
2 ·

∏
i′∈[m2]

[Brm1+i′ + r̂i′a
⊥]

ϕt′,i′
2 ·

∏
i′∈[m2],j∈[n]

[Wj(Bri′ + ri′a
⊥)]

ϕt′,i′,j
2 .

Due to the basis lemma (Lemma 18), the distribution of ζ-th sky,0 is identically distributed to
pseudo-SF secret key. Thus, we complete the proof.

Lemma 28 (Game3,d,ζ,2 ≈c Game3,d,ζ,3). If the matrix DDH assumption over G2 holds, Game3,d,ζ,2
and Game3,d,ζ,3 are computationally indistinguishable for any PPT A.

Proof of Lemma 28. We prove only for d = 1 since proofs for the other cases are essentially the same.
We show that for any PPT adversary A that breaks the adaptive KH-CCA security of ΠABKHE, there
exists a reduction algorithm B3,3 that solves the (m1 +m2)-fold matrix DDH assumption over G2,
where

|Pr[E3,d,ζ,2]− Pr[E3,d,ζ,3]| ≤ Adv
mDDHG2
B3,3

(λ). (22)

The proof is almost the same as the proof of Lemma 26. After B3,3 receives (G(1λ), [B]2, [V]2),
it sends mpk to A in the same way as B3,1. B3,3 answers all A’s decryption key reveal queries,
homomorphic evaluation key reveal queries, decryption queries, evaluation queries, and challenge
query in the same way as B3,1 except ζ-th sky,0. B3,3 creates ζ-th sky,0 in the same way as (21)
except

sk0,1,t′ = [u0 + α0,ya
⊥]

ϕt′
2 ·

∏
i′∈[m2]

[vm1+i′ ]
ϕt′,i′
2 ·

∏
i′∈[m2],j∈[n]

[Wjvi′ ]
ϕt′,i′,j
2 ,

where vi is an i-th column vector of V and α0,y ←R Zp. The ζ-th sky,0 is distributed as in

Game3,d,ζ,3 (resp. Game3,d,ζ,2) if V = BR (resp. V←R Z(k+1)×(m1+m2)
p ). Thus, the inequality (22)

holds.

Based on Lemmata 26, 27, and 28, we have

|Pr[E3]− Pr[E4]| ≤ Qdk

(
Adv

mDDHG2
B3,1

(λ) + Adv
mDDHG2
B3,3

(λ)
)
.

Proof of Lemma 21. We use the following games Game4,d,ι,ζ,1, Game4,d,ι,ζ,2, and Game4,d,ι,ζ,3 for
ι ∈ [2] and ζ ∈ [Qdk+Qhk], where Qdk (resp. Qhk) denotes the number of A’s decryption key reveal
queries (resp. homomorphic evaluation key reveal queries), Game4,d,1,0,3 = Game4,d, Game4,d,2,0,3 =
Game4,d,1,Qdk+Qhk,3, and Game4,d,2,Qdk+Qhk,3 = Game5,d.
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Table 5: Distributions of ABE secret keys sky,ι to answer A’s decryption key reveal queries and
homomorphic evaluation key reveal queries in Game4,d,ι,ζ,1, Game4,d,ι,ζ,2, and Game4,d,ι,ζ,3

before ζ-th query ζ-th query after ζ-th query

Game4,d,ι,ζ,1 semi-functional pseudo-normal normal

Game4,d,ι,ζ,2 semi-functional pseudo-SF normal

Game4,d,ι,ζ,3 semi-functional semi-functional normal

Game4,d,ι,ζ,1. This is the same as Game4,d,ι,ζ−1,3 except that C answers pseudo-normal sky,ι upon
A’s ζ-th decryption key reveal queries or homomorphic evaluation key reveal queries on y.

Game4,d,ι,ζ,2. This is the same as Game4,d,ι,ζ,1 except that C answers pseudo-SF sky,ι upon A’s ζ-th
decryption key reveal queries or homomorphic evaluation key reveal queries on y.

