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Abstract

Keyed homomorphic public key encryption (KHPKE) is a variant of homomorphic public key
encryption, where only users who have a homomorphic evaluation key can perform a homo-
morphic evaluation. Then, KHPKE satisfies the CCA2 security against users who do not have a
homomorphic evaluation key, while it satisfies the CCA1 security against users who have the key.
Thus far, several KHPKE schemes have been proposed under the standard Diffie-Hellman-type
assumptions and keyed fully homomorphic encryption (KFHE) schemes have also been proposed
from lattices although there are no KFHE schemes secure solely under the LWE assumption
in the standard model. As a natural extension, there is an identity-based variant of KHPKE;
however, the security is based on a g-type assumption and there are no attribute-based variants.
Moreover, there are no identity-based variants of KFHE schemes due to the complex design
of the known KFHE schemes. In this paper, we provide two constructions of attribute-based
variants. First, we propose an attribute-based KFHE (ABKFHE) scheme from lattices. We start
by designing the first KFHE scheme secure solely under the LWE assumption in the standard
model. Since the design is conceptually much simpler than known KFHE schemes, we replace
their building blocks with attribute-based ones and obtain the proposed ABKFHE schemes.
Next, we propose an efficient attribute-based KHPKE (ABKHE) scheme from a pair encoding
scheme (PES). Due to the benefit of PES, we obtain various ABKHE schemes that contain the
first identity-based KHPKE scheme secure under the standard k-linear assumption and the first
pairing-based ABKHE schemes supporting more expressive predicates.
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1 Introduction

1.1 Background

Given two ciphertexts ct(!) and ct® of (multiplicative) homomorphic encryption (HE), where they
are encryptions of u(l) and u(z), respectively, arbitrary users can compute an evaluated ciphertext

ct that is an encryption of g™ - u(®). Given an arbitrary circuit C and ciphertexts ct®, ... ct(F)
of fully homomorphic encryption (FHE), where they are encryptions of pD )] respectively,
arbitrary users can compute an evaluated ciphertext ctc that is an encryption of C(u(V, . .. ,,u,(L)).

After Gentry [Gen09] proposed the first FHE scheme, several improved FHE schemes have been
proposed such as [Bral2, BGV12, BV1lla, BV11lb, BV14, GSW13, vGHV10]. The publicly com-
putable homomorphism provides several applications such as delegated computation and multi-
party computation. In contrast, the nature inherently prevents (F)HE schemes from achieving the
CCA2 security. Thus, several CCAl-secure (F)HE schemes have been proposed such as the Cramer-
Shoup-lite [CS98] and FHE schemes [CRRV17, DGM15, LMSV12, ZPS12]. However, Loftus et al.
showed that CCAl-secure FHE schemes may be vulnerable if there are ciphertext validity checking
oracles [LMSV12] as Bleichenbacher’s attack on RSA [Ble98].

To reconcile homomorphic operations and the chosen ciphertext security, Emura et al. intro-
duced a notion of keyed homomorphic public key encryption (KHPKE) [EHO'13]. As opposed to
(F)HE, only users who have a homomorphic evaluation key can compute evaluated ciphertexts of
KHPKE. The standard security requirement of KHPKE called the KH-CCA security ensures that a
KHPKE scheme satisfies the CCA2/CCA1 security against an adversary without/with a homomor-
phic evaluation key, respectively. Thus, the KH-CCA security is strictly stronger than the CCA1l
security. Moreover, KH-CCA-secure KHPKE schemes are secure even in the presence of ciphertext
validity checking oracles [Emu21]. Libert et al. [LPJY14] proposed the first KH-CCA-secure multi-
plicative KHPKE scheme, then Jutla and Roy [JR15] and Emura et al. [EHN 18] proposed improved
schemes. Among them, Emura et al.’s scheme is the most efficient since it does not require pairing
unlike [JR15, LPJY14] and satisfies the KH-CCA security under the DDH assumption.

Lai et al. extended the notion of KHPKE and proposed the first keyed FHE (KFHE)
scheme [LDM™16] under the LWE assumption and iO [BGI*T01]; however, it does not satisfy
the KH-CCA security but only the weaker security which is not CCALl but only the CPA se-
curity against an adversary with a homomorphic evaluation key. Then, Sato et al. proposed
the first KH-CCA-secure KFHE scheme under the LWE assumption [SET22]. In particular, Sato
et al. followed the complex design methodology of Jutla and Roy’s KHPKE scheme [JR15]
based on a strong dual-system simulation-sound NIZK system for Diffie-Hellman languages. To
construct a strong dual-system simulation-sound NIZK system for FHE ciphertexts, Sato et
al. have to rely on either zk-SNARKs for arithmetic circuits based on knowledge assump-
tions [BBCT18, BCC*17, BCCT13, GGPR13, MBKM19, ZSZ"22] or zk-SNARKSs for NP in the
(quantum) random oracle model [CMS19]. Thus, there are no known KFHE schemes whose KH-CCA
security is based solely on the LWE assumption in the standard model. Maeda and Nuida [MN22]
proposed a keyed two-level homomorphic encryption scheme that supports the additive homomor-
phism with a single multiplication under the SXDH assumption.

As another direction of the topic, Emura et al. constructed a pairing-based identity-based keyed
homomorphic encryption (IBKHE) scheme [EHN'18]. Although the scheme satisfies the adaptive
KH-CCA security, it is based on a g-type assumption. Thus far, there are no known pairing-
based IBKHE schemes under the standard assumptions although there are various pairing-based
homomorphic identity-based encryption (IBE) schemes under such assumptions [BB04, CLL" 14,
CW14, Lew12, Wat05, Wat09]. Similarly, there are no known attribute-based keyed homomorphic



encryption (ABKHE) schemes supporting more expressive predicates although the pair encoding
framework [Att14, Weel4] enables us to construct various pairing-based expressive attribute-based
encryption (ABE) schemes [AC16, AC17, Amb21, ABS17, Att16, CGW15, CG17, Tak21]. The ABE
schemes are adaptively secure under the g-ratio assumption and the standard k-linear assumption
for expressive and simple predicates, respectively. Moreover, there are no known identity-based
keyed fully homomorphic encryption (IBKFHE) schemes and attribute-based keyed fully homomor-
phic encryption (ABKFHE) schemes, while there are various known lattice-based identity-based and
attribute-based FHE schemes such as [BCTW16, CM15, GSW13, HK17, ML19, PD20]. These situ-
ations stem from the fact that known design methodologies of KHPKE and KFHE are too complex
to extend to identity/attribute-based settings. In other words, known constructions of KH-CCA-
secure K(F)HE schemes rely on specific techniques that are not common in the context of public
key encryption. For example, Emura et al. [EHN'18] introduced additional security notions for
universaly hash proof system [CS02] and proved the KH-CCA security, where the additional security
notions have not been used in other papers. As we explained above, Jutla and Roy [JR15] and Sato
et al. [SET22] used strong dual-system simulation-sound NIZK systems that have been used only
in these papers.

1.2 Our Contribution

In this paper, we first propose a generic construction of ABKFHE whose building blocks can be
instantiated under the standard LWE assumption. For this purpose, we start by designing the
first KH-CCA-secure KFHE scheme solely based on the LWE assumption in the standard model
by modifying Canetti et al.’s CCAl-secure FHE scheme [CRRV17]. Specifically, Canetti et al.
constructed a CCAl-secure FHE scheme from multi-key FHE (MFHE) [AJJM20, CM15, LTV12,
MW16, PS16] and IBE, where MFHE schemes [AJJM20, MW16, PS16] are secure in the standard
model and there are various IBE schemes secure in the standard model such as [ABB10a, Yam17].
In addition to MFHE and IBE, we use only simple primitives and construct KFHE. Indeed, we
additionally use one-time signatures (OTS) and message authentication codes (MAC). The design
methodology is very simple since we just combine the Canetti-Halevi-Katz transformation [CHKO04]
and the encrypt-then-MAC paradigm [BNO8] which are the standard techniques to prove the CCA2
security of public/symmetric key encryption. As a result, the simplicity enables us to extend the
proposed KFHE scheme and obtain a KH-CCA-secure ABKFHE scheme supporting cross-attribute
evaluations by replacing IBE and MAC with delegatable ABE (DABE).

Unfortunately, the proposed ABKFHE scheme is not very efficient since the size of an eval-
uated ciphertext depends on the number of input ciphertexts although the feature is not the
disadvantage of the proposed ABKFHE scheme since the known CCAl-secure FHE scheme se-
cure solely under the LWE assumption in the standard model [CRRV17]| and attribute-based
FHE schemes supporting cross-attribute evaluation [BCTW16, ML19, PD20] have similar fea-
tures. Thus, we overcome the issue by restricting the functionality and propose an effi-
cient ABKHE scheme that supports multiplicative homomorphism without cross-attribute eval-
uations. Specifically, we construct the proposed ABKHE scheme from a pair encoding scheme
(PES) [Att14, Weeld]. Due to the benefit of the pair encoding framework, we obtain adaptively
KH-CCA-secure ABKHE schemes for various expressive predicates under the g-ratio assumption
and those for simple predicates under the standard k-linear assumption using known PES such
as [AC16, AC17, Attl4, Att16, Att19, AY15, CGW15, Tak21l, Weeld]. The result includes the
first pairing-based IBKHE scheme under the standard k-linear assumption. Our design methodol-
ogy is similar to Emura et al.’s KHPKE scheme [EHN'18]. Although Emura et al.’s proof based
on the hash proof system [CS02] is complicated, we can simplify the proof by focusing on the



Table 1: Comparison among keyed homomorphic encryption schemes

Scheme Homomorphism Access Control Complexity Assumption
LPJY14 [LPJY14] Multiplicative None DLIN
JR15 [JR15] Multiplicative None SXDH
LDM+16 [LDM*16] Fully None LWE + iO
Multiplicative None DDH
EHN+18 [EHN 18] Additive None DCR
Multiplicative Identity-based ¢-ABDHE
SET22 [SET22] Fully None LWE + Knowledge
LWE + (QY ROM
MN22 [MN22] Two-Level None SXDH
Fully Attribute-based LWE
This Work Multiplicative Identity-based k-Lin
Multiplicative Attribute-based k-Lin or ¢-ratio

DLIN stands for the decisional linear assumption. SXDH stands for the symmetric ex-
ternal Diffie-Hellman assumption. LWE stands for the learning with errors assumption.
iO stands for the indistinguishability obfuscation. DDH stands for the decisional Diffie-
Hellman assumption. DCR stands for the decisional composite residuosity assumption.
¢-ABDHE stands for the truncated decisional augmented bilinear Diffie-Hellman expo-
nent assumption. Knowledge indicates the lattice-based knowledge assumption. (Q)ROM
stands for the (quantum) random oracle model. k-Lin stands for the k-linear assumption.
g-ratio stands for the g-ratio assumption.

matrix DDH assumption [EHK"17]. Then, as Emura et al. extended the Cramer-Shoup cryp-
tosystem [CS98] to their KHPKE scheme, we extend PES-based ABE schemes over dual system
groups [AC16, AC17, CGW15] to our proposed ABKHE schemes.

1.3 Technical Overview

In this section, we explain overviews of our proposed IBK(F)HE schemes denoted by Iligk(r)HE-

Notation. For non-negative integers a and b such that a < b, let [a] == {1,2,...,a} and [a,b] =
{a,a+1,...,b}. For a finite set S, let s <— S denote a uniform sampling from S and |S| denote the
size of S. “Probabilistic polynomial time” is abbreviated as “PPT”. For two security games Game;
and Game;, Game; ~. Game;, Game; ~ Game;, and Game; = Game; indicate that Game; and Game;
are computationally indistinguishable, statistically indistinguishable, and identically distributed,
respectively.

1.3.1 Model

We briefly explain models of KHPKE, KFHE, and IBK(F)HE. See Sections 2.1 and 4 for a detailed
definition. Since KHPKE and KFHE follow the same model, we explain KFHE. A KFHE scheme



has three types of keys, i.e., a public key KFHE.pk, a decryption key KFHE.dk, and a homomor-
phic evaluation key KFHE.hk. Although an encryptor encrypts a message only with KFHE.pk,
KFHE.dk and KFHE.hk are required to decrypt a ciphertext KFHE.ct and evaluate ciphertexts
KFHE.ct®, ... KFHE.ct"), respectively. In the KH-CCA security game, an adversary can make
a homomorphic evaluation key reveal query and evaluation queries in addition to the traditional
decryption queries, where the adversary can receive hk and evaluated ciphertexts by the additional
queries. There are two restrictions for decryption queries to prevent trivial attacks. First, the
adversary is not allowed to make decryption queries after it receives both KFHE.hk and the chal-
lenge ciphertext. Briefly speaking, KFHE satisfy the CCA2 security against users who do not have
KFHE.hk, while it satisfies the CCA1 security against users who have KFHE.hk. Second, the chal-
lenger keeps a list £ that contains the challenge ciphertext. When the adversary makes evaluation
queries on ciphertexts in £, the challenger puts evaluated ciphertexts on £. Then, the adversary
cannot make decryption queries on ciphertexts in L.

IBK(F)HE is almost the same with some exceptions. A decryption key dkiq and a homomorphic
evaluation key hk;y depend on an identity id. Unlike KFHE, dk;y can decrypt a ciphertext ctiq
and hk;y can evaluate ciphertexts ct® ... et only if id = id’ holds. In the security game, the
adversary can make a decryption key reveal query and receive dkiq as long as id # id*, where id* is
the challenge identity. Even when the adversary receives hkiq such that id # id* and the challenge
ciphertext, it can still make decryption queries until it receives hk;gx.

1.3.2 Overview of IBKFHE

We explain an overview of II;gkrne based on MFHE scheme ITygpg, hierarchical IBE (HIBE) scheme
IIygE, a collision-resistant hash function H, and a one-time signature (OTS) scheme IlgTs.

CCAl-secure FHE Scheme. We first review Canetti et al.’s CCAl-secure FHE scheme IIgye [CRRV17]
based on Brakerski et al.’s generic construction of IBFHE [BCTW16] from MFHE and IBE. The
scheme Ilgyg has FHE.pk = (MFHE.pp, IBE.mpk) and FHE.sk = IBE.msk. To encrypt a mes-
sage i, an encryptor runs the key generation algorithm of MFHE; (MFHE.pk, MFHE.sk) <
MFHE.KGen(MFHE.pp), samples a random identity rid <—p ZD, and computes a pre-evaluated
ciphertext;

FHE.ct = (rid, MFHE.pk, IBE.ct,iq, MFHE.ct),

where IBE.ct;jg and MFHE.ct are encryptions of MFHE.sk and pu, respectively. To decrypt a
pre-evaluated FHE ciphertext FHE.ct, a decryptor computes an IBE secret key IBE.sk,q by us-
ing FHE.sk = IBE.msk, recovers an MFHE secret key MFHE.sk by decrypting IBE.ct,q using
IBE.skyq, and recovers a message p by decrypting MFHE.ct using MFHE.sk. To evaluate pre-

evaluated ciphertexts (FHE.ct) = (rid®, MFHE.pk(®), IBE.ct") | MFHE.ct(®))¢(y) for a circuit C,

where IBE.ctEfd)([) and MFHE.ct(®) are encryptions of MFH E.sk® and ,u(z), respectively, an evaluator
computes MFHE.ctc which is an MFHE evaluated ciphertext of (MFHE.ct(®) ¢eqr) for C and outputs

FHE.ctc = ((rid“), MFHE.pk®), IBE.ct'”), )rerz), MFHE.ctC) .

)
rid(©)

by using FHE.sk = IBE.msk and recovers MFHE secret keys MFHE.sk® by decrypting IBE.ctEgm
)

using IBE.sk_ /., for ¢ € [L], and recovers a message C((,u([))gem) by decrypting MFHE.ctc using
(MFHE.sk®) s .-

To decrypt an evaluated FHE ciphertext FHE.ctc, a decryptor computes IBE secret keys IBE.sk



Let FHE.ct* = (rid*, MFHE.pk*, IBE.ct* ., MFHE.ct*) be the challenge ciphertext. The CCAl
security of the FHE scheme Ilgye follows from the CPA security of lIprng and Iljgg. In particular,
we first use the CPA security of IBE to ensure that IBE.ct? . is indistinguishable from encryption of
a random string, then the CPA security of MFHE ensures that MFHE.ct* is indistinguishable from an
encryption of a random string. We briefly explain the first reduction. In Phase 1, A does not know
rid* sampled by C uniformly from an exponentially large space ZD. Thus, all ciphertexts FHE.ct =
(rid, MFHE.pk, IBE.ctiq, MFHE.ct) on which the CCA1 adversary A makes decryption queries satisfy
rid # rid*. Therefore, the reduction algorithm of IBE can answer all decryption queries.

KH-CCA-secure KFHE. By modifying Ilgyg, we construct the first KFHE scheme Ilkpye whose
KH-CCA security is based solely on the LWE assumption in the standard model. At first, we apply
the CHK transform [CHKO04] to pre-evaluated ciphertexts so that IIxrne satisfies the CCA2 security
against an adversary without KFHE.hk. Then, we have

KFHE.ct = (vk, MFHE.pk, IBE.cty, MFHE.ct, o),

where a random identity rid is replaced by a verification key vk of Ilgts that satisfies the strong
EUF-CMA security, and o is a signature for a message (vk, MFHE.pk, IBE.ct,x, MFHE.ct). To eval-

uate pre-evaluated ciphertexts (KFHE.ct(e) = (vk(g), MFHE.pk(® IBE.ct\(/i)u), MFHE.ct(Z),U(Z)))gem,

we discard signatures' (0(5))46[ s apply the evaluation algorithm of IIgyg, and obtain KFHE.ctc =
((vk'® MFHE.pk®, IBE-Ct\(/i)(z))EG[L]7 MFHE.ctc) which is the same as FHE.ctc except rid®) are re-

placed with vk(®,

Since we do not introduce a homomorphic evaluation key hk, the current scheme is still insecure.
What we have achieved so far is that the CHK transform ensures that the pre-evaluated ciphertexts
KFHE.ct satisfy the CCA2 security as long as it cannot be evaluated, while the CCA1l security
of Ilpye ensures that the evaluated ciphertexts satisfy the CCAL security. Thus, we design an
evaluation algorithm and a homomorphic evaluation key hk so that pre-evaluated ciphertexts cannot
be evaluated without hk and evaluated ciphertexts satisfy the CCA2 security against an adversary
without hk. In other words, we only have to focus on an adversary without hk. To this end, although
KFHE itself is a public key primitive, the treatment of hk is similar to a symmetric key primitive.
Therefore, we use a simple encrypt-then-MAC paradigm [BNO8] for constructing a CCA2-secure
symmetric key encryption scheme to design Ilxpye. We set hk as a secret key of MAC and an
evaluated ciphertext becomes

KFHE.ctc = ((vk“), MFHE.pk®, 1BE.ct”), )se (), MFHE ctc, T) ,

where 7 is a MAC tag of a message ((vk(g), MFHE.pk®, IBE'Ct\(,i)(z))ZE[L]v MFHE.ctc). A decryption
key dk consists of IBE.msk and a secret key of MAC. A decryptor first checks the validity of 7 and
recovers a message C((M(Z))ZG[L]) in the same way as FHE.ctc. Since the strong EUF-CMA security
of MAC ensures that an adversary without hk cannot evaluate ciphertexts by itself, Ilxryg satisfies
the CCA2 security against the adversary. Thus, IIxrue achieves the KH-CCA security.

KH-CCA-secure IBKFHE. Due to the simplicity of the above KFHE scheme Ilxpye, we construct
a KH-CCA-secure IBKFHE scheme Iljgkpne by replacing several building blocks of Ilxpye with
identity-based ones. In particular, we replace IBE of IIxpyg by HIBE to construct CCA2-secure
IBE. Similarly, we also replace MAC with an identity-based signature (IBS) scheme, where we

Since there are no MFHE.ct™?, ..., MFHE.ct'*) in an evaluated ciphertext KFHE.ctc, the signatures (a“)) -
eelL
are useless in the sense that we cannot verify them.



use a secret key of HIBE as a signature by following the Naor transform. However, the Naor
transform is insufficient since the resulting IBS scheme does not satisfy the strong EUF-CMA security.
Thus, we apply Huang et al.’s generic transformation [HWZ07] so that the identity-based signature
scheme satisfies the strong EUF-CMA security by combining with the strongly EUF-CMA-secure
one-time signature scheme Ilgts. Then, we use a two-level HIBE scheme Ilyge to play the roles
of CCA2-secure IBE and strongly EUF-CMA-secure IBS. For an identity id, we set a decryption
key IBKFHE.dkiq = HIBE.skqjg, & homomorphic evaluation key IBKFHE.hkig = HIBE.skyq, a pre-
evaluated ciphertext

IBKFHE.ctig = (vk, MFHE.pk, HIBE.ctg|ig v, MFHE.ct, o),

where HIBE.ctg)jq,\x and MFHE.ct are encryptions of MFHE.sk and p, respectively, and an evaluated
ciphertext

0) 0 ©
IBKFHE ctq c — ( (v, MFHE.pk), HIBE.cty ) i )ecir) )

MFHE.ctc, HIBE.sky g vk,

l

where ¢ is a signature of ((vk), MFHE.pk(®, HlBE.czt(()”)id J(0)elr)s MFHE ctc, HIBE skyjiq i) for vk

and (HIBE.skj gk, o) plays a role of strongly EUF-CMA-secure IBS for the message vk. The KH-CCA
security of Il jgkpye follows from the similar discussion as the case of IlkrnEe.

1.3.3 Overview of IBKHE

We first review a variant of a CPA-secure ElGamal encryption scheme. Then, we review an adap-
tively CPA-secure IBE scheme over dual system groups IIpsg [CGW15, CW14] and Emura et al.’s
KH-CCA-secure KHPKE scheme Hkppke [EHNT 18], then explain an overview of our proposed adap-
tively KH-CCA-secure IBKHE scheme Il |gkHg. See Sections 7.1 and 8.1.1 to check notations for cyclic
groups and bilinear groups, respectively.

CPA-secure PKE. Let (A,at) € Zékﬂ)m X Z’;“ denote an instance of the matrix distribution such
that ATal = 0. A variant of the ElGamal PKE scheme Hpkg is described as follows:

PKE.pk = ([A],[ATu]),  PKEsk=u,
PKE.ct = (PKE.ctO —[As], PKE.ct, =p- [sTATu]) :
where u +p Z’;H and s <p Z’;. We can correctly decrypt PKE.ct = (PKE.ctg, PKE.ct,) and

recover a plaintext p by using PKE.sk since we can compute [s" A Tu] from PKE.cty and PKE.sk.
To prove the CPA security, we change the challenge ciphertext to be

PKE.ct* = (PKE.ctg —[c], PKE.ct)=u*- [cTu]) ,

where ¢ g Z];H. A cannot detect the change under the matrix DDH assumption. Then, even
an unbounded adversary A cannot learn p* from PKE.ct*. Specifically, although the unbounded A
can learn U such that u = 4+ dat from [A] and [ATu], & is distributed uniformly at random over
Zy, from A’s view. Observe that

PKE.cth = p* - [c'ul = p* - [c' (G +aa")] = p*-[c'U] [c at]™ (1)



Since c is distributed uniformly at random over Z];H, it does not live in the span of A, ie.,
c'al # 0, with overwhelming probability. Thus, [cTa'] is a generator of G. Therefore, [cTal]? is
distributed uniformly at random over G from A’s view and masks u*.

CPA-secure IBE Scheme IIjge. We review an IBE scheme Ilpgg over the dual system
group [CGW15, CW14] equipped with an asymmetric bilinear map e : G; x Goa — Gr as fol-
lows:

_ _ ([ [A]L, W] A];, [W3 A]
IBE.mpk = ('BE‘”’ - < Bls, [W,Bl,, [WoB,
IBE.skiy = ([BI‘]Q, [11]2 . [(Wl +id - WQ)BI']Q) ,

IBE.ctiy = (IBE.ctg = [As]y, IBE.ct; = [(W] +id- W] )As];, IBE.cty = - [sTATu]T) ,

) : [ATu]T> . IBE.msk = u,

where B € ZékH)Xk is a matrix sampled from the matrix distribution and Wi, Wy <3
Zl(;kﬂ)x(kﬂ). IBE.mpk and IBE.ctjq are similar to PKE.pk and PKE.ct, respectively, except that

the matrices W1, Wy are used to encode id. As the case of Ilpkg, Ilpsg is correct since we can
recover [s' AT u|r from (IBE.ctg, IBE.ct;) and IBE.skjq by computing

e(IBE.ctg, [u]z - [(W1 +id - W2)Br])

e(IBE.cty, [Br]s) =[s"ATu]r.

To prove the adaptive CPA security of II|gg, we follow the proof of IIpkg and change the challenge
ciphertext to be

IBE.ctly. = <IBE.ct0 = [c]1,IBE.ct; = [(W] +id* - W] )c]1, IBE.ctp = u* - [cTu]T) NG

where ¢ <p Z’;H. A cannot detect the change under the matrix DDH assumption over G;.
However, unlike the case of Ilpkg, the unbounded A can still learn p* since it can receive IBE.skiq
for id # id*. In particular, the unbounded A can learn IBE.msk = u from IBE.mpk and IBE.skiq.

The dual system encryption methodology [Wat09] enables us to circumvent the issue by using
the following semi-functional secret key

IBE.skig = ([Br]g, [u+ aigat]s - [(Wi +id- Wg)Br]g> ,

where oig <—r Z,. Briefly speaking, the semi-functional IBE.skiq is the same as the normal one
except that IBE.msk = u is replaced with u + ajqa®. After we change the challenge ciphertext to
be (2), we change IBE.skig queried by A to be semi-functional one by one. When all IBE.sk;q which
A receives become semi-functional, it cannot learn IBE.msk = u but can learn only u + ajga’. As
the proof of IIpkg, A can learn U such that u = i + Ga' from [A]; and [ATu]z. Since u + ajga’t
which A learns from semi-functional IBE.skjq does not help to learn &, & is distributed uniformly
at random over Z, from A’s view. Thus, [c"at]® is distributed uniformly at random over G from
A’s view and masks p* as the proof of Tlpkg.

As we discussed, we can prove the CPA security of Iljgg if we can change all IBE.skjq
queried by A to be semi-functional. To complete the change, there is an inherent prop-
erty of the dual system technique. In particular, A itself cannot create IBE.ctiy which
follows the same distribution as (2). More specifically, A cannot create IBE.ctiy =
(IBE.cty = [c]y,IBE.ct; = [(W{ +id- W )c]i,IBE.ctr = - [cTu]r) if the discrete logarithm of
IBE.ctg, ie., c € ZI;H, does not live in the span of A, i.e., c'al # 0. If A can create such
IBE.ctiq, it can detect whether given IBE.skjq is normal or semi-functional by decrypting the above
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IBE.ctjq, where a decryption result of IBE.ct;y by a semi-functional IBE.sk;q is not p but p- [cTaL]_aid
by following the similar calculation as (1).

KH-CCA-secure KHPKE. We review Emura et al.’s KHPKE scheme Ikppke [EHNT18] by instanti-
ating the hash proof system under the matrix DDH assumption [EHK17] as follows:

KHPKE‘pk = ([A]7 ([ATuL]LG[O,S])7 H)?

KHPKE.dk = (w,),co5, ~ KHPKE.hk = (u,),cp,
KHPKE.ct — KHPKE.cty = [As], KHPKE.ct, = u-[s" ATy
7 \KHPKE.r =[sTAT(u; +h-up)], KHPKE.n =[s"ATuz] /)’

where ug, uj,us,ug <p Z’;H, H is a collision-resistant hash function, and h = H(KHPKE.ctg,
KHPKE.ct,, KHPKE.7’). Briefly speaking, KHPKE.pk is the same as PKE.pk with four secret keys
(uL)LE[O,g]. Moreover, Ilxypke is a combination of the CCAl-secure Cramer-Shoup-lite and the CCA2-
secure Cramer-Shoup cryptosystem [CS98]; IIxypke becomes the same as the former and the latter
by removing the elements depending on (u;,uz2) and ug, respectively. As the case of IIpkg, Iknpke
is correct since the structure of IIpkg enables us to recover [STATuL] from KHPKE.cty and u,. Given
a ciphertext KHPKE.ct = (KHPKE.ctg, KHPKE.ct,,, KHPKE.7, KHPKE.7'), a decryptor first checks
the validities of KHPKE.m and KHPKE.7’ by using ([STATuL])LE[Q] and [s" A Tus], respectively. If
they are valid, the decryptor recovers p from KHPKE.ct, and [sTATug]. To evaluate KHPKE.ct(t) =
(KHPKE.ct{") = [As(M], KHPKE.ct}"), KHPKE.7(1), KHPKE.7'"') and KHPKE.ct® = (KHPKE.ct{”

= [As®)],KHPKE.ct!?) KHPKE.7(®), KHPKE.7'(2)), an evaluator first checks the validities of
KHPKE.7(1) and KHPKE.7x(® by using ([(s(V)TATw,]),cig and ([(s®)TATw,]),cpo), respectively.
If they are valid, the evaluator computes KHPKE.cty = [As], KHPKE.ct,, KHPKE.x" by multiplying
KHPKE.ct{"), KHPKE.ct"), KHPKE.='" with KHPKE.ct(”), KHPKE.ct?), KHPKE.7' ¥, respectively,
and computes KHPKE.7 from h = H(KHPKE.ctg, KHPKE.ct,, KHPKE.7") and ([STATuL])Le[Q].

Let KHPKE.ct* denote a challenge ciphertext and KHPKE.ct!) = KHPKE.ct*, KHPKE.ct®,
..., KHPKE.ct(?) denote ciphertexts in the list £. To prove the KH-CCA security, we change
distributions of the ciphertexts in £ one by one so that they are independent of u*. Here, we
explain how to change the distribution of KHPKE.ct*. For this purpose, we follow the proof of
IIpke and change the challenge ciphertext to be

KHPKE.ct* = ([c], * - [c "ug], [¢ | (u; + h* - up)], [c " u3)), (3)

where ¢ g Z’;“. A cannot detect the change under the matrix DDH assumption. We
note that we do not use the above KHPKE.ct* but a normal encryption of p* to compute
KHPKE.ct®, ... KHPKE.ct?) in the list £. Then, the distribution of KHPKE.ct* does not de-
pend on p* since even an unbounded A cannot learn p* from KHPKE.ct*. As the proof of Ilpkg, A
can learn U, such that u, = U, + &,a* from [A] and [A Tu,] for ¢ € [0, 3], respectively; however, dq
is distributed uniformly at random over Z, from A’s view. Thus, [c"at]% is distributed uniformly
at random over G from A’s view and masks p* as the proof of IIpkeg.

To ensure that the unbounded A cannot learn &g, we have to care about A’s decryption queries
and evaluation queries which are not allowed in the case of Ilpkg. We call A’s decryption query
on KHPKE.ct = (KHPKE.cty = [c], KHPKE.ct,, KHPKE.7, KHPKE.7') a critical decryption query if
KHPKE.m and KHPKE.7" are valid, KHPKE.ct follows the same distribution as (3), and ¢ does not
live in the span of A, i.e., c'at # 0. If A can make a critical decryption query, the answer is
- [cTat]% by following the similar calculation as (1) and A can learn ég. In contrast, answers to
decryption queries do not reveal the information of ag if c lives in the span of A. The structures

11



of the CCAl-secure Cramer-Shoup-lite and the CCA2-secure Cramer-Shoup cryptosystem [CS98]
ensure that A cannot make critical decryption queries since it cannot create valid KHPKE.7 or
KHPKE.x'. If the unbounded A can create valid KHPKE.wr and KHPKE.n/, and make critical
decryption queries, it has to know (&1, da2) and as, respectively. We note that A can receive
KHPKE.hk = (uj,u2) in the KH-CCA security game and is allowed to make decryption queries
until it receives both KHPKE.hk and KHPKE.ct*. Thus, all we have to ensure is that A does not
know (&1, ag) or a3 until it receives both KHPKE.hk and KHPKE.ct*. At first, A cannot learn a3
until it receives KHPKE.ct* thanks to the structure of the CCAl-secure Cramer-Shoup-lite [CS98].
When A makes a decryption query or an evaluation query on KHPKE.ct = (KHPKE.cty,...) such
that the discrete logarithm of KHPKE.cty does not live in the span of A and the answer is 1, A
can eliminate a candidate of &3; however, it can eliminate only polynomially many numbers of
candidates throughout the security game. Thus, A cannot guess &3 with non-negligible probability.
Next, A cannot learn (&, &2) until it receives KHPKE.hk thanks to the structure of the CCA2-secure
Cramer-Shoup cryptosytem [CS98]. Observe that KHPKE.ct* reveals the value of &; + h*@z to the
unbounded A. Thus, A can learn (&,),¢[g if it learns the value of &1 + hég for some h # h*. When
A makes a decryption query on KHPKE.ct = (KHPKE.ctg, - - - ) such that the discrete logarithm of
KHPKE.cty does not live in the span of A and the answer is 1, A can eliminate a candidate of
(a1, &2); however, it can eliminate only polynomially many numbers of candidates throughout the
security game. Thus, 4 cannot guess (&1, &2) with non-negligible probability.

KH-CCA-secure IBKHE Scheme Iljgkye. Hereafter, we explain an overview of our proposed

IBKHE scheme IIjgkne. Let IBE.skig[u,] denote id’s secret key of IIjgg for a master secret key u,.
We combine IIjgg and Ilxypke, and construct IIjgkne as follows:

mpk = (IBE.pp, ([ATuL]T)LE[O,Q]a H) ) msk = (uL)L€[0,2]7
dkig = (IBE.skid[w]),c02),  hkia = (IBE.skig[w.]),e[2),

ctig = (lBE.Ctid = (Cto,Ctl,Ctu),ﬂ' = [sTAT(ul +h- u2)]T) R

where h = H(ctg, cty, ct,). Briefly speaking, mpk is the same as IBE.mpk with three master secret
keys (u,),e[0,2), while KHPKE.pk is the same as PKE.pk with four secret keys (u,),cjo2)- As the
case of Ilxnpke, IIiBKHE is correct since the structure of II|gg enables us to recover [STATuL]T from
(cto,ct1) and IBE.skig[u,].

To prove the adaptive KH-CCA security, we change distributions of the ciphertexts in £ one by
one so that they are independent of u* as the case of llkypke. Here, we explain how to change the
distribution of the challenge ciphertext ct’.. As the proofs of Iljgg and Ilknpke, we change the
challenge ciphertext to be

ctfye = ([c]y, (W] +id* - W3 )e]y, p* - [¢ o]z, [e (1 + 2 - up)]7), (4)

where ¢ +p Z’;“. The unbounded A can learn G, such that u, = U, +d&a' from [A]; and [ATu,]r
for v € [0, 2], respectively. If A cannot learn &g, we can prove the security. Although A can receive
dkig = (IBE.skig[u,]),c[0,2] and still learn &g from IBE.skig[uo], the dual system technique enables us
to circumvent the issue by changing all normal IBE.skig[ug] which A receives to be semi-functional
IBE.skiq[ug + ao,idaJ-] as the case of IIpgg. As the case of Ilkypke, the unbounded A may be able
to learn &g via decryption queries.

We call A’s decryption query on ctiy = (ctg = [c]q,cty,cty, m) a critical decryption query if
m is valid, ct follows the same distribution as (4), and ¢ does not live in the span of A, i.e.,
c'at # 0. As the case of IIknpke, all we have to ensure is that A cannot make critical decryption
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queries until it receives both hkjgx and ct’.. Observe that the unbounded A can make critical
decryption queries since it can receive (IBE.skig[u,]),c[2) unlike the case of llxppke. On the surface,
the dual system technique seems to be sufficient to circumvent the issue by changing all normal
(IBE.skig[w,]),c[2) which A receives to be semi-functional (IBE.skig[w,]),e[2); however, we cannot take
the approach directly since A can receive hkjg» = (IBE.skig*[u,]) .e[2] Which we cannot change to be
semi-functional. Moreover, even when id # id* holds, we cannot also change hkig = (IBE.skig[w,]),¢[2
which A receives in Phase 1 to be semi-functional since we cannot detect whether id # id* holds.

