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Abstract

Somewhere statistically binding (SSB) hashing allows us to sample a special hashing key such that
the digest statistically binds the input at m secret locations. This hash function is said to be somewhere
extractable (SE) if there is an additional trapdoor that allows the extraction of the input bits at the m
locations from the digest.

Devadas, Goyal, Kalai, and Vaikuntanathan (FOCS 2022) introduced a variant of somewhere ex-
tractable hashing called rate-1 fully local SE hash functions. The rate-1 requirement states that the size
of the digest is m + poly(λ) (where λ is the security parameter). The fully local property requires that
for any index i, there is a “very short” opening showing that i-th bit of the hashed input is equal to b
for some b ∈ {0, 1}. The size of this opening is required to be independent of m and in particular, this
means that its size is independent of the size of the digest. Devadas et al. gave such a construction from
Learning with Errors (LWE).

In this work, we give a construction of a rate-1 fully local somewhere extractable hash function from
Decisional Diffie-Hellman (DDH) and BARGs. Under the same assumptions, we give constructions of
rate-1 BARG and RAM SNARG with partial input soundness whose proof sizes are only matched by
prior constructions based on LWE.

1 Introduction

Keyed hash functions are fundamental building blocks in cryptography. They consist of two algorithms
(Setup,Eval). Setup is a PPT algorithm that takes in the security parameter 1λ and outputs a hashing key
hk. Eval is a deterministic algorithm that takes in the hashing key hk and an input x and outputs a short
digest h of the input. A key property that many applications require is collision resistance. This guarantees
that no PPT adversary A on input the hashing key hk (sampled using the Setup algorithm) can find two
different inputs x, x′ such that Eval(hk, x) = Eval(hk, x′). However, for many applications collision-resistance
is not sufficient and one requires more advanced properties from the hash function.

Somewhere Statistically Binding and Extractability. Somewhere statistically binding (SSB) hash
functions [HW15, OPWW15] enhance collision resistance with stronger requirements. This family of hash
function again consists of a pair of algorithms (Setup,Eval) where the Setup has a different syntax. Here,
Setup takes in 1λ and an index i ∈ [n] (where n is the length of the input to the hash function) and outputs
the hashing key hk. We require this hash function to satisfy two properties. The first property is hiding,
which requires that the hashing key hk hides the location i from computationally bounded adversaries. The
second property is statistical binding, which requires that the digest statistically binds to the location i.
This means that any unbounded adversary should not be able to produce two inputs x and x′ that differ at
location i and hash to the same digest w.r.t. a hashing key hk that is sampled using Setup(1λ, i).
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An SSB hash function is said to be somewhere extractable (SE) if Setup outputs a trapdoor td along with
the hashing key hk. There exists an extraction algorithm Extract that takes the digest h and td and outputs
xi.

SE and SSB hash functions are usually augmented with two other algorithms (Open,Verify). The Open
algorithm takes in the hk, input x and a location j ∈ [n] and outputs an opening ρ. The Verify algorithm
takes in the digest h, the index j, the bit xj , and an opening ρ and either accepts or rejects the opening.
For efficiency purposes, we require the size of the opening to be much smaller than the length of the input
x. SSB and SE hash functions can be naturally extended to the setting where the hash key hk binds to a
subset I ⊆ [n]. The hiding requirement is modified to guarantee that for any two subsets I and I ′ of the
same size, the hash keys generated w.r.t. to I and I ′ are computationally indistinguishable.

SSB hash functions are used in constructing very low communication MPC protocols [HW15], iO for
Turing machines and RAM programs [KLW15, GS18, AL18], and laconic oblivious transfer [CDG+17, DG17].
Somewhere extractable hash functions are used in the recent constructions of Batch Arguments from NP and
Succinct Non-Interactive Arguments for deterministic polynomial-time computation [CJJ21, CJJ22, KVZ21,
HJKS22, WW22].