Game4,d,ι,ζ,3. This is the same as Game4,d,ι,ζ,2 except that C answers semi-functional sky,ι upon A’s
ζ-th decryption key reveal queries or homomorphic evaluation key reveal queries on y.

Table 5 summarizes distributions of sky,1 and sky,2 in each game Game4,d,ι,ζ,1, Game4,d,ι,ζ,2, and
Game4,d,ι,ζ,3, where all sky,2 are always normal if ι = 1 and all sky,1 are always semi-functional if
ι = 2. To prove Game4,d ≈c Game5,d, we show that Game4,d,ι,ζ−1,3 ≈c Game4,d,ι,ζ,1 ≡ Game4,d,ι,ζ,2 ≈c

Game4,d,ι,ζ,3 as the proof of Lemma 21.

Lemma 29 (Game4,d,ι,ζ−1,3 ≈c Game4,d,ι,ζ,1). If the matrix DDH assumption over G2 holds,
Game4,d,ι,ζ−1,3 and Game4,d,ι,ζ,1 are computationally indistinguishable for any PPT A.

Proof of Lemma 29. We prove only for d = 1 and ι = 1 since proofs for the other cases are
essentially the same. We show that for any PPT adversary A that breaks the adaptive KH-CCA
security of ΠABKHE, there exists a reduction algorithm B4,1 that solves the (m1 +m2)-fold matrix
DDH assumption over G2, where

|Pr[E4,d,ι,ζ−1,3]− Pr[E4,d,ι,ζ,1]| ≤ Adv
mDDHG2
B4,1

(λ). (23)

The proof is almost the same as the proof of Lemma 26. After B4,1 receives (G(1λ), [B]2, [V]2),
it sends mpk to A in the same way as B3,1. Since B4,1 knows (uι)ι∈[2], it can answer all A’s
evaluation queries by creating normal sky,1, and sky,2. Since B4,1 knows (uι)ι∈[0,2], it can answer all

A’s decryption queries by creating normal sky,0, sky,1, and sky,2. Since B4,1 knows (uι)ι∈[0,2] and a⊥,
it can answer all A’s homomorphic evaluation key reveal queries and decryption key reveal queries
before the ζ-th query by creating semi-functional sky,0 and sky,1 and normal sky,2. Similarly, B4,1
can answer all A’s homomorphic evaluation key reveal queries and decryption key reveal queries
after the ζ-th query by creating semi-functional sky,0 and normal sky,1 and sky,2. Since B4,1 knows
(uι)ι∈[0,2] and W1, . . . ,Wn, it can answer A’s challenge query by creating semi-functional ct⋆x⋆ .

Upon A’s ζ-th homomorphic evaluation key reveal query or decryption key reveal query on y,
B4,1 creates semi-functional sky,0, normal sky,2, and sky,1 = ((sk0,0,i′)i′∈[m1], (sk0,1,t′)t′∈[m3]) in the
same way as (21) except

sk1,1,t′ = [u1]
ϕt′
2 ·

∏
i′∈[m2]

[vm1+i′ ]
ϕt′,i′
2 ·

∏
i′∈[m2],j∈[n]

[Wjvi′ ]
ϕt′,i′,j
2 , (24)

where vi is an i-th column vector of V. The ζ-th sky,1 is distributed as in Game4,d,1,ζ−1,3 (resp.

Game4,d,1,ζ,1) if V = BR (resp. V←R Z(k+1)×(m1+m2)
p ). Thus, the inequality (23) holds.
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Lemma 30 (Game4,d,ι,ζ,1 ≡ Game4,d,ι,ζ,2). If the PES satisfies the perfect security, Game4,d,ι,ζ,1 and
Game4,d,ι,ζ,2 follow the same distribution from A′s view.