To circumvent the issue, we divide A’s attack strategies into two types. We call a strategy Type-
1 if A receives hk;q+ in Phase 1 and Type-2 otherwise. To prove the security against A of Type-2, we
change all normal (IBE.skig[u,]),c[g) which A receives to be semi-functional (IBE.skig [u;kozhidaﬂ)bep]
until A’s query to receive hk;q+. Since the definition of the Type-2 strategy ensures that A queries
to receive hkq« only in Phase 2, we can detect whether id # id* holds and complete the change.
Since A cannot learn (é&p,dz) until it receives both hkig« and ctfy., it cannot create valid = and
make critical decryption queries. To prove the security against A of Type-1, we cannot change
(IBE.skig[w,]),c[2) which A receives to be semi-functional since we cannot detect whether id # id*
holds upon A’s queries to receive hkiy. Although we ensured that A cannot create KHPKE.n' and
make critical decryption queries in the case of IIxypke, there does not seem to be the corresponding
element in ctjq on the surface. However, the inherent property of the dual system technique ensures
that A cannot make critical decryption queries. In particular, since A against IIpsg cannot create
IBE.ctjg to make critical decryption queries, A of Type-1 cannot also create ctiq = (IBE.ctjq, 7) and
make critical decryption queries. Thus, we can prove the adaptive KH-CCA security of IlgkHe
against A of both types as the case of IIkypkEe.

1.4 Organization

We aim to provide a generic construction of ABKFHE in Sections 3-6 and a pairing-based construc-
tion of ABKHE in Sections 7 and 8. In Section 2, we review cryptographic primitives which we will
use in this paper. In Section 3, we propose a generic construction of KFHE. In Section 4, we extend
the definition of IBKHE [EHN'18] and define ABK(F)HE. In Section 5, we define delegatable ABE
and provide a concrete construction under the LWE assumption. In Section 6, we propose a generic
construction of ABKFHE whose building blocks can be instantiated under the LWE assumption.
In Section 7, we revisit Emura et al.’s KHPKE scheme and give a simpler proof under the matrix
DDH assumption. In Section 8, we propose an efficient pairing-based ABKHE from pair encoding
schemes.

2 Cryptographic Primitives

2.1 Keyed Fully Homomorphic Encryption

A keyed fully homomorphic encryption (KFHE) scheme consists of four polynomial-time algorithms
IIkrye = (KFHE.KGen, KFHE.Enc, KFHE.Eval, KFHE.Dec) defined as follows.

KFHE.KGen(1*) — (KFHE.pk, KFHE.dk, KFHE.hk). On input the security parameter 1%, it outputs
a public key KFHE.pk a decryption key KFHE.dk, and a homomorphic evaluation key KFHE.hk,
where KFHE.pk implicitly contains a message space M.

KFHE.Enc(KFHE.pk, 1) — KFHE.ct. On input a KFHE.pk and a message ;1 € M, it outputs a
pre-evaluated ciphertext KFHE.ct.
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KFHE.Eval(KFHE.pk, KFHE.hk, (KFHE.ct®),c(},C) — KFHE.ctc/L. On input a  KFHE.pk,

KFHE.hk, a tuple of L ciphertexts (KFHE.ct(g))gem, and a circuit C : MY — M, it outputs
an evaluated ciphertext KFHE.ctc or a rejection symbol L.

KFHE.Dec(KFHE.pk, KFHE.dk, KFHE.ct/KFHE.ctc) — p/L. On input a KFHE.pk, KFHE.dk and
KFHE.ct/KFHE.ctc, it outputs a decryption result u € M or a rejection symbol L.

Remark 1. A keyed homomorphic public key encryption (KHPKE) scheme Ilkppke =
(KHPKE.KGen, KHPKE.Enc, KHPKE.Eval, KHPKE.Dec) is defined in the same way except that
KHPKE.Eval does not take a circuit C as input since a KHPKE scheme supports only either multi-
plicative or additive homomorphism.

Definition 1 (Correctness). llkrye = (KFHE.KGen, KFHE.Enc, KFHE.Eval, KFHE.Dec) satisfies
correctness if the following conditions hold with overwhelming probability:

e For every (KFHE.pk, KFHE.dk, KFHE.hk) < KFHE.KGen(1*) and p € M, it holds that
KFHE.Dec(KFHE.pk, KFHE.dk, KFHE.Enc(KFHE.pk, 1)) = .

e For every (KFHE.pk,KFHE.dk, KFHE.hk) <« KFHE.KGen(1%), circuit C : MY — M,
and (M, ..., uB))y € ML, it holds that KFHE.Dec(KFHE.pk, KFHE.dk, KFHE.ctc) =
C(uW, ..., u)), where KFHE.ctc + KFHE.Eval(KFHE.pk, KFHE.hk, (KFHE.ct¥) ¢ (1), C) and
KFHE.ct\Y) « KFHE.Enc(KFHE.pk, u9)) for every ¢ € [L).

Definition 2 (Compactness). Ilxkpye = (KFHE.KGen, KFHE.Enc, KFHE.Eval, KFHE.Dec) satis-
fies compactness if there exists a polynomial poly such that |KFHE.ctc|, where KFHE.ctc <«
KFHE.Eval(KFHE.pk, KFHE.hk, (KFHE.Ct(Z))ge[L}, C), is independent of the size and depth of C and
at most L - poly(\) for every security parameter .

Although we follow the syntax, correctness, and compactness of KFHE by following previous
works [EHNT18, SET22], we introduce a slightly stronger notion of the KH-CCA security. Specif-
ically, to introduce as strong requirement as possible, we consider the case that a pre-evaluated
ciphertext KFHE.ct and an evaluated ciphertext KFHE.ct¢ follow distinct distributions which are
easily detectable. Our proposed KFHE scheme in Section 3 and ABKFHE scheme in Section 6 satisfy
the condition.

Definition 3 (KH-CCA security). The KH-CCA security of lkpye = (KFHE.KGen, KFHE.Enc,
KFHE.Eval, KFHE.Dec) is defined by the security game between a challenger C and an adversary
A as follows.

Init. C runs (KFHE.pk, KFHE.dk, KFHE.hk) <~ KFHE.KGen(1%) and sends KFHE.pk to A.
Phase 1. A is allowed to make the following three types of queries to C.

Homomorphic Evaluation Key Reveal Query. Upon A’s query, C sends KFHE.hk to A.
Evaluation Query. Upon A’s query on ((KFHE.Ct(Z))gE[L], C), C sends the result of
KFHE.Eval(KFHE.pk, KFHE.hk, (KFHE.ct®) ¢ 1], C) to A.

Decryption Query. Upon A’s query on KFHE.ct/KFHE.ctc, C sends the result of
KFHE.Dec(KFHE.pk, KFHE.dk, KFHE.ct/KFHE.ctc) to A.

Challenge Query. A is allowed to make the query only once. Upon A’s query on (ufy, pj) such
that |ps| = |pil, C samples coin <—g {0,1}, runs KFHE.ct* « KFHE.Enc(KFHE.pk, uf.;.),
creates a list of ciphertexts L = {KFHE.ct*}, and sends KFHE.ct* to A.
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Phase 2. A is allowed to make the same three types of queries to C as in Phase 1 with the following
exceptions.

Evaluation Query. If {KFH E.ct(g)}gem NL # () holds and the evaluation result is not L but
KFHE.ctc, C updates a list L < LU {KFHE.ctc}.

Decryption Query. Upon A’s query on KFHE.ct, C outputs L if KFHE.ct = KFHE.ct* holds.

Upon A’s query on KFHE.ctc, C outputs 1 if KFHE.ctc € L holds. C also outputs 1 if
A has already made a homomorphic evaluation key reveal query.

Guess. A outputs coin € {0,1} as a guess of coin and terminates the game.

If the advantage of A for breaking the KH-CCA security of llkrne defined by Adv'ﬁt‘;&éﬁ“(/\) =

Pr [c/oﬁ = coin} — % is negligible in X, lkrue is said to satisfy the KH-CCA security.

Remark 2. If a pre-evaluated ciphertext KFHE.ct and an evaluated ciphertext KFHE.ctc follow the
same distribution, we change the restriction of decryption queries in Phase 2:

Decryption Query. Upon A’s query on KFHE.ct, C outputs | if KFHE.ct € L holds. Otherwise,
C proceeds the same way as in Phase 1.

Specifically, in Definition 3, the adversary is allowed to make a decryption query on a pre-evaluated
ciphertext KFHE.ct # KFHE.ct* in Phase 2 even after A’s homomorphic evaluation key reveal query.
When a pre-evaluated ciphertext KFHE.ct and an evaluated ciphertext KFHE.ctc follow the same

distribution, we have to prohibit such queries since the queried KFHE.ct may be an evaluation result
of KFHE.ct* by KFHE.hk.

Remark 3. We call A’s evaluation query on (KHPKE.ct(e))ZE[L] a dependent evaluation query if
the answer is stored in L. In other words, A’s dependent evaluation query on (KHPKE.ct(z))ge[L]
satisfies {KHPKE.Ct(E)}ge[L] NL # (. Otherwise, we call A’s evaluation query on (KHPKE.ct(Z))EE[L]

an independent evaluation query.
2.2 Multi-Key Fully Homomorphic Encryption

A multi-key fully homomorphic encryption (MFHE) scheme consists of five polynomial-time algo-
rithms e = (MFHE.Setup, MFHE.KGen, MFHE.Enc, MFHE.Dec, MFHE.Eval) defined as follows.

MFHE.Setup(1*) — MFHE.pp. On input the security parameter 1%, it outputs a public parameter
MFHE.pp. Although we do not explicitly describe, the following algorithms take MFHE.pp as
input.

MFHE.KGen — (MFHE.pk, MFHE.sk). It outputs a public/secret key pair (MFHE.pk, MFHE.sk).

MFHE.Enc(MFHE.pk, ©) — MFHE.ct. On input MFHE.pk and a message p, it outputs a pre-
evaluated ciphertext MFHE.ct.

MFHE.Dec(MFHE.sk, MFHE.ct) — 1/ L. On input a secret key MFHE.sk and a pre-evaluated ci-
phertext MFHE.ct, it outputs a decryption result p or a failure symbol L.

MFHE.Eval((MFHE.pk“), MFHE.ct(")),¢ (1}, C) — MFHE.ctc. On input L public key/ciphertext pairs
(MFHE.pk'¥, MFH E.ct(ﬁ))gem and a circuit C, it outputs an evaluated ciphertext MFHE.ctc.
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MFHE.Dec((MFHE.sk'?) ¢z, MFHE.ctc) — 41/ L. On input L secret keys (MFHE.sk®));c(z) and an
evaluated ciphertext MFHE.ctc, it outputs a decryption result p or a failure symbol L.

Definition 4 (Correctness). IIypye = (MFHE.Setup, MFHE.KGen, MFHE.Enc, MFHE.Dec,
MFHE.Eval) satisfies correctness if the following conditions hold with overwhelming probability:

o For every MFHE.pp <+~ MFHE.Setup(1%), (MFHE.pk, MFHE.sk) <~ MFHE.KGen, and p € M,
it holds that MFHE.Dec(MFHE.sk, MFHE.Enc(MFHE.pk, 1)) = p.

e For every MFHE.pp < MFHE.Setup(1?), (MFHE.pk”, MFHE.sk¥) <« MFHE.KGen
for £ € [L], a circuit C : ME = M, and (pM,.. . uP)y e ML, it
holds that MFHE.Dec((MFHE.sk) s, MFHE.Eval((MFHE.pk'¥), MFHE.ct®)) (1), C)) =
C(u®, ..., uD)), where KFHE.ct®) < MFHE.Enc(MFHE.pk¥), () for ¢ € [L].

Definition 5 (Compactness). IIypye = (MFHE.Setup, MFHE.KGen, MFHE.Enc, MFHE.Dec,
MFHE.Eval) satisfies compactness if there exists a polynomial poly such that [MFHE.ctc|, where
KFHE.ctc + KFHE.Eval(KFHE.pk, KFHE.hk,(KFHE.Ct(e))gG[L],C), 1s independent of the size and
depth of C and at most L - poly(\) for every security parameter A.

Definition 6 (IND-CPA Security). The IND-CPA security of lIpmene = (MFHE.Setup, MFHE.KGen,
MFHE.Enc, MFHE.Dec, MFHE.Eval) is defined by the security game between a challenger C and an

adversary A as follows.

Init. C runs MFHE.pp < MFHE.Setup(1") and (MFHE.pk, MFHE.sk) < MFHE.KGen, and sends
(MFHE.pp, MFHE.pk) to A.

Challenge Query. A is allowed to make the query only once. Upon A’s query on (ug, i) such
that |ug| = |pi], C samples coin <—g {0,1}, runs MFHE.ct* < MFHE.Enc(MFHE.pk, uZ.;.),
and sends the challenge cipehrtext MFHE.ct* to A.

Guess. A outputs coin € {0,1} as a guess of coin and terminates the game.

If the advantage of A for breaking the IND-CPA security of Iyrne defined by AdviyD-CPA () =

Pr [c/om = coin} — %‘ 1s negligible in X\, Ilmpne is said to satisfy the IND-CPA security.

2.3 Identity-based Encryption

An identity-based encryption (IBE) scheme with an identity space ZD consists of four polynomial-
time algorithms ITjgg = (IBE.Setup, IBE.KGen, IBE.Enc, IBE.Dec) defined as follows.

IBE.Setup(1*) — (IBE.mpk, IBE.msk). On input the security parameter 1%, it outputs a master pub-
lic/secret key pair (IBE.mpk, IBE.msk), where IBE.mpk implicitly contains a message space M.
Although we do not explicitly describe, the following algorithms take IBE.mpk as input.

IBE.Enc(id, 1) — IBE.ctig. On input an identity id € ZD and a message p € M, it outputs a
ciphertext IBE.ct;jq for id.

IBE.KGen(IBE.msk,id) — IBE.skig. On input a master secret key IBE.msk, it outputs a secret key
|BE.Skid for id.

IBE.Dec(IBE.skiq, IBE.ctig) — /L. On input IBE.skjq and IBE.ctj4, it outputs a decryption result
or a failure symbol L.
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Definition 7 (Correctness). IIjgg = (IBE.Setup, IBE.KGen, IBE.Enc, IBE.Dec) is said to satisfy the
correctness if for every u € M, (IBE.mpk, IBE.msk) « IBE.Setup(1?), and id € ID, it holds that
w <— IBE.Dec(IBE.skiq, IBE.ctiy) with overwhelming probability, where IBE.ctiy <— IBE.Enc(id, u) and
IBE.skig < IBE.KGen(IBE.msk, id).

Definition 8 (Adaptive IND-CPA Security). The adaptive IND-CPA security of Il;gg = (IBE.Setup,
IBE.KGen, IBE.Enc, IBE.Dec) is defined by the security game between a challenger C and an adversary
A as follows.

Init. C runs (IBE.mpk, IBE.msk) < IBE.Setup(1*) and sends IBE.mpk to A.
Phase 1. A is allowed to make the following secret key reveal queries to C.

Secret Key Reveal Query. Upon A’s query on id € ID, C runs IBEsky <«
IBE.KGen(IBE.msk, id) and sends IBE.skiq to A.

Challenge Query. A is allowed to make the query only once. Upon A’s query on (id*, uf, uy)
such that |ug| = |pi], C samples coin <= {0,1}, runs IBE.ct’. < IBE.Enc(id*, ), and
sends the challenge cipehrtext IBE.ctiy. to A.

Phase 2. A is allowed to make secret key reveal queries as in Phase 1 except that C outputs 1 if
id = id* holds.

Guess. A outputs coin € {0,1} as a guess of coin and terminates the game.

If the advantage of A for breaking the adaptive IND-CPA security of Ilige defined by
Adv'l'q\:BDE'SfA()\) = |Pr [&)?1 =0 | coin = O} —Pr [c/o-a =0 coin = 1} ‘ is negligible in X\, Tigg is said
to satisfy the adaptive IND-CPA security.

Definition 9 (Adaptive OW-CPA Security). The adaptive OW-CPA security of II;gg = (IBE.Setup,
IBE.KGen, IBE.Enc, IBE.Dec) is defined by the security game between a challenger C and an adversary
A as follows.

Init. C runs (IBE.mpk, IBE.msk) < IBE.Setup(1*) and sends IBE.mpk to A.
Phase 1. A is allowed to make the following secret key reveal queries to C.

Secret Key Reveal Query. Upon A’s query on id € ZID, C runs IBEsky <
IBE.KGen(IBE.msk, id) and sends IBE.skijq to A.

Challenge Query. A is allowed to make the query only once. Upon A’s query on id*, C samples
pw* g M, runs IBE.ctf. < IBE.Enc(id*, ), and sends the challenge cipehrtext IBE.ctf. to
A.

Phase 2. A is allowed to make secret key reveal queries as in Phase 1 except that C outputs 1 if
id = id* holds.

Guess. A outputs i € M as a guess of u* and terminates the game.

If the advantage of A for breaking the adaptive OW-CPA security of Ilige defined by
Adv%}g/E'SfA()\) = )Pr = p]— ﬁ‘ is negligible in X, Iligg is said to satisfy the adaptive OW-CPA

security.
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2.4 Attribute-based Encryption

An attribute-based encryption (ABE) scheme for a predicate f : X x Y — {0,1} consists of four
polynomial-time algorithms IIage = (ABE.Setup, ABE.KGen, ABE.Enc, ABE.Dec) defined as follows.

ABE.Setup(1*) — (ABE.mpk, ABE.msk). On input the security parameter 1, it outputs a master
public/secret key pair (ABE.mpk, ABE.msk), where ABE.mpk implicitly contains a message
space M. Although we do not explicitly describe, the following algorithms take ABE.mpk as
input.

ABE.Enc(z, u) — ABE.ct,. On input a ciphertext attribute x € X and a message p, it outputs a
ciphertext ABE.ct, for x.

ABE.KGen(ABE.msk,y) — ABE.sk,. On input a master secret key DABE.msk and a key attribute
y € Y, it outputs a secret key ABE.sk, for y.

ABE.Dec(ABE.sk,, ABE.ct,) — p/L. On input ABE.sk, and ABE.ct,, it outputs a decryption result
w or a failure symbol L.

Definition 10 (Correctness). lIpage = (ABE.Setup, ABE.KGen, ABE.Enc, ABE.Dec) is said to sat-
isfy the correctness if for every u € M, (ABE.mpk, ABE.msk) <— ABE.Setup(1%), and (z,y) € X x)
such that f(x,y) =1, it holds that j1 <~ ABE.Dec(ABE.sk,, ABE.ct,) with overwhelming probability,
where ABE.ct, < ABE.Enc(z, 1) and ABE.sk, <— ABE.KGen(ABE.msk, y).

Definition 11 (Selective IND-CPA Security). The selective IND-CPA security of llage =
(ABE.Setup, ABE.KGen, ABE.Enc, ABE.Dec) is defined by the security game between a challenger
C and an adversary A as follows.

Init. A declares a challenge ciphertext attribute =* to C. Then, C runs (ABE.mpk, ABE.msk) <«
ABE.Setup(1*) and sends ABE.mpk to A.

Phase 1. A is allowed to make the following secret key reveal queries to C.

Secret Key Reveal Query. Upon A’s query ony € Y, C outputs L if f(z*,y) = 1 holds.
Otherwise, C runs ABE.sk, <— ABE.KGen(ABE.msk, y) and sends ABE.sk, to A.

Challenge Query. A is allowed to make the query only once. Upon A’s query on (uf, uy) such
that |ug| = |ui], C samples coin <—gr {0,1}, runs ABE.ct}. < ABE.Enc(z*, ul;,), and sends
the challenge cipehrtext ABE.cty. to A.

Phase 2. A is allowed to make secret key reveal queries as in Phase 1.

Guess. A outputs coin € {0,1} as a guess of coin and terminates the game.

If the advantage of A for breaking the selective IND-CPA security of Tlage defined by
Adv'I'I\'ADB'E(;jA()\) = |Pr [coin =0 | coin = 0} —Pr [coin =0 | coin = 1} ‘ is negligible in X\, Iagg s said
to satisfy the selective IND-CPA security.
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2.5 One-time Signatures

A one-time signature (OTS) scheme consists of three polynomial-time algorithms Ilots =
(OTS.KGen, OTS.Sign, OTS.Ver) defined as follows.

OTS.KGen(1*) — (sigk,vk). On input the security parameter 1%, it outputs a signing/verification
key pair (sigk, vk).

OTS.Sign(sigk, ) — o. On input sigk and a message p, it outputs a signature o.

OTS.Ver(vk, p,0) — 0/1. On input vk, u, and o, it outputs 0 which indicates “reject” or 1 which
indicates “accept”.

Definition 12 (Correctness). Ilots = (OTS.KGen, OTS.Sign, OTS.Ver) is said to satisfy
the correctness if for every pu € M and (sigk,vk) < OTS.KGen(1)), it holds that
OTS.Ver(vk, u, OTS.Sign(sigk, p)) = 1 with overwhelming probability.

Definition 13 (Strong @Q-EUF-CMA Security). The strong Q-EUF-CMA security of llors =
(OTS.KGen, OTS.Sign, OTS.Ver) is defined by the security game between a challenger C and an
adversary A as follows.

Init. C runs (sigk!?,vk{®) «<— OTS.KGen(1*) for ¢ € [Q] and sends {vk'? }eelq) to A.

Sign Query. A is allowed to make the query only once for each q € [Q]. Upon A’s query on
(¢, 11\9), C runs o' « OTS.Sign(sigk'?, {?) and sends 0¥ to A.

Forge. A outputs (u*,0*) which is not a pair of a queried message and a returned signature of
sign queries and terminates the game.

If the advantage of A for breaking the EUF-CMA security of lloTs defined by Advgéig’zCMA()\) =

Pr qu[Q] OTS.Ver(vk<q>,u*,cr*) > 11| is negligible in \, lloTs is said to satisfy the EUF-CMA se-
curity.

Remark 4. If Q = 1, we simply call the strong EUF-CMA security. Moreover, A does not make a
sign query on (1, ) but on p.

2.6 Message Authentication Codes

A message authentication code (MAC) scheme consists of three polynomial-time algorithms IIpmac =
(MAC.KGen, MAC.TAG, MAC.Ver) defined as follows.

MAC.KGen(1*) — mk. On input the security parameter 1%, it outputs a MAC secret key mk.
MAC.TAG(mk, 1) — 7. On input mk and a message p, it outputs a tag 7.

MAC.Ver(mk, u, 7) — 0/1. On input mk, u, and 7, it outputs 0 which indicates “reject” or 1 which
indicates “accept”.

Definition 14 (Correctness). IIyac = (MAC.KGen, MAC.TAG, MAC.Ver) is said to sat-
isfy the correctness if for every p € M and mk <+ MACKGen(1"), it holds that
MAC.Ver(mk, i, MAC.TAG(mk, 1)) = 1 with overwhelming probability.
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Definition 15 (Strong EUF-CMA Security). The strong EUF-CMA security of Ilyac =
(MAC.KGen, MAC.TAG, MAC.Ver) is defined by the security game between a challenger C and an
adversary A as follows.

Init. C runs mk < MAC.KGen(1%).
Tag Query. Upon A’s query on p, C runs 7 < MAC.TAG(mk, 1) and sends T to A.
Verify Query. Upon A’s query on (u,7), C sends a result of MAC.Ver(mk, u, 7) to A.

Forge. A outputs (u*, 7%) which is not a pair of a queried message and a returned MAC tag of tag
queries and terminates the game.

If the advantage of A for breaking the strong EUF-CMA security of llmac defined by

AdvElh"A';fXA()\) = Pr [MAC.Ver(mk, u*, 7%) = 1] is negligible in X, lpac is said to satisfy the strong

EUF-CMA security.

2.7 Hash Function

Definition 16 (Collision Resistance). A family of hash functions H = {H; : {0,1}* — R}; satisfies
the collision resistance if any PPT adversary A which is given H <—r H cannot find x,x’' such that
x # 2 N H(x) = H(2") with non-negligible probability.

3 Generic Construction of KFHE

In this section, we propose a generic construction of keyed KFHE. We describe the generic con-
struction in Section 3.1 and prove its KH-CCA security in Section 3.2.

3.1 Construction

We follow the idea explained in Section 1.3.2 and propose a generic construction of KFHE from
MFHE, IBE, OTS, and MAC.

KFHE.KGen(1*) — (KFHE.pk, KFHE.dk, KFHE.hk). Run MFHE.pp < MFHE.Setup(1%), (IBE.mpk,
IBE.msk) ¢ IBE.Setup(1*), and mk < MAC.KGen(1%). Choose a one-time signature scheme
IIots. Output KFHE.pk = (MFHE.pp, IBE.mpk,IIoTs), KFHE.dk = (IBE.msk, mk), and
KFHE.hk = mk.

KFHE.Enc(KFHE.pk, 1) — KFHE.ct. Parse KFHE.pk = (MFHE.pp, IBE.mpk, IIoTs). Run

— (MFHE.pk, MFHE.sk) <~ MFHE.KGen(1%),

— MFHE.ct <~ MFHE.Enc(MFHE.pk, ),

(vk, sigk) - OTS.KGen(1%),

— IBE.ctyk < IBE.Enc(vk, MFHE.sk),

o < Sign (sigk, (vk, MFHE.pk, IBE.ct«, MFHE.ct)).

Output
KFHE.ct = (vk, MFHE.pk, IBE.ct,x, MFHE.ct, o).

We say that a pre-evaluated ciphertext KFHE.ct is wvalid if o is a valid signature for (vk,
MFHE.pk, IBE.ct,k, MFHE.ct).
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KFHE.EvaI(KFHE.pk,KFHE.hk,(KFHE.ct(e))ge[L},C)—>KFHE.ctC/J_. Output L if there are in-
valid ciphertexts KFHE.ct®) for some ¢ ¢ [L]. Otherwise, parse KFHE.pk =
(MFHE.pp, IBE.mpk, IIoTs), KFHE.hk = mk, and KFHE.ct®) = (vk®, MFHE.pk(Z),IBE.ct\(Ii)(@,
MFHE.ct®, 5®) for ¢ € [L]. Run

— MFHE.ctc + MFHE.Eval((MFHE.pk“), MFHE.ct")), 1, ),

— 7+ MAC.TAG(mk, ((vk®, MFHE.pk(®, IBE.ct\(/i)u))ge[L], MFHE.ctc)).

Output

KFHE.ctc — ((vk“), MFHE.pk(®), IBE.ct ), ) e[z, MFHE.ctc, T) .

We say that an evaluated ciphertext KFHE.ctc is valid if 7 is a valid MAC tag for ((vk(f),
l
MFHE.pk®, IBE.ct'"), ) re(z), MFHE.ctc).
KFHE.Dec(KFHE.pk, KFHE.dk, KFHE.ct/KFHE.ctc) — p/ L. Parse KFHE.pk =
(MFHE.pp, IBE.mpk, IIgts) and KFHE.dk = (IBE.msk, mk). Proceed as follows.
Case of Pre-evaluated Ciphertexts. Output L if KFHE.ct is invalid.  Otherwise, parse
KFHE.ct = (vk, MFHE.pk, IBE.ct,x, MFHE.ct, o). Run

* IBE.skyk < IBE.KGen(IBE.msk, vk),
* MFHE.sk < IBE.Dec(IBE.sky, IBE.cty),

and output p <— MFHE.Dec(MFHE.sk, MFHE.ct).
Case of Fvaluated Ciphertexts. Output 1L if KFHE.ctc is invalid. Otherwise, parse
KFHE.ctc = ((vk(@, MFHE.pk®, IBE.ct\(Ii)(Z))ZE[L], MFHE.ctC,T>. For ¢ € [L], run
* IBE.sk o) < IBE.KGen(IBE.msk, vk(¥)),

l
« MFHE.sk(®) < IBE.Dec(IBE sk, ), IBE.ct')),)),

and output 1 < MFHE.Dec((MFHE.sk()),c (1), MFHE.ctc).

Theorem 1. If the underlying MFHE scheme IIypne, IBE scheme Iligg, one-time signature scheme
IloTs, and MAC scheme Ilyac satisfies the correctness, the proposed KFHE scheme Ilkrug satisfies
the correctness.

Proof of Theorem 1. For every € M,
e (KFHE.pk, KFHE.dk, KFHE.hk) <— KFHE.KGen(1*);

— MFHE.pp + MFHE.Setup(1%),
— (IBE.mpk, IBE.msk) « IBE.Setup(1*),
— KFHE.pk = (MFHE.pp, IBE.mpk, IIoTs), KFHE.dk = (IBE.msk, mk), and KFHE.hk = mk,

o KFHE.ct + KFHE.Enc(KFHE.pk, p);

— (MFHE.pk, MFHE.sk) < MFHE.KGen(1"),
— MFHE.ct + MFHE.Enc(MFHE.pk, 1),
— (vk, sigk) < OTS.KGen(1?%),
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— IBE.ctk < IBE.Enc(vk, MFHE.sk),

— o < Sign (sigk, (vk, MFHE.pk, IBE.ct,x, MFHE.ct)),
the correctness of IlgTs ensures that OTS.Ver(vk, (vk, MFHE.pk, IBE.ct,k, MFHE.ct),0) = 1 holds,
the correctness of IIjgg ensures that IBE.Dec(IBE.KGen(IBE.msk, vk), IBE.ct,x) = MFHE.sk holds,
and the correctness of IIpmrye ensures that MFHE.Dec(MFHE.sk, MFHE.ct) = p holds. Thus,

KFHE.Dec(KFHE.pk, KFHE.dk, KFHE.ct) = i holds.
For every circuit C: MY — M, (™, ..., u)) e ML,

e (KFHE.pk, KFHE.dk, KFHE.hk) «— KFHE.KGen(1*);

— MFHE.pp + MFHE.Setup(1%),
— (IBE.mpk, IBE.msk) « IBE.Setup(1*),
— KFHE.pk = (MFHE.pp, IBE.mpk, IIoTs), KFHE.dk = (IBE.msk, mk), and KFHE.hk = mk,

e KFHE.ct) « KFHE.Enc(KFHE.pk, ) for ¢ € [L};

— (MFHE.pk®  MFHE.sk(®)) < MFHE.KGen(1*),
MFHE.ct(® < MFHE.Enc(MFHE.pk®), u,(0)),
— (vk® sigk(®)) «~ OTS.KGen(1*),

- IBE.ct\(/i)(z) « IBE.Enc(vk®, MFHE.sk®),

— o « Sign (sigk(@, (vk®, MFHE.pk®), IBE.ct'f, MFHE.ct@)),

KFHE.ct® = (vk©, MFHE.pk(®, IBE.ct\(/i)(e), MFHE.ct®, 5(®),

o KFHE.ctc + KFHE.Eval(KFHE.pk, KFHE.hk, (KFHE.ct®),c 1}, C);
— MFHE.ctc + MFHE.Eval((MFHE.pk“), MFHE.ct")), 1, C),
— 7+ MAC.TAG(mk, ((vk(©, MFHE pk(®), IBE.ct')},)) (1), MFHE.ctc)),

— KFHE.ctc = ((vk“), MFHE.pkw,|BE.ct§fM))g€[L]MFHE.ctC,T),

the correctness of IIyac ensures that MAC.Ver(mk, ((vk(z), I\/IFHE.pk(Z), |BE-Ct\(,i)<4))£e[L}v MFHE.ctc),
7) = 1 holds, the correctness of ITjgg ensures that IBE.Dec(IBE.KGen(IBE.msk, vk(9)), |BE~Ct\(,i)(4)) =
MFHE.sk® holds, and the correctness of Ilypne ensures that MFHE.Dec((MFHE.sk(Z))@e[L},

MFHE.ctc) = C((u®)ser)). Thus, KFHE.Dec(KFHE.pk, KFHE.dk, KFHE.ctc) = C((1®)ec(r))
holds. O

Theorem 2. The proposed KFHE scheme llkrue satisfies compactness if the underlying MFHE
scheme satisfies compactness.

Proof of Theorem 2. For every A,
e (KFHE.pk, KFHE.dk, KFHE.hk) <— KFHE.KGen(1*);

— MFHE.pp + MFHE.Setup(1%),
— (IBE.mpk, IBE.msk) < IBE.Setup(1*),
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— KFHE.pk = (MFHE.pp, IBE.mpk, IToTs), KFHE.dk = (IBE.msk, mk), and KFHE.hk = mk,
e KFHE.ct) « KFHE.Enc(KFHE.pk, ) for ¢ € [L];

— (MFHE.pk®  MFHE.sk¥)) < MFHE.KGen(1*),
MFHE.ct® « MFHE.Enc(MFHE.pk®, 1,(9),
— (vk® sigk®)) «~ OTS.KGen(1*),

IBE.ct\(/i)M) « IBE.Enc(vk®, MFHE.sk®),

o0 « Sign (sigk), (v, MFHE pk(®), IBE.ctly), MFHE.ct() ),

— KFHE.ct® = (vk® MFHE.pk®, IBE.ct\(/Z)

0 MFHE.ct®), 5(®)),

o KFHE.ctc ¢ KFHE.Eval(KFHE.pk, KFHE.hk, (KFHE.ct®) (1), C);

— MFHE.ctc < MFHE.Eval((MFHE.pk”), MFHE.ct(¥)) ¢ (), C),

— 7+ MAC.TAG(mk, ((vk(©, MFHE pk(®), IBE.ct')},)) (1) MFHE.ctc)),
J4

— KFHE.ctc = ((vk@, MFHE.pk(Z),IBE.ct\(/k)w))EE[L]MFHE.ctC,T),

the compactness of ITygye ensures that |[MFHE.ctc| is independent of the size and depth of C and
at most L - poly()), and |(vk©), MFHE.pk(®), IBE.ct(i)“))ge[LH and |7| are independent of the size and
depth of C and at most L - poly(A). Thus, |KFH E.cvtc\ is independent of the size and depth of C and
at most L - poly(\). O

3.2 Security

Theorem 3 (KH-CCA Security of Ilkgne). If the underlying MFHE scheme Tlypue satisfies the
IND-CPA security, IBE scheme Iligg satisfies the selective IND-CPA security, one-time signature
scheme llgTts and MAC scheme Ilyac satisfy the strong EUF-CMA security, the proposed KFHE
scheme llkppe satisfies the KH-CCA security.

Although we already explained the intuition of a proof in Section 1.3.2, we provide a more
detailed overview. We prove Theorem 3 by using a sequence of games Gameg,--- ,Games. Let
KFHE.ct* = (vk*, MFHE.pk*, IBE.ct}, ., MFHE.ct*, 0*) denote a challenge ciphertext. We can prove
Theorem 3 when MFHE.ct* which is an encryption of p;, becomes indistinguishable from an
encryption of a random string based on the IND-CPA security of IIppye in Games. To prove the
task, we change IBE.ct}, . which is an encryption of MFHE.sk* to be an encryption of a random
string in Games, where the selective IND-CPA security of IIjgg ensures Games ~. Games. For this
purpose, we have to ensure that the challenger C does not use an IBE secret key IBE.sk,x to answer
all the adversary A’s decryption queries. In other words, what all we have to ensure is that A4 does
not make decryption queries on pre-evaluated ciphertexts KFHE.ct = (vk,---) such that vk = vk*
and evaluated ciphertexts KFHE.ctc = ((vk(é),---)gem, --+) such that vk* € (Vk(z))ge[L]. We can
prove the claim for pre-evaluated ciphertexts (resp. evaluated ciphertexts) in Game; (resp. Games)
by following the CHK transformation [CHKO04] (resp. the encrypt-then-MAC paradigm [BNOS]).
In particular, the strong EUF-CMA security of IlgTts (resp. IIyac) ensures Gamey =~ Game; (resp.
Game; ~. Gamey).

Proof of Theorem 3. We prove the theorem by using a sequence of games Gamey, - - - , Gamey, where
E; denotes an event that A wins in Game;.
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Gameg. This is the KH-CCA security game between the challenger C and the adversary A. Hereafter,
let

KFHE.ct* = (vk*, MFHE.pk*, IBE.ct},., MFHE.ct*, ).

denote a challenge ciphertext, where IBE.ct?, . and MFHE.ct* are encryptions of MFHE.sk*
and g%, respectively. Due to the definition of the KH-CCA security game, C stores the
challenge ciphertext KFHE.ct* and its evaluation results in the list L.

Game;. This is the same as Gameg except that upon A’s evaluation queries and decryption
queries on pre-evaluated ciphertexts. Upon A’s evaluation queries on ((KFHE.ct(f) =
vk, 0®))perr), ) such that vk* € (vkD),cir) A KFHE.ct* ¢ (KFHE.ct®),c(z), C al-
ways outputs L. Upon A’s decryption queries on KFHE.ct = (vk,--- ,0) such that vk = vk*,
C always outputs L.