Rate-1 Fully Local Somewhere Extractability. In recent work, Devadas, Goyal, Kalai, and Vaikun-
tanathan [DGKV22] introduced another variant of somewhere extractability called rate-1 fully local some-
where extractable hash functions. The rate-1 property requires that the size of the digest is m + poly(λ)
where m is the size of the binding set I used in generating the hash key hk. Since the digest has to bind to m
locations, its size must be at least m. The above requirement states that the size of the digest incurs a fixed
additive polynomial overhead in λ when compared to the lower bound. The fully local opening requirement
states that the size of the opening ρ to any position is a fixed polynomial in λ and is independent of m.
This, in particular, means that the size of the opening is independent of the size of the digest. In the same
work, they gave a construction of rate-1 fully local SE hash functions from Learning with Errors [Reg05].

1.1 Our Results

In this work, we give a construction of a rate-1 fully local SE hash function assuming the hardness of
Decisional Diffie-Hellman (DDH) and the existence of somewhere extractable Batch Arguments (seBARGs)
(see Definition 3). Formally,

Informal Theorem 1. Assuming the hardness of DDH and a somewhere extractable BARG, there exists a
rate-1 fully local SE hash function.

The works of Waters and Wu [WW22] and Choudhuri et al. [CGJ+23] gave constructions of somewhere
extractable BARGs from k-Lin and sub-exponential DDH respectively. As a corollary, we get:

Corollary 1. Assuming either sub-exponential hardness of DDH or polynomial hardness of DDH and k-Lin,
there exists a rate-1 fully local SE hash function.

Application-1: Rate-1 BARG. As a direct corollary of the work of Devadas et al. [DGKV22], we get a
construction of rate-1 BARG.

Corollary 2. Assuming the hardness of DDH and a somewhere extractable BARG, there exists a construction
of a BARG for NP where the proof size is m + poly(log k, λ). Here, m is the size of a single witness and k
is the batch size.

The prior construction of BARG for NP based on the same assumptions due to Paneth and Pass [PP22]
has a proof size of m+ o(m) ·poly(log k, λ).1 The only known construction of BARG that achieves the above
proof size is due to Devadas et al. [DGKV22] but their work relies on the LWE assumption.

1We note that this work only requires a rate-1 SE hash function (without the fully local opening) property in addition to
somewhere-extractable BARG. The work of Kalai et al. [KLVW23] gave a construction of such a SE hash function from rate-1
OT. Rate-1 OT can be instantiated from DDH/QR/LWE [DGI+19].
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Application-2: RAM SNARG with Partial Input Soundness. A RAM SNARG [BHK17, CJJ22]
allows a verifier to verify the correctness of a RAM program with read-only access to a large database D that
runs in time T and uses space S. The verifier is given a short digest h of the database and a proof π whose
size is poly(λ, log T, S). The traditional soundness for RAM SNARG requires the adversary to “commit” to
the entire database. Recent work of Kalai et al. [KLVW23] considered a stronger soundness requirement
called partial input soundness. This guarantees that if the memory is digested using a SE hash function
that is extractable on a set of coordinates I, and if the RAM computation only reads coordinates in I, then
soundness holds. In particular, this doesn’t require the adversary to commit to (or, in other words, exhibit
knowledge of) the entire database beforehand. Plugging in our rate-1 fully local SE hash function into the
RAM SNARG construction given in Kalai et al. [KLVW23], we obtain the following corollary:

Corollary 3. Assuming the hardness of DDH and a somewhere extractable BARG, there exists a a construc-
tion of a RAM SNARG with partial input soundness where the size of the database digest is m+poly(λ) and
size of the proof is O(S) + poly(λ, log T ). Here, m is the size of the index I in the partial input soundness.

The above parameters were previously known only from LWE [DGKV22].

1.2 Technical Outline

We will now give an overview of our construction.