Proof of Lemma 30. We prove only for d = 1 and ι = 1 since proofs for the other cases are
essentially the same. As the proof of Lemma 27, we set

W1 = W̃1 + b1(a
⊥⊤

b⊥)−1ab⊥⊤
, . . . ,Wn = W̃n + bn(a

⊥⊤
b⊥)−1ab⊥⊤

where W̃1, . . . ,W̃n ←R Z(k+1)×(k+1)
p and b1, . . . , bn ←R Zp. Then, only elements that depend

on b1, . . . , bn are the semi-functional challenge ciphertext ct⋆x⋆ and ζ-th pseudo-normal sky,1. In
particular, we have

ct⋆1,t =
∏

i∈[w2]

[Asw1+i]
ηt,i
1 ·

∏
i∈[0,w1],j∈[n]

[W̃⊤
j (Asi + sib

⊥)]
ηt,i,j
1

· [b⊥]

∑
i∈[w2]

ηt,iŝi+
∑

i∈[0,w1],j∈[n] ηt,i,jsibj
1 ,

sk1,1,t′ = [u1]
ϕt′
2 ·

∏
i′∈[m2]

[Brm1+i′ ]
ϕt′,i′
2 ·

∏
i′∈[m2],j∈[n]

[W̃j(Bri′ + ri′a
⊥)]

ϕt′,i′,j
2

· [a⊥]
∑

i′∈[m2]
ϕt′,i′ r̂i′+

∑
i′∈[m2],j∈[n] ϕt′,i′,jribj

2 .

Observe that even when we do not know all of (s0, s1, . . . , sw1 , ŝ1, . . . , ŝw2 , r1, . . . , rm1 , r̂1, . . . , r̂m2),
(s0, s1, . . . , sw1 , r1, . . . , rm1 , (

∑
i∈[w2]

ηt,iŝi +
∑

i∈[0,w1],j∈[n] ηt,i,jsibj)t∈[w3], (
∑

i′∈[m2]
ϕt′,i′ r̂i′ +∑

i′∈[m1],j∈[n] ϕt′,i′,jri′bj)t′∈[m3]) are sufficient for simulating the semi-functional challenge
ciphertext ct⋆x⋆ and ζ-th pseudo-normal sky,1. Since it holds that f(x⋆, y) = 0 and all
s0, s1, . . . , sw1 , ŝ1, . . . , ŝw2 , r1, . . . , rm1 , r̂1, . . . , r̂m2 are sampled according to the uniform distribu-
tion over Zp, the perfect security of PES ensures that ct⋆x⋆ and ζ-th sky,1 are identically distributed
by simulating with (s0, s, r, (

∑
i∈[w2]

ηt,iŝi+
∑

i∈[0,w1],j∈[n] ηt,i,jsibj)t∈[w3], (ϕt′α1,y+
∑

i′∈[m2]
ϕt′,i′ r̂i′+∑

i′∈[m1],j∈[n] ϕt′,i′,jri′bj)t′∈[m3]), where α1,y ←R Zp. Then, we have

sk1,1,t′ = [u1]
ϕt′
2 ·

∏
i′∈[m2]

[Brm1+i′ ]
ϕt′,i′
2 ·

∏
i′∈[m2],j∈[n]

[W̃j(Bri′ + ri′a
⊥)]

ϕt′,i′,j
2

· [a⊥]
ϕt′α1,y+

∑
i′∈[m2]

ϕt′,i′ r̂i′+
∑

i′∈[m2],j∈[n] ϕt′,i′,jribj
2

= [u1 + α1,ya
⊥]

ϕt′
2 ·

∏
i′∈[m2]

[Brm1+i′ + r̂i′a
⊥]

ϕt′,i′
2 ·

∏
i′∈[m2],j∈[n]

[Wj(Bri′ + ri′a
⊥)]

ϕt′,i′,j
2 .

As the proof of Lemma 27, the distribution of ζ-th sky,1 is identically distributed to pseudo-SF
secret key. Thus, we complete the proof.