The output is not L only if o(® and o are valid signatures accepted by vk*. The strong
EUF-CMA security of IIoTs ensures that A cannot forge a signature o) or . Thus, Game; =~
Game;y holds.

Lemma 1 (Gamey ~. Game,). If lloTs satisfies the strong EUF-CMA security, Gamey and Game;
are computationally indistinguishable for any PPT A.

Proof of Lemma 1. Let Fy denote an event that 4 makes an evaluation query on ((KFHE.ct(¥) =

(vk®) MFHE.pk(®, |BE.ct§i{@, MFHE.ct®, 6(9)),c (1}, C) such that

vk* € (vk®)ge(r) A KFHE.ct* ¢ (KFHE.ct!?)c A

> OTS.Ver(vk®, (vk?, MFHE.pk(®), |BE.ct5i>w, MFHE.ct?)),0®)) = L
Le(L]

or a decryption query on a pre-evaluated ciphertext KFHE.ct = (vk, MFHE.pk, IBE.ct,x, MFHE.ct, o)
such that

vk = vk* A KFHE.ct # KFHE.ct* A OTS.Ver(vk, (vk, MFHE.pk, IBE.ct,x, MFHE.ct), o) = 1.

IE> e OTS.Ver(vk®, (vk®) MFHE.pk(®, IBE.ct\(/i)(@, MFHE.ct(®), o)) < L holds upon A’s evalu-

ation query, there is an invalid pre-evaluated ciphertext in (KFH E.ct(z)) ¢e(r) and the design of IIkrnEe
ensures that an answer to the query is 1. If KFHE.ct = KFHE.ct* holds upon A’s decryption query,
the definition of the KH-CCA security ensures that an answer to the query is L. If OTS.Ver(vk*, (vk*,
MFHE.pk, IBE.ctyk, MFHE.ct),0) = 0 holds upon A’s decryption query, the pre-evaluated cipher-
text KFHE.ct is invalid and the design of Ilxpye ensures that an answer to the query is 1. Thus,
Gamey = Game; holds if F} does not occur. Therefore, it holds that Pr[Ey| < Pr[E4] + Pr[F].

We construct a reduction algorithm B; which interacts with A against Ilxpye and breaks the
strong EUF-CMA security of Ilgts. After By receives vk* from C in the strong EUF-CMA security
game of IloTs, it runs MFHE.pp ¢ MFHE.Setup(1?), (IBE.mpk,|BE.msk) < IBE.Setup(1*), and
mk < MAC.KGen(1*), and sends KFHE.pk = (MFHE.pp, IBE.mpk,IIoTs) to A. Since B; knows
KFHE.dk = (IBE.msk, mk) and KFHE.hk = mk, it can properly answer all A’s homomorphic eval-
uation key reveal query, evaluation queries, and decryption queries on evaluated ciphertexts until
Fy occurs.

Upon A’s challenge query on (uj,p)), Bi samples coin  <+pr {0,1}, runs
(MFHE.pk*, MFHE.sk*) « MFHE.KGen(1"), MFHE.ct* < MFHE.Enc(MFHE.pk*, 1%, ), and
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IBE.ct},» < IBE.Enc(vk*, MFHE.sk*), makes a sign query on (vk*, MFHE.pk*, IBE.ct}, ., MFHE.ct*)
to C and receives ¢o*, and sends KFHE.ct* = (vk*, MFHE.pk*, IBE.ct}, ., MFHE.ct*, 0*) to A.
Upon A’s evaluation query on ((KFHE.ct(g))Ze[L},C), By can check whether F} occurs. If

el OTS.Ver(vk“),(vk“),MFHE.pk(@,|BE.ct5i)<Z),MFHE.ct<4>),a<f>) < L holds, By sends L to

A due to the design of Ikpne. If (vk* ¢ (vk®)yc) v KFHE.ctr € (KFHE.ct®),cp)) A

ez OTS.Ver(vk®, (vk(© MFHE.pk(®, IBE.ct\(/i)@), MFHE.ct®),0(®) = L holds, B; sends the re-
sult of KFHE.Eval(KFHE.pk, KFHE.hk, (KFHE.ct¥),c(z;,C) to A. Upon A’s decryption query
on a pre-evaluated ciphertext KFHE.ct, B; can check whether F; occurs. If KFHE.ct =
KFHE.ct* v OTS.Ver(vk, (vk, MFHE.pk, IBE.ct,x, MFHE.ct),c) = 0 holds, B; sends L to A due
to the definition of the KH-CCA security and the design of IIxpue. If vk # vk* A KFHE.ct #
KFHE.ct* A OTS.Ver(vk*, (vk, MFHE.pk, IBE.ct,x, MFHE.ct),o) = 1 holds, B; sends the result of
KFHE.Dec(KFHE.pk, KFHE.dk, KFHE.ct) to A. Otherwise, if F; occurs, B; knows KFHE.ct =
(vk, MFHE.pk, IBE.ct,x, MFHE.ct, o) such that vk = vk* A KFHE.ct £ KFHE.ct* A OTS.Ver(vk*, (vk,
MFHE.pk, IBE.ct,x, MFHE.ct),o) = 1. Then, B; sends ((vk, MFHE.pk, IBE.ct,x, MFHE.ct), o) to C as
a pair of a message and a forged signature. Since the condition KFHE.ct # KFHE.ct* ensures that
((vk, MFHE.pk, IBE.ct,x, MFHE.ct), o) is not a pair of a queried message and a returned signature,
while the condition OTS.Ver(vk*, (vk, MFHE.pk, IBE.ct,,, MFHE.ct),o) = 1 ensures that o is a valid
signature of a message (vk, MFHE.pk, IBE.ct,x, MFHE.ct), By breaks the strong EUF-CMA security
of IlpTs with probability 1 if F} occurs. Therefore, it holds that

Pr[Ey] < Pr[E1] + Advﬁgfg%\fA(A).

O]

Games. This is the same as Game; except that upon A’s decryption queries on evaluated ciphertexts
KFHE.ctc = ((vk®, -+ )ge(z), -+, 7) such that vk* € {vk“}sc(z), C always outputs L.
The output is not L only if 7 is a valid forged tag. The strong EUF-CMA security of IIpac
ensures that A cannot forge a tag 7. Thus, Gamey ~. Games holds.

Lemma 2 (Game; ~. Gamesg). If liyac satisfies the strong EUF-CMA security, Game; and Games
are computationally indistinguishable for any PPT A.

Proof of Lemma 2. Let Fy denote an event that A makes a decryption query on an evaluated
ciphertext KFHE.ctc = ((vk®, MFHE.pk®, IBE.ct'"), ) re (1), MFHE.ctc, 7) such that

vk* € {vk9},c(1) A KFHE.ctc ¢ LA
MAC Ver(mk, ((vk®), MFHE.pk®, IBE.ct'?) ) )se (1), MFHE.ctc), 7) = 1.

If KFHE.ctc € £ holds, the definition of the KH-CCA security ensures that an answer to the query
is L. If MAC.Ver(mk, (vk®), MFHE.pk(®, IBE.ct\}}, ) se11), MFHE.ctc), 7) = 0 holds, the evaluated
ciphertext is invalid and the design of ke e\Illsures that the answer to the query is L. Thus,
Game; = Gamey holds if F» does not occur. Therefore, it holds that Pr[E;] < Pr[Es] + Pr[Fy).

We construct a reduction algorithm By which interacts with A against IIxpye and breaks the
strong EUF-CMA security of IIpmac with C. Since A can make decryption queries only until it
makes a homomorphic evaluation key reveal query, A does not make a homomorphic evaluation
key reveal query during the reduction. After B2 begins the strong EUF-CMA security game of IIpac,
it runs MFHE.pp <~ MFHE.Setup(1*) and (IBE.mpk, IBE.msk) < IBE.Setup(1%), chooses a one-time
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signature scheme Ilgts, and sends KFHE.pk = (MFHE.pp, IBE.mpk, IloTs) to A. B2 answers the
challenge query in the same way as in Game;.

Upon A’s evaluation query on ((KFHEct® = (vk® MFHE.pk®, IBE.ct')), ,
MFHE.ct®),o®)),c1,C), B> sends L to A if vk* € (vk®)c) A KFHEct" ¢
(KFHE.ct(Z))ge[L] holds as we modified in Game;. By also sends L1 to A if
S sy OTS Ver(vk(®, (vk(@ MFHE pk(@, IBE.ct'), | MFHE.ct®)),0®) < L holds since
there is an invalid pre-evaluated ciphertext in (KFHE.ct(f))ZG[L}. Otherwise, B runs
MFHE.ctc < MFHE.Eval((MFHE.pk®), MFHE.ct(¥),c(;,C), makes a tag query on ((vk{,
MFHE.pk@,|BE.ct§fm)@€m,MFHE.ctC) and receives 7, and sends KFHE.ctc = ((vk(©,

MFHE.pk(®, |BE.ct§fm)g€m, MFHE.ctc,7) to A.

Upon A’s decryption query on a pre-evaluated ciphertext KFHE.ct = (vk,---), By sends
L to A if vk = vk* holds as we modified in Game;. Otherwise, By sends the result of
KFHE.Dec(KFHE.pk, KFHE.dk = (IBE.msk, L), KFHE.ct) to A, where the answer is properly dis-

tributed since mk is not required. Upon A’s decryption query on an evaluated ciphertext
KFHE.ctc = ((vk'©, MFHE.pk®, IBE-Ct\(,i)(Z))Ke[L}a MFHE.ctc, 7), B2 can check whether Fy occurs by

making a verification query on (((vk(e), MFHE.pk(®, IBE.ct\(/i)(@)ge[L], MFHE.ctc), 7) to C and receiv-
ing the result of MAC.Ver(mk, ((vk(®, MFHE.pk(Z),IBE.ct\(/i)(z))ge[L], MFHE.ctc), 7). If KFHE.ctc €
£V MAC.Ver(mk, ((vk©, MFHE.pk®, IBE.ct\(Ii)M))ge[L], MFHE.ctc), 7) = 0 holds, B, sends L to A due
to the definition of the KH-CCA security and the design of Ikgye. If vk* ¢ {Vk(e)}ge[L] AKFHE.ctc ¢
£ A MAC.Ver(mk, ((vk®, MFHE.pk(®, IBE.ct\(/i)(e))ge[L], MFHE.ctc), 7) = 1 holds, B, sends the result
of MFHE.Dec((IBE.Dec(IBE.KGen(IBE.msk,vk“)),IBE.ct\(Ii)(,Z)))ge[L},MFHE.ctc) to A. Otherwise, if
F occurs, By knows KFHE.ctc = ((vk©, MFHE.pk(®, |BE.ct5i)m)Z€[L], MFHE.ctc, 7) such that vk* €
{vk@} i) A KFHE.ctc ¢ £ A MAC.Ver(mk, ((vk®), MFHE.pk(®, IBE.ct')},) )se (1, MFHE.ctc), 7) =
1.  Then, By sends (((vk®, MFHE.pk(®), |BE-Ct\(,i)(e))£e[L}> MFHE.ctc),7) to C as a pair of a

message and a forged tag.  Since the condition KFHE.ctc ¢ L ensures that (((vk(e),
MFHE.pk®, IBE'Ct\(,i)(Z) )eeir), MFHE.ctc), 7) is not a pair of a queried message and a returned tag,

while the condition MAC.Ver(mk,((vk(@,MFHE.pk“%|BE.ct5i)w)ge[L],MFHE.ctC),T) — 1 ensures

that 7 is a valid tag of a message ((vk(é), MFHE.pk(® IBE.ct\(/i)(é))ge[L], MFHE.ctc), B2 breaks the
strong EUF-CMA security of IIyac with probability 1 if F» occurs. Therefore, it holds that

Pr[E1] < Pr[Eo] + Advi "SR ().

O

Gameg. This is the same as Gamey except that IBE.ct}, . is an encryption of a random string sampled
independently from MFHE.sk*.

The selective IND-CPA security of the IBE scheme 1ljgg ensures that Gamey ~, Games holds.
In short, the reduction algorithm runs (vk*,sigk*) < OTS.KGen(1) at the beginning of the
security game, and declares vk* as the challenge identity of the IBE security game. In the
challenge phase, the reduction algorithm runs (MFHE.pk*, MFHE.sk*) < MFHE.KGen(1%),
samples a random string u* whose length is the same as MFHE.sk* but the distribution is
independent of MFHE.sk*. Then, the reduction algorithm declares (MFHE.sk*, u*) as the
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challenge messages in the IBE security game and receives IBE.ct}, . from the IBE challenger.
The reduction algorithm can create the other elements of the challenge ciphertext by itself.
Due to the changes in Game; and Games, the reduction algorithm can answer all A’s de-
cryption queries by receiving IBE secret keys of vk such that vk # vk*. Thus, it holds that
Games ~, Gamey.

Lemma 3 (Gamey ~. Games). If II|gg satisfies the selective IND-CPA security, Gamey and Games
are computationally indistinguishable for any PPT A.

Proof of Lemma 3. We construct a reduction algorithm B3 which interacts with A against IIxrne
and breaks the selective IND-CPA security of Iljge. At the beginning of the game, B3 runs
(vk*, sigk*) +— OTS.KGen(1%) and declares vk* to C as the challenge identity of the selective IND-CPA
security game of Iljgg. After Bs receives IBE.mpk from C, it runs MFHE.pp + MFHE.Setup(1*)
and mk < MAC.KGen(1*), chooses a one-time signature scheme IIoTs, and sends KFHE.pk =
(MFHE.pp, IBE.mpk, IIoTs) to A. Since B3 knows KFHE.hk = mk, it can properly answer all A’s
homomorphic evaluation key reveal query and evaluation queries.

Upon A’s decryption query on a pre-evaluated ciphertext KFHE.ct = (vk, MFHE.pk,
IBE.ctyk, MFHE.ct, o), Bs sends L to A if vk = vk* holds due to the modification in Game;. Bs
also sends L to A if OTS.Ver(vk, (vk, MFHE.pk, IBE.ct,x, MFHE.ct), o) = 0 holds due to the design
of Ilkrne. Otherwise, Bs makes an IBE secret key reveal query on vk to C and receives IBE.skyy,
then sends the result of MFHE.Dec(IBE.Dec(IBE.skyy, IBE.ct,k), MFHE.ct) to \A. Upon A’s decryp-

tion query on an evaluated ciphertext KFHE.ctc = ((vk(z), MFHE.pk(® IBE.ct\(/i)“))@e[L], MFHE.ctc,
T), Bs sends L to A if vk* € {vk(e)}gem holds due to the modification in Gamey. B3 also sends L

to A if Y e(y OTS. Ver(vk(®, (vk(®, MFHE.pk(, IBE.ct\(/i)(Z), MFHE.ct®), c(®) < L holds due to the

design of llxpye. Otherwise, B3y makes secret key reveal queries on vk® to C and receives IBE.sk,,

fzr ¢ € [L], then sends the result of MFHE.Dec((IBE.Dec(IBE.sk , ), IBE.ct\(/i)(z)))ge[L], MFHE.ctc) to

Upon A’s challenge query on (uf,p)), Bs samples coin  <pr  {0,1}, runs
(MFHE.pk*, MFHE.sk*) <~ MFHE.KGen(1*) and MFHE.ct* +~ MFHE.Enc(MFHE.pk*, i, ), makes
an IBE challenge query on (MFHE.sk*, i/*) to C, where p* is a random string with the same length as
MFHE.sk*, receives IBE.ct}, ., further runs o* < Sign (sigk*7 (vk*, MFHE.pk*, IBE.ct}, ., MFHE.ct*)),
and sends KFHE.ct* = (vk*, MFHE.pk*, IBE.ct},., MFHE.ct*, 0*) to A. After B3 receives coin from

A, B3 sends 0 to C if coin = coin and 1 to C otherwise.

Although B3 makes secret key reveal queries to C for answering A’s decryption queries, the
modifications in Game; and Games ensure that Bs does not make a secret key reveal query on vk*.
If IBE.ct},. is an encryption of MFHE.sk* (resp. p*), KFHE.ct* follow the distribution in Game;
(resp. Games). Therefore, it holds that

| Pr[Ey] — Pr[Es]| < AdviND-GPA(N).
]

Lemma 4 (KH-CCA Security in Games). If Ilmpue satisfies the IND-CPA security, Ilkpue satisfies
the KH-CCA security in Games.

Proof of Lemma 4. We construct a reduction algorithm B4 which interacts with A against TIxrne

and breaks the IND-CPA security of IIygne. After By receives (MFHE.pp, MFHE.pk*) from C, it
runs (IBE.mpk, IBE.msk) < IBE.Setup(1*) and mk <— MAC.KGen(1%), chooses a one-time signature
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scheme IlpTs, and sends KFHE.pk = (MFHE.pp, IBE.mpk, IloTs) to A. Since By knows KFHE.dk =
(IBE.msk, mk) and KFHE.hk = mk, it can properly answer all A’s homomorphic evaluation key
reveal query, evaluation queries, and decryption queries.

Upon A’s challenge query on (ug, 17), B3 samples coin <— {0,1} and p* <—r M, makes a chal-
lenge query on the same (u, u}) to C and receives MFHE.ct*, runs (vk*,sigk*) <~ OTS.KGen(1%),
IBE.ct?. < IBE.Enc(vk*,*), and o* < Sign(sigk®, (vk*, MFHE.pk*, IBE.ct},., MFHE.ct*)), then
sends KFHE.ct* = (vk*, MFHE.pk*, IBE.ct}, ., MFHE.ct*, 0*) to A. After By receives coin from A, By

sends the same coin to C.
If MFHE.ct* is an encryption of pf (resp. u7), KFHE.ct* is also an encryption of pf (resp. uf).
Therefore, it holds that

1
Pr[Es] — 2‘ < AdviND-CPR ().

IImFHE,Ba

O
We complete the proof of Theorem 3 since it holds that
1
AdviCCA () = |Pr[Ey) — 2‘
1
< 3 Prliod] - PafB]) + [Pl -5
1€[3]
< Advior BN 4 Advi  BAN) + AdviR DGR + AdviiD SR (A).
O

4 Attribute-based Keyed (Fully) Homomorphic Encryption

We define attribute-based keyed fully homomorphic encryption (ABKFHE). An attribute-based
keyed fully homomorphic encryption (ABKFHE) scheme for a predicate f : X x ) — {0, 1} consists
of five polynomial-time algorithms IIagkrne = (Setup, KGen, Enc, Eval, Dec):

Setup(1*) — (mpk, msk). On input the security parameter 1%, it outputs a master public/secret key
pair (mpk, msk), where mpk implicitly contains a message space M.

KGen(mpk, msk,y) — (dky, hky). On input a mpk, msk, and a key attribute y € ), it outputs a
decryption key dk, and a homomorphic evaluation key hk, for y.

Enc(mpk, z, u) — cty. On input a mpk, a ciphertext attribute x € X, and a message u € M, it
outputs a pre-evaluated ciphertext ct, for z.

Eval(mpk,hky,(ctf()e))ge[L],C) — ctxc/L. On input a mpk, hk, for y, a circuit C : ME — M,
and a tuple of L ciphertexts (ct(f()l))ge[,;], it outputs an evaluated ciphertext cty c for x =
(M, ..., z)) or a rejection symbol L.

Dec(mpk, dk,, ct; /ctx c) — /L. On input a mpk, dk, and ct, /ctx c, it outputs a decryption result
1 € M or a rejection symbol L.

It is required that an IIagkrHe satisfies both correctness and compactness.
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Definition 17 (Correctness). For a vector of ciphertext attributes x = (z(V, ... 2()) € X and
a key attribute y € Y, we use the notation f(x,y) = 1 if it holds that f(z©,y) =1 for all £ € [L)].
ITagkrHE = (Setup, KGen, Enc, Eval, Dec) satisfies correctness if the following conditions hold with
overwhelming probability:

e For every (mpk,msk) < Setup(1?), (z,y) € X x Y such that f(z,y) = 1, (dky,hk,) <
KGen(mpk, msk,y), and i € M, it holds that Dec(mpk, dk,, Enc(mpk, z, u)) = p.

o For every (mpk,msk) < Setup(1?), (x = (zW,...,zB) y.¢) € XL x Y% such that
f(xy) = f(x,¥) =1, (dky, hky) < KGen(mpk, msk,y), (dk,, hk,) < KGen(mpk, msk,y/),
circuit C : MY — M, and (u(l),...,,u(L)) e ML, it holds that Dec(mpk, dk,, ctx c) =
C(u(l), o 1 B)Y with overwhelming probability, where cty,c < Eval(mpk, hk,/, (ctf()@)gem, Q)
and ctgf&) <« Enc(mpk, 29, u®) for every ¢ € [L].

Definition 18 (Compactness). IIagkrne = (Setup, KGen, Enc, Eval, Dec) satisfies compactness if
there exists a polynomial poly such that |ctyc|, where ctxc < Eval(mpk,hky,(ct;%))ge[L},C), 18
independent of the size and depth of C and at most L - poly(\) for every security parameter \.

Remark 5. An attribute-based keyed homomorphic encryption (ABKHE) scheme agkue = (Setup,
KGen, Enc, Eval, Dec) is defined in the same way except the Eval algorithm in two points. At first,
since we will construct a fully compact ABKHE scheme Ilagkue in the sense that a pre-evaluated

(1) (L)

ciphertext ct; and an evaluated ciphertext cty c follow the same distribution, ct 4y, Ct (1) which

are inputs of Eval satisfy x = 2 = ... = 2L, Neat, since we will construct an ABKHE scheme

IIagkHE with multiplicative homomorphism, Eval does not take a circuit C as input. The correctness

ensures that a decryption result of ct, <— Eval(mpk, hk,, (ctg(f))gem) is a product of decryption results

of ctg).
We define the KH-CCA security for ABKFHE by following Definition 3.

Definition 19 (KH-CCA security). The adaptive KH-CCA security of llagkrne = (Setup, KGen, Enc,
Eval, Dec) is defined by the security game between a challenger C and an adversary A as follows.

Init. C runs (mpk, msk) < Setup(1*) and sends mpk to A.
Phase 1. A is allowed to make the following four types of queries to C.
Decryption Key Reveal Query. Upon A’s query on y € Y, C runs (dky,hk,) <
KGen(mpk, msk,y) and sends dk, to A.
Homomorphic Evaluation Key Reveal Query. Upon A’s query ony € Y, C runs (dky,
hk,) <= KGen(mpk, msk,y) and sends hk, to A.
Evaluation Query. Upon A’s query on (y, (cti}e()z))ge[L],C), C runs (dky, hky) <= KGen(mpk,
msk, y) and sends the result of Eval(mpk, hk,, (ct;@))gem, Q) to A.
Decryption Query. Upon A’s query on (y,cty/ctx c), C runs (dky, hky) <= KGen(mpk, msk,
y) and sends the result of Dec(mpk,dky, ct,/ctx c) to A.

Challenge Query. A is allowed to make the query only once. Upon A’s query on (x*, ufy, uj) such
that |pg| = |pi|, C outputs L if A has already made a decryption key reveal query on y such
that f(z*,y) = 1. Otherwise, C samples coin <—pr {0,1}, runs cti. < Enc(mpk,z*, ut. ),
creates a list of ciphertexts L = {ct}.}, and sends ct}. to A.
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Phase 2. A is allowed to make the same four types of queries to C as in Phase 1 with the following
exceptions.

Decryption Key Reveal Query. Upon A’s query ony € Y, C outputs L if f(z*,y) =1
holds.

Evaluation Query. If {ctg(f()[) Yee)NL # 0 holds and the evaluation result is not L but cty c,
C updates a list L < LU {ctxc}.

Decryption Query. Upon A’s query on (y,cty), C outputs L if cty, = ct}. holds.
Upon A’s query on (y,ctyc), C outputs L if ctxc € L holds. C also outputs L if

f(x*,y) =1 holds and A has already made a homomorphic evaluation key reveal query
ony' such that f(x*,y')=1.

Guess. A outputs coin € {0,1} as a guess of coin and terminates the game.

If the advantage of A for breaking the KH-CCA security of llagkrHE defined by AdVFI:;E;AE,A(A) =

—

Pr [coin = coin} — %‘zs negligible in X\, IlagkrHE 1S said to satisfy the adaptive KH-CCA security.

The selective KH-CCA security is the same except that A declares x* at the beginning of the security

game.

Remark 6. Since a pre-evaluated ciphertext and an evaluated ciphertext of ABKHE follow the same
distribution as we claimed in Remark 5, we change the restriction of decryption queries in Phase 2
as we claimed in Remark 2:

Decryption Query. Upon A’s query on (y,cty), C outputs L if ct, € L holds. C also outputs L
if f(z*,y) =1 holds and A has already made a homomorphic evaluation key reveal query on
y' such that f(x*,y') = 1. Otherwise, C proceeds the same way as in Phase 1.

Remark 7. As in Remark 3, we call A’s evaluation query on (y, (ctg()[))gem) a dependent eval-
uation query if the answer is stored in L. In other words, A’s dependent evaluation query on
¢ . ¢ . , . ¢
(y, (Cti()l))ZE[L] satisfies {cti(),g) beerNL # 0. Otherwise, we call A’s evaluation query on (Cti()@)ge[L]

an independent evaluation query.

5 Delegatable Attribute-based Encryption

In this section, we define delegatable attribute-based encryption (DABE) which is suitable for a
building block of ABKFHE. In Section 5.1, we provide the definition of DABE. In Section 5.2, we
review basic knowledge of lattice-based cryptography. In Section 5.3, we construct a DABE scheme
by combining with Yamada’s adaptively secure IBE scheme [Yam17] and Boneh et al.’s selectively
secure ABE scheme [BGGT14]. In Section 5.4, we prove the security. Since the construction
of the proposed DABE scheme is straightforward, experts of lattice-based cryptography can skip
Sections 5.2-5.4.

5.1 Definition

In this paper, let IIpage = (DABE.Setup, DABE.KGen, DABE.Enc, DABE.Dec) denote a DABE
scheme for a predicate f : X x Y — {0,1} with a two-level hierarchical structure, where ci-
phertext attributes live in (X x {0,1}) x ZD, while key attributes live in either ) x {0,1} or
(¥ x{0,1}) x ID. A ciphertext DABE.ct(, 4 iq for ((z,b),id) can be decrypted by a secret key
DABE sk, i for ((y,0'),id") iff f(x,y) = 1A b=V Aid = id" holds, while DABE.sk, ;) ;4 can be
computed from DABE.sk(, ; for (y, ).

30



DABE.Setup(1*) — (DABE.mpk, DABE.msk). On input the security parameter 1*, it outputs a mas-
ter public/secret key pair (DABE.mpk, DABE.msk), where DABE.mpk implicitly contains a
message space M. Although we do not explicitly describe, the following algorithms take
DABE.mpk as input.

DABE.Enc((z,b),id, u) — DABE.ct; ;ig. On input a ciphertext attribute ((z,b),id) € (X x {0,1}) x
ID and a message p € M, it outputs a ciphertext DABE.ct(, ) ¢ for ((z,b),id).

DABE.KGen(DABE.sky,Y’) — DABE.sky:. On input a secret key DABE.sky for a key attribute Y
and another key attribute Y, it outputs a secret key DABE.sky~ for Y’, where DABE.sky =
DABE.msk holds if Y’ € )V x {0,1}, and DABE.sky = DABE.msk VY € Y x {0,1} holds if
Y’ e (Y x{0,1}) x ID.

DABE.DeC(DABE.Sk(yyb/)’id/, DABE.Ct(%b)’id) — /L/J_ On input DABE.Sk(y’b/)Jd/ and DABE.Ct(x’b)Jd,
it outputs a decryption result p or a failure symbol L.

Definition 20 (Correctness). IIpage = (DABE.Setup, DABE.KGen, DABE.Enc, DABE.Dec) is said
to satisfy the correctness if for every p € M, (DABE.mpk, DABE.msk) < DABE.Setup(1?),
(z,y) € X x Y such that f(x,y) = 1, b € {0,1}, and id € ZID, it holds that pu <
DABE.Dec(DABE.sk(%b)’id,DABE.ct(x7b)7id) with overwhelming probability, where DABE.ct(,p)iq <
DABE.Enc((z,b),id, 1), DABE.sk,; < DABE.KGen(DABE.msk, (y,b)), and DABE.sk(, ) ia <
DABE.KGen(DABE. sk, 5, (4, ),id)).

We define two security notions called selective IND-CPA security and second-level adaptive
OW-CPA security depending the value of b € {0,1}. Let ((x*,b*),id*) denote a challenge ciphertext
attribute. A DABE scheme satisfies the selective IND-CPA security if b* = 0 and the second-level
adaptive OW-CPA security if b* = 1. The selective IND-CPA security follows the traditional defini-
tion of IND-CPA security, where the adversary declares the target ciphertext attribute ((z*,0),id*)
at the beginning of the security game. The second-level adaptive OW-CPA security follows the
traditional definition of the OW-CPA security, where the adversary declares the first level of the
target ciphertext attribute (z*,1) at the beginning of the security game and declares the second
level id* in the challenge phase.

Definition 21 (Selective IND-CPA Security). The selective IND-CPA security of llpage =
(DABE.Setup, DABE.KGen, DABE.Enc, DABE.Dec) is defined by the security game between a chal-
lenger C and an adversary A as follows.

Init. A declares a challenge ciphertext attribute ((x*,0),id*) to C. Then, C runs
(DABE.mpk, DABE.msk) +— DABE.Setup(1*) and sends DABE.mpk to A.

Phase 1. A is allowed to make the following secret key reveal queries to C.

— Secret Key Reveal Query. Upon A’s query on (y,b) € Y x {0,1}, C out-
puts L if f(z*,y) = 1 Ab = 0 holds. Otherwise, C runs DABE.sk, <
DABE.KGen(DABE.msk, (y,b)) and sends DABE.sky, to A.  Upon A’s query on
((y,b),id) € (¥ x {0,1}) x ID, C outputs L if f(z*,y) = 1 Ab = 0Aid* = id holds.
Otherwise, C runs DABE.sk(, ;) <~ DABE.KGen(DABE.msk, (y,b)) and DABE.sk, )4 <
DABE.KGen(DABE.sk(, 1), ((y,b),id)), and sends DABE.sk(, 4 iq to A.

Challenge Query. A is allowed to make the query only once. Upon A’s query on (ufy, py) such that
lus| = |pl, C samples coin <—pg {0, 1}, runs DABE.ct{ . o) g+ ¢ DABE.Enc(((z*,0),id*), X)),
and sends the challenge cipehrtext DABE.ct’(}* 0),id* to A.

31



Phase 2. A is allowed to make secret key reveal queries as in Phase 1.

Guess. A outputs coin € {0,1} as a guess of coin and terminates the game.

If the advantage of A for breaking the selective IND-CPA security of llpage defined by
AV CPR(A) = |Pr |coin = 0 | coin = 0] — Pr [coin = 0 | coin = 1|

said to satisfy the selective IND-CPA security.

1s negligible in A\, Ilpagg is

Definition 22 (Second-level Adaptive OW-CPA Security). The second-level adaptive OW-CPA
security of llpage = (DABE.Setup, DABE.KGen, DABE.Enc, DABE.Dec) is defined by the security
game between a challenger C and an adversary A as follows.

Init. A declares the first level of a challenge ciphertext attribute (z*,1) to C. Then, C runs
(DABE.mpk, DABE.msk) - DABE.Setup(1*) and sends DABE.mpk to A.

Phase 1. A is allowed to make the following secret key reveal queries to C.

— Secret Key Reveal Query. Upon A’s query on (y,b) € Y x {0,1}, C out-
puts L if f(z*,y) = 1 Ab = 1 holds. Otherwise, C runs DABE.sk, <
DABE.KGen(DABE.msk, (y,b)) and sends DABE.sky, to A.  Upon A’s query on
((y,b),id) € (¥ x {0,1}) x ID, C runs DABE.sk, ;) ¢ DABE.KGen(DABE.msk, (y, b))
and DABE.sk(, 1 iq +~ DABE.KGen(DABE.sk(, 1), ((y,0),id)), and sends DABE.sk(, ) iq to
A.

Challenge Query. A is allowed to make the query only once. Upon A’s query on id* to declare
the second level of a challenge ciphertext attribute, C outputs L if A made secret key reveal
queries on ((y,1),id) in Phase 1 such that f(xz*,y) = 1 Aid* = id. Otherwise, C samples
p* <—r M, runs DABE.ctf , | 4. DABE.Enc(((x*,1),id*), u*), and sends the challenge
cipehrtext DABE.ct? to A.

(z*,1),id*
Phase 2. A is allowed to make secret key reveal queries as in Phase 1 except that C outputs |
upon A’s queries on ((y,1),id) such that f(z*,y) =1 Aid* = id.
Guess. A outputs i as a guess of u* and terminates the game.

If the advantage of A for breaking the second-level adaptive OW-CPA security of llpage defined
by Advg\é\:\'scgj(/\) = |Prlg=p*]— ﬁ’ is megligible in A, llpage is said to satisfy the second-level
adaptive OW-CPA security.

5.2 Preliminaries on Lattices-based Cryptography
5.2.1 Discrete Gaussian Distribution

For a positve integer m, let Dzm , denote a discrete Gaussian distribution over Z™ with a parameter
o > 0. We will use the following facts.

Lemma 5 (Lemma 2.5 of [Reg05]). It holds that Pr[||z|| > o/m : z < Dgm .| < 2727,

Lemma 6 (Lemma 1 of [KY16]). Let ¢,m,m’ be positive integers and r be a positive real such

that r > max{w(y/logm),w(yvlogm’)}. For b € Z', z < Dzm,, V € Zm<m - and positive real

s > || V|2, there exists a PPT algorithm ReRand such that V' b+y < ReRand(B,b+z,7,s), where
y is distributed statistically close to D

zm’ ,2rs”
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5.2.2 Learning with Errors

We use the learning with errors (LWE) assumption to prove the security.

Definition 23 (LWE Assumption [Reg05]). For positive integers n = n(\) and m = m(n), a
prime integer ¢ = q(n) > 2, a real number o € (0,1), an advantage for solving the LWE problem
LWE,, i q,0 by an algorithm A is defined to be

AdvVER e () = ’Pr [A(A, ATs+z) > 1} — PrfA(A, w +2) — 1],

where A < g ngm, SR ZZL, z < Dym oq, and w <pg ZZ”. We say that the L\WE,, 1, g, o assumption

holds if Adv;WE"”"’q’“ (M) is negligible for all PPT A.

5.2.3 Gadget Matrix

For m > n[logq], a full-rank matrix G € Zg*™ is called a gadget matrix, where there exists
a deterministic polynomial time algorithm G~! which takes U € Zg‘xm as input and outputs
V = G~1(U) such that V € {0,1}™*™ and it holds that GV = U.

5.2.4 Trapdoor and Sampling Algorithms

Let n,m, and g be positive integers and A € Zp*™. For a matrix V € ngm/, let AZL(V)
denote a probability distribution according to the discrete Gaussian (DZmﬁ)m/ conditioned on
A-AJY (V) =V. We use A to denote a o-trapdoor for A, where we can use it to sample
AL (V) for any V € ngm/ in polynomial time. If there is a subscript such Ay, we use notations

A (V) and Ag].
Lemma 7 ([ABB10a, ABB10b, BLP*13, CHKP12, GPV08, MP12]). The following facts are known

for trapdoors and sampling algorithms.

1. Given A, one can obtain A;/l for any o’ > 0.

2. Given A1, one can obtain [A || B|;! and [B || A],;! for any B.

o

3. Given A € Zy*™ and R € Z™ ™ with m > nllogq], and a full-rank H € Zy*", one can
obtain [A || AR + HG];! for 0 = m - |R||e - w(y/Iogm).

4. Given A for A € Zy*™, one can randomize it and obtain A;,l for any o’ = o-w(v/mlogm).

5. There exists an efficient algorithm TrapGen(n,m,q) that outputs (A, A1), where A € Z}*™
for some m = O(nlogq) and is statistically close to uniform, and o = w(y/nlogqlogm).

5.2.5 Full-rank Difference Map

Agrawal et al. [ABB10a] introduced a notion of full-rank difference map to construct selectively
secure IBE scheme under the LWE assumption. For a positive integer n and a prime integer ¢,
there is an efficiently computable map FRD : Zj — Zy*" called the full-rank difference map, where
FRD(u) — FRD(v) is full-rank for all distinct u and v.
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5.2.6 Randomness Extraction
We use the following variant of the leftover hash lemma.

Lemma 8 ([ABB10a]). Let n,m,m’, and q be a positive integer such that m > (n + 1)logy q +
w(logn), m' = m/(n) is polynomial in n, and q > 2 is a prime number. For all vector e € Zq', it
holds that (A,B,R"e) ~ (A,AR,R"e), where A +p Zy*™, B <R ngm) R« {1, 1}me’
mod q.

5.2.7 Key Homomorphic Computation

PubEval(y, (B1,...,B¢)) — B, : On input a function y € Y and matrices By,...,B, € Zy*™,
output a matrix B,.

CTEval(y, (zi, Bi, €i)icl) — ¢y : Oninput a functiony € Y, 21, ..., ¢ € Zg, matrices By,..., By €
ZZX’”, and vectors ¢; = [B; + xiG]TS +2z; € Zy' for some s € Z; and z; € Z™ such that
|z|| < &, output c, € ZI".

TrapEval(y, (z}, Ri)icq, A) = Ry : On input a function y € Y, 27, ..., 7] € Z;, random matrices
Ri,...,Ry € {~1,1}™*™ and a matrix A € Zy*™, output R,

Lemma 9. If the following conditions hold for a family of function Y = {y : Zg — Zg} and
ay : L — 7, we say that evaluation algorithms (PubEval, CTEval, TrapEval) are ay-enabling for a
function class Y:

e For By < PubEval(y, (B1,...,By)) and c, «- CTEval(y, (z;, Bi, ¢;)ic|q), there exists a vector
zy such that c, = [By +y(z1,...,2¢)G| s +z, and ||z,]| <& - ay(n).

e For B, < PubEval(y, (AR1 — 271G, ..., AR, — 2;G)) and Ry < TrapEval(y, (7, Ri)icpg, A),
it holds that AR, — y(x7,...,2;)G = By.

o Ifwe set Ry,...,Ry <= {—1,1}*"™ it holds that |Ry||2 < ay(n) with overwhelming prob-
ability, where Ry, < TrapEval(y, (z}, Ri)ic(q, A)-
5.2.8 Yamada’s IBE Scheme

We review a multi-bit encryption variant of Yamada’s IBE scheme denoted by Ilyam,.

IBE.Setup(1*) — (IBE.mpk, IBE.msk). Run (A, A,;') « TrapGen(n,m,q), sample random ma-
trices Dg,Dq,...,Dg <p ngm and U <p ZZXlogMA‘, and outputs IBE.mpk =
(A,Dg,Dy,...,Dg,U) and IBE.msk = A1, where M = {0, 1}oeIMl i a message space.

IBE.Enc(id, ji) — IBE.ctjg. Parse IBE.mpk = (A,Dg,D1,...,Dg,U) and i = (p1,- -, tog | Mm|)-
Compute Djg < PubEval(id, (D1,...,Dg)), sample s <r Zj, 20,21 < Dzzm g, and
22 < Dzog1m) o, and output IBE.ctig = (co, €1, C2), where

co=A's+z, c¢1 = [Do + Dig] 's + 21, C2 ZUTS—I-Zz—HZ{gJ '

IBE.KGen(IBE.msk, id) — IBE.skiy. Parse IBE.mpk = (A,Dg,D1,...,Dg,U) and IBE.msk = Agol.

Compute Djg < PubEval(id, (D1,...,Dy)), [A | Dy + Dig],! from A_!, randomize it and
output IBE.skiq = [A | Dg + Dig;}.
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IBE.Dec(IBE.skq, IBE.ctijg) — fi/L. Parse IBE.skiy = [A | Dy +D;d]; and IBE.ctiy = (co,c1,c2).
Compute Djgq < PubEval(id, (D1,...,Dgk)), [A | Do —i—D;d];ll(U) from [A | Dy +D,O|]O,1 , and
¢ =co—([A | Do+Diy4l, (U)" - [co || c1]. Parse ¢’ =[], ... ’clog|/\/l\]' For i € [log |[M]], set
pi = 01if |¢}| < ¢/4 and p; = 1 otherwise.

Theorem 4. Yamada’s IBE scheme Ily., satisfies the correctness and the adaptive IND-CPA se-
curity under the L\WE,, 1, ¢ o assumption.

5.2.9 Boneh et al.’s ABE Scheme

We review a multi-bit encryption variant of Boneh et al.’s ABE scheme denoted by Ilggg-

ABE.Setup(1*) — (ABE.mpk, ABE.msk). Run (A, A;!) + TrapGen(n,m, q), sample random matri-
ces By,....By g anm and U 5 Z0>°8MI and outputs ABE.mpk = (A, By,...,B;, U)

and ABE.msk = A_ ", where M = {0, 1}1°g|M| is a message space.

0'0?

ABE.Enc(#, ji) — ABE.ct,. Parse ABE.mpk = (A,By,...,B;,U), ¥ = (x1,...,25), and fi =
(B15 -5 Hiog|m|)-  Sample s < Zg, Ry,...,Ry <r {=1,1}"™, 75 < Dgm 4¢, and
22 < Dzjog M| o4, and output ABE.ctz = (co, €1, ¢2), where

co=ATs+z, ci=Bi+zG| - |By+2,G]'s+[Ri|--|Ry] 2,
:UTs+zQ+ﬁ[gJ.

ABE.KGen(ABE.msk,y) — ABE.sk,. Parse ABE.msk = A_L Compute B, <«
PubEval(y, (B1,...,By)), [A | Byl from A;! randomize it and output ABE.sk, =
[A By,

ABE.Dec(ABE.sk,, ABE.ctz) — ji/ L. Parse ABE.sk, = [A | B,]; !, ABE.ct; = (co,c1,¢2), and
further parse ¢; = [c11 | - | c1,5], where c11,...,¢c1 5 € Z;'. Compute c1, <«
CTE Iy, (). By €1, ) i) (A [ B,J;(U) from [A | ByJ.) and ¢’ = ¢, (1A | B,J (U)T
[co || €1,y]. Parse ¢/ =[c},... Clog|/v1|] For i € [log|M|], set p; =0 if |c}| < ¢/4 and p; =1
otherwise.

Theorem 5. Boneh et al.’s ABE scheme Ilage satisfies the correctness and the selective IND-CPA
security under the LWE,, ., ¢ o assumption.

5.3 Construction

We construct a DABE scheme defined in Section 5.1 by combining with Yamada’s IBE scheme
Iyam [Yam17] and Boneh et al.’s ABE scheme Ilggg; [BGGT14].

DABE .Setup(1*) — (DABE.mpk, DABE.msk). Run (Ao, Ag,), (A1, Af,) < TrapGen(n,m, q), sam-
ple random matrices B1,...,B;,Dg,Dq,...,Dg +r anm and U +p Z"XlOgM/[l, and out-
puts DABE.mpk = (Ag, A1, By, ... ,BJ,DQ,Dl, .. .,DK,U) and DABE.msk = (A} ,A7. ),
where M = {0, 1}!°¢IMl i a message space.

DABEEHC(((.CE, b) Id) ) — DABE. Ct(x b),id- Parse DABE. mpk (Ao,Al,Bl,...,BJ,Do,Dl,...,

Dg,U) and ji = (p1,-- -, fhiog ). Sample s «—g Zy and Ryj1,..., Ry g {—1,1}"™.
Proceed as follows:
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Case of b= 0. Sample Ry <—r {—1,1}"*™, zg <= Dzzm o4, and z3 <= Dyog || 4, and output
DABE.Ct(£70)7id = (CQ, Ci,Co, C3);

co = Ags+z0, cp = [B1+$1G | ’BJ-l-xJG]TS-l-[RLl | ‘ RLJ]TZQ,
2 = Dy + FRD(4)G]"s + Riz, o= UTs 2 +71]2].

Case of b= 1. Compute Djqy < PubEval(id, (D1, ...,Dg)), sample zg,z2 ¢ Dz2m o4, and
23 < Dzioz M| o, and output DABE.ct(z 14 = (Co, €1, €2, €3);

COZAIS—I—Z(), C1:[B1+x1G|"'|BJ+.:UJG]TS+[R1’1 | ""RLJ]TZO,

c2 = [Do+ Dig] s + 21, C4=UTS+Z3+FLEJ ~
DABE.KGen(DABE.sky, V") — DABE.sky-. Parse DABE.mpk = (Ag,A;,Bu,...,B;,Do,D1,...,
Dy, U) and DABE.msk = (A, L A7l ). Proceed as follows:

0,007 “*1,00

Case of DABE.sky = DABE.msk and Y’ = (y,b). Compute B, < PubEval(y, (B1,...,B)),
[A; | By, from Ab_,;ov randomize it and output DABE.sk(, ;) = [Ay | By,

Case of Y = (y,0) and Y' = (y,0,id). Compute [A | B, | Do + FRD(id)G];! from

1
DABE.sk(, 0y = [A | ByJ;!, and output DABE.ski,a = [A | By, | Do +
FRD(id)G]; ! (U).

Case of Y = (y,1) and Y' = (y, 1,id). Compute D4 < PubEval(id, (D1,...,Dg)), [A | By |
Do + Digl;! from DABE.sk(, 1) = [A | ByJ;L, and output DABE.sk(, )4 = [A | By |
Dy + Dig],, (U).

DABE.Dec(DABE.sk, 1) ia’s DABE.ct(z ) ia) — ii/ L. Parse DABE.ct(zy)iq = (co,c1, 2, c3) and fur-
ther parse ¢ = [ci1 || -+ || c1,5], where ¢11,...,¢c15 € Zy'.  Compute c1, <
CTEval(y, (zj,Bj, c1,5)je(s) and ¢ = c3 — DABE.skEhb)’id “Jeo || ciy || c2]. Parse ¢ =
[, .. ,ciog‘M‘]. For i € [log|M]|], set pu; = 0 if |¢}| < ¢/4 and p; = 1 otherwise.

5.4 Security

Theorem 6. If Boneh et al.’s ABE scheme llagg satisfies the selective IND-CPA security, the
proposed DABE scheme llpage satisfies the selective IND-CPA security.

Proof of Theorem 6. We construct a reduction algorithm B which interacts with A in the selective
IND-CPA security game of IIpage and breaks the selective IND-CPA security of IIagg. At the
beginning of the selective IND-CPA security game of DABE, A declares the challenge ciphertext
attribute ((Z*,0),id*) to C in the selective IND-CPA security game of Ilggg+. Then, B declares
Z* as the challenge ciphertext attribute of the selective IND-CPA security game of Boneh et al.’s
IIgggy. After B receives ABE.mpk = (A, By,...,B;,U), it sets Ay = A, runs (Al,Ai},O) —
TrapGen(n,m, q), samples Rg <~ {—1,1}"*™ and Dy, ..., Dg <g Zy*™, computes Dy = AgRy—
FRD(id*)G, and sends DABE.mpk = (A, A1,Bq,...,B;,Dg,Dy,...,Dg, U) to A.

Upon A’s secret key reveal query on (y,0) such that f(#*,y) = 0 (resp. ((y,0),id) such that
f(@*,y) = 0Aid = id*), B makes a secret key reveal query on y, receives ABE.sk, = [Ag | B, !
from C, sets DABE.sk, ) = [Ao | B,];! (resp. DABE.sky,0),d = [Ao | By | Do+ FRD(id)G], ! (U)),
and sends it to A. Upon A’s secret key reveal query on ((y,0),id) such that id # id*, computes [Ag |
AoRy+ (FRD(id) —FRD(id*))G] ' = [Ag | Do+FRD(id)G];; from Ry, [Ag | Dg+FRD(id)G];}(U)
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from [Ag | Do+ FRD(id)G], !, and sends DABE.sk(, o) ¢ = [Ao | Do+ FRD(id)G];!(U) to A. Upon
A’s secret key reveal query on (y,1) or ((y,1),id), B answers in the same way as the real scheme
since it knows Al_}m.

Upon A’s challenge query on ([, fi}), B makes a challenge query on ([, fi}) to C, and receives
the ABE challenge ciphertext ABE.ctf. = (¢, c},ch). B sets ¢ = ¢, c1 = ¢}, c3 = ¢, computes

Cy = R;c{), and sends the DABE challenge ciphertext DABE.ct&*yo)Jd* = (co,c1,C2,c3) to A. After

B receives coin from A, B sends the same coin to C and terminates the game.

Due to the design of IIpagg, all elements created by B follow the same distribution as the real
scheme. Although B makes secret key reveal queries on y upon A’s secret key reveal query on (y, 0)
such that f(Z*,y) = 0 or ((y,0),id) such that f(z*,y) = 0Aid = id*, they are allowed in the security
game of IIggg4 due to the condition f(Z*,y) = 0. Although B modifies the way for creating Dy, a
variant of the leftover hash lemma (Lemma 8) ensures that AgRx is statistically close to uniform.
Thus, the distribution of Dy = AgRs — FRD(id*)G is also statistically close to uniform. Although
B modifies the way for answering A’s secret key reveal queries on ((y,0),id) such that id # id*,
DABE sk.0),id = [Ao | Do + FRD(id)G]; ! (U) follow the same distribution as the real scheme due
to Lemma 7. Moreover, B can compute [Ag | AgR2 + (FRD(id) — FRD(id*)) G|, ! from Ry since the
definition of the full-rank difference map ensures that FRD(id) — FRD(id*) is full-rank if id # id*. If
coin =0, ¢ = A s + zg holds. Then, we have

Cy = R;—C6 = (AORQ)TS + R;—ZO = [Do + FRD(Id*)G}TS + R;ZO

which follows the same distribution as the real scheme. If coin = 1, ¢} +r Zq' holds. Then, a
variant of the leftover hash lemma (Lemma 8) ensures that co; = R c) is statistically close to
uniform. Thus, B perfectly simulates the real security game from A’s view. Since B wins the DABE
security game with overwhelming probability if 4 wins the ABE security game, we complete the
proof. O

Theorem 7. If Yamada.’s IBE scheme Ilyam satisfies the adaptive OW-CPA security, the proposed
DABE scheme Ilpagg satisfies the second-level adaptive OW-CPA security.

Proof of Theorem 7. We construct a reduction algorithm B which interacts with A in the second-
level adaptive OW-CPA security game of IIpagg and breaks the adaptive OW-CPA security of Tlyam,.
At the beginning of the second-level adaptive OW-CPA security game of DABE, A declares the first-
level challenge ciphertext attribute (z*,1), where 2* = (z7,...,2%). After B receives IBE.mpk =
(A, Dy, Dy,...,Dg, U) from C in the adaptive OW-CPA security game of Ily,y,, it sets A; = A, runs
(A, Aa’clro) < TrapGen(n,m,q), samples Ry 1,..., Ry j <—p {—1,1}"*™, computes By = A|R; 1 —
x’{G, ey BJ = AIRLJ - ij, and sends D/—\BEmpk = (Ao,Al, Bl, ‘e ,BJ, DO, Dl, NN ,DK, U)
to A.

Upon A’s secret key reveal query on ((y,1),id) such that f(2*,y) = 1, B makes a secret key
reveal query on id, receives IBE.skig = [A1 | Do + Dig],; from C, sets DABE.sk, 1yiq = [A1 | By |
Dy + Dig],} (U), and sends it to A. Upon A’s secret key reveal query on (y,1) (resp. ((y,1),id))
such that f(7*,y) = 0, B runs R, « TrapEval(y, (7, R1,) e[}, A1), computes [Aq | B,];! from
Ry, sets DABE.sk(, 1) = [A1 | By];! (resp. DABE.sk(,1),4 = [A1 | By | Do+ Dig;,(U)), and sends
it to \A. Upon A’s secret key reveal query on (y,0) or ((y,0),id), B answers in the same way as the
real scheme since it knows Ai(ljo.

Upon A’s challenge query on id*, B makes a challenge query on id* to C, and receives the IBE
challenge ciphertext IBE.ctly. = (cg, ¢}, c)). B sets co = ¢, ca = ¢}, c3 = ¢, computes ¢; = [Ry 1 |

-+ | Ry1,y] "¢}, and sends the DABE challenge ciphertext DABE.ct&*J)’id* = (cgp,c1,C2,C3) to A.

After B receives ﬁ’ from A, B sends the same ﬁ to C and terminates the game.
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Due to the design of the proposed DABE scheme, all elements created by B follow the same
distribution as the real scheme. Although B makes secret key reveal queries on id upon A’s secret key
reveal query on ((y, 1),id) such that f(z*,y) = 1, they are allowed in the security game of ITy,m since
the definition of the second-level adaptive OW-CPA security ensures that id # id* holds. Although
B modifies the way for creating Bq,...,By, a variant of the leftover hash lemma (Lemma &)
ensures that A1Ry1,..., AR s are statistically close to uniform. Thus, the distribution of By =
ARy - 271G, ..., By = AR ;— 275G are also statistically close to uniform. Although B modifies
the way for answering A’s secret key reveal queries on (y, 1) and ((y,1),id) such that f(z*,y) =0,
DABE.Sk(yJ) = [Al ‘ By]gll and DABE-Sk(y,l),id = [Al ‘ By ‘ Dy + Did];ll(U) follow the same
distribution as the real scheme due to Lemmata 7 and 9. Moreover, B can compute [A; | B,] !
from R, since Lemma 9 ensures that B, = AR, — y(27,...,2%)G and y(z},...,2%) # 0. Since
it holds that cj = A[s + zg, we have

c1=[Ri1| | Ryl ch
=[ARy1 || ARy ] "s+ Ry |-+ | Rig] 20
= [B1+x’{G | ’ BJ—F.T}G]TS—i-[RLl ’ ’ RLJ]TZO

which follows the same distribution as the real scheme. Thus, B perfectly simulates the real security
game from A’s view. Since B wins the DABE security game with overwhelming probability if A
wins the IBE security game, we complete the proof. ]

6 Generic Construction of ABKFHE

In this section, we propose a generic construction of ABKFHE scheme IIagkrne. In Section 6.1, we
provide a construction of ITagkrye. In Section 6.2, we prove the selective KH-CCA security.

6.1 Construction

We extend the idea explained in Section 1.3.2 and propose a generic construction of ABKFHE from
MFHE, DABE, and OTS.

Setup(1*) — (mpk, msk). Run MFHE.pp < MFHE.Setup(1*) and (DABE.mpk, DABE.msk) ¢«
DABE.Setup(1*). Choose a one-time signature scheme Ilgts, Output mpk =
(MFHE.pp, DABE.mpk, IIoTs) and msk = DABE.msk.

Enc(mpk, z, u) — ct;. Parse mpk = (MFHE.pp, DABE.mpk, IIoTs). Run

— (MFHE.pk, MFHE.sk) <~ MFHE.KGen(1%),

MFHE.ct + MFHE.Enc(MFHE.pk, 1),

— (vk, sigk) + OTS.KGen(1?%),

— DABE.ct(; ) vk + DABE.Enc(((z,0),vk), MFHE.sk),

o « Sign (sigk, (vk, MFHE.pk, DABE.ct(g) vk, MFHE.ct)).

Output
ct; = (vk, MFHE.pk, DABE.ct(, o) vk, MFHE.ct, o).

We say that a pre-evaluated ciphertext ct, is valid if o is a valid signature for (vk,
MFHE.pk, DABE.ct(, o) vk, MFHE.ct).
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KGen(mpk, msk,y) — (dk,, hk,). Pares mpk = (MFHE.pp, DABE.mpk, IIgTs) and msk = DABE.msk.
Run
— DABE.sk(, gy +— DABE.KGen(DABE.msk, (y,0)),
— DABE.sk(, 1) +~ DABE.KGen(DABE.msk, (y,1)).

Eval(mpk, hky, (ct:(f()e) Jeeir), C©) = ctx,c/L. Output L if f(x,y) = 0 holds or there are invalid ci-
phertexts ctg(f()[) for some ¢ € [L]. Otherwise, parse mpk = (MFHE.pp, DABE.mpk, IloTs),
hk, = DABE.sk(,1), and ct'), = (vk®, MFHE.pk(®), DABE.ct"" 4y MFHE.ct® o) for

20 (z(0),0),vk(
¢ € [L]. Run
— MFHE.ctc < MFHE.Eval((MFHE.pk”), MFHE.ct(¥)) ¢ (), C),
(vk, sigk) - OTS.KGen(1%),
— DABE.sk(, 1)k < DABE.KGen(DABE.sk(, 1), ((y, 1), vk)),

. . 4
— o < Sign <S|gk, ((vk®, MFHE.pk (), DABE.ctEx)M),O),vk(D)EE[L}, MFHE.ctc, DABE.sk(yyl)yvk)>.

Output

Ctyc = ((vk“), MFHE.pk®, DABE.ct"¥

) 0y ezl MFHEctc, vk, DABE sk 1) v a) .

We say that an evaluated ciphertext ct, ¢ is valid if f(x,y) = 1 holds, DABE.sk(, 1)k
is a valid DABE secret key for ((y,1),vk), and o is a valid signature for ((vk®,

J4
MFHE.pk(®, DABE.ctEx)(ZLO),Vk(Z))EE[L], MFHE.ctc, DABE.sK(y 1) vk)-

Dec(mpk, dk,, ct; /ctx c) — p/L. Parse mpk = (MFHE.pp, DABE.mpk,IlgTs) and dk, =
DABE.sk, ). Proceed as follows.

Case of Pre-evaluated Ciphertexts. Output L if f(z,y) = 0 holds or ct, is invalid. Otherwise,
parse ct; = (vk, MFHE.pk, DABE.ct(, ¢y vk, MFHE.ct, o). Run

+ DABE.sk(, ) vk <~ DABE.KGen(DABE.sk(, o), ((y,0), vk)),
+ MFHE.sk ¢~ DABE.Dec(DABE.sk(, 0) vks DABE.Ct(s.0) vk);

and output p < MFHE.Dec(MFHE.sk, MFHE.ct).

Case of Evaluated Ciphertexts. Output L if f(x,y) = 0 holds or ctyc is invalid.
Otherwise, parse ctyc = ((vk(f),MFHE.pk(Z),DABE.ctE?UZ) 1)s MFHE. ctc,
vk, DABE.sk(y 1) vk, 7). For £ € [L], run

# DABE.sk(, ) 0  DABE.KGen(DABE.sk(, o), (1, 0), vk(")),

4
* MFHE.sk(”) - DABE.Dec(DABE:sky, ) ;0. DABE.ct), ),

and output p < MFHE.Dec((MFHE.sk()),c(;), MFHE.ctc).

,0),vk(® )Ee[

Theorem 8. The proposed ABKFHE scheme llagkrrEe satisfies correctness if the underlying MFHE
scheme lypue, DABE scheme llpage, and one-time signature scheme llgTs satisfy correctness.
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Proof of Theorem 8. For every p € M, (z,y) € X x Y such that f(z,y) =1,
e (mpk, msk) < Setup(1*);

— MFHE.pp ¢+ MFHE.Setup(1%),
— (DABE.mpk, DABE.msk) < DABE.Setup(1?),
— mpk = (MFHE.pp, DABE.mpk, IIoTs) and msk = DABE.msk,

e ct, « Enc(mpk,z, u);

— (MFHE.pk, MFHE.sk) <~ MFHE.KGen(1%),

— MFHE.ct + MFHE.Enc(MFHE.pk, 1),

— (vk, sigk) < OTS.KGen(1?%),

DABE.ct(; ) vk <~ DABE.Enc(((z,0),vk), MFHE.sk),

o « Sign (sigk, (vk, MFHE.pk, DABE.ct( g vk, MFHE.ct)).
— ct; = (vk, MFHE.pk, DABE.ct ;o) vk, MFHE.ct, o),

e dk, + KGen(mpk, msk,y);

— DABE sk(, gy « DABE.KGen(DABE.msk, (y,0)),
— dk, = DABE.sk(, g,

the correctness of IoTs ensures that OTS.Ver(vk, (vk, MFHE.pk,
DABE.ct(; 0)vk; MFHE.ct),0) = 1 holds, the correctness of IIpage ensures that
DABE.Dec(DABE.KGen(DABE. sk, o, ((y,0),vk)), DABE.ct; gywk) =  MFHE.sk holds, and

the correctness of Ilypyg ensures that MFHE.Dec(MFHE.sk, MFHE.ct) = p holds.  Thus,
Dec(mpk, dk,, ct;) = p holds.
For every circuit C: MY — M, (™, ..., u)) e ML, (z,9) € X x Y such that f(z,y) =1,

e (mpk, msk) + Setup(1*);
— MFHE.pp + MFHE.Setup(1%),

— (DABE.mpk, DABE.msk) < DABE.Setup(1*),
— mpk = (MFHE.pp, DABE.mpk, IIoTs) and msk = DABE.msk,

. ctg()[) <« Enc(mpk, u(9) for ¢ € [L];

— (MFHE.pk®  MFHE sk'¥)) <~ MFHE.KGen(1*),
— MFHE.ct® « MFHE.Enc(MFHE.pk®), 4,(9),
(vk® sigk®) « OTS.KGen(1*),

- DABE.ctEi)(Z) ok® DABE.Enc(((z®, 0), vk®), MFHE.sk(®)),

. . 4
o « Sign <s.gk(f>, (vk(), MFHE.pk), DABE.ct("}, |, MFH E.ct“))),

l 4
— ctlyy = (vk( MFHE.pk), DABE.ct(?),, ), MFHE.ct, o(®),

e dk, < KGen(mpk, msk,y);
— DABE.sk(, gy +~ DABE.KGen(DABE.msk, (y,0)),
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— dky = DABE.sk(, ),
e hk, < KGen(mpk, msk,y/');

— DABE.sk(, ) + DABE.KGen(DABE.msk, (y/, 1)),
~ hk, = DABE.sk(, 1),

l
o ctec < Eval(mpk, hky, (ct') )ociz, ©);

MFHE.ctc < MFHE.Eval((MFHE.pk(¥), MFHE.ct®)) ¢ (), C),
(vk, sigk) < OTS.KGen(1?),
— DABE.sk(, 1) vk < DABE.KGen(DABE.sk(, 1), (¥, 1),vk)),

~ &« Sign (sigk, ((vk©, MFHE.pk®, DABE.ctE?(@’O)Nk([))ZG[L}, MFHE.ctc, DABE.sk(y,J)Nk)),

~ Ctyc = ((vk“), MFHE.pk(®, DABE.ct""

0 gy )iy MPHE ctc, vk, DABE sk, 1) vk a),

the correctness of Ilpage ensures that DABE.sk(y/71)7vk is a wvalid DABE se-
cret key for ((y,1),vk), the correctness of Ilots ensures that OTS.Ver(vk, ((vk(®,

MFHE.pk(e),DABE.ctE?(Z)’O)Nk([))gem,MFHE.ctC,DABE.sk(y/J)’Vk),J) = 1 holds, the correctness
of Ipage ensures that DABE.Dec(DABE.KGen(DABE sk, g), (1, 0), vk'))), DABE.ct , ) o) 0)) =

MFHE.sk®) holds, and the correctness of Ilyryg ensures that I\/IFHE.Dec((MFHE.sk(Z))gem,
MFHE.ct) = C((19)ge(z)) holds. Thus, Dec(mpk, dky, ctx c) = C((1¥)se(r)) holds. O

Theorem 9. The proposed ABKFHE scheme llagkrHE satisfies compactness if the underlying MFHE
scheme satisfies compactness.

Proof of Theorem 9. For every A,
e (mpk, msk) < Setup(1*);

— MFHE.pp + MFHE.Setup(1%),
— (DABE.mpk, DABE.msk) < DABE.Setup(1*),
— mpk = (MFHE.pp, DABE.mpk, IIoTs) and msk = DABE.msk,

3 ctg(f()[) < Enc(mpk, u9) for ¢ € [L];

— (MFHE.pk®  MFHE.sk'¥)) < MFHE.KGen(1*),
— MFHE.ct® <« MFHE.Enc(MFHE.pk¥, 11(9),
(vk® sigk?) « OTS.KGen(1*),

DABE.ctE?m ki < DABEEnC(((a),0), vk®), MFHE.sk"),

. . l
o® « Sign (s.gk(@, (vk©, MFHE.pk®, DABE.ctEm)(Z)VO)Nk(Z), MFH E.ct“))),

0 _ ¢ [ )
— cti o) = (vk®, MFHE.pk®), DABE.ct () o 0 MFHE.ct®, ¢(®),

e cty c + Eval(mpk, hk,/, (ctg&))gem, C);
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MFHE.ctc <+ MFHE.Eval((MFHE.pk¥), MFHE.ct®)) ¢ ), C),
(vk, sigk) - OTS.KGen(1%),
— DABE.sk(, 1)k + DABE.KGen(DABE.sk(, 1), ((/, 1), vk)),

o < Sign (sigk, ((vk©, MFHE.pk®, DABE.ctE?m’O)’Vk(Z))gem, MFHE.ctc, DABE.sk(y,J)Nk)),

()

/4 4
— Ctec = <(Vk< ), MFHE.pk®, DABE.ct (1) ) u(®

)se(1, MFHE ctc, vk, DABE sk(y 1) vic a),

the compactness of IIyeye ensures that [MFHE.ctc| is independent of the size and depth of C and
L

at most L - poly()\), and |(vk(®, I\/IFHE.pk(f),DABE.ctEI)(Z)7O)7Vk(,_,))gem| and |(vk, DABE.sk ;1) vk 7))

are independent of the size and depth of C and at most L - poly(X). Thus, |cty c| is independent of

the size and depth of C and at most L - poly(\). O

6.2 Security

Theorem 10. The proposed ABKFHE scheme Ilagkrne satisfies the selective KH-CCA security if
the underlying MFHE scheme Ilypne satisfies the IND-CPA security, DABE scheme Ilpagg satisfies
the selective IND-CPA security and the second-level adaptive OW-CPA security, and OTS scheme
IoTs satisfies the strong EUF-CMA security.

We extend the intuition of Iljgkpqe explained in Section 1.3.2 and prove The-
orem 10 by wusing a sequence of games Gameg,---,Gamey. Let KFHE.ct* =
(vk*,MFHE.pk*,DABE.ct?x*7O)’Vk*,MFHE.ct*,U*) denote a challenge ciphertext. We can prove
Theorem 3 when MFHE.ct* which is an encryption of p;, becomes indistinguishable from an
encryption of a random string based on the IND-CPA security of Ilyrye in Gamey. To prove the
task, we change DABE.ct’((m*7O)7Vk* which is an encryption of MFHE.sk* to be an encryption of a
random string in Game,, where the selective IND-CPA security of IIpage ensures Games =, Gamey.
For this purpose, we have to ensure that the challenger C does not use DABE secret keys
DABE.sk(y,0) and DABE.sk, o)k such that f(z*,y) = 1 to answer all the adversary A’s queries.
Observe that DABE.sk(, ) such that f(z*,y) = 0 (resp. DABE.sk(, ) suffice to answer A’s
decryption key reveal queries (resp. homomorphic evaluation key reveal queries). In other words,
what all we have to ensure is that A does not make decryption queries on pre-evaluated ciphertexts
cty = (vk, - --) such that vk = vk* and evaluated ciphertexts ctx ¢ = ((vk®, .. “)eer)s -+ +) such that

vk* € (vk(e))gem. We can prove the claim for pre-evaluated ciphertexts in Game; by following
the CHK transformation [CHKO04]. In particular, the strong EUF-CMA security of IlpTs ensures
Gamey =, Game;. We prove the claim for evaluated ciphertexts in Gamesg by showing that the
second-level adaptive OW-CPA security of IIpage ensures Games ~. Games since A cannot create
valid DABE secret keys DABE.sk(, 1) i such that f(z*,y) = 1. For this purpose, we have to ensure
that C does not use DABE secret keys DABE.sk(, ;) and DABE.sk(, 1) such that f(z*,y) =1 to
answer all the adversary A’s queries. Observe that DABE.sk(, o) (resp. DABE.sk, ;) such that
f(x*,y) = 0) suffice to answer A’s decryption key reveal queries (resp. homomorphic evaluation
key reveal queries). However, C may create DABE.sk(, 1) such that f(z*,y) = 1 to answer A’s
evaluation queries. Let ct)<:7>C = (---,vk® ...} denote i-th answer to A’s evaluation queries. We
show that A cannot make a decryption query on an evaluated ciphertext ctx c = (---,vk,---) such
that vk € (Vk(i>)i€[QEval]’ where Qgya denotes the maximum number of A’s evaluation queries and
the strong Qgyva-EUF-CMA security of IlgTs and ensures Game; ~. Games. Then, we can conclude
that A cannot create valid DABE secret keys DABE.sk(, 1)k such that f(z*,y) = 1.

Proof of Theorem 10. We prove the theorem by using a sequence of games Gamey, - - - , Gamey.
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Gameg. This is the selective KH-CCA security game between the challenger C and the adversary A.
Hereafter, let

cth. = (vk*, MFHE.pk*, DABE.ct,. ;) 4, MFHE.ct*, %)

denote a challenge ciphertext, where DABE.ct?x* 0)vk* and MFHE.ct* are encryptions of
MFHE.sk* and pf;,, respectively. Due to the definition of the selective KH-CCA security
game, C stores the challenge ciphertext ct}. and its evaluation results in the list L.

Game;. This is the same as Gamey except that upon A’s evaluation queries and decryp-
tion queries on pre-evaluated ciphertexts. Upon A’s evaluation queries on (y, (ct(i)@) =
€T

(vk®, ... ,U(z)))ge[L},C) such that vk* € (vk(g))ZG[L} Acthe ¢ (ct;@))ge[L], C always outputs
1. Upon A’s decryption queries on (y,ct, = (vk,---,0)) such that vk = vk*, C always
outputs 1.

The output is not L only if o(® and o are valid signatures accepted by vk*. The strong
EUF-CMA security of IlgTs ensures that 4 cannot forge a signature o® or o. Thus, Game; ~,
Game;y holds.

Lemma 10 (Gamegy ~. Gamey). If IloTs satisfies the strong EUF-CMA security, Gamey and Game;
are computationally indistinguishable for any PPT A.

Proof of Lemma 10. Let F; denote an event that 4 makes an evaluation query on (y, (ctg()e) =

(vk®, MFHE.pk(®, DABE.ctE?(Z) ®” MFHE.ct®), 0()) (1), C) such that

vk € (vk@)pep) Actie ¢ (D)) e

4
Y~ OTS.Ver(vk®, (vk©@, MFHE.pk(, DABE.ctEx{&’O)NkW
Le[L]

MFHE.ct), o) = L
or a decryption query on a pre-evaluated ciphertext ct, =
(vk, MFHE.pk, DABE.ct(, ¢ vk, MFHE.ct, o) such that

vk = vk* A ct, # cth. A OTS.Ver(vk, (vk, MFHE.pk, DABE.ct(, o) s, MFHE.ct), o) = 1.

4
I Y e OTS.Ver(vk(f),(vk(f),MFHE.pk(E),DABE.ctEI)(Z)VO)Nk([),MFHE.ct(Z)),a(f)) < L holds upon

A’s evaluation query, there is an invalid pre-evaluated ciphertext in (ctg(ﬁ)e))gem and the design
of IIagkrHE ensures that an answer to the query is L. If ct, = ct}. holds upon A’s decryption
query, the definition of the selective KH-CCA security ensures that an answer to the query is L.
If OTS.Ver(vk*, (vk*, MFHE.pk, IBE.ct,x, MFHE.ct),o) = 0 holds upon A’s decryption query, the
pre-evaluated ciphertext KFHE.ct is invalid and the design of Ilxrye ensures that an answer to
the query is L. Thus, Gamey = Game; holds if F; does not occur. Therefore, it holds that
PI‘[E()] < Pr[El] + PI"[Fl]

We construct a reduction algorithm 3; which interacts with A against IIagkrue and breaks
the strong EUF-CMA security of Ilgts. After By receives vk* from C in the strong EUF-CMA
security game of IlgTs, it runs MFHE.pp < MFHE.Setup(1}) and (DABE.mpk, DABE.msk) <«
DABE.Setup(1*), and sends mpk = (MFHE.pp, DABE.mpk, IIoTs) to A. Since B; knows msk =
DABE.msk, it can properly answer all A’s secret key reveal queries, homomorphic evaluation key
reveal queries, evaluation queries, and decryption queries on evaluated ciphertexts.
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Upon A’s challenge query on (uf,pj), Bi samples coin  <pgr {0,1}, runs
(MFHE.pk*, MFHE.sk*) «  MFHE.KGen(1}), MFHE.ct* <+«  MFHE.Enc(MFHE.pk*, 1. ),
and DABE.ctf . ; - ¢ DABE.Enc(((z*,0),vk*), MFHE.sk*), makes a sign query on (vk*,
MFHE.pk*, DABE.ct” MFHE.ct*) to C and receives o*, and sends ctf. = (vk*, MFHE.pk*,

(z*,0),vk*”
DABE.ctfx* 0wk MFHE.ct*, o*) to A.

Upon A’s evaluation query on (y, (ctié()(g))ge[L],C), Bi can check whether Fy occurs. If

> veqr) OTS.Ver(vk®), (vk©, MFHE.pk(®), DABE.ct"” MFHE.ct®), o)) < L holds, B; sends

(x(9,0),vk(®)’
1 to A due to the design of Ilagkrue. If (vk* ¢ (vk(e))gem Vocth, € (ctg()@)gem) A

ez OTS.Ver(vk®, (vk(© MFHE.pk(®, DABE.ctE?M) k®” MFHE.ct®), 0®) = L holds, B, sends

the result of Eval(mpk, DABE(DABE.msk, (y,l)),(ctg()a)ge[,;],C) to A. Upon A’s decryption
query on a pre-evaluated ciphertexts ct,, B can check whether F; occurs. If ct, =
cty« vV OTS.Ver(vk, (vk, MFHE.pk, DABE.ct(; o) vk, MFHE.ct),0) = 0 holds, By sends L to A
due to the definition of the selective KH-CCA security and the design of Ilagkpue. If
vk # vk* A cty # cti. A OTS.Ver(vk, (vk, MFHE.pk, DABE.ct(, o) \k;, MFHE.ct),0) = 1 holds,
B sends the result of Dec(mpk, DABE.KGen(DABEmsk, (y,0)),cty) to A.  Otherwise, if Fj
occurs, Bj knows ct, = (vk, MFHE.pk, DABE.ct(, o), MFHE.ct,o) such that vk = vk* A
cty # cti. A OTS.Ver(vk, (vk, MFHE.pk, DABE.ct(, o) vk, MFHE.ct),0) = 1. Then, By sends ((vk,
MFHE.pk, DABE.ct(, o) vk, MFHE.ct),0) to C as a pair of a message and a forged signature.
Since the condition ct, # ctj. ensures that ((vk, MFHE.pk, DABE.ct(, ¢k, MFHE.ct),o) is not
a pair of a queried message and a returned signature, while the condition OTS.Ver(vk, (vk,
MFHE.pk, DABE.ct(; gy vk, MFHE.ct), o) = 1 ensures that o is a valid signature of a message (vk,
MFHE.pk, DABE.ct(, o) vk, MFHE.ct), By breaks the strong EUF-CMA security of Ilots with proba-
bility 1 if F} occurs. Therefore, it holds that

Pr[Eo] < Pr[E1] + Advir B (V).

O]

Gamey. Let Qgya denote the maximum number of A’s evaluation queries on (y, (ctf()e))ge[L],C)
such that f(z*,y) = 1 and ctf?c = (---, vk ...) denote i-th answer to them. This is the
same as Game; except that upon A’s decryption queries on evaluated ciphertexts ctyc =
(+++,vk,--- o) such that vk € {Vk<z>}i€[QEval] Nctxc ¢ {Ct$,>c}i€[QEva|}7 C always outputs L.

The output is not L only if ¢ is a valid signature accepted by some {Vk<i>}i€[QEval]' The
strong Qgya-EUF-CMA security of IlgTs ensures that A cannot forge a signature o. Thus,
Game; ~. Gamey holds.

Lemma 11 (Game; ~. Gamey). If lloTs satisfies the strong Qgyal-EUF-CMA security, Game;
and Games are computationally indistinguishable for any PPT A making at most Qgyal evaluation
queries on (y, (ctg(f()[))gem, C) such that f(x*,y) = 1.

Proof of Lemma 11. Let F» denote an event that A makes a decryption query on an evaluated ci-

phertext cty c = ((vk, MFHE.pk(®), DABE.ct" )ee(]s MFHE.ctc, vk, DABE.sk(, 1) yk; o) such

(z(®,0),vk()
that

vk € {Vk<i>}’i€[QEval] Actxc ¢ {Ct)<(i,>c}i€[QEval]/\
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OTS.Ver(vk, ((vk®, MFHE.pk®, DABE.ct")

(i 0.0y )€1}y MFHE ctc, vk, DABE.sk(y 1) ), 0) = 1.

J4
If OTS.Ver(vk,((vk(ﬁ),MFHE.pk“),DABE.ctEw)(E)’O),Vk(Z))KE[L],MFHE.ctc,vk, DABE.sk(, 1)), ) = 0

holds, the evaluated ciphertext is invalid and the design of IIagkFHe ensures that an answer to
the query is L. Thus, Game; = Gamey holds if F5 does not occur. Therefore, it holds that
Pl"[El] < PI“[EQ] + PI‘[FQ]

We construct a reduction algorithm Bs which interacts with A against IIagkrne and breaks the
strong Qgyal-EUF-CMA security of IlgTs. After Bs receives * from A, B receives {vk<i> }ie[Qry) from
C. Then, it runs MFHE.pp < MFHE.Setup(1*) and (DABE.mpk, DABE.msk) < DABE.Setup(1*),
and sends mpk = (MFHE.pp, DABE.mpk, IIots) to A. Since B; knows msk = DABE.msk, it can
properly answer all A’s secret key reveal queries, homomorphic evaluation key reveal queries, eval-
uation queries on (y, (ctg()g) )eeir), C) such that f(z*,y) = 0, and decryption queries on pre-evaluated
ciphertexts. Bs answers the challenge query in the same way as in Game;.

Upon A’s i-th evaluation query on (y, (thf()a)ge[L], C) such that f(z*,y) =
1, By s MFHEct! <  MFHEEval((MFHE.pk®, MFHE.ct®),c;;,C)  and

DABE.sk'” « DABE.KGen(DABE.sk(,1), (v, 1), vk™)), makes a sign query on (i, ((vk®),

(y,1) vk
¢ ® (i) )
MFHE.pk®, DABE.ct(x(e)7o)7vk(l))gem, MFHE(.;)tC ,DABEsk "'

sends ct{e = ((vk(é),MFHE.pk“),DABE.ct(m([)70)7vk(e))EE[L],MFHE.ctg>,vk<i>,DABE.skéZl)Nk(i)aU@»
to A.

Upon A’s decryption query on an evaluated ciphertexts cty c, B can check whether F, occurs.

Y4
If OTS.Ver(vk,((vk(e),MFHE.pk(Z),DABE.ctEx)M)’O)’Vk(Z))ZE[L],MFHE.ctc,vk, DABE.sk(, 1)), ) = 0

holds, Bz sends L to A due to the design of Iapkrue. If (vk ¢ {Vk<i>}i€[QEval] Vi ctyc €

{etlchicigea) A OTS.Ver(vk, ((vk), MFHE.pk, DABE.ct,}, | . (s )ecir), MFHE.ctc, vk,

DABE.sk(y,1),k), ) = 1, By sends the result of Dec(mpk, DABE.KGen(DABEmsk, (y,0)), ct;) to A.

Otherwise, if Fy occurs, By knows cty c = ((vk©, MFHE.pk(®, DABE.ct!” )ee(z)s MFHE.ctc,

(«(),0),vk®) 4
vk, DABE.sk(, 1wk, 0) such that vk € {vk¥}cou A ctec ¢ {Ct)@c}ie[QEvad A

OTS.Ver(vk, ((vk®, MFHE.pk®, DABE.ct") Jeeir], MFHE ctc, vk, DABE.sk(y 1)), 0) = 1.

(m(‘z),O),vk(z)
Then, B, sends (((vk®, MFHE.pk® DABE.ct"” )ee(r)s MFHE.ctc, vk, DABE.sk(, 1) vk ), )

(z(9,0),vk()
to C as a pair of a message and a forged signature. Since the condition ctyc ¢
{ctichicigea) cnsures that ((vk, MFHE.pk, DABE.ct(; o) MFHE.ct),0) is mot a pair of
a queried message and a returned signature, while the condition vk & {Vk<z>}i€[QEva|} A

OTS.Ver(vk, ((vk®, MFHE.pk(®, DABE.ct") )ee(z]» MFHE.ctc, vk, DABE.sk(, 1) k), 0) = 1 en-
@ )eerr), MFHE.ctc,

(2(9,0),vk(®)
sures that o is a valid signature of a message ((vk(z), MFH E.pk(g), DABE.ct(N) 0)k®

vk, DABE.sk(yJ),Vk), By breaks the strong Qgya-EUF-CMA security of IlpTg with probability 1 if F5
occurs. Therefore, it holds that

Pr[Ey] < Pr[Bp] + Advygee BIFMA(Y).

@) to C and receives o, and

O

Games. This is the same as Games except that upon A’s decryption queries on evaluated ciphertexts
Ctx,c = ((vk(e), “)eeqr]s -+, DABE.SK(y.1yvk, - - ) such that f(z*,y) = LAVK® € {Vk(z)}ge[L], C
always outputs L.
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The output is not L only if DABE.sk(, 1)k is a valid DABE secret key. The definition of
the selective KH-CCA security ensures that 4 does not make a homomorphic evaluation key
reveal query on y such that f(z*,y) = 1 if it can make decryption queries. The second-level
adaptive OW-CPA security of IIpage ensures that A cannot create a valid DABE secret key.
Thus, Games ~. Games holds.

Lemma 12 (Gamey ~, Games). If llpage satisfies the second-level adaptive OW-CPA security,
Game; and Gamey are computationally indistinguishable for any PPT A.

Proof of Lemma 12. As in Games, let Qgya denote the maximum number of A’s evaluation queries
on (y, (ct;@))gem, C) such that f(z*,y) =1 and ctf?C = (---,vk®,...) denote i-th answer to them
Let F3 denote an event that .4 makes a decryption query on an evaluated ciphertext ctyx c = ((vk(z),

MFHE.pk(®, DABE.ctEi)(Z) )@ )€1 MPHE.ctc, vk, DABE.sk(y,1) v, o) such that

Fa*,y) = 1AVK € {vk O} ez A (vk & {vk @ iciopa) V Ctxc € (et iciaea]) A Ctxc & £

and DABE.sk, 1) is a valid DABE secret key. If vk € {Vk<i>}i€[QEval] A ctyc ¢ {Ct><:,>c}i€[QEval]
holds, an answer to the query is L as we modified in Gamey. If cty ¢ € £ holds, an answer to the
query is L due to the definition of the selective KH-CCA security. If DABE.sk, 1)k is an invalid
DABE secret key, the evaluated ciphertext is invalid and and the design of Ilagkrye ensures that
an answer to the query is L. Thus, Games = Games holds if F3 does not occur. Therefore, it
holds that Pr[FEs] < Pr[Es] 4+ Pr[F;]. We call A’s decryption query a critical decryption query if
F3 occurs. Hereafter, let ctyc = (--- ,\H(, DABE.sk(yJ)’VAk, --+) denote an evaluated ciphertext on
which A makes a critical decryption query.

We construct a reduction algorithm B3 which interacts with A against IIagkrne and breaks the
second-level adaptive OW-CPA security of IIpage. After Bs receives z* from A, it declares (z*,1)
to C and receives DABE.mpk. Then, it runs MFHE.pp < MFHE.Setup(1*), chooses a one-time
signature scheme IlgTs, and sends mpk = (MFHE.pp, DABE.mpk, IIo7s) to \A. Upon A’s decryption
key reveal query (resp. homomorphic evaluation key reveal query) on y, B3 makes a DABE secret
key reveal query on (y,0) (resp. (y,1)) to C and receives DABE.sk, o) (resp. DABE.sk, 1)), and
sends it to A. Upon A’s decryption query on a pre-evaluated ciphertext (y, ct;), B3 makes a DABE
secret key reveal query on (y,0) to C and receives DABE.sk(, 0y, and answers in the same way as in
Gamey. B3 answers A’s challenge query in the same way as in Games.

Upon A’s evaluation query on (y, (Cti?@ = (vk(z), MFHE.pk(® DABE'CtEf:)(l),O),vk“)’ MFHE.ct®,

0(5)))56[,:},(:), Bs sends L to A if vk* € (Vk(ﬁ))ge[L] Aty ¢ (Ctgﬁ)@))ge[L] holds as we modified
in Game;. Otherwise, B3 runs MFHE.ctc + MFHE.Eval((MFHE.pk), MFHE.ct) (), C) and
(vk, sigk) <~ OTS.KGen(1%), makes a DABE secret key reveal query on ((y, 1), vk) to C and receives
DABE sk, 1) vk, further runs o « Sign(sigk, ((vk”), MFHE.pk(®), DABE.ct"" )eer)s MFHE.ctc,

(x(e),()),vk([)
¢
DABE.sk(, 1)u)), and sends ctyc = ((vk®, MFHE.pk®, DABE.ctEx)M)’O)’Vk(L,))gem, MFHE.ctc,
vk, DABE.sk(, 1) vk, ) to A.
Upon A’s decryption query on an evaluated ciphertext (y,ctxc), Bs can check whether Fj

occurs. If vk € {Vk<i>}i€[QEval] Actxc ¢ {Ct)<:,>c}i€[QEval] holds, B3 sends L to A as we modified in
Gamey. Bs also sends L to A if ctyc € £ holds due to the definition of the selective KH-CCA
security. If DABE.sk(, 1)k is an invalid DABE secret key, B sends L to A due to the design of

Hagkrne. If f(2*,y) = 0Vvk* ¢ {vk®},c(z) holds and DABE.sk(, 1) v is a valid DABE secret key, Bs
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makes a DABE secret key reveal query on (y,0) and receives DABE.sk(, ¢y, then sends the result of
Dec(mpk, dky = DABE.sk(yVO), ctxyc) to A. Otherwise, if F3 occurs, B3 knows a valid DABE secret key
DABE. sk( 1)k Then, B3 makes a DABE challenge query on vk to C and receives the DABE challenge
ciphertext DABE. ct’(* DR sends the result of DABE.Dec(DABE. sk, 1)k , DABE. ctz‘ « 1)k ) to C. If
F5 occurs, f(z*,y) = 1 holds. Thus, Bs can break the second-level adaptive OW-CPA security with
overwhelming probability if B never makes a DABE secret key reveal query on (y,1) or ((y, 1), vk)
such that f(z*,y) = 1. Although B3 makes a DABE secret key reveal query on (y,1) upon A’s
homomorphic evaluation key reveal query on y, it holds that f(z*,y) = 0 since the definition of the
selective KH-CCA security ensures that A cannot make decryption queries after .A4’s homomorphic
evaluation key reveal query on y such that f(z*,y) = 1.

What only we have to check is that Bs does not make a DABE secret key reveal
query on ((y,1), \ﬁ() such that f(z*,y) = 1 upon A’s evaluation queries. Observe that
F3 occurs when A makes a critical decryption query on an evaluated ciphertext ctyc =

(kO Ygery -+ vk, DABEsk 1) q.-++) such that f(z*y) = 1A vK" € {vkO}e) A (vk ¢
(k@i i0e] V Ctxc € (et hiciona)) A Ctxc & £ and DABE.sk(, 1 vk is a valid DABE secret key.

Moreover, By makes DABE secret key reveal queries on ((y,1),vk®) for i € [Qgyal] upon A’s evalu-

e . ‘
ation query on (y, (ct(&) (vk(® . “)ee(r), C) only if vk* ¢ (vk(e))ge[L] Vtr € (Ct;()é>)ge[[/] holds. If

A’s critical decryption query satisfies vk ¢ {Vk<i>}ie[nga|}a B3 does not make a DABE secret key reveal
query on ((y,1), \ﬁ() Hereafter, we focus on the other case that A’s critical decryption query satis-
fies f(x*,y) = 1AVK* € {vk’ }Ee[L] Actxc € {ctx c}ze (Qevar] /\ Ctx,c & £ and DABE.sk(, 1 vk is a valid

DABE secret key. If A’s critical decryption query satisfies vk* € {vk¢ )}ge Acty c € {ctx c}ze (Qeval]
A has made an evaluation query on (y, (ct;&) = (vk®, .. “)eelr)> C) such that vk* € (vk(£ ))gem. Nev-

ertheless, the evaluation query has to satisfy ct}. € (ctg()é))ge[ 1]; in other words, the answer to the
evaluation query has to satisfy cty ¢ € £. Since F3 never happens in this case, we can conclude that
B3 does not make a DABE secret key reveal query on ((y, 1), \ﬁ<) such that f(z*,y) = 1. Therefore,
it holds that

Pr[Es] < Pr[Es] + AdvOW-CP2 (\) + negl()).

page,B3

O

Gamey. This is the same as Games except that DABE.ctfx* 0) vk* is an encryption of a random string

sampled independently from MFHE.sk*.

The selective IND-CPA security of the Ilpagg ensures that Games ~. Gamey holds. In
short, the reduction algorithm runs (vk*,sigk*) + OTS.KGen(1*) at the beginning of the
security game. After A declares the challenge attribute x* in the selective KH-CCA se-
curity game, the reduction algorithm declares (z*,0,vk*) as the challenge ciphertext at-
tribute of DABE security game. In the challenge phase, the reduction algorithm runs
(MFHE.pk*, MFHE.sk*) <— MFHE.KGen(1%), samples a random string z* whose length is the
same as MFHE.sk* but the distribution is independent of MFHE.sk*. Then, the reduction
algorithm declares (MFHE.sk*, u*) as the challenge messages in the DABE security game
and receives the challenge ciphertext DABE. ct( - 0.vk*) from the DABE challenger. The re-
duction algorithm can create the other elements of the challenge ciphertext by itself. Due
to the modifications in Game;, Games, and Games, the reduction algorithm can answer all
A’s queries by making DABE secret key reveal queries on (y,b) or ((v,b),vk) such that
flx*,y) =0V b=1Vvk#vk*. Thus, it holds that Games ~. Game,.
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Lemma 13 (Games =~. Gamey). If llpage satisfies the selective IND-CPA security, Games and
Gamey are computationally indistinguishable for any PPT A.

Proof of Lemma 13. We construct a reduction algorithm B4 which interacts with A against IIagkFHE
and breaks the selective IND-CPA security of Ilpage. At the beginning of the game, Bj runs
(vk*,sigk*) +— OTS.KGen(1%). After B, receives x* from A, it declares ((z*,0),vk*) to C and receives
DABE.mpk. Then, it runs MFHE.pp + MFHE.Setup(1%), chooses a one-time signature scheme IloTs,
and sends mpk = (MFHE.pp, DABE.mpk, IloTs) to A. Upon A’s decryption key reveal query (resp.
homomorphic evaluation key reveal query) on y, 34 makes a DABE secret key reveal query on (y,0)
(resp. (y,1)) to C and receives DABE.sk(, o) (resp. DABE.sk, 1)), and sends it to .A. Upon A’s

evaluation query on (y, (ct:(f()@) teir), ©), By makes a DABE secret key reveal query on (y,1) to C and

receives DABE.sk(, 1), then sends the result of Eval(mpk, hk, = DABE.sk(, 1), (ctie()[))gem, C) to A.
Upon A’s decryption query on a pre-evaluated ciphertext (y,ct; = (vk, MFHE.pk,
DABE.ct(; 0y vk, MFHE.ct, o)), By sends L to A if vk = vk* holds as we modified in Game;.
By also sends L to A if OTS.Ver(vk, (vk, MFHE.pk, DABE.ct(, o)k, MFHE.ct),o) holds due
to the definition of the selective KH-CCA security. Otherwise, By makes a DABE secret
key reveal query on ((y,0),vk) to C and receives DABE.sk(, o).k, then sends the result of
MFHE.Dec(DABE.Dec(DABE sk, o) vk; DABE.ct(; 0y k), MFHE.ct) to A. Upon A’s decryption query

on an evaluated ciphertext (y,ctxc = ((vk(z),MFHE.pk(Z),DABE.ctE?(E)’O)Nkm)EE[L],MFHE.ctC,
vk, DABE sk, 1) vk, 7)), Ba sends L to A if f(z*,y) = 1 Avk® € {vk(e)}gem holds as we mod-
ified in Games. Bz also sends L to A if ctyc € £ holds due to the definition of the selec-
tive KH-CCA security. Bj also sends L to A if DABE.sk, 1)k is an invalid DABE secret key

J4
or OTS.Ver(vk, ((vk®, MFHE.pk®, DABE.ctEx)(Z)vo)’vk([))gem, MFHE.ctc, vk, DABE.sk(, 1)), 0) = 0

holds due to the design of Ilagkrue. Otherwise, B4 makes DABE secret key reveal queries
on ((y,0),vk®¥) to C and receives DABE.sk oyuk(o for £ € [L], then sends the result of
sei], DABE.ct'”)

L
MFHE.Dec((DABE Dec(DABE sk , o ) (o) ie®): MFHE.t) t0 A,

Upon A’s challenge query on (uf,p)), Bs samples coin  <pr  {0,1}, runs
(MFHE.pk*, MFHE.sk*) <« MFHE.KGen(1*) and MFHE.ct* < MFHE.Enc(MFHE.pk*, iz, ),
makes a DABE challenge query on (MFHE.sk*,u*) to C, where p* is a random string
with the same length as MFHE.sk*, receives DABE.ct? *

(v,

further runs o —

(z*,0),vk*>
Sign(sigk™, (vk*, MFHE.pk*, DABE’Ct?z*,O),vk*’ MFHE.ct*)), and sends ctf. = (vk*,MFHE.pk*,
DABE.ct?x* 0) wk* MFHE.ct*, 0*) to A. After By receives coin from A, By sends 0 to C if coin = coin

and 1 to C otherwise.

Although B4 makes a DABE secret key reveal queries on (y,0) to C upon A’s decryption key
reveal query on y, the definition of the selective KH-CCA security ensures that f(z*,y) = 0. Al-
though B4 makes a DABE secret key reveal queries on ((y,0),vk) to C upon A’s decryption query
on a pre-evaluated ciphertext (y,ct, = (vk,---)), the modification in Game; ensures that vk # vk*.
Although B; makes DABE secret key reveal queries on ((y,O),vk(g))gE[L] to C upon A’s decryp-
tion query on an evaluated ciphertext (y,ctxc = ((vk®, .. )eelr), -+ ), the modification in Game;
ensures that f(z*,y) = 0V vk # vk*. Thus, it holds that

| Pr[Es] — Pr[Eq]| < AdviiD-CPR (N).

O]

Lemma 14 (Selective KH-CCA Security in Gamey). If Ilvene satisfies the IND-CPA security,
IIagkFHE satisfies the selective KH-CCA security in Gamey.
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Proof of Lemma 1. We construct a reduction algorithm Bs which interacts with A against IIagkrHE
and breaks the IND-CPA security of ITygyg. After By receives (MFHE.pp, MFHE.pk*) from C, it runs
(DABE.mpk, DABE.msk) <~ DABE.Setup(1%), chooses a one-time signature scheme IlgTs, and sends
mpk = (MFHE.pp, DABE.mpk, IIgTs) to A. Since Bs knows DABE.msk, it can properly answer all
A’s decryption key reveal queries, homomorphic evaluation key reveal queries, evaluation queries,
and decryption queries.

Upon A’s challenge query on (u},py), Bs samples coin <pr {0,1} and pu* <«pr M,
makes a MFHE challenge query on the same (uf,p]) to C and receives MFHE.ct*, runs
(vk*,sigk*) < OTS.KGen(1?), DABE.ctf,. g 4« ¢ DABE.Enc(((z*,0),vk"), "), and o* <
Sign(sigk™, (vk*, MFHE.pk*, DABE.ctz‘x*70)7vk*, MFHE.ct*)), then sends ctf. = (vk*, MFHE.pk*,
DABE.ct?m*7O)’Vk*, MFHE.ct*, 0*) to A. After Bs receives coin from A, Bs sends the same coin to C.

If MFHE.ct* is an encryption of puf (resp. p}), ctl. is also an encryption of uf (resp. uf).
Therefore, it holds that

1
Pr[E,] — 2‘ < AdviND-CPR ().

mene.Bs
O
We complete the proof of Theorem 3 since it holds that
AdViT e AV
1
= PI'[EO] — 2’
1
< Z |Pr[E;_1] — Pr[E;]| + |Pr[Ey] — 2‘
1€[4]
. val-EUF-CMA . : -
< Advio B + Advgfﬁ;&, (A) + AdvCPR (M) + AdviiD SR (X) + AdviiiD-CPR ().
O

7 Emura et al.’s KHPKE Scheme under the Matrix DDH Assump-
tion

In this section, we provide a simpler proof of Emura et al.’s KHPKE scheme IIxypke [EHNT18] if
it is instantiated under the matrix DDH assumption. In Section 7.1, we review cyclic groups and
the matrix DDH assumption. In Section 7.2, we review Emura et al.’s KHPKE scheme instantiated
under the matrix DDH assumption. In Section 7.3, we prove the KH-CCA security.

7.1 Cyclic Groups

Let é be a cyclic group generator that takes the security parameter 1* as input, and outputs
(p, G, g), where p is a ©(\)-bit prime number, G is a cyclic group of order p, and g is a generator
of G. For simplicity, let Q\(l/\) = (p, G, g) denote the output of G\(l)‘). Let 1g denote an identity
clement of G. For a € Z, and a = (a1,...,aq) € Z2, let [a] == g* € Gy and [a] == ([a1], ..., [aq]) €
G¢. We use the same notation for a matrix [A]. Let Dy be an efficiently sampleable matrix
distribution [EHK*17] that outputs (A,a't) € Zﬁ,kJrl)Xk x ZET1 such that AT -at = 0 and a* # 0.

We use the following matrix DDH assumption to prove the KH-CCA security of Emura et al.’s
KHPKE scheme IlkHpkE-
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Definition 24 (Matrix DDH Assumption). For a cyclic group é\(l’\) = (p,G,g), an advantage for
solving the matrix DDH problem by an algorithm A is defined to be

AdvPPHE (3} = [Py {A@OA), [A],[As]) — 1} —Pr [A(@(ﬁ), [A], [v]) — 1] ‘ ;

where (A,at) < Dy, s <p Z’;, and v <p Z’;H. We say that the matrix DDH assumption holds
if it is negligible for all PPT A.
7.2 Scheme

We describe Emura et al.’s KHPKE scheme [EHNT 18] Ilxppke instantiated under the matrix DDH
assumption.

KHPKE.KGen(1*) — (KHPKE.pk, KHPKE.dk, KHPKE.hk). Run (p,G,g) ¢+ §(1A) and choose a
collision-resistant hash function H <x H, where H : {0,1}* — Z,. Sample (A,at) < Dy
and random vectors (u,),c[0,3] <R Z’;“, then output

KHPKE.pk = (G(1%). [A], (AT w]),ci0.9. H)
KHPKE.dk := (u,),¢[0,3, and KHPKE.hk := (u,),e[2)-

KHPKE.Enc(KHPKE.pk, 1) — KHPKE.ct. Sample s <p Z’; and output KHPKE.ct =
(KHPKE.cty, KHPKE.ct,,, KHPKE.7, KHPKE.7');
KHPKE.cty = [As],  KHPKE.ct, =pu-[s"ATuy] KHPKEzx=[s'AT(u;+h- uy)],
KHPKE.7' = [s" ATus),

where h = H(KHPKE.cty, KHPKE.ct,, KHPKE.7').

KHPKE.Eval(KHPKE.pk, KHPKE.hk, (KHPKE.ct®)) 1)) — KHPKE.ct/ L. Parse KHPKE.hk =

(,),cy) and KHPKE.ct®) = (KHPKE.ct)” = [c()], KHPKE.ct}), KHPKE.7(), KHPKE.«x'(")).
Output L if there is some ¢ € [L] which does not satisfy

KHPKE.7® = [(c!)T - (u; + 1 - uy)], (5)
where A = H(KHPKE.ct”, KHPKE.ct'), KHPKE.7/"¥). Otherwise,  run

KHPKE.ct(® — KHPKE.Enc(KHPKE.pk,1g) and  output KHPKE.ct =
(KHPKE.ct, KHPKE.ct,,, KHPKE.7, KHPKE.7);

KHPKE.cty = H KHPKE.ct!’, KHPKE.ct,, = H KHPKE.ct !,

£€[0,L] L€(0,L]
KHPKE.m = [c” - (u1 + /- up)],  KHPKEx' = ] KHPKEx'",
£€[0,L]

where KHPKE.cty = [c] and h = H(KHPKE.ctg, KHPKE.ct,, KHPKE.7').

KHPKE.Dec(KHPKE.pk, KHPKE.dk, KHPKE.ct) — u/ L. Parse KHPKE.dk = (uL)Le[O”g} and
KHPKE.ct = (KHPKE.cty = [c], KHPKE.ct,, KHPKE.7, KHPKE.7’). Output L if KHPKE.ct
does not simultaneously satisfy the condition (5) and

KHPKE.7' = [¢"u3]. (6)

Otherwise, output KHPKE.ct,/[c o).
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7.3 Security

In this section, we prove that Emura et al.’s KHPKE scheme Ixypke [EHNT 18] instantiated under
the matrix DDH assumption satisfies the KH-CCA security.

Theorem 11. Ilkypke satisfies the KH-CCA security under the matrix DDH assumption.

We provide a simpler proof than the original paper [EHNT18]. Indeed, although Section 4.3
of [EHN*13], which is an ePrint version of [EHNT 18], which discusses the KH-CCA security takes
15 pages long, Section 7.3 of this paper takes only 6 pages long. We want to claim that we do not
provide an essential improvement on Emura et al.’s proof. We obtain a simpler proof by focusing
on the matrix DDH assumption, while Emura et al. proved the KH-CCA security from a universals
hash proof system [CS02]. However, the refined proof enables us to understand the essence of a
proof of our proposed ABKHE scheme in Section 8.

Although we already explained the intuition of a proof in Section 1.3.3, we provide a more
detailed overview. We call A’s decryption query on KHPKE.ct = (KHPKE.ctg = [c],...) a critical
decryption query if KHPKE.ct satisfies the conditions (5) and (6), KHPKE.ct ¢ £ holds, and ¢ does
not live in the span of A. Let KHPKE.ct* = (KHPKE.ctj, KHPKE.ct},, KHPKE.7*, KHPKE.7'™) de-
note a challenge ciphertext for a message p%;,, where h* = H(KHPKE.ctg, KHPKE.ct;, KHPKE.7'").
Let D denote the number of ciphertexts in £ at the end of the game, where the challenge ciphertext
KHPKE.ct* is the first ciphertext and .4 makes D —1 dependent evaluation queries. Let KHPKE.ctl
= (KHPKE.ct”, KHPKE.ct}), KHPKE.79, KHPKE.7/[) denote d-th ciphertext in £ and treat it as
an encryption of ul4, where KHPKE.ct!!) = KHPKE.ct* and plY = JT

We prove Theorem 11 by using a sequence of games
Gameg, Gamey, Gameg, Gamegs 1, Gamey 1, Games 1, Games o, ..., Games p, Gamey p, where it holds
that Gamey ~. Game; = Game; ~. Gamesz; and Games 1 ~. Gamezyq ~ Gameyy ~. Gamesq
for d € |[D]. Observe that A which is given the challenge ciphertext KHPKE.ct*
= (KHPKE.ctf, KHPKE.ct), KHPKE.7*, KHPKE.7'*)  can randomize it and compute

(KHPKE.ctf, KHPKE.cty,, KHPKE.7"*) such that the decryption result is puf;, by ignoring the
condition (5) and (KHPKE.cty, KHPKE.ct}, KHPKE.7"*) # (KHPKE.ctg,KHPKE.ct;,KHPKE.Tr’*)
holds. If it holds that H(KHPKE.ct(*),KHPKE.ct;,KHPKE.W’*) = h*, a decryption result
of a ciphertext (KHPKE.ctj, KHPKE.cty, KHPKE.7*, KHPKE.7'*) is puZ;, without ignor-

ing the condition (5) and (KHPKE.ctj, KHPKE.cty, KHPKE.7*, KHPKE.7'*) # KHPKE.ct*
holds. Thus, A can break the KH-CCA security by making a decryption query on
(KHPKE.ctf, KHPKE.ct,, KHPKE.m*, KHPKE.7'*).  In Game;, we use the collision resistance
of H and prevent the attack. In Games, we change how to compute KHPKE.ctld for d € [2, D] so
that the distribution of KHPKE.ctl? does not depend on KHPKE.ctl!l, ... KHPKE.ctl®-1. Since
the change is conceptual, Game; and Gamey follow the same distribution from A’s view.

In Gamey, all ciphertexts KHPKE.ctl!l = KHPKE.ct*,..., KHPKE.ct’! € £ depend on
Weoin-  In Games 4, Gamey g, Games g for d € [D], we change distributions of ciphertexts
KHPKE.ct ... KHPKE.ct!?! so that all the ciphertexts KHPKE.ct!Y) ... KHPKE.ct/?! are inde-
pendent of p7 ;.. We can complete the change by following security proofs of CCAl-secure Cramer-
Shoup-lite and the CCA2-secure Cramer-Shoup cryptosystem [CS98].

Proof of Theorem 11. We use the following sequence of games.

Gameg. This is the KH-CCA security game. Hereafter, let KHPKE.ct* =
(KHPKE.ctg, KHPKE.ct},, KHPKE.7*, KHPKE.7*) denote a challenge ciphertext for a
message (5, where h* = H(KHPKE.ctf, KHPKE.ct},, KHPKE.7'™).
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Game;. This is the same as Gamey except that a collision does not occur for a hash function H
among all ciphertexts that appeared in the security game.

The collision resistance of H ensures that Gameg ~. Game; holds.

Gamey. This is the same as Game; except the answers to dependent evaluation queries so that
the distribution of ciphertexts KHPKE.ct!!!l = KHPKE.ct*,...,KHPKE.ct/’! € £ are inde-

pendent. In Gamey, C runs Eval algorithm with inputs KHPKE.ctl!l, ..., KHPKE.ctl¥~1 that
are answers to A’s challenge query and dependent evaluation queries, and creates an eval-
uated ciphertext KHPKE.ctl¥. In Games, upon A’s challe/nt\g_e/query, C runs KHPKE.Enc
algorithm and creates two ciphertexts KHPKE.ct* and KHPKE.ct* in the same way as in
Gamep, sends KHPKE.ct* to A as the challenge ciphertext, and stores both ciphertexts

(KHPKE.ct*, KHPKE.ct*) € L. Upon A’s first dependent evaluation query, C runs KHPKE.Eval
algorithm with inputs KHPKE.ctll in place of KHPKE.ct!!) that is the answer to A’s challenge

query and creates two evaluated ciphertexts KHPKE.ct?l and KHPKE.ctl?] in the same way
as in Gamey, sends KHPKE.ct? to A as the answer to the evaluation query, and stores both

ciphertexts (KHPKE.ctl?l, KHPKE.ct2l) € £. In the same way, upon A’s (d — 1)-th dependent

evaluation query, C runs Eval algorithm with inputs KHPKE.ctll], ..., KHPKE.ctl4~1 in place
of KHPKE.ctlll, ... KHPKE.ctl*~1l that are the answers to A’s challenge query and dependent

evaluation queries, and creates two evaluated ciphertexts KHPKE.ctl and KHPKE.ctl in the
same way as in Gamey, sends KHPKE.ct? to A as the answer to the evaluation query, and

stores both ciphertexts (KHPKE.ct!¥, KHPKE.ctld) € £. In Game; and Game, all ciphertexts
KHPKE.ctl and KHPKE.ctld follow the same distribution for d € [D].
From now on, we change a distribution of d-th ciphertext KHPKE.ctld = (--- ,KHPKE.ct,[iﬂ,

) € L for d € [D] one by one so that KHPKE.ct,[fl] is independent of the other elements of
KHPKE.ctl! and distributed uniformly at random over G. For this purpose, we use the following
sequence of games Games 4, Gamey 4, Games 4 for d € [D], where Games g = Gamey and the proof
terminates in Gamey p.

Gameg 4. This is the same as Games g1 except C’s answer to the challenge query if d = 1 and
a dependent evaluation query if d € [2,D]. If d = 1, C creates the challenge ciphertext
KHPKE.ct* = (KHPKE.ctj, KHPKE.ct),, KHPKE.7*, KHPKE.7"™);

KHPKE.ctj = [c], ~ KHPKE.ct) = i}, -[c'ug]  KHPKE.m* = [c (u1 + h* - up)],
KHPKE.7"* = [cug],

where ¢ < ZET! and h* = H(KHPKE.ct}, KHPKE.ct,, KHPKE.7""). If d € [2, D], C creates
KHPKE.ct®) to compute KHPKE.ct!¥ in the same way as (7) except that Heoin is replaced
with 1g. We note that C creates KHP/K\E/.ct[l], ey KHP/K\Ej:t[D] in the same way as in Games.
We can prove Games 41 ~. Games 4 under the matrix DDH assumption.

Lemma 15 (Games g1 ~. Games 4). If the matrizc DDH assumption holds, Games 41 and Games 4
are computationally indistinguishable for any PPT A.
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Proof of Lemma 15. We show that for any PPT adversary A that breaks the KH-CCA security of
Ilknpke, there exists a reduction algorithm B; that solves the matrix DDH assumption, where

| Pr[Es,4_1] — Pr[Es 4| < Adv;;PD“G(A). (8)

We prove only for d = 1 since proofs for the other cases are essentially the same. B receives
(G(1*),[A], [v]) which is an instance of the matrix DDH problem, where (A, a') « Dy, v = As for
S <R Z]; O V <R Z’;H. B chooses a collision-resistant hash function H < H, samples random
vectors (1,),c[0,3] ¢ R Z';;'“, then sends KHPKE.pk = (G(1%), [A], ([ATuL])LE[O,g],H) to A. Since
By knows (u,),c[0,3), it can answer all A’s homomorphic evaluation key reveal query, decryption
queries, and evaluation queries.

Upon A’s challenge query on (uf, pf), B1 samples coin <—p {0,1} and creates the challenge
ciphertext KHPKE.ct* = (KHPKE.ct5, KHPKE.ct},, KHPKE.7*, KHPKE.7"™);

KHPKE.ctj = [v],  KHPKE.ct} =yl - [v' ug],  KHPKE.7* = [v'(u; +A* )],

* (9)
KHPKE.7"" = [v ' us],

where h* = H(KHPKE.ctj, KHPKE.ct},, KHPKE.7*). The challenge ciphertext KHPKE.ct* is dis-
tributed as in Games (resp. Games ;) if v = As (resp. v <pg Z';H). Thus, the inequality (8)
holds. O

Gamey 4. This is the same as Games g except C’s answer to the challenge query if d = 1 and a

(d — 1)-th dependent evaluation query if d € [2, D] by setting KHPKE.ct,[f] +pr G. Since the

d-th ciphertext KHPKE.ctl¥ € £ becomes independent of Heoin in Gamey 4, A’s advantage in
Gamey p is exactly 0.

Lemma 16 (Games 4 ~ Gamey 4). It holds that
Pr[E3 4] = Pr[Ey 4
with overwhelming probability.

We will prove Lemma 16 at the end of the proof.

Games 4. This is the same as Gamey g except C’s answer to the challenge query if d = 1 and
a dependent evaluation query if d € [2,D]. If d = 1, C creates the challenge ciphertext
KHPKE.ct* = (KHPKE.ctg, KHPKE.ct},, KHPKE.7*, KHPKE.7"*) in the same way as the real
scheme except that KHPKE.ct), «<—r G is unchanged. If d € [2, D], C creates KHPKE.ct(® =

(KHPKE.ct\”), KHPKE.ct?, KHPKE.7(©), KHPKE.7'")) to compute KHPKE.ctl in the same

way as the real scheme except that KHPKE.ctLO) < G is unchanged.

We can prove Gamey 4 ~. Games 4 under the matrix DDH assumption.

Lemma 17 (Gamey 4 =, Games 4). If the matrix DDH assumption holds, Gamey 4 and Games 4 are
computationally indistinguishable for any PPT A.

We can prove Lemma 17 essentially in the same way as Lemma 15. For example, the only
difference for d = 1 is that the reduction algorithm creates the challenge ciphertext in the same
way as (9) except KHPKE.th <pr G if d = 1. Then, the reduction algorithm simulates Gamey 4 if
VR Z’;H and Games g if v = As.
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To conclude the proof of Theorem 11, we prove Lemma 16.

Proof of Lemma 16. We prove only for d = 1 since proofs for the other cases are essentially the same.
For this purpose, we show that even when A is computationally unbounded, Games 4 = Gamey 4
holds with overwhelming probability. For this purpose, we construct a simulator that behaves as C in
Gamey 4 from A’s view. The simulator runs (p, G, g) G(1*) and chooses a collision-resistant hash
function H < H. The simulator samples (A, a') < Dy, random vectors tg, u, uz, uz < g Z’;H,
and random &g <p Zp, then sets ug = ug + apat. Nevertheless, the simulator does not use
uy but Uy to simulate the game except for creating KHPKE.ctl) € £. At first, the simulator
sends KHPKE.pk = (G(1*), [A],[ATd), [ATuy],[ATuy), [ATus], H) to A. KHPKE.pk is properly
distributed since it holds that

[ATHg] = [AT (ug — doat)] = [ATug] - [ATat]"% = [ATuy). (10)

The simulator answers A’s homomorphic evaluation key reveal query and evaluation queries by
using up, up as in Games 4, while it answers A’s decryption queries by using ui, ug, uz and ug. We
will discuss the validity later.

Upon A’s challenge query on (4, 1), the simulator samples coin <—p {0,1} and creates the
challenge ciphertext KHPKE.ct* = (KHPKE.ctg, KHPKE.ct},, KHPKE.7*, KHPKE.7'*) in the same
way as in Games 4;

KHPKE.ctf = [c], KHPKE.ct}, = i - [c g, KHPKE.7* = [c¢' (u; + h* - u)],
KHPKE.7"* = [c¢'u3],

where h* = H(KHPKE.ctf, KHPKE.ct};, KHPKE.7'"). Observe that KHPKE.ct} is the only element
that the simulator uses ug to create and

KHPKECt; = N:oin ’ [CT(ﬁO + dOaJ—)] = M:oin ’ [ Tﬁo] ’ [CTaL}dO

holds. Since [c"al] is a generator of G with overwhelming probability and KHPKE.ct}, is the only
element which depends on o in the security game, KHPKE.ct}; is distributed uniformly at random
over G as in Gamey 4.

Finally, we check that the simulator’s answers to decryption queries are valid although ug # ug
is used. For this purpose, we divide A’s attack strategies into two types called Type-1 and Type-2
which are defined as follows:

e A is called Type-1 if it makes a homomorphic evaluation key reveal query in Phase 1.

e A is called Type-2 if it does not make a homomorphic evaluation key reveal query in Phase
1.

By definition, Type-1 and Type-2 are mutually exclusive and cover all possible strategies of A.
We show that the simulator’s answers against A of Type-1 (resp. Type-2) are valid by following
the proof of the CCAl-secure Cramer-Shoup-lite (resp. CCA2-secure Cramer-Shoup cryptosys-
tem) [CS98].

Case of Type-1. Since A of Type-1 makes a homomorphic evaluation key reveal query in Phase 1,
it is allowed to make decryption queries only in Phase 1. Upon A’s decryption query on KHPKE.ct =
(KHPKE.cty = [¢/], KHPKE.ct,, KHPKE.7, KHPKE.7"), the simulator’s answer is valid when ¢y =
c Tﬁo holds. Thus, the answer is invalid when ¢’ does not live in the span of A and the answer is not
L. In other words, the simulator cannot answer 4’s critical decryption queries validly. When the
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computationally unbounded A receives KHPKE.pk, it can compute U3 such that ATuz = A3,
where uz = U3 + dsa’. If the answer to A’s decryption query is not 1, KHPKE.7' = [C’TU3] holds
due to the condition (6). If ¢’ does not live in the span of A, a computationally unbounded A’s
ability to make a critical decryption query is equivalent to the knowledge of &3 € Z,,. Although A of
Type-1 can learn &3 when it receives the challenge ciphertext KHPKE.ct*, it is not allowed to make
decryption queries in Phase 2. The only way for A to learn &3 is making decryption queries in Phase
1 such that ¢’ does not live in the span of A. Although A can eliminate a candidate of &3 € Z, by
making a decryption query and the answer is |, there are exponentially many candidates and A is
allowed to make only a polynomial number of queries. Thus, the simulator’s answers to decryption
queries are valid with probability 1 — Qpec/q, where Qpec denotes the number of A’s decryption
queries.

Case of Type-2. Since A of Type-2 does not make a homomorphic evaluation key reveal query
in Phase 1, it is allowed to make decryption queries until it makes a homomorphic evaluation
key reveal query in Phase 2. When the computationally unbounded A receives KHPKE.pk, it can
compute U, for ¢ € [2] such that ATu, = AT, where u, = U, + &a'. When the computationally
unbounded A receives the challenge ciphertext KHPKE.ct*, it learns the value of &1 + h* - G2 since
it holds that

KHPKE.7* = [c' (Ti; 4+ Giat) + h* - (Tiz + Geat)] = [c U1 + A" - Ty - [¢ | at]0th"az,

If the answer to A’s decryption query is not L, KHPKE.w = [C’T(ul + h - ug)] holds due to the
condition (5). If ¢’ does not live in the span of A, A learns the value of &1 +h- &z, where the change
in Game; ensures that h # h* holds. Then, a computationally unbounded A’s ability to make a
critical decryption query is equivalent to the knowledge of (&, a2) € Zz. A cannot learn & +h - ao
for any A from answers to dependent evaluation queries since the change in Games ensures that the
discrete logarithm of KHPKE.ct([)d] lives in the span of A. (If d € [2, D], the change in Games 41
is also required to ensure the fact.) Although A of Type-2 can learn «j, s when it makes a
homomorphic evaluation key reveal query in Phase 2, it is not allowed to make decryption queries
after the query. The only way for A to learn (&1, a9) is making decryption queries and evaluation
queries such that ¢’ does not live in the span of A. Although A can eliminate a candidate of & +h-do
for some h by making a decryption query or an evaluation query and the answer is |, there are
exponentially many candidates and A is allowed to make only polynomial number of queries. Thus,
the simulator’s answers to decryption queries are valid with probability 1 — (Qpec + Qeval)/q, where
Qpec (resp. Qpyar) denotes the number of A’s decryption (resp. evaluation) queries. ]

O

8 Pairing-based Construction of ABKHE

In this section, we propose a pairing-based ABKHE scheme IIagkne from a pair encoding scheme
(PES) by combining with an ABE schemes over dual system groups Ilpsg [AC16, AC17, CGW15]
and Emura et al.’s KHPKE scheme Ilxnypke. In Section 8.1, we review bilinear groups and the PES.
In Section 8.2, we provide a construction of ITagkne. In Section 8.3, we prove the adaptive KH-CCA
security.
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8.1 Preliminaries on Pairing-based Cryptography
8.1.1 Bilinear Groups

Let G be a bilinear group generator which takes the security parameter 1* as input, and outputs
(p,G1,Ga,Gr, g1, 92,€), where p is a ©(\)-bit prime number, G1, Gy, and G are cyclic groups of
order p, g1 and go are generators of G; and G, respectively, and e : G; X Go — Gr is an efficiently
computable non-degenerate bilinear map. For simplicity, let G(1*) = (p, G1, Go, G, g1, go, €) de-
note the output of G (1)‘). Let 17 denote an identity element of Gp. As in Section 7.1, we use
the notations [A]1, [A]2, and [A]p for G1,Gs, and Gy, respectively. For matrices A and B of
compatible dimensions, let e([A]1, [B]2) = [ATB]7.

For a matrix distribution D which we explained in Section 7.1, we use the following property.

Lemma 18 (Basis Lemma [CGW15]). For (A,at),(B,b') < Dy, at does not live in the span of
B, b’ does not live in the span of A, and al b # 0 simultaneously hold with probability 1 — 1/p.

We use the following complexity assumptions to prove the adaptive KH-CCA security of the
proposed ABKHE scheme.

Definition 25 (m-fold Matrix DDH Assumption). For bilinear groups G(1) =
(p,G1,Ga,Gr,91,92,€) and a polynomially bounded m, an advantage for solving the m-fold
matric DDH problem over Gy by an algorithm A is defined to be

Adv OO (\) =

)

Pr [A(g(l*), [A]1,[AS])) — 1} _Pr [A(g(ﬂ), [A]1,[V]1) = 1}

where (A,at) < Dy, S <p Zlgxm, and V <pg Z;S)kﬂ)xm. We say that the m-fold matric DDH

assumption over Gy holds if it is negligible for all PPT A. We also define the m-fold matric DDH
assumption over Go.

Remark 8. A 1-fold matriz DDH assumption is the matriz DDH assumption as in Definition 2.
For a polynomially bounded m, the m-fold matrix DDH assumption is computationally equivalent
to the matriz DDH assumption [AC16, EHK' 17].

Definition 26 ((di,d2)-g-ratio Assumption [AC17]). For bilinear groups G(1) =
(p,G1,G2,Gr, g1,92,¢€), let

Uj

9

Dy = ([ui]1)ie[0,d5) Y { { o Do= (il)icgan { [

Ujvk] 1 }i,jE[dz],i#J’,ke[dﬂ ”ﬂ'“’f] 2 }i,je[dﬂ,i#,ke[dz}

where ug, U1, ..., Udy, V1, -, V4 <R L. An advantage for solving the (d1,dg)-g-ratio problem by
an algorithm A is defined to be

)

Adv{{ R () i [Pr[AG(1%), Dy, Doy [1/ul2) — 1] = Pr[AG(1), Dy, Do, [w]2) 1]

where v <—pg Z,. We say that the (di, d2)-g-ratio assumption holds if it is negligible for all PPT A.

8.1.2 Pair Encoding Scheme

We review a pair encoding scheme (PES) by following [AC16, AC17, Attl4, Tak21]. A PES
for a predicate f : X x Y — {0,1} consists of the following four polynomial time algorithms
(Param, EncK, EncC, Pair) defined as follows.
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Param(par) — n. On input par, Param outputs n € Z, that specifies the number of common vari-
ables denoted by b := (by,...,by).

EncC(x,p) — (w1, w2, c). On input x € X and p, EncC outputs a vector of ws ciphertext-encoding

polynomials ¢ = (cy, . .., ¢y, ) in non-lone ciphertext-encoding variables s and s = (s, s1, . . .,
Sw,) and lone ciphertext-encoding variables § = (§1,...,8y,). The ¢-th polynomial is given
by
ct = Z N¢i8; + Z Mt,i,55ib;
i€[ws] 1€[0,w1],5€[n]

for ¢t € [ws], where ny 4,045 € Zp.

EncK(y,p) — (mi1,m2,k). On input y € Y and p, EncK outputs a vector of ms key-encoding

polynomials k = (ki, ..., kn,) in non-lone key-encoding variables r = (r1,...,7y,) and lone
key-encoding variables « and & = (1, ..., 7m,). The t-th polynomial is given by
kt’ = gbt/a + Z ¢t’,i’fi’ + Z ¢t’,i’,jri’bj
i’ €[ma)] i'€lma],j€[n]

for t' € [mgs], where ¢y, G ity Gy it j € L.

Pair(z,y,p) — (E,E). On input z € X, y € ), and p, Pair outputs two matrices E and E of size
(w1 + 1) x mg and ws X mq, respectively.

Definition 27. PES = (Param, EncK, EncC, Pair) for a predicate f is correct if for all (p,par),
x € X and y € Y such that f(x,y) = 1, it holds that

STEk — CTEI‘ = Z E@tlsikt/ — Z Em/ctmr = Sp,

ie[O,wl},t’e[mg] te[’wg],ile[ml}
where E;y denote a (i,t')-th element of E and E;; denote a (t,i')-th element of E.

Remark 9. For ezample, a PES for IBE has two common variables (b1, ba), one ciphertext-encoding
polynomial ¢ = s(by + id - ba) and one key-encoding polynomial k = o+ r(by +id - by). The scheme
18 correct since it holds that sk — cr = as.

We review the definitions of the perfect security [Att14] and the symbolic security [AC17].
Intuitively, the perfect security ensures that given non-lone variables sg,s,r, ciphertext-encoding
polynomials ¢ = (cy,. .., Cw;), and key-encoding polynomials k = (k1, ..., km,), the distributions
do not change regardless of the value of a.

Definition 28 (Perfect Security [Att14]). A PES = (Param, EncK, EncC, Pair) for a predicate f :
X x Y — {0,1} satisfies the perfect security if for all x € X and y € Y such that f(x,y) =0, it
holds that
80,8,T
(Zie[wg} nt,iéi + Zie[o,wﬂ,je[n] Ut,i,jSibj)te[wg]
(X irefma) PvirTir + 2ireima] jein) P73 b))t elms]
S0,8,T
= (D icws) MiSi T Dicowy],jeln] Mg Sibj)tefuws]
(prra+ Zi’e[mQ] G ity + Zi’e[ml],je[n] ¢t’,i’,j7“i’bj)t'e[m3]

where so <—R Zp, S <R Z;”l, r<p ZZ“, S<nr Z;”Q, r<p Z;”Q, b <p Zg,a <R ZLp, and the bozed

part denote a change between the left and the right distribution.

(11)
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Theorem 12 ([AC16, CG17, CGW15, Tak21]). If there is a PES = (Param, EncK, EncC, Pair) for
a predicate [ satisfying the perfect security, there is an adaptively secure ABE scheme for the same
predicate f under the standard matric DDH assumption over Gi and Gs.

Next, we describe the symbolic security which captures more expressive predicates f than the
perfect security.

Definition 29 (Symbolic Security [AC17]). A PES = (Param, EncK, EncC, Pair) for a predicate
f: X xY = {0,1} satisfies (di,da)-selective symbolic security for positive integers dy and dy if
for all x € X and y € Y such that f(x,y) = 0, there exist three deterministic polynomial-time
algorithms EncB, EncS, and EncR;

EncB(z) = (By,...,By,) € (ZngdQ)"
EncR(z,y) — (r1,...,Cmy, &, 1, ..., Tpyy) € (Zgl)ml X (Zg2)m2+1
EnCS(iL') — (So, S1ye-ySwiyS1y-- - éwz) S (ZZQ)UIH_:[ X (Zgl)wQ
such that (so,a) # 0, and if we substitute
S s;-r, 8 : é;r, s;bj : Bjs;-l—7 Ty Ty, o a, Tt Ty, rib; 1 ryBj,

for z € [wal,i € [0,wi],5 € [n],2" € [mg], and i' € [m1] in all ciphertezt-encoding polynomials
output by EncC(z,p) and all key-encoding polynomials output by EncK(y,p), then they evaluate to
0.

Similarly, the PES satisfies (dy, da)-co-selective symbolic security if there exist EncB, EncR, and
EncS as above except that inputs of these three algorithms are y, y, and (x,y), respectively. Finally,

the PES satisfies (dy,d2)-symbolic security if it satisfies (dy, dy)-selective symbolic security such that
dy < di,dy, < dy and (df,d})-selective symbolic security such that d < di,d < ds.

Theorem 13 ([AC17]). If there is a PES = (Param, EncC, EncK, Pair) for a predicate f satisfying
the (dy,dg)-symbolic security, there is an adaptively secure ABE scheme for the same predicate f
under the (dy,ds)-q-ratio assumption.

8.2 Construction

We construct an ABKHE scheme Ilagkne from PES = (Param, EncC, EncK, Pair) for a predicate
f:XxY —{0,1}. Let Ilpsg denote an ABE scheme from PES over dual system groups [AC16,
AC17, CGW15]. Briefly speaking, ITagkne is based on Ilpgg with three master secret keys (uL)LE[O’Q]
by combining with Emura et al.’s KHPKE scheme Ikypke [EHNT18]. A ciphertext of IIagkHE is
described as ct, = (ABE.ct,, 7), where ABE.ct, is a ciphertext of IIpsg and 7w will play the same
role as KHPKE.7 in Ilkypke. Let sk, denote a secret key of IIpsg for a master secret key u,. Then,
a decryption key and a homomorphic evaluation key are described as dk, = (sky,.),c[0,2] and dk, =
(sky,.).e[2), Tespectively.

By following ABE scheme IIpsg from PES over dual system groups [AC16, AC17, CGW15],
mpk contains group elements [A]q, [B]a, ([W]-TA]l, [W;Bl]2) e[n), while msk contains group elements
([w]2).ej0,2- Then, an ABE ciphertext ABE.ct, is computed by [As;]1, [Asy, 1i]1, and [W;—Asi]l
that represent non-lone ciphertext-encoding variables s;, lone ciphertext-encoding variables §;, and
multiplications of common variables and non-lone ciphertext-encoding variable s;b;, respectively.
Similarly, an ¢-th secret key sk, , is computed by [Br, ]2, [u,]2 and [Br, ,, ti’]2, and [W;Br, ;o
that represent non-lone key-encoding variables r;/, lone key-encoding variables o and #;/, and mul-
tiplications of common variables and non-lone key-encoding variable r;/b;, respectively.
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Setup(1*) — (mpk, msk). Run (p, Gy, Gz, Gr, g1, 92,¢) < G(1?) and n < Param(par), and choose
a collision-resistant hash function H < #H, where H : {0,1}* — Z,.  Sample

(A,at),(B,bh) < Dy, uniformly random matrices W1y,..., W, +r Zl()k+1)x(k+1), and ran-
dom vectors (u,),e0.9] < r ZE T, then output

mpk = (G(1), (Al [Blz. (W] Al [W,Bla);e, (AT wlr)efoo. H)
and msk = ([w]2),c[0,2)-

Enc(mpk, z, 1) — cty. Run EncC(z,p) to obtain ws key-encoding polynomials (ci,. .., ¢y, ), sample
S05S1, - - - s Switwy <R Z’;, and output cty = ((Cto,i)ic[o,w,]» (Ct1,t)tefws]s CtT, T);

cto; = [Asili,  ctig= [] [Aswi” - [ W] Asi{",

i€ws] i€[0,w1],5€[n]
cty = p-[sg ATugly, mi=[sqg A" (u;+ h-u)lr,

where h = H((cto,:)ic[0,w,]» CtT)-

KGen(mpk, msk, y) — (dky, hk,). Run EncK(y,p) to obtain m3 key-encoding polynomials
(k1,...,kmy), sample T, 1,...,F mi4ms R Z’;, and compute sky, = ((sky0,i)icpmi];
(sku,1,¢)refms)) for ¢ € [0,2];

sk, 0. = [Br, ]2,

/ ¢> 73t ¢ 1l
Skhlyt' = [ub]gt ’ H [BrL,ml-i-’i’]Qt’ ' H [WjBI‘L’i/];’ 7, (12)

i’ €[ma] i'efmi],j€ln]

Output dk, = (sky,.).c(0,2) and hk, = (sky,).c[2-

Eval(mpk,hky,(ctg))gem) — cty/L. Output L if f(xz,y) = 0 holds. Otherwise, parse hk, =

4 {4 l l
(k0. (K0 1) veim ey and et = (et Dicfo.uns (6 Drelus), <ty 7@), run
(E,E) < Pair(z,y,p), and check whether the following conditions simultaneously hold for

all £ € [L]:

— Compute sky = ((skoi")ire[m,]> (SK1,t)17e[ms]) in the same way as (12) except that u, is
replaced with a zero vector. It holds that

¢ - ¢ .
[T eletidske)™ = ] eletiyskoa) ™. (13)
1€[0,w1],t' €[ms3] t€[ws],i'€[ma]
— It holds that
¢ O \E, .,
HiE[O,wl},t/G[mg] e(Cté,za ski,1er - Skg,u/)E’ !

— =7 (14)
{4 (0) , ’
HtE[wg},i/E[ml] e(Ctit), Skl,O,i’ . Skg,(),i’)Et’l

where h(©) = H((Ct(()ejg)ie[o,wl]a Ctg))’
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If one of the conditions does not hold for some ¢ € [L], output L. Otherwise, run ctl?)
Enc(mpk, z, lT) and output ct, = ((CtO,i)iE[O,un]v (Ctl,t)te[wg]v ctr, 7T);

¢ ¢ ¢
cto; = H ct(()’z, ctyg = H ctg,z, cty = H ct(T),
£€(0,L] £€]0,L] £€0,L)]

, ho N\E;
B [Lico,un]#7€ms) €(Cto,is skiie - sky g )0
nl )

- B N\E, .
[Licquws)irema) €(ctie, sk - sky g ) 7t

where h = H((CtO,i)ie[O,wl]a ctr).

Dec(mpk, dky, ct;) — p/ L. Output L if f(x,y) = 0 holds. Otherwise, parse dk, = ((sk,0.i")irem],
(SkL,l,t’)t/e[mg])LG[O,Z} and ct, = ((CtO,i)ie[O,wl]a (Ctl,t)te[w3]7CtT77T)a run (E,E) — Pair(x,y,p),
and check whether the conditions (13) and (14) simultaneously hold. If one of the conditions
does not hold, output L. Otherwise, output

E, .
[Tiequws),irepma) €(cties sko0,i) ™4

ctp .
E. ./
[Ticio,01),¢7€ms) €(cto,is sko1,e) ot

Theorem 14. The proposed ABKHE scheme IlagkHe satisfies correctness if the PES = (Param,
EncC, EncK, Pair) for f satisfies the correctness.

Proof of Theorem 14. If it holds that

E; »
[Lictounl.veiml e(CtO’i’Sk“l’tl s ATwr (15)
Hte[wg],i’e[ml] e(CtLU Skbvo,i') b
for any ct, = ((Ct(),i)ie[o,wl]’ (Ctl,t)te[w3]7CtT7 77) A Enc(mpk, L, ,U’) and (((SkL,O,i’)i’E[m1}7

(ski,1,)vrems]))oefo,2), (ke )irefma)s (SKi 1) vems]))uelz)) <= KGen(mpk, msk, y) such that f(z,y) =
1, we can complete the proof. We will prove the quality (15) at the end of the proof.
The equality (15) implies the condition (13) by setting u, as a zero vector. The equality (15)
also implies the condition (14) since it holds that
¢ RN
Hie[o,wl],t'e[mg} e(ct(()ﬂ)-, ski,1p - Skg,l,ﬂ)E”t

0) RO \E,
HtE[w:;],i’E[mﬂ e(Ctl,t’ Sk170,i/ . SkQ,O,i’) t,

RO
(£) E;
. Hie[o,wl],t'e[mg} e(CtO,wSkLl,t’) !

- ()
Hte[wg],i’e[ml] e(cty y, ski0,i

(€)
= [s(—]rATul]T . [S(—)FATug]f} =T.

Ei,t/

()
Hie[o,wl],t'e[mg} e(Cto,z' ;ska,1,)

(0) E,
Hte[wg},ife[ml] e(cty y,skog,ir) "t

)Em"

Thus, the Eval and Dec do not output L.
For (ctg))ge[ 1) which is an input of Eval and ct'?) which is created during Eval, let
Ctéf? = [Asl('g)]la Ctg@ = H [Asqfffﬂ-

i€wa] i€[0,w1],j€n]

ctl = 1O (s TATwolr, w0 = ()T AT (wy + 2O - w3)]r,

e T WA,

)
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where h(6) = H((cté@)ie[o,wl], ctg,f)) for £ € [0, L]. Let cty = ((cto,i)ic[o,u]> (Ct1,t)tefuws), Ctr, ™) denote

an output of Eval and s; = Zee[O,L} SEZ). Then, we have

Ct()’z‘ = H [Asgg)h = [Asih,

£€[0,L]

= [ &l = ] Aswad? - J] W] As),
£€)0,L)] i€[wa)] i€[0,w1],5€[n]

cty = H Ctg{) = H M(E) . [SS—ATUO]T.
£€[0,L] Le[L]

Moreover, as the case of the condition (14), we have

11 e(Ctoi,ski 1t - kb | )Tt/
_ Licfown).refms] (0. S = 5] AT (w + b w)r

h E,
Hté[w3],i’€[m1] 6(Ct17t, Sk1707i/ . Sk2,0,i/) t,i

where h = H((cto,i)ic[o,u]> Ctr). Thus, an output of Eval follow the same distribution as an output
of Enc for a plaintext Hée[ I 1O, Finally, the equality (15) implies that an output of Dec is .
To conclude the proof, we prove the equality (15). Observe that the left-hand side the equality

(15) satisfies
HiE[O,wﬂ,t’E[mg] e(CtO,iv Skb’l’t,)Ei,t/
HtE[wg],i’E[mﬂ €(Ct17t, skL,O,i')Et i
by b it bt it GNE;
= Hie[O,wl],t’e[mg] c([Asi]1, [uL]275 ) Hi’é[mﬂ[BrLaml‘H']Qt ’ Hi’é[mﬂvjE[n} [WjBrL,i’]Qt 7)El’t
X 1657 E ! ’
Iictus)iretm) T iequa [Asuwii™ - Tlicio ) s (W5 Asili™™ s [Bro o)

Moreover, the discrete logarithm of the value with base e(g1, g2) is

Z Ei 'SZTAT | ppu, + Z Gy BT,y ir + Z Oy i1 W iBr,

1€[0,w1],t’ €[ms3] i’ €[ma] i'€lma],j€[n]
- Z By - Z Ut,is;ﬂ'AT + Z Ut,i,jSzTATWj -Br, ;.
te(ws],i’ €[mi] 1€{wa] 1€]0,w1],5€[n]

Thus, if we substitute

. s, - . T
S; . ASZ', S; . Asw1+i7 Sibj : Wj ASi,
a:ua, Tyt BI‘M‘/, Tyt BI‘L7m1+Z‘/, Tz‘/bj . WjBI'M‘/,

the correctness of PES implies the equality (15). O

8.3 Security

In this section, we prove that the proposed ABKHE scheme Ilagkne satisfies the adaptive KH-CCA
security.
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Theorem 15. If the PES = (Param, EncC, EncK, Pair) for f satisfies the perfect security and the
symbolic security, llagkHe satisfies the adaptive KH-CCA security under the matric DDH assump-
tion and the g-ratio assumption, respectively.

We will prove Theorem 15 in the case of perfect security since proof for symbolic security is
essentially the same.

8.3.1 Semi-functional Distributions

To prove Theorem 15, we prepare auxiliary semi-functional distributions for a ciphertext and an
ABE secret key by following [AC16, CGW15].

Semi-functional Ciphertext. A semi-functional ciphertext ct, for z encrypting u is defined as ct, =
((Cto,i)ie[o,wl]a (Ctl,t)te[wg]a ctr,7);

cto,i = [ciu, Cty = H [Cuntili"" - H (W ci]{",

ie[w2] ie[ovwl]vje[n}
cty = p-[eguolr, ™= [cg (wr + A ug)]r,
where cg, €1, ..., Cujtuwy <R Z’;H and h = H((cto:)ic[0,w,], CtT)-

Semi-functional Secret Key. An t-th semi-functional secret key sk, , for y is defined as sk,, =
((Skb,O,i’)i’E[ml]u (Skb,l,t’)tle[mg]);

sk, 0, = [Br, ]2,

Ly o0 ot
sk = [u, +a,ga]y” H [Brym,+itly H [W;Br, o], ",
i'€[ma] i’€[ma],j€[n]
k
where r, 1,..., T m+ms <R Zp and «, y <R Zyp.

Intuitively, a normal ciphertext (resp. secret key) is a special case of a semi-functional ciphertext
(resp. secret key) only if c; lives in the span of A and cjal = 0 holds (resp. «,, = 0), while
such situations occur only with negligible probability. For a semi-functional ct, = ((cto,i)ic[o,wi]>
(Ct1,t)tefws]> Ctr, ™) and a semi-functional sky,, = ((sk.0,i/ )i efm,]> (SK.,1,¢/)¢efms))s the equation (15)
becomes

E
[Lic(0,u1),7€ma) €(ctoir Sk e

T L]aL,y
Hte[wg},i’e[ml] e(Ctlat? SkL701i,)

= [eg (w, + augat)]r = [eg w7 - [eg a7

) it
E,

Therefore, the correctness does not hold since it holds that c(—)r at # 0A @&, # 0 which implies
[cd aJ-]%L’y # 17 with overwhelming probability. On the other hand, the correctness holds if either
cty or sky, follows a normal distribution.

8.3.2 Proof of Theorem 15

Although we already explained the intuition of a proof in Section 1.3.3, we provide a more detailed
overview. We call A’s decryption query on (y,cty = ((cto; = €i)ic[o,wy),* ")) @ critical decryption
query if ct, is valid, ct, ¢ £ holds, and ¢y does not live in the span of A. We call .A’s homomorphic
evaluation key reveal query on y a critical homomorphic evaluation key reveal query if f(z*,y) =1
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Table 2: Distributions of ciphertexts ct,. = ctl.,... ,ctgc?] € L in Games 4,...,Gameg 4
ct:[vl*], e ct[mdfl] ctLCg cti[f*ﬂ}, e ct[ﬁ}
normal encryptions semi-functional normal encryptions
Games 4 ) i y gl o
of random strings encryption of /ﬂ ] of ,u[ 1 ,,u[ ]
normal encryptions semi-functional normal encryptions
Gameyq ; : d d+1 D
of random strings encryption of pl? of pldttl . pulPl
normal encryptions semi-functional normal encryptions
Games g : : d d+1 D
of random strings encryption of pl? of pld+1l . plP]
) semi-functional .
normal encryptions . normal encryptions
Gameg 4 ) encryption of a 21 D
of random strings . of pldttl . Pl
random string
) semi-functional )
normal encryptions ) normal encryptions
Gamer 4 ) encryption of a 21 D
of random strings . of pldttl . pulPl
random string
, semi-functional )
normal encryptions . normal encryptions
Gameg 4 ) encryption of a 21 D
of random strings . of pldt1l . plP]
random string
G normal encryptions normal encryption normal encryptions
ameg 4 . .
’ of random strings of a random string of pldt1l . plP]

holds. Let cty. = ((ctf;)ico,wi]> (€t ¢)tcfws]> €t T°) denote a challenge ciphertext for a challenge
ciphertext attribute z* and a message py,,, where h* = H((cty;)icjo,w,],cty). Let D denote
the number of ciphertexts in £ at the end of the game, where the challenge ciphertext ct}. is

the first ciphertext and A makes D — 1 dependent evaluation queries. Let ctggd*] = ((Ctgﬂ)ie[uwl},

(ct[ﬂ)te[wﬂ,ctgﬁ,ﬂ[d]) denote d-th ciphertext in £ and treat it as an encryption of ul¥, where

ctg,l*] = ctr. and plt = g,

We prove Theorem 15 by using a sequence of games
Gameg, Gamey, Games, Games 1, ..., Gameg 1, Game3o,...,Games p,...,Gameg p, where it holds
that Gamey ~. Game; = Gamez ~. Gamez; and Gameg g ~. Gamesy ~. --- =, Gamesy ~
Gamegq ~. -+ ~. Gamegy. The roles of Game; and Games are essentially the same as in

the proof of Theorem 11. Given the challenge cipehrtext ctl., A can randomize it and com-

pute ((ct*0,i)ic(0,w]s (Ct*1,t)teuws), Ct*r) such that the decryption result is uf;, by ignoring the
condition (14) and ((?O,i)ie[o,wﬂv(dﬁ*l,t)te[wg]vai*T) # ((Cta,i)ie[o,wﬂ’(Ct)lk,t)te[wg}’(:t}) holds. TIf
it holds that H((ct*0i)ic(o,w,],Ct*r) = h*, a decryption result of a cipehrtext ((ct*0.i)ic(o,w,]>
($17t)t€[w3}7$’f77r*) is ,uzoin and (($07i)i€[0,w1]7 ($1¢)t€[w3],$T,W*) 7& Ct;,* holds. In Gamel, we
use the collision resistance of H and prevent the attack. In Gamey, we change how to compute
ctgjdj for d € [2, D] so that the distribution of ctid*] does not depend on ct[xdﬂ for d' € [d —1]. Gamey
and Gamey follow the same distribution from A’s view.

The role of Games 4, Gameg 4, and Gameg 4 in a proof of Iagkne (Theorem 15) are similar
to Games 4, Gamey 4, and Games 4 in the proof of Ilkupke (Theorem 11). As illustrated in Ta-
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ble 2, we change the distributions of ciphertexts ct .« € £ in Games 4, Gameg 4, and Gameg 4, where

ctg*], .. .,ctL:d:l] (resp. ctgdfl], .,ctg]) are always normal encryptions of random strings (resp.
normal encryptions of pldt1 ,,u[D}) in Games 4,...,Gameg 4. In particular, ctfj is a normal en-

cryption of ,u[d] in Gameg 41, while it becomes a semi-functional encryption of ,u[d] in Gameg 4,
a semi-functional encryption of a random string in Gameg 4, and a normal encryption of a ran-
dom string in Gameg 4. As the proof of Lemma 15, the (w; + ws)-fold matrix DDH assump-
tion over G ensures that Gameg g1 ~. Games 4 holds by following the dual system technique of
IIpsg [AC16, CGW15]. However, unlike the case of Ilxypke (Lemma 15), we cannot immediately
prove Games 4 ~ Gameg 4 in the sense that computationally unbounded A can distinguish a semi-
functional encryption of ,u[d] and that of a random string. In the proof of Ilxypke (Lemma 15),
we proved the indistinguishability based on the fact that ug was not revealed to A and A cannot
make critical decryption queries. In contrast, the computationally unbounded A against IIagkHE
can make a decryption key reveal query (resp. homomorphic evaluation key reveal query) on y
such that f(z*,y) = 0 and recover ug (resp. recover uj, us and make a critical decryption query).

To resolve the issue, we want to use the dual system technique of IIpsg [AC16, CGW15] and
change some of ABE secret keys sk,, such that f(z*,y) = 0 to be semi-functional so that the
computationally unbounded A cannot recover ug,u;, and us. What we have to care is that we
cannot change all ABE secret keys sk,, which A receives to be semi-functional since A against
ITaBkHE can receive sk, , such that f(z*,y) = 1 unlike the case of IIpsg. In particular, the definition
of the adaptive KH-CCA security ensures that A cannot make decryption key reveal queries on y such
f(z*,y) = 1; thus, all sk, o A receives satisfy f(z*,y) = 0. In contrast, A can make homomorphic
evaluation key reveal queries on y and receives sk 1,sky 2 such that f(z*,y) = 1. Thus, we try to
change only the required ABE secret keys sk, , to be semi-functional. To this end, we divide A’s
attack strategies into two types called Type-1 and Type-2 which are defined as follows:

e A is called Type-1 if it makes a critical homomorphic evaluation key reveal query in Phase 1.

e A is called Type-2 if it does not make a critical homomorphic evaluation key reveal query in
Phase 1.

By definition, Type-1 and Type-2 are mutually exclusive and cover all possible strategies of 4. Dur-
ing the proof of Ilxypke (Lemma 16), we used a similar division and proved the indistinguishability
of KHPKE.ctl?. In contrast, we use the division and employ distinct game sequences depending on
A’s types. In Gamey g, we change all sk, o A receives to be semi-functional regardless of Type-1
and Type-2. Since f(z*,y) = 0 holds as we explained above, the (m; + mg)-fold matrix DDH
assumption over G ensures that Games 4 ~. Gamey 4 holds by following the dual system technique
of Ilpsg [AC16, CGW15]. In Games 4, we change sk, 1 and sk, 2 A receives to be semi-functional
until A makes the first homomorphic evaluation key reveal query only if A is Type-2. Observe
that we cannot apply the same change to A of Type-1 since we do not know whether f(z*,y) =0
holds upon A’s homomorphic evaluation key reveal queries in Phase 1. In contrast, the definition
of Type-2 ensures that A of Type-2 makes critical homomorphic evaluation key reveal queries only
in Phase 2. Thus, we can check when 4 makes the first critical homomorphic evaluation key reveal
query. Then, the (m; +m2)-fold matrix DDH assumption over Gy ensures that Gamey g ~. Games 4
holds by following the dual system technique of IIpsg [AC16, CGW15]. Finally, we can conclude
that A cannot recover ug since all sk, o A receives are semi-functional, while the above changes
ensure that A cannot make critical decryption queries. Thus, we can prove Games,; ~ Gameg 4.
Afterward, we change all sk, , to be normal in Gamey 4 and Gameg 4. Then, we change a distribution

d . .
of ctu in Gameg 4. We can prove Gameg g ~. Gamey g4 ~. Gameg 4 (resp. Gameg 4 ~. Gameg 4) in the
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Table 3: Distributions of ABE secret keys sk, o, sk, 1, and sk, 2 in Gamegs g4, ..., Gameg 4

sk, 0 sky 1 .all’ld sky 2 until sky,1 ‘a%ld sky 2 after
’ the critical hk, query the critical hk, query
Games 4 normal normal normal
Gamey 4 | semi-functional normal normal
Games 4 | semi-functional semi-functional normal
Gameg 4 | semi-functional semi-functional normal
Gamey 4 | semi-functional normal normal
Gameg 4 normal normal normal
Gameg 4 normal normal normal

same way as Games 4 ~. Gamey g ~. Games 4 (resp. Gamesq ~. Gameg 4_;). Table 3 summarizes
distributions of sk, , in each game.

Proof of Theorem 15. We use the following sequence of games.

Gameg. This is the adaptive KH-CCA security game. Hereafter, let cti. = ((ctf;)ic[0,wi]s
(ct] ¢)tefws]s €ty ™) denote a challenge ciphertext for a challenge ciphertext attribute z* and
a message [igy,, where h* = H((ctg;)ic[0,uw,]: €t7)-

Gamey. This is the same as Gamey except that a collision does not occur for a hash function H
among all ciphertexts that appeared in the security game.

The collision resistance of H ensures that Gameg ~, Game; holds.

Gamey. This is the same as Game; except the answers to dependent evaluation queries so that the

distributions of ct:[]cl*] =Cth,... ,ct:[]cl,?} € L are independent. In Game;, C runs Eval algorithm
with inputs ctltl, ... ctl¥=1 that are answers to A’s challenge query and dependent evaluation

queries, and creates an evaluated ciphertext ctl?. In Gamey, upon A’s challenge query, C runs

Enc algorithm and creates two ciphertexts ct* and ct* in the same way as in Gamej, sends
ct* to A as the challenge ciphertext, and stores both ciphertexts (ct*,ct*) € £. Upon A’s

first dependent evaluation query, C runs Eval algorithm with inputs ctlll in place of ctl!l that

is the answer to A’s challenge query, and creates two evaluated ciphertexts ct/? and ct(? in
the same way as in GamAel , sends ct? to A as the answer to the evaluation query, and stores

both ciphertexts (ct?, ctl?) € £. In the same way, upon A’s (d — 1)-th dependent evaluation

query, C runs Eval algorithm with inputs ctlll, ..., ctld=1 in place of ctl!l,... ctl=1 that
are the answers to A’s challenge query and dependent evaluation queries, and creates two
[d]

evaluated ciphertexts ctl and ctld in the same way as in Gameq, sends ct? to A as the

answer to the evaluation query, and stores both ciphertexts (ct[d], ctld) € £. In Game; and
Gamey, all ciphertexts ctl¥l and ctld follow the same distribution for d € [D].

From now on, we change a distribution of d-th ciphertext ctld = (- ,cti}ﬂ, )€ Lford e [D]

T* T
one by one so that ct[}ﬂ is independent of the other elements of ct[xdj and distributed uniformly at
random over G7. For this purpose, we use the following sequence of games Games g4, ..., Gameg 4

for d € [D], where Gameg o = Game; and the proof terminates in Gameg p.
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Games 4. This is the same as Gameg 41 except C’s answer to the challenge query if d = 1 and a
dependent evaluation query if d € [2, D]. In particular, C creates the challenge ciphertext ct}.
as a semi-functional encryption of i’ ; if d =1 and ct® as a semi-functional encryption of

1y if d € [2, D], while C creates ctll], ... ctlP] in the same way as in Gamey 4.

We can prove Gameg ;1 ~. Games 4 under the matrix DDH assumption over G by following
the dual system technique of IIpsg [AC16, CGW15].

Lemma 19 (Gameg 4—1 ~. Games 4). If the matriz DDH assumption over Gy holds, Gameg 41 and
Games 4 are computationally indistinguishable for any PPT A.

We will prove Lemma 19 in Section 8.3.3.

Gamey 4. This is the same as Games 4 except that C answers semi-functional sk, o upon A’s decryp-
tion key reveal queries on y. We note that C still uses normal sk, ¢ to answer A’s decryption
queries as in Games 4.

Since f(z*,y) = 0 holds due to the definition of the adaptive KH-CCA security game, we can
prove Games 4 ~. Gamey 4 under the matrix DDH assumption over Gg by following the dual
system technique of IIpsg [AC16, CGW15].

Lemma 20 (Gamezy ~. Gamey ). If the PES satisfies the perfect security and the matric DDH
assumption over Go holds, Games 4 and Gamey 4 are computationally indistinguishable for any PPT

A.

We will prove Lemma 20 in Section 8.3.4. Intuitively, Lemma 20 implies that the dual system
technique of IIpsg [AC16, CGW15] is required that A cannot create any semi-functional ciphertexts
ct, in Phase 1. Otherwise, it can distinguish normal and semi-functional sk, g such that f(z,y) =1,
where the fact contradicts to the proofs of Ilpsg [AC16, CGW15].

Games 4. If A follows the Type-1 strategy, this is the same as Gamey 4. Otherwise, this is the
same as Gamey 4 except that C answers semi-functional sk, ; and sk, upon A’s decryption
key reveal queries and homomorphic evaluation key reveal queries on y until the first critical
homomorphic evaluation key reveal query. We note that C still uses normal sk, ; and sk, 2 to
answer A’s decryption queries and evaluation queries as in Gamey 4.

Since f(z*,y) = 0 holds due to the definitions of the adaptive KH-CCA security and A’s
Type-2 strategy, we can prove Gamey 4 ~. Games 4 under the matrix DDH assumption over
G2 by following the dual system technique of IIpsg [AC16, CGW15].

Lemma 21 (Gameyq ~. Games 4). If the PES satisfies the perfect security and the matric DDH
assumption over Go holds, Gamey 4 and Games 4 are computationally indistinguishable for any PPT

A.

We will prove Lemma 21 in Section 8.3.4.

Gameg 4. This is the same as Games g except C’s answer to the challenge query if d = 1 and a

(d — 1)-th dependent evaluation query if d € [2, D] by setting ctl_,fl] <pr Gr. Since the d-th
[d]
x*

ciphertext ct
0.

€ L is independent of y% ;. in Gameg 4, A’s advantage in Gameg p is exactly
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Lemma 22 (Games 4 ~ Gameg 4). It holds that
|Pr[Es g — Pr[Eg q]]| < negl(\)
with overwhelming probability.

We will prove Lemma 22 at the end of the proof.

Gamey 4. If A follows the Type-1 strategy, this is the same as Gameg 4. Otherwise, this is the same
as Gameg 4 except that C always answers normal sk, 1 and skyo upon A’s decryption key
reveal queries and homomorphic evaluation key reveal queries on y.

By following the proof of Gamey 4 ~. Games ¢ (Lemma 21), Gameg 4 ~. Gamey 4 holds under
the matrix DDH assumption over Gs.

Lemma 23 (Gameg 4 ~. Gameyq). If the PES satisfies the perfect security and the matric DDH
assumption over Go holds, Gameg 4 and Gamey 4 are computationally indistinguishable for any PPT

A.

We will prove Lemma 23 in Section 8.3.4.

Gameg 4. This is the same as Gamey 4 except that C always answers normal sk, o upon A’s decryption
key reveal queries on y.

By following the proof of Games 4 ~. Gamey ¢ (Lemma 20), Gamey 4 ~. Gameg 4 holds under
the matrix DDH assumption over Gs.

Lemma 24 (Gamey =, Gameg ). If the PES satisfies the perfect security and the matric DDH
assumption over Go holds, Gamey 4 and Gameg 4 are computationally indistinguishable for any PPT

A.

We will prove Lemma 24 in Section 8.3.4.

Gameg 4. This is the same as Gameg 4 except C’s answer to the challenge query if d = 1 and a
[d]
x*

dependent evaluation query if d € [2, D]. In particular, C sets ct
a random string pl¥4 « g Gr.

as a normal encryption of

By following the proof of Gameg 41 ~. Games 4 (Lemma 19), Gameg 4 ~. Gameg 4 holds under
the matrix DDH assumption over Gj.

Lemma 25 (Gameg g ~. Gameg ). If the matric DDH assumption over Gy holds, Gameg 4 and
Gameg 4 are computationally indistinguishable for any PPT A.

We will prove Lemma 25 in Section 8.3.3.

To conclude the proof of Theorem 15, we prove Lemma 22.

Proof of Lemma 22. We prove only for d = 1 since proofs for the other cases are essentially
the same. For this purpose, we construct a simulator that behaves as C in Gamesq from A’s
view. The simulator runs (p,Gy,Ga,Gr,g1,92,¢) < G(1*) and n < Param(par), and choose
a collision-resistant hash function H < #H, where H : {0,1}* — Z,. The simulator samples
(A,at), (B, bt) < Dy, uniformly random matrices W1,..., W, < g Z;S,kﬂ)x(kﬂ), random vectors
(W) icfo,2) <R Z’;“, and random &g g Zp, then sets ug = tp + apa’. Nevertheless, the simulator
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does not use ug but Uy to simulate the game except for creating ctgﬂ € L. At first, the simulator

sends mpk = (G(1%), [A]1, [B]2, ([WJ-TA]l, [W,Bl2) e, ([ATw,]r),ep0,2, H) to A. mpk is properly
distributed since it holds that

[ATﬁo] = [AT(uo — doal)] = [ATu()] . [.ATaJ']fdO = [ATuo]. (16)

The simulator answers A’s homomorphic evaluation key reveal queries and evaluation queries by
using uy, up as in Games 4, while it answers A’s decryption key reveal queries and decryption queries
by using ui, us and ug. We will discuss the validity later.

Upon A’s challenge query on (z*, ufy, ), the simulator samples coin <—g {0,1} and creates the
challenge ciphertext cty. = ((ctg;)ic[0,w.]s (CtT t)tefws) Ctr> °) in the same way as in Games 4;

T* —
cty,=[ch, ctiy= [] lewsl! - ] W/ el
i€ws] i€[0,w1],5€[n]
cth = pilgn - [egwolr, 7 =[cg (Wi + - u)lr,

where h* = H((ctf;)ic(o,w,], €t7). Observe that ct} is the only element which the simulator uses
ug to create and

Ctp = Hégin - [€0 (Wo + Goa™)]7 = égin - [eg ol - [cg at]7"
holds. Since [ca'] is a generator of G with overwhelming probability and ct} is the only element
which depends on &g in the security game, ct’ is distributed uniformly at random over Gr as in
Gameg 4.

Finally, we check that the simulator’s answers to decryption key reveal queries and decryption
queries are valid although Uy # ug is used. The modification in Gamey 4 ensures that all sky, =
((sko,0,i7 )i efma]> (5Ko,1,¢7)¢’€[ms)) Which A receives follow semi-functional distributions. Then, it holds
that

- , by il Py il 5
sko1p = [Go + Ozo,yal]g)t . H [Brhmﬁi,]; Al H [WjBrL,Z-/]Qt il
i'€[ma] i'€[ma],j€[n]
~ , o) il Py il 5
— [uO —|— (OCO,y — ao)aJ—};}t . H [BrL,m1+i’]2t . H [WjBrL,i’]Qt ' Y]7
i'€[ma] i'€[ma],j€[n]

where ag, — ag is distributed uniformly at random over Z, as in Games 4 due to the randomness
of ag,. We check the validities of decryption queries depending on whether A follows Type-1 or
Type-2.

Case of Type-1. Since A of Type-1 makes a critical homomorphic evaluation key reveal query in
Phase 1, it is allowed to make decryption queries only in Phase 1. Upon A’s decryption query on
cte = ((ctoi = [€}]1)ico,un]> (Ct1,¢)tcws]> Ctr, 7), the simulator’s answer is valid when ch g = ¢ "o
holds. Thus, the answer is invalid only when ¢, does not live in the span of A and the answer is not
L. In other words, the simulator cannot answer A’s critical decryption queries in a valid way. Since
the dual system technique of IIpsg [AC16, CGW15] implies that A cannot create semi-functional
ciphertexts by itself, the only way for A to create semi-functional ciphertexts is evaluating the
challenge ciphertext ct}.. Thus, A of Type-1 which is allowed to make decryption queries only in
Phase 1 cannot make critical decryption queries. Thus, Games 4 ~ Gameg 4 holds.

Case of Type-2. Since A of Type-2 does not make a critical homomorphic evaluation key reveal
query in Phase 1, it is allowed to make decryption queries until it makes the first critical homo-
morphic evaluation key reveal query in Phase 2. When the computationally unbounded A receives
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mpk, it can compute U, for ¢ € [2] such that ATu, = A'{,, where u, = 1, + &,a*. Since the
modification in Games g ensures that all sk, ; and sk, which A of Type-2 receives follow semi-
functional distributions, & and @&» are distributed uniformly at random over Z, from A’s view.
When the computationally unbounded A receives the challenge ciphertext ct}., it learns the value
of &1 + h* - Gy since it holds that

™ = [cg (W1 + arat) + h* - (g + aeal)]y = [cf Uy + h* - Ty - [cf at] T2,

If the answer to A’s decryption query on ct, = ((cto; = [€}]1)ic(0,w1]> (Ct1,)tefuws]> Ctr, T) is not L,
T = [C6T(u1 + h - uz)]; holds due to the condition (14). If ¢}, does not live in the span of A, A
learns the value of &; + h - &g, where the change in Game; ensures that h # h* holds. Then, a
computationally unbounded A’s ability to make a critical decryption query is equivalent to the
knowledge of (a1, das) € Z;. A cannot learn & + h - &g for any h from answers to dependent
evaluation queries since the change in Gamey ensures that the discrete logarithm of ct([)d]o lives in the
span of A. (If d € [2, D], the change in Games 41 is also required to ensure the fact.) Although A of
Type-2 can learn (&, &) when it makes the first critical homomorphic evaluation key reveal query
in Phase 2, it is not allowed to make decryption queries after the query. The only way for A to
learn (&, &i2) is making decryption queries and evaluation queries such that cj, does not live in the
span of A. Although A can eliminate a candidate of & + h - &y for some h by making a decryption
query or an evaluation query and the answer is |, there are exponentially many candidates and
A is allowed to make only polynomial number of queries. Thus, Games 4 ~ Gameg 4 holds with
probability 1 — (Qpec + QEval)/q, where Qpec (resp. Qgval) denotes the number of A’s decryption
(resp. evaluation) queries. O

O

8.3.3 Ciphertext Indistinguishability

We prove Lemmata 19 and 25.

Proof of Lemma 19. We show that for any PPT adversary A that breaks the adaptive KH-CCA
security of IIagkHE, there exists a reduction algorithm B that solves the (w; + we)-fold matrix
DDH assumption over G1, where

DDH
| Pr[Egg—1] — Pr[Esq]| < Advg “(A). (17)
We prove only for d = 1 since proofs for the other cases are essentially the same. B re-

ceives (G(1*),[A]1,[V]1) which is an instance of the (w; + ws)-fold matrix DDH problem over
Gy, where (A,al) « Dy, V = AS for S 5 z8Xtw2) o v (g gltDx(tws) g
chooses a collision-resistant hash function H < #, samples (B,b') < Dy, random matri-
ces Wq,...,. W,, g ZZ(,kH)X(kH), and random vectors (u,).c0,2] R Z];H, then sends mpk =
(g(ﬂ), [A], Bz, (W] AL, [W,;Bl2) jein, ([ATuL]T)LE[M],H) to A. Since By knows (u,),c0.2], it
can answer all A’s decryption key reveal queries, homomorphic evaluation key reveal queries, de-

cryption queries, and evaluation queries by creating normal sk, g, sky 1, and sk o.
Upon A’s challenge query on (z*,ug, 17), Bi samples coin <—p {0,1} and creates ct}. =

((Ctg,i)ie[o,wl}a (Ct’{,t>t€[’w3} > Ct?; 77*)%

o=l et [ ol T W)l
i€wo] i€[0,w1],5€[n)] (18)



where h* = H((ctf ;)ic[o,u,]> Ct7) and v; is an i-th column vector of V. The challenge ciphertext
ctr,. is distributed as in Gameg (resp. Games ;) if V.= AS (resp. V <—p Zz(,kﬂ)x(wﬁwﬂ). Thus,
the inequality (17) holds. O
Proof of Lemma 25. We can show that for any PPT adversary A that breaks the adaptive KH-CCA

security of IIagkne, there exists a reduction algorithm By that solves the (w; + wg)-fold matrix
DDH assumption over G1, where

mDDH
| Pr[Es g] — Pr{Egg]| < Advg— '()). (19)

The proof is almost the same as the proof of Lemma 19. After By receives (G(1%), [A]1, [V]1),
it sends mpk to A in the same way as B;. Bg answers all A’s decryption key reveal queries,
homomorphic evaluation key reveal queries, decryption queries, and evaluation queries in the same

way as By. Although By cannot create semi-functional sk, o,sk, 1, and sk, o since it does not know

al, normal sky,0,5ky,1, and sk, o are sufficient for answering the queries due to the changes in

Gamey 4 and Gameg 4. If d = 1, By answers A’s challenge query in the same way as (18) except
ct} <—pr Gr. The challenge ciphertext ct}. is distributed as in Gameg; (resp. Gameg) if V.= AS

x*
(resp. V «p Zék—&-l)x(wl-i—wg)). Thus, the inequality (19) holds. O
8.3.4 Key Indistinguishability

We prove Lemmata 20, 21, 23, and 24. For this purpose, we use the following auxiliary distributions
for ABE secret keys sky ;.

Pseudo-normal Secret Key. An «-th semi-functional secret key sk,, for y is defined as sk,, =
((SkL,O,i’)i’E[ml]u (SkL,l,t’)t’e[mg]);

, Dyt 4t Dyt it s
SkL,O,i’ = [db,i’]Qa SkL,l,t’ = [UL]gt ’ H [db,m1+i’]2t7 : H [WjdL,i’]2t7 Ja

i/ €[ma] i’€[ms],j€[n]
k+1
where d,1,...,d,mi4ms <R Zp+ )

Pseudo-SF Secret Key. An (-th semi-functional secret key sk,, for y is defined as sk,
((ske,0,7)irefmals (SKu,1,47)r€fma));
, Dyt 41 Dyt it
SkL,O,i’ = [dL,i’]Qa SkL,l,t’ = [uL + O‘L,yaL]gt : H [dL,mlJri’]Qt’ : H [Wjdl,,i’bt’ i
i'€[ms)] i'€[ma],j€[n]

where d, 1, ..., dimy+ms <R Z’;H and a,y <R Zp.

Proof of Lemma 20. We use the following games Games 41, Games g ¢ 2, and Games g¢ 3 for ¢ €
[Qak], where Qg denotes the number of A’s decryption key reveal queries, Games 403 = Games 4,
and Games 40,3 = Gamey 4.

Games 4 ¢,1. This is the same as Games g1 3 except that C answers pseudo-normal sk, o upon A’s
(-th decryption key reveal queries on y.

Games g ¢2. This is the same as Games 4¢ 1 except that C answers pseudo-SF sk, o upon A’s (-th
decryption key reveal queries on .

Games 4 ¢,3. This is the same as Games g¢ 2 except that C answers semi-functional sk, o upon A’s
¢-th decryption key reveal queries on y.
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Table 4: Distributions of ABE secret keys sk, o to answer A’s decryption key reveal queries in
Games 4,1, Games 42, and Games g3

‘ before {-th query ¢-th query after (-th query

Gamesz g¢,1 | semi-functional  pseudo-normal normal
Games g¢2 | semi-functional pseudo-SF normal
Games 4¢3 | semi-functional  semi-functional normal

Table 4 summarizes distributions of sk, o in each game. To prove Games g ~. Gamey 4, we show
that Games g 13 ~. Games 41 = Games 4¢2 ~. Gamesz 4 ¢ 3.

Lemma 26 (Gamesg¢c_13 ~. Gamesgc¢1). If the matric DDH assumption over Gy holds,
Games 41,3 and Games g ¢ 1 are computationally indistinguishable for any PPT A.

Proof of Lemma 26. We prove only for d = 1 since proofs for the other cases are essentially the same.
We show that for any PPT adversary A that breaks the adaptive KH-CCA security of IlagkHE, there
exists a reduction algorithm Bs; that solves the (m; + mg)-fold matrix DDH assumption over G,
where
| Pr[E3,d,(j—1,3] — PI"[ES,d,CJH < AdvgleHGz (A). (20)
Bs 1 receives (G(1%),[B]2, [V]2) which is an instance of the (m; + mz)-fold matrix DDH prob-
lem over G, where (B,b') <~ D;, V = BR for R <3 Z];X(m1+m2) or V <p Zékﬂ)x(mﬁmﬂ.
Bs 1 chooses a collision-resistant hash function H <p #, samples (A, at) < Dy, random
matrices W1,..., W, <p Z;,kﬂ)x(kﬂ), and random vectors (u,),cj02] <R Z’;“, then sends
mpk = (Q(l’\), [A]l, [B]Q, ([W;I—A]l, [WjB]Q)jGM, ([ATU-L]T)LG[O,Z},H) to A. Since 8371 knows
(ub)Le[g], it can answer all A’s homomorphic evaluation key reveal queries and evaluation queries by
creating normal sky 1, and sky 2. Since Bz knows (u,),¢[0,2), it can answer all A’s decryption key
reveal queries after the (-th query and decryption queries by creating normal sk, o, sky 1, and sk 2.
Since Bz 1 knows (u,),e[o,2] and al, it can answer all A’s decryption key reveal queries before the
¢-th query by creating semi-functional sk, o and normal sk, ; and sk 2. Since Bz 1 knows (u,),c(o 2]
and Wy,..., W, it can answer A’s challenge query by creating semi-functional ct}..
Upon A’s ¢-th decryption key reveal query on y, B3 1 creates normal sk, 1 and sky 2, and sk, o =

((SkO,O,i’)i’e[m1]7 (SkO,l,t’)t’e[mg})5
, Dyt 4t Gt it
sko,0,7 = [Vir]2, sko, 1, = [uo]5” - H Vit - H [(Wjvily ™, (21)
i'€[mo)] i'€[ma],j€ln]

where v; is an i-th column vector of V. The (-th sk, is distributed as in Games 4¢3 (resp.
Games gc1) if V.=BR (resp. V <—p Zékﬂ)x(mﬁmﬂ). Thus, the inequality (20) holds. O

Lemma 27 (Games g1 = Games q¢2). If the PES satisfies the perfect security, Games g1 and
Games ¢ 2 follow the same distribution from A's view.

Proof of Lemma 27. We prove only for d = 1 since proofs for the other cases are essentially the same.
In Games 1 ¢ 1, the challenge ciphertext cty. = ((Ctf;)ic(o,wi]» (] +)te[ws]> €t 7*) is semi-functional;

o=l = [[lewli [ Wjel

i€ws] i€[0,w1],j€n]
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ctp = - [cguo]T, T = [coT(ul + h )7,

where co,C1,...,Cuytwy <R Z’;H and h = H((cty,)icpw]:ty). Due to the basis lemma
(Lemma 18), the distribution is identical to

Cta,i = [ASi + Sibj']l, Ct)lk,t = H [Aswl—i-i + §ibJ']717t’i . H [WI(ASz + SibJ')]?t’i’j,
i€[wa) 1€[0,w1],5€[n]
Ct} =l [(ASO + SobL)TuO]T, T = [(ASO + SUbL)T(ul +h- UQ)]T,
with overwhelming probability, where sg,s1,. .., Sy, +ws <R Zl; and 89,81, -+, Swys 81y, Swy <R
Zp. Similarly, the distribution of (-th pseudo-normal skyo = ((sko,0,i")i’elmi]> (SKo,1,¢/)emy)) I

Gameg 1 ¢ 1 is identical to

sko,o,i = [Bry +rya't]s,

/ R Gyt 41 by it
skoe = [wly” - [ Bragrw +7sa'y"" - T (WiBrs +rvah),"",
i'€[mo] i’ €[ma],j€[n]
with overwhelming probability, where ri,..., T, +m, <R Z’Ij and 71,..., " Tl ooy TPing <R Zp.

In Games ¢ 1, each Wy,..., W,, is sampled according to Wy,..., W,, <pg ZZ(,kH)X(kH). The
distribution is identical to

Wi =W +bi(at bh)labt ', ... W, = W, + by(at bt)labt '
where W1,..., W, < ZF™ ) and by, ... b, < g Z,. Since it holds that
WA =W/A+b(a" b 'bral'A=W]A,
W,;B = W,B + b;(a* ' bt)lalb! B =W;B,

mpk that contains [W] Aly,...,[W, A]y,[WB]a,...,[W,B]s does not depend on by,...,b,.
Thus, the only elements that depend on by,...,b, are ct}. and (-th pseudo-normal sk, . Since it
holds that

Wbt = Wib' +b;(a’ b)'bl(at 'bt) = W/ bt +b;bt,
W,at = Wjal + bj(aLTbL)’lal(bLTaL) = W,a' + bjat,

we have
* Nt,i i L \N1M,i,5
cti,= J[ Aswull™ [ W] (Asi+ b))
i€[ws] i€[0,w1],j€[n]
. [bL]Zie[wQ] 77t,i§i+zi€[0,w1]ﬁj€[n] Nt,i,5Sibj
1 )
k _ by B Gyr it W B A\ P it
SKo,1,t/ = [u0]2 : H [ rm1+i’]2 . H [ j( ry +rya )]2
i/ €[ma2] i’ €[ma],j€[n]
L2l ema] Per it it + 2250 e mo) en] P it 57105
[a™]; .
Observe that even when we do not know all of (S, S1,. .+, SwysS1s .-y Swas T1y - Tmys Ty - vy Tmy)s
(807 S1y- 58wy Tl -5 T'mys (Zie[wz] Ut,igi + ZiE[O,wl],jE[n} nhl’,jsibj)te[wg}’ (Zi’e[mz] qst’,i"ﬁi’ +
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Zz”e[ml], €] Gvr i1 jTirbj)pcimy)) are sufficient for simulating the semi-functional challenge
ciphertext ct’. and (-th pseudo-normal sk,o. Since it holds that f(z*,y) = 0 and all
805815+ vsSwysSly-veySwyyTlye-vsTmysT1y---,Tm, are sampled according to the uniform distribu-
tion over Zj,, the perfect security of PES ensures that ct}. and (-th sk, o are identically distributed
by simulating with (so, 8, ¥, (3 sefuy) ,i8i T2 i€ (0,1 jeln) Mg 5i85)telus)s (P0 Q0.y D e pmy) P +
Zz"e[ml],je[n} bvr i jTibj ) elms))s Where agy <R Zp. Then, we have

’ Dy il 27 1) 1l
skow = [uols” - [ Braoly”™ - [ [WiBrs +rpat)y"

i’ €[ma] i'€[ma],j€[n]
. [aL]¢t’a0’y+zi’€[m2] ¢t’,i"f'i’+zi’€[m2],j€[n] ¢t’7i/7jribj
2
110y RN L\1Peit g
= [uo + aoyatly” - [ Brasw +rva'ly™ - [ [W;Bry +rpat)]y" "
i’€[ma] i'€[ma],j€n]

Due to the basis lemma (Lemma 18), the distribution of (-th sk, o is identically distributed to
pseudo-SF secret key. Thus, we complete the proof. O

Lemma 28 (Games 42 ~. Games 4¢,3). If the matric DDH assumption over Go holds, Games 4.¢ 2
and Games ¢ 3 are computationally indistinguishable for any PPT A.

Proof of Lemma 25. We prove only for d = 1 since proofs for the other cases are essentially the same.
We show that for any PPT adversary A that breaks the adaptive KH-CCA security of Ilagkng, there
exists a reduction algorithm Bs 3 that solves the (m; + mg)-fold matrix DDH assumption over Go,
where

DDH
| Pr(B3 2] — Pr(Baacsll < Advg = 2 (N). (22)

The proof is almost the same as the proof of Lemma 26. After Bs 3 receives (G(1%), [Bla, [V]2),
it sends mpk to A in the same way as B3 ;. Bsg answers all A’s decryption key reveal queries,
homomorphic evaluation key reveal queries, decryption queries, evaluation queries, and challenge
query in the same way as B3 except (-th sk, . Bz creates (-th sk, in the same way as (21)
except

/ Dyt 4t Gyt i1 s
sk = [0 +aoyals” - ] Wwssls™ - T Wivaly™",
i’'€[ma] i'€[ma],j€[n]
where v; is an i-th column vector of V and ag, <-pr Z,. The (-th sk, is distributed as in
Games 4¢3 (resp. Games g¢2) if V.= BR (resp. V <p Z},’““)X(m”m)). Thus, the inequality (22)
holds. ]

Based on Lemmata 26, 27, and 28, we have

DDH DDH
| Pr[E3] — Pr[Ey]| < Qdk(Advgm “(\) + Advy, | G2()\)>.

O]

Proof of Lemma 21. We use the following games Gamey 4, ¢ 1, Gamey 4, ¢ 2, and Gameyq, ¢ 3 for
¢ € [2] and ¢ € [Qdk + Qnk], where Qgk (resp. Qnk) denotes the number of A’s decryption key reveal
queries (resp. homomorphic evaluation key reveal queries), Gamey 4103 = Gamey 4, Gamey 42,03 =
Gamey 4.1,Qu+Qn.3> and Gamey g2 0,103 = Games 4.
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Table 5: Distributions of ABE secret keys sk,, to answer A’s decryption key reveal queries and
homomorphic evaluation key reveal queries in Gamey g, ¢ 1, Gamey g, ¢ 2, and Gamey 4, ¢ 3

‘ before {-th query ¢-th query after (-th query

Gameyg,¢1 | semi-functional — pseudo-normal normal
Gameyq,¢2 | semi-functional pseudo-SF normal
Gamey q,¢3 | semi-functional  semi-functional normal

Gamey g, ¢,1- This is the same as Gamey 4, 1,3 except that C answers pseudo-normal sk, , upon
A’s (-th decryption key reveal queries or homomorphic evaluation key reveal queries on .

Gamey g, ¢,2- This is the same as Gamey 4, ¢,1 except that C answers pseudo-SF sk, , upon A’s (-th
decryption key reveal queries or homomorphic evaluation key reveal queries on y.

Gamey g, ¢,3- This is the same as Gamey 4, ¢ 2 except that C answers semi-functional sk, upon A’s
(-th decryption key reveal queries or homomorphic evaluation key reveal queries on y.

Table 5 summarizes distributions of sk, ; and sk, in each game Gamey g, ¢ 1, Gamey 4, ¢ 2, and
Gamey q,,¢ 3, where all sk, o are always normal if © = 1 and all sk, ; are always semi-functional if
v = 2. To prove Gamey 4 ~. Games 4, we show that Gamey 4, 1,3 ~. Gamey g, ¢ 1 = Gamey q4,.¢2 ~e
Gamey g, ¢,3 as the proof of Lemma 21.

Lemma 29 (Gameygq,¢c—13 ~. Gameyq,¢1). If the matriv DDH assumption over Gg holds,
Gamey g, ¢—1,3 and Gamey q, ¢ 1 are computationally indistinguishable for any PPT A.

Proof of Lemma 29. We prove only for d = 1 and ¢+ = 1 since proofs for the other cases are
essentially the same. We show that for any PPT adversary A that breaks the adaptive KH-CCA
security of IIapkHE, there exists a reduction algorithm By that solves the (m; + mg)-fold matrix
DDH assumption over Gg, where
| Pr{Eyac-1s) — PrlEigucall < Advg 2 (). (23)

The proof is almost the same as the proof of Lemma 26. After By receives (G(1*), [B]z, [V]2),
it sends mpk to A in the same way as B3 ;. Since By knows (ub)Le[g], it can answer all A’s
evaluation queries by creating normal sk, 1, and sk 2. Since By 1 knows (u,),¢(o,2], it can answer all
A’s decryption queries by creating normal sk, o, sky, 1, and sky 2. Since By knows (u,) we0,2) and al,
it can answer all A’s homomorphic evaluation key reveal queries and decryption key reveal queries
before the (-th query by creating semi-functional sk, o and sk, ; and normal sk, . Similarly, By 1
can answer all A’s homomorphic evaluation key reveal queries and decryption key reveal queries
after the ¢-th query by creating semi-functional sk, o and normal sk, 1 and sk, 2. Since By 1 knows
(0,)ief,2) and Wi, ..., W,,, it can answer A’s challenge query by creating semi-functional ct}..

Upon A’s ¢-th homomorphic evaluation key reveal query or decryption key reveal query on v,
By creates semi-functional sk, o, normal sk, o, and sk, 1 = ((sko,0,i7)i"e[m,]> (SKo,1,¢/)¢'ems)) 0 the
same way as (21) except

Gy 1) 1.4 ) 1l
skipe = (w5 [] ol - T (Wively™™, (24)
i'€[me] i'€[ma],j€[n]

where v; is an i-th column vector of V. The (-th sk, is distributed as in Gamey41,¢-13 (resp.
Gameyg1.c,1) if V=BR (resp. V g Zl(f,k—i_l)x(mﬁmz)). Thus, the inequality (23) holds. O
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Lemma 30 (Gamey 4, ¢1 = Gamey g, ¢ 2). If the PES satisfies the perfect security, Gamey 4, ¢1 and
Gamey g, ¢ 2 follow the same distribution from A's view.

Proof of Lemma 30. We prove only for d = 1 and ¢+ = 1 since proofs for the other cases are
essentially the same. As the proof of Lemma 27, we set

Wi =W 4+ bi(at bY)labt ' .. W, = W, + b(at bl)labt '

where Vvl,...,Wn R Z](gkﬂ)x(kﬂ) and by,...,b, <R Zp. Then, only elements that depend
on by,...,b, are the semi-functional challenge ciphertext ct}. and (-th pseudo-normal sk, . In

particular, we have

ctio= T Aswlls TT (W] (Asi+sbhf
i€[ws) i€[0,w1],j€[n]

[bj_]zie[wg] 1,182 25(0,m1],j€[n] M, 5105
: 1

)

/ ¢) 13! <~ ¢ 1l g
skipp = [wly” - [ Brosls™ - T[ [WiBry +rvat))y”"
i'€[ma] i'€[ma],j€[n]

[aj_]zile[mz] ¢)t/,i’fi/"'zi/e[mﬂ,je[n] Byt i1 57ib;
. 2 .

Observe that even when we do not know all of (Sg, $1,. .., SwysS1s- s Swas T1yw v Tmys Ty vy Tmy)s
(807 $15- 58w Ty -5 Tmys (Zie[wQ] nt,igi + Eie[o,wl],je[n} nt,i,jsibj)te[wg,}y (Zi’e[mz] ¢t’,i”ﬁi’ +
Zi,e[m Ji€lm] Gvr it jTirbj)veimy)) are sufficient for simulating the semi-functional challenge
ciphertext ct. and (-th pseudo-normal sk, ;. Since it holds that f(z*,y) = 0 and all
805815+ vsSwysSls-veySwysTlye--sTmysT1s---,Tm, are sampled according to the uniform distribu-
tion over Zj,, the perfect security of PES ensures that ct}. and (-th sk, ; are identically distributed
by simulating with (0,8, T, (3¢ us) T8 T2 ic(0,u1],je[n] Miri Si05)tews] (P01 ,y+D i eimy) G T +
Zi’e[ml],je[n} th’,i’,j'ri’bj)t’e[mg])y where 1y <R Zp. Then, we have

’ ¢ 1 4l = ¢ ! gl g
skpe = [wils? - [] Brasols™ - [ [W;Bry +rpat))y"

i’ €[ma] i’ €|mz2],j€[n]
. [aJ_]@/aLy‘*‘Zi'e[mz] Gur it it 2250 o], jeln] P it 57105
2
1Py NRL R IR,
= [w +ara )y’ [] Brogwe +iva " [ [W;Brs +rgat)l," .
i’'€[ma] i'€[ma],j€[n]

As the proof of Lemma 27, the distribution of (-th sk, ; is identically distributed to pseudo-SF
secret key. Thus, we complete the proof. ]

Lemma 31 (Gameyq,c2 ~. Gameyq,cs). If the matric DDH assumption over Gz holds,
Gamey g, ¢2 and Gamey g, ¢ 3 are computationally indistinguishable for any PPT A.

Proof of Lemma 31. We prove only for d = 1 and ¢ = 1 since proofs for the other cases are
essentially the same. We show that for any PPT adversary A that breaks the adaptive KH-CCA
security of IIagkHE, there exists a reduction algorithm By 3 that solves the (m; + mg)-fold matrix
DDH assumption over Gg, where

DDH
| Pr[Eya,col — Pr[Eya.csl < Advgm 2(\). (25)
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The proof is almost the same as the proof of Lemmata 28 and 29. After B3 receives
(G(1%),[B]a, [V]2), it sends mpk to A in the same way as By 1. Bas answers all A’s decryption key
reveal queries, homomorphic evaluation key reveal queries, decryption queries, evaluation queries,
and challenge query in the same way as By 1 except (-th sk, 1. By 3 creates (-th sk, 1 in the same
way as (24) except

/ ¢ 1l ¢) 1t s
sk = [u+a1,at]y” - [ Wawsels™ - T [Wivels™,
i'€lma] i'€[ma],j€[n]

where v; is an -th column vector of V and a1, <pr Z,. The (-th sk, is distributed as in
Gameyg g1,¢3 (resp. Gamegg1¢2) if V.= BR (resp. V <—p ZI(,kH)X(mﬁmQ)). Thus, the inequality

(25) holds. 0

Based on Lemmata 29, 30, and 31, we have

mDDH mDDH
| Pr[E4] — Pr[E5]| < 2(Qnk + Quk) (AdeM () +Advg, ()\)).

9 Conclusion

In this paper, we proposed generic constructions of ABKFHE and ABKHE. In advance of ABKFHE,
we modified Canetti et al.’s CCAl-secure FHE scheme [CRRV17] and proposed a generic construc-
tion of KFHE based on MFHE, IBE, OTS, and MAC, where the resulting scheme is the first KFHE
scheme secure solely under the LWE assumption in the standard model. Then, we replaced several
building blocks of KFHE with attribute-based ones and provided a generic construction of ABKFHE
based on MFHE, DABE, and OTS, where the resulting scheme implies the first IBKFHE scheme. For
this purpose, we constructed a DABE scheme by combining with Yamada’s adaptively secure IBE
scheme [Yam17] and Boneh et al.’s selectively secure ABE scheme [BGG™14]. Next, in advance of
ABKHE, we provided a simpler proof of Emura et al.’s KHPKE scheme [EHNT 18] if it is instantiated
under the matrix DDH assumption. Then, we proposed a generic construction of ABKHE from PES
by combining with ABE schemes over dual system groups [AC16, AC17, CGW15] and Emura et
al.’s KHPKE scheme [EHNT 18], where the resulting scheme implies the first IBKHE scheme under
the standard k-linear assumption.

Due to the inefficiency of Canetti et al.’s CCAl-secure FHE scheme [CRRV17], our proposed
ABKFHE scheme is also inefficient. To obtain more efficient ABKFHE schemes, a design of a more
efficient CCAl-secure FHE scheme has to be an interesting open problem. Since there are several
expressive ABE schemes which are not covered by PES, constructions of keyed homomorphic variants
of the schemes should be an interesting open problem. A construction of attribute-based two-level
keyed homomorphic encryption is also an interesting open problem.

Acknowledgement. We would like to thank anonymous reviewers of PKC 2024.

References

[ABB10a] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the stan-
dard model. In Henri Gilbert, editor, Advances in Cryptology — EUROCRYPT 2010,
volume 6110 of Lecture Notes in Computer Science, pages 553-572. Springer, Heidel-
berg, May / June 2010. doi:10.1007/978-3-642-13190-5_28.

76


https://doi.org/10.1007/978-3-642-13190-5_28

[ABB10b)]

[ABS17]

[AC16]

[AC17]

[AJIM20]

[Amb21]

[Att14]

[Att16]

[Att19]

Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation in fixed
dimension and shorter-ciphertext hierarchical IBE. In Tal Rabin, editor, Advances in
Cryptology — CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science, pages
98-115. Springer, Heidelberg, August 2010. doi:10.1007/978-3-642-14623-7_6.

Miguel Ambrona, Gilles Barthe, and Benedikt Schmidt. Generic transformations of
predicate encodings: Constructions and applications. In Jonathan Katz and Hovav
Shacham, editors, Advances in Cryptology — CRYPTO 2017, Part I, volume 10401 of
Lecture Notes in Computer Science, pages 36—66. Springer, Heidelberg, August 2017.
doi:10.1007/978-3-319-63688-7_2.

Shashank Agrawal and Melissa Chase. A study of pair encodings: Predicate encryption
in prime order groups. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A:
13th Theory of Cryptography Conference, Part II, volume 9563 of Lecture Notes in
Computer Science, pages 259-288. Springer, Heidelberg, January 2016. doi:10.1007/
978-3-662-49099-0_10.

Shashank Agrawal and Melissa Chase. Simplifying design and analysis of complex
predicate encryption schemes. In Jean-Sébastien Coron and Jesper Buus Nielsen, ed-
itors, Advances in Cryptology — EUROCRYPT 2017, Part I, volume 10210 of Lecture
Notes in Computer Science, pages 627-656. Springer, Heidelberg, April / May 2017.
doi:10.1007/978-3-319-56620-7_22.

Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta. Multi-
key fully-homomorphic encryption in the plain model. In Rafael Pass and Krzysztof
Pietrzak, editors, TCC 2020: 18th Theory of Cryptography Conference, Part I, vol-
ume 12550 of Lecture Notes in Computer Science, pages 28-57. Springer, Heidelberg,
November 2020. doi:10.1007/978-3-030-64375-1_2.

Miguel Ambrona. Generic negation of pair encodings. In Juan Garay, editor, PKC 2021:
24th International Conference on Theory and Practice of Public Key Cryptography,
Part II, volume 12711 of Lecture Notes in Computer Science, pages 120—-146. Springer,
Heidelberg, May 2021. doi:10.1007/978-3-030-75248-4_5.

Nuttapong Attrapadung. Dual system encryption via doubly selective security: Frame-
work, fully secure functional encryption for regular languages, and more. In Phong Q.
Nguyen and Elisabeth Oswald, editors, Advances in Cryptology — EUROCRYPT 2014,
volume 8441 of Lecture Notes in Computer Science, pages 557-577. Springer, Heidel-
berg, May 2014. doi:10.1007/978-3-642-55220-5_31.

Nuttapong Attrapadung. Dual system encryption framework in prime-order groups
via computational pair encodings. In Jung Hee Cheon and Tsuyoshi Takagi, editors,
Advances in Cryptology — ASIACRYPT 2016, Part 1I, volume 10032 of Lecture Notes
in Computer Science, pages 591-623. Springer, Heidelberg, December 2016. doi:
10.1007/978-3-662-53890-6_20.

Nuttapong Attrapadung. Unbounded dynamic predicate compositions in attribute-
based encryption. In Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology
- FEUROCRYPT 2019, Part I, volume 11476 of Lecture Notes in Computer Science,
pages 34-67. Springer, Heidelberg, May 2019. doi:10.1007/978-3-030-17653-2_2.

77


https://doi.org/10.1007/978-3-642-14623-7_6
https://doi.org/10.1007/978-3-319-63688-7_2
https://doi.org/10.1007/978-3-662-49099-0_10
https://doi.org/10.1007/978-3-662-49099-0_10
https://doi.org/10.1007/978-3-319-56620-7_22
https://doi.org/10.1007/978-3-030-64375-1_2
https://doi.org/10.1007/978-3-030-75248-4_5
https://doi.org/10.1007/978-3-642-55220-5_31
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-030-17653-2_2

[AY15]

[BBO4]

[BBC*18]

[BCC*17)

[BCCT13]

[BCTW16]

[BGG114]

[BGI*01]

[BGV12]

Nuttapong Attrapadung and Shota Yamada. Duality in ABE: Converting attribute
based encryption for dual predicate and dual policy via computational encodings. In
Kaisa Nyberg, editor, Topics in Cryptology — CT-RSA 2015, volume 9048 of Lecture
Notes in Computer Science, pages 87-105. Springer, Heidelberg, April 2015. doi:
10.1007/978-3-319-16715-2_5.

Dan Boneh and Xavier Boyen. Secure identity based encryption without random ora-
cles. In Matthew Franklin, editor, Advances in Cryptology — CRYPTO 2004, volume
3152 of Lecture Notes in Computer Science, pages 443-459. Springer, Heidelberg, Au-
gust 2004. doi:10.1007/978-3-540-28628-8_27

Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaél del Pino, Jens Groth, and
Vadim Lyubashevsky. Sub-linear lattice-based zero-knowledge arguments for arith-
metic circuits. In Hovav Shacham and Alexandra Boldyreva, editors, Advances
in Cryptology — CRYPTO 2018, Part II, volume 10992 of Lecture Notes in Com-
puter Science, pages 669-699. Springer, Heidelberg, August 2018. doi:10.1007/
978-3-319-96881-0_23.

Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad
Rubinstein, and Eran Tromer. The hunting of the SNARK. Journal of Cryptology,
30(4):989-1066, October 2017. doi:10.1007/s00145-016-9241-9.

Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive compo-
sition and bootstrapping for SNARKS and proof-carrying data. In Dan Boneh, Tim
Roughgarden, and Joan Feigenbaum, editors, 45th Annual ACM Symposium on The-
ory of Computing, pages 111-120. ACM Press, June 2013. doi:10.1145/2488608.
2488623.

Zvika Brakerski, David Cash, Rotem Tsabary, and Hoeteck Wee. Targeted homo-
morphic attribute-based encryption. In Martin Hirt and Adam D. Smith, editors,
TCC 2016-B: 14th Theory of Cryptography Conference, Part II, volume 9986 of Lecture
Notes in Computer Science, pages 330-360. Springer, Heidelberg, October / November
2016. doi:10.1007/978-3-662-53644-5_13.

Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In
Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology — EURO-
CRYPT 2014, volume 8441 of Lecture Notes in Computer Science, pages 533—-556.
Springer, Heidelberg, May 2014. doi:10.1007/978-3-642-55220-5_30.

Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian,
editor, Advances in Cryptology — CRYPTO 2001, volume 2139 of Lecture Notes in
Computer Science, pages 1-18. Springer, Heidelberg, August 2001. doi:10.1007/
3-540-44647-8_1.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomor-
phic encryption without bootstrapping. In Shafi Goldwasser, editor, ITCS 2012: 3rd
Innovations in Theoretical Computer Science, pages 309—-325. Association for Comput-
ing Machinery, January 2012. doi:10.1145/2090236.2090262.

78


https://doi.org/10.1007/978-3-319-16715-2_5
https://doi.org/10.1007/978-3-319-16715-2_5
https://doi.org/10.1007/978-3-540-28628-8_27
https://doi.org/10.1007/978-3-319-96881-0_23
https://doi.org/10.1007/978-3-319-96881-0_23
https://doi.org/10.1007/s00145-016-9241-9
https://doi.org/10.1145/2488608.2488623
https://doi.org/10.1145/2488608.2488623
https://doi.org/10.1007/978-3-662-53644-5_13
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1145/2090236.2090262

[Ble9g]

[BLP*+13]

[BNOS]

[Bral2]

[BV11a]

[BV11b]

[BV14]

[CG17]

[CGW15]

[CHK04]

Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In Hugo Krawczyk, editor, Advances in Cryptology —
CRYPTO’98, volume 1462 of Lecture Notes in Computer Science, pages 1-12. Springer,
Heidelberg, August 1998. doi:10.1007/BFb0055716.

Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum, editors, 45th Annual ACM Symposium on Theory of Computing, pages
575-584. ACM Press, June 2013. doi:10.1145/2488608.2488680.

Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm. Journal of Cryptol-
09y, 21(4):469-491, October 2008. doi:10.1007/s00145-008-9026-x.

Zvika Brakerski. Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryp-
tology — CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages
868-886. Springer, Heidelberg, August 2012. doi:10.1007/978-3-642-32009-5_50.

Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. In Rafail Ostrovsky, editor, 52nd Annual Symposium on Foun-
dations of Computer Science, pages 97-106. IEEE Computer Society Press, October
2011. doi:10.1109/F0CS.2011.12.

Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-
LWE and security for key dependent messages. In Phillip Rogaway, editor, Advances in
Cryptology — CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science, pages
505-524. Springer, Heidelberg, August 2011. doi:10.1007/978-3-642-22792-9_29.

Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based FHE as secure as PKE. In
Moni Naor, editor, ITCS 2014: 5th Conference on Innovations in Theoretical Computer
Science, pages 1-12. Association for Computing Machinery, January 2014. doi:10.
1145/2554797.2554799.

Jie Chen and Junqging Gong. ABE with tag made easy - concise framework and new
instantiations in prime-order groups. In Tsuyoshi Takagi and Thomas Peyrin, editors,
Advances in Cryptology — ASTACRYPT 2017, Part II, volume 10625 of Lecture Notes
in Computer Science, pages 35-65. Springer, Heidelberg, December 2017. doi:10.
1007/978-3-319-70697-9_2.

Jie Chen, Romain Gay, and Hoeteck Wee. Improved dual system ABE in prime-
order groups via predicate encodings. In Elisabeth Oswald and Marc Fischlin, editors,
Advances in Cryptology - EUROCRYPT 2015, Part II, volume 9057 of Lecture Notes
in Computer Science, pages 595—-624. Springer, Heidelberg, April 2015. doi:10.1007/
978-3-662-46803-6_20.

Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from
identity-based encryption. In Christian Cachin and Jan Camenisch, editors, Ad-
vances in Cryptology — EUROCRYPT 2004, volume 3027 of Lecture Notes in Com-
puter Science, pages 207-222. Springer, Heidelberg, May 2004. doi:10.1007/
978-3-540-24676-3_13.

79


https://doi.org/10.1007/BFb0055716
https://doi.org/10.1145/2488608.2488680
https://doi.org/10.1007/s00145-008-9026-x
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1109/FOCS.2011.12
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1145/2554797.2554799
https://doi.org/10.1145/2554797.2554799
https://doi.org/10.1007/978-3-319-70697-9_2
https://doi.org/10.1007/978-3-319-70697-9_2
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-540-24676-3_13
https://doi.org/10.1007/978-3-540-24676-3_13

[CHKP12)

[CLL*14]

[CM15]

[CMS19]

[CRRV17]

[CS98]

[CS02]

[CW14]

[DGM15]

[EHK17]

David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to
delegate a lattice basis. Journal of Cryptology, 25(4):601-639, October 2012. doi:
10.1007/s00145-011-9105-2.

Jie Chen, Hoon Wei Lim, San Ling, Huaxiong Wang, and Hoeteck Wee. Shorter
identity-based encryption via asymmetric pairings. Des. Codes Cryptogr., 73(3):911—
947, 2014. doi:10.1007/S10623-013-9834-3.

Michael Clear and Ciaran McGoldrick. Multi-identity and multi-key leveled FHE
from learning with errors. In Rosario Gennaro and Matthew J. B. Robshaw, ed-
itors, Advances in Cryptology — CRYPTO 2015, Part II, volume 9216 of Lecture
Notes in Computer Science, pages 630—656. Springer, Heidelberg, August 2015. doi:
10.1007/978-3-662-48000-7_31.

Alessandro Chiesa, Peter Manohar, and Nicholas Spooner. Succinct arguments in
the quantum random oracle model. In Dennis Hofheinz and Alon Rosen, editors,
TCC 2019: 17th Theory of Cryptography Conference, Part II, volume 11892 of Lecture
Notes in Computer Science, pages 1-29. Springer, Heidelberg, December 2019. doi:
10.1007/978-3-030-36033-7_1.

Ran Canetti, Srinivasan Raghuraman, Silas Richelson, and Vinod Vaikuntanathan.
Chosen-ciphertext secure fully homomorphic encryption. In Serge Fehr, editor,
PKC 2017: 20th International Conference on Theory and Practice of Public Key Cryp-
tography, Part II, volume 10175 of Lecture Notes in Computer Science, pages 213-240.
Springer, Heidelberg, March 2017. doi:10.1007/978-3-662-54388-7_8.

Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In Hugo Krawczyk, editor, Advances in
Cryptology — CRYPTO’98, volume 1462 of Lecture Notes in Computer Science, pages
13-25. Springer, Heidelberg, August 1998. doi:10.1007/BFb0055717.

Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adap-
tive chosen ciphertext secure public-key encryption. In Lars R. Knudsen, editor,
Advances in Cryptology — FUROCRYPT 2002, volume 2332 of Lecture Notes in
Computer Science, pages 45—64. Springer, Heidelberg, April / May 2002. doi:
10.1007/3-540-46035-7_4.

Jie Chen and Hoeteck Wee. Dual system groups and its applications — compact HIBE
and more. Cryptology ePrint Archive, Report 2014/265, 2014. https://eprint.iacr.
org/2014/265.

Ricardo Dahab, Steven Galbraith, and Eduardo Morais. Adaptive key recovery attacks
on NTRU-based somewhat homomorphic encryption schemes. In Anja Lehmann and
Stefan Wolf, editors, ICITS 15: 8th International Conference on Information Theoretic
Security, volume 9063 of Lecture Notes in Computer Science, pages 283-296. Springer,
Heidelberg, May 2015. doi:10.1007/978-3-319-17470-9_17.

Alex Escala, Gottfried Herold, Eike Kiltz, Carla Rafols, and Jorge Luis Villar. An
algebraic framework for Diffie-Hellman assumptions. Journal of Cryptology, 30(1):242—
288, January 2017. doi:10.1007/s00145-015-9220-6.

80


https://doi.org/10.1007/s00145-011-9105-2
https://doi.org/10.1007/s00145-011-9105-2
https://doi.org/10.1007/S10623-013-9834-3
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-030-36033-7_1
https://doi.org/10.1007/978-3-030-36033-7_1
https://doi.org/10.1007/978-3-662-54388-7_8
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://eprint.iacr.org/2014/265
https://eprint.iacr.org/2014/265
https://doi.org/10.1007/978-3-319-17470-9_17
https://doi.org/10.1007/s00145-015-9220-6

[EHN*+13]

[EHN*18]

[EHO*+13]

[Emu21]

[Gen09]

[GGPR13]

[GPVO08]

[GSW13]

[HK17]

[HWZ07]

Keita Emura, Goichiro Hanaoka, Koji Nuida, Go Ohtake, Takahiro Matsuda, and
Shota Yamada. Chosen ciphertext secure keyed-homomorphic public-key encryption.
Cryptology ePrint Archive, Report 2013/390, 2013. https://eprint.iacr.org/2013/
390.

Keita Emura, Goichiro Hanaoka, Koji Nuida, Go Ohtake, Takahiro Matsuda, and Shota
Yamada. Chosen ciphertext secure keyed-homomorphic public-key cryptosystems. Des.
Codes Cryptogr., 86(8):1623-1683, 2018. doi:10.1007/510623-017-0417-6.

Keita Emura, Goichiro Hanaoka, Go Ohtake, Takahiro Matsuda, and Shota Ya-
mada. Chosen ciphertext secure keyed-homomorphic public-key encryption. In Kaoru
Kurosawa and Goichiro Hanaoka, editors, PKC 2013: 16th International Conference
on Theory and Practice of Public Key Cryptography, volume 7778 of Lecture Notes
in Computer Science, pages 32-50. Springer, Heidelberg, February / March 2013.
doi:10.1007/978-3-642-36362-7_3.

Keita Emura. On the security of keyed-homomorphic PKE: preventing key recovery
attacks and ciphertext validity attacks. IFICE Trans. Fundam. Electron. Commun.
Comput. Sci., 104-A(1):310-314, 2021. doi:10.1587/TRANSFUN.2020EAL2039.

Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzen-
macher, editor, 41st Annual ACM Symposium on Theory of Computing, pages 169—178.
ACM Press, May / June 2009. doi:10.1145/1536414.1536440.

Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span
programs and succinct NIZKs without PCPs. In Thomas Johansson and Phong Q.
Nguyen, editors, Advances in Cryptology — EUROCRYPT 2013, volume 7881 of Lecture
Notes in Computer Science, pages 626—645. Springer, Heidelberg, May 2013. doi:
10.1007/978-3-642-38348-9_37.

Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Richard E. Ladner and Cynthia Dwork,
editors, 40th Annual ACM Symposium on Theory of Computing, pages 197-206. ACM
Press, May 2008. doi:10.1145/1374376.1374407.

Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran
Canetti and Juan A. Garay, editors, Advances in Cryptology — CRYPTO 2013, Part I,
volume 8042 of Lecture Notes in Computer Science, pages 75-92. Springer, Heidelberg,
August 2013. doi:10.1007/978-3-642-40041-4_5

Ryo Hiromasa and Yutaka Kawai. Dynamic multi target homomorphic attribute-based
encryption. In Maire O’Neill, editor, 16th IMA International Conference on Cryptog-
raphy and Coding, volume 10655 of Lecture Notes in Computer Science, pages 25—43.
Springer, Heidelberg, December 2017.

Qiong Huang, Duncan S. Wong, and Yiming Zhao. Generic transformation to strongly
unforgeable signatures. In Jonathan Katz and Moti Yung, editors, ACNS 07: 5th
International Conference on Applied Cryptography and Network Security, volume 4521
of Lecture Notes in Computer Science, pages 1-17. Springer, Heidelberg, June 2007.
doi:10.1007/978-3-540-72738-5_1.

81


https://eprint.iacr.org/2013/390
https://eprint.iacr.org/2013/390
https://doi.org/10.1007/S10623-017-0417-6
https://doi.org/10.1007/978-3-642-36362-7_3
https://doi.org/10.1587/TRANSFUN.2020EAL2039
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-540-72738-5_1

[JR15]

[KY16]

[LDM+16]

[Lew12]

[LMSV12]

[LPJY14]

[LTV12]

[MBKM19]

[ML19]

Charanjit S. Jutla and Arnab Roy. Dual-system simulation-soundness with applications
to UC-PAKE and more. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in
Cryptology — ASIACRYPT 2015, Part I, volume 9452 of Lecture Notes in Computer
Science, pages 630-655. Springer, Heidelberg, November / December 2015. doi:10.
1007/978-3-662-48797-6_26.

Shuichi Katsumata and Shota Yamada. Partitioning via non-linear polynomial func-
tions: More compact IBEs from ideal lattices and bilinear maps. In Jung Hee Cheon
and Tsuyoshi Takagi, editors, Advances in Cryptology — ASIACRYPT 2016, Part 11,
volume 10032 of Lecture Notes in Computer Science, pages 682-712. Springer, Heidel-
berg, December 2016. doi:10.1007/978-3-662-53890-6_23.

Junzuo Lai, Robert H. Deng, Changshe Ma, Kouichi Sakurai, and Jian Weng. CCA-
secure keyed-fully homomorphic encryption. In Chen-Mou Cheng, Kai-Min Chung,
Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016: 19th International Con-
ference on Theory and Practice of Public Key Cryptography, Part I, volume 9614 of
Lecture Notes in Computer Science, pages 70-98. Springer, Heidelberg, March 2016.
doi:10.1007/978-3-662-49384-7_4.

Allison B. Lewko. Tools for simulating features of composite order bilinear groups in the
prime order setting. In David Pointcheval and Thomas Johansson, editors, Advances in
Cryptology — EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science,
pages 318-335. Springer, Heidelberg, April 2012. doi:10.1007/978-3-642-29011-4_
20.

Jake Loftus, Alexander May, Nigel P. Smart, and Frederik Vercauteren. On CCA-
secure somewhat homomorphic encryption. In Ali Miri and Serge Vaudenay, editors,
SAC 2011: 18th Annual International Workshop on Selected Areas in Cryptography,
volume 7118 of Lecture Notes in Computer Science, pages 55—72. Springer, Heidelberg,
August 2012. doi:10.1007/978-3-642-28496-0_4.

Benoit Libert, Thomas Peters, Marc Joye, and Moti Yung. Non-malleability from
malleability: Simulation-sound quasi-adaptive NIZK proofs and CCA2-secure en-
cryption from homomorphic signatures. In Phong Q. Nguyen and Elisabeth Os-
wald, editors, Advances in Cryptology — FUROCRYPT 2014, volume 8441 of Lec-
ture Notes in Computer Science, pages 514-532. Springer, Heidelberg, May 2014.
doi:10.1007/978-3-642-55220-5_29.

Adriana Loépez-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption. In Howard J.
Karloff and Toniann Pitassi, editors, 44th Annual ACM Symposium on Theory of Com-
puting, pages 1219-1234. ACM Press, May 2012. doi:10.1145/2213977.2214086.

Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-
knowledge SNARKSs from linear-size universal and updatable structured reference
strings. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz,
editors, ACM CCS 2019: 26th Conference on Computer and Communications Security,
pages 2111-2128. ACM Press, November 2019. doi:10.1145/3319535.3339817.

Xuecheng Ma and Dongdai Lin. Multi-identity IBFHE and multi-attribute ABFHE
in the standard model. In Kwangsu Lee, editor, ICISC 18: 21st International

82


https://doi.org/10.1007/978-3-662-48797-6_26
https://doi.org/10.1007/978-3-662-48797-6_26
https://doi.org/10.1007/978-3-662-53890-6_23
https://doi.org/10.1007/978-3-662-49384-7_4
https://doi.org/10.1007/978-3-642-29011-4_20
https://doi.org/10.1007/978-3-642-29011-4_20
https://doi.org/10.1007/978-3-642-28496-0_4
https://doi.org/10.1007/978-3-642-55220-5_29
https://doi.org/10.1145/2213977.2214086
https://doi.org/10.1145/3319535.3339817

[MN22]

[MP12]

[MW16]

[PD20]

[PS16]

[Reg05]

[SET22]

[Tak21]

[VGHV10]

Conference on Information Security and Cryptology, volume 11396 of Lecture Notes
in Computer Science, pages 69-84. Springer, Heidelberg, November 2019. doi:
10.1007/978-3-030-12146-4_5.

Yusaku Maeda and Koji Nuida. Chosen ciphertext secure keyed two-level homomorphic
encryption. In Khoa Nguyen, Guomin Yang, Fuchun Guo, and Willy Susilo, editors,
ACISP 22: 27th Australasian Conference on Information Security and Privacy, volume
13494 of Lecture Notes in Computer Science, pages 209-228. Springer, Heidelberg,
November 2022. doi:10.1007/978-3-031-22301-3_11.

Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology
— FUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages 700—
718. Springer, Heidelberg, April 2012. doi:10.1007/978-3-642-29011-4_41.

Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-
key FHE. In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology
- EUROCRYPT 2016, Part II, volume 9666 of Lecture Notes in Computer Science,
pages 735-763. Springer, Heidelberg, May 2016. doi:10.1007/978-3-662-49896-5_
26.

Tapas Pal and Ratna Dutta. Chosen-ciphertext secure multi-identity and multi-
attribute pure FHE. In Stephan Krenn, Haya Shulman, and Serge Vaudenay, editors,
CANS 20: 19th International Conference on Cryptology and Network Security, volume
12579 of Lecture Notes in Computer Science, pages 387—408. Springer, Heidelberg,
December 2020. doi:10.1007/978-3-030-65411-5_19.

Chris Peikert and Sina Shiehian. Multi-key FHE from LWE, revisited. In Martin Hirt
and Adam D. Smith, editors, TCC 2016-B: 14th Theory of Cryptography Conference,
Part II, volume 9986 of Lecture Notes in Computer Science, pages 217-238. Springer,
Heidelberg, October / November 2016. doi:10.1007/978-3-662-53644-5_9.

Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Harold N. Gabow and Ronald Fagin, editors, 37th Annual ACM Symposium on
Theory of Computing, pages 84-93. ACM Press, May 2005. doi:10.1145/1060590.
1060603.

Shingo Sato, Keita Emura, and Atsushi Takayasu. Keyed-fully homomorphic encryp-
tion without indistinguishability obfuscation. In Giuseppe Ateniese and Daniele Ven-
turi, editors, ACNS 22: 20th International Conference on Applied Cryptography and
Network Security, volume 13269 of Lecture Notes in Computer Science, pages 3—23.
Springer, Heidelberg, June 2022. doi:10.1007/978-3-031-09234-3_1.

Atsushi Takayasu. Tag-based ABE in prime-order groups via pair encoding. Des. Codes
Cryptogr., 89(8):1927-1963, 2021. doi:10.1007/510623-021-00894-4.

Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homo-
morphic encryption over the integers. In Henri Gilbert, editor, Advances in Cryptology
-~ EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science, pages 24—
43. Springer, Heidelberg, May / June 2010. doi:10.1007/978-3-642-13190-5_2.

83


https://doi.org/10.1007/978-3-030-12146-4_5
https://doi.org/10.1007/978-3-030-12146-4_5
https://doi.org/10.1007/978-3-031-22301-3_11
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-030-65411-5_19
https://doi.org/10.1007/978-3-662-53644-5_9
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1007/978-3-031-09234-3_1
https://doi.org/10.1007/S10623-021-00894-4
https://doi.org/10.1007/978-3-642-13190-5_2

[Wat05]

[Wat09]

[Weel4]

[Yam17]

[ZPS12]

[ZSZ+22]

Brent R. Waters. Efficient identity-based encryption without random oracles. In Ronald
Cramer, editor, Advances in Cryptology — EUROCRYPT 2005, volume 3494 of Lecture
Notes in Computer Science, pages 114-127. Springer, Heidelberg, May 2005. doi:
10.1007/11426639_7.

Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In Shai Halevi, editor, Advances in Cryptology — CRYPTO 2009,
volume 5677 of Lecture Notes in Computer Science, pages 619-636. Springer, Heidel-
berg, August 2009. doi:10.1007/978-3-642-03356-8_36

Hoeteck Wee. Dual system encryption via predicate encodings. In Yehuda Lindell,
editor, TCC 2014: 11th Theory of Cryptography Conference, volume 8349 of Lecture
Notes in Computer Science, pages 616-637. Springer, Heidelberg, February 2014. doi:
10.1007/978-3-642-54242-8_26.

Shota Yamada. Asymptotically compact adaptively secure lattice IBEs and verifiable
random functions via generalized partitioning techniques. In Jonathan Katz and Hovav
Shacham, editors, Advances in Cryptology — CRYPTO 2017, Part I1I, volume 10403
of Lecture Notes in Computer Science, pages 161-193. Springer, Heidelberg, August
2017. doi:10.1007/978-3-319-63697-9_6.

Zhenfei Zhang, Thomas Plantard, and Willy Susilo. On the CCA-1 security of some-
what homomorphic encryption over the integers. In Mark Dermot Ryan, Ben Smyth,
and Guilin Wang, editors, Information Security Practice and Experience - 8th Inter-
national Conference, ISPEC 2012, Hangzhou, China, April 9-12, 2012. Proceedings,
volume 7232 of Lecture Notes in Computer Science, pages 353—-368. Springer, 2012.
doi:10.1007/978-3-642-29101-2\_24.

Yuncong Zhang, Alan Szepieniec, Ren Zhang, Shi-Feng Sun, Geng Wang, and Dawu
Gu. VOProof: Efficient zkSNARKSs from vector oracle compilers. In Heng Yin, Angelos
Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS 2022: 29th Conference on
Computer and Communications Security, pages 3195-3208. ACM Press, November
2022. doi:10.1145/3548606.3559387.

84


https://doi.org/10.1007/11426639_7
https://doi.org/10.1007/11426639_7
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-319-63697-9_6
https://doi.org/10.1007/978-3-642-29101-2_24
https://doi.org/10.1145/3548606.3559387

	Introduction
	Background
	Our Contribution
	Technical Overview
	Model
	Overview of IBKFHE
	Overview of IBKHE

	Organization

	Cryptographic Primitives
	Keyed Fully Homomorphic Encryption
	Multi-Key Fully Homomorphic Encryption
	Identity-based Encryption
	Attribute-based Encryption
	One-time Signatures
	Message Authentication Codes
	Hash Function

	Generic Construction of KFHE
	Construction
	Security

	Attribute-based Keyed (Fully) Homomorphic Encryption
	Delegatable Attribute-based Encryption
	Definition
	Preliminaries on Lattices-based Cryptography
	Discrete Gaussian Distribution
	Learning with Errors
	Gadget Matrix
	Trapdoor and Sampling Algorithms
	Full-rank Difference Map
	Randomness Extraction
	Key Homomorphic Computation
	Yamada's IBE Scheme
	Boneh et al.'s ABE Scheme

	Construction
	Security

	Generic Construction of ABKFHE
	Construction
	Security

	Emura et al.'s KHPKE Scheme under the Matrix DDH Assumption
	Cyclic Groups
	Scheme
	Security

	Pairing-based Construction of ABKHE
	Preliminaries on Pairing-based Cryptography
	Bilinear Groups
	Pair Encoding Scheme

	Construction
	Security
	Semi-functional Distributions
	Proof of Theorem 15
	Ciphertext Indistinguishability
	Key Indistinguishability


	Conclusion