Rate-1 SEH from DDH Our starting observation is that the DDH-based trapdoor hash construction
of [DGI+19] in fact already gives us a rate-1 somewhere extractable hash function. We will very briefly outline
this construction, since our construction uses specific properties of it. Specifically, let G be a cyclic group
of prime order p generated by a generator g. The setup algorithm, on input a set I = {i1, . . . , im} ⊆ [N ]
first chooses a1, . . . , am uniformly random from Zp and sets h0 = g and hk = gak for k = 1, . . . ,m. Next,
it chooses r1, . . . , rN ∈ Zp uniformly at random and sets Mk,j = h

rj
k · g

δj,ik , where δi,j = 1 if i = j and
otherwise 0. The hashing key consists of the matrix M = (Mk,j)k,j , whereas the trapdoors are given by
a1, . . . , am.

Hashing proceeds as follows. Given a vector x = (x1, . . . , xN ), we compute c0, c1, . . . , cm via ck =∏N
j=1 M

xj

k,j . Note now that c1, . . . , cm is a batch ElGamal encryption of xi1 , . . . , xim with ciphertext header

c0, that is it holds that gxik = ck · c−ak
0 for k = 1, . . . ,m. This ciphertext is now compressed via the

distributed discrete logarithm technique [BGI16]. In a nutshell, there is an efficiently computable keyed
function fK : G→ {0, 1} such that we can efficiently find a key K such that it holds fK(ck) = fK(cak

0 )⊕xik

for k = 1, . . . ,m. Importantly, to find such a key we do not need to know the ak. Now, given such a key K,
we compute v1, . . . , vm via vi = fK(ci). We set the hash value to be v = (K, c0, v1, . . . , vm). Note that since
the v1, . . . , vm are bits, such a hash value is of size m+ poly(λ) bits.

Clearly, given ak we can recover xik from K, c0, v1, . . . , vm via xik = fK(cak
0 )⊕ vk using the property of

fK detailed above.
The only security requirement we make for trapdoor hash functions is that they are index hiding, that is

the hashing key, in this case the matrix M, hides the index set I = {i1, . . . , im}. For this construction, this
follows immediately from the IND-CPA security of batch ElGamal encryption, as for each j = 1, . . . , N it
holds that M1,j , . . . ,Mm,j is a batch ElGamal ciphertext with header M0,j .

There are two dilemmata with this construction however: first, the hashing key is non-compact, that is
the size of the hashing key scales with the size of the database. Second, this construction does not support
local opening.

While we do not know how to solve the first issue, we observe that this issue does not affect any of the
applications of fully local somewhere extractable hash functions as long as there is a succinct verification
key which can be used to check the validity of openings. We will therefore compute a verification key by
computing a (non-rate 1) fully local somewhere extractable hash of the hashing key.
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Full Locality To address the second issue, we will take a similar avenue as [DGKV22]. Specifically, we
will compute a second, non-rate 1 somewhere extractable hash hx of the input x and prove consistency
between the two hashes v and hx. To facilitate this, we will use specific properties of how v is computed.
Indeed, observe that each ci is just a product of group elements hx1

i , . . . , hxN
i . Recall that our goal is to make

the size of the opening (essentially) independent of both N and m. Hence, the statement we are trying to
prove cannot directly be proven with a BARG, as the product involves N terms. However, following an idea
from [DGKV22], we can compute each ci via a succinct sequence of local operations, each only involving
two group elements. This is done via a binary multiplication tree. For the sake of simplicity, let N now be

a power of two, i.e. N = 2T . We define z
(0)
i,j = M

xj

i,j for i ∈ [m] and j ∈ [N ]. We can now recursively define

the z
(t)
i,j for t = 1, . . . , T via

z
(t)
i,j = z

(t−1)
i,2j−1 · z

(t)
i,2j . (1)

Here, we just set z
(t)
i,j to undefined if either z

(t−1)
i,2j−1 or z

(t−1)
i,2j is undefined (i.e. 2j − 1 or 2j is out of bounds).

Now note that it holds routinely that z
(T )
i,1 = ci via the recursive definition of the z

(t)
i,j .

The idea to prove consistency between v and hx now comprises of 3 parts.

1. Prove for all i, j that z
(0)
i,j = M

xj

i,j .

2. Prove for all i, j and all t that equation (1) holds.

3. Prove for all i that vi = fK(z
(T )
i,1 ).

Since all three items are local statements, we will enforce their validity using BARGs. To