Lemma 31 (Game4,d,ι,ζ,2 ≈c Game4,d,ι,ζ,3). If the matrix DDH assumption over G2 holds,
Game4,d,ι,ζ,2 and Game4,d,ι,ζ,3 are computationally indistinguishable for any PPT A.

Proof of Lemma 31. We prove only for d = 1 and ι = 1 since proofs for the other cases are
essentially the same. We show that for any PPT adversary A that breaks the adaptive KH-CCA
security of ΠABKHE, there exists a reduction algorithm B4,3 that solves the (m1 +m2)-fold matrix
DDH assumption over G2, where

|Pr[E4,d,ι,ζ,2]− Pr[E4,d,ι,ζ,3]| ≤ Adv
mDDHG2
B4,3

(λ). (25)
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The proof is almost the same as the proof of Lemmata 28 and 29. After B4,3 receives
(G(1λ), [B]2, [V]2), it sends mpk to A in the same way as B4,1. B4,3 answers all A’s decryption key
reveal queries, homomorphic evaluation key reveal queries, decryption queries, evaluation queries,
and challenge query in the same way as B4,1 except ζ-th sky,1. B4,3 creates ζ-th sky,1 in the same
way as (24) except

sk1,1,t′ = [u1 + α1,ya
⊥]

ϕt′
2 ·

∏
i′∈[m2]

[vm1+i′ ]
ϕt′,i′
2 ·

∏
i′∈[m2],j∈[n]

[Wjvi′ ]
ϕt′,i′,j
2 ,

where vi is an i-th column vector of V and α1,y ←R Zp. The ζ-th sky,1 is distributed as in

Game4,d,1,ζ,3 (resp. Game4,d,1,ζ,2) if V = BR (resp. V ←R Z(k+1)×(m1+m2)
p ). Thus, the inequality

(25) holds.

Based on Lemmata 29, 30, and 31, we have

|Pr[E4]− Pr[E5]| ≤ 2(Qhk +Qdk)
(
Adv

mDDHG2
B4,1

(λ) + Adv
mDDHG2
B4,3

(λ)
)
.

9 Conclusion

In this paper, we proposed generic constructions of ABKFHE and ABKHE. In advance of ABKFHE,
we modified Canetti et al.’s CCA1-secure FHE scheme [CRRV17] and proposed a generic construc-
tion of KFHE based on MFHE, IBE, OTS, and MAC, where the resulting scheme is the first KFHE
scheme secure solely under the LWE assumption in the standard model. Then, we replaced several
building blocks of KFHE with attribute-based ones and provided a generic construction of ABKFHE
based on MFHE, DABE, and OTS, where the resulting scheme implies the first IBKFHE scheme. For
this purpose, we constructed a DABE scheme by combining with Yamada’s adaptively secure IBE
scheme [Yam17] and Boneh et al.’s selectively secure ABE scheme [BGG+14]. Next, in advance of
ABKHE, we provided a simpler proof of Emura et al.’s KHPKE scheme [EHN+18] if it is instantiated
under the matrix DDH assumption. Then, we proposed a generic construction of ABKHE from PES
by combining with ABE schemes over dual system groups [AC16, AC17, CGW15] and Emura et
al.’s KHPKE scheme [EHN+18], where the resulting scheme implies the first IBKHE scheme under
the standard k-linear assumption.

Due to the inefficiency of Canetti et al.’s CCA1-secure FHE scheme [CRRV17], our proposed
ABKFHE scheme is also inefficient. To obtain more efficient ABKFHE schemes, a design of a more
efficient CCA1-secure FHE scheme has to be an interesting open problem. Since there are several
expressive ABE schemes which are not covered by PES, constructions of keyed homomorphic variants
of the schemes should be an interesting open problem. A construction of attribute-based two-level
keyed homomorphic encryption is also an interesting open problem.
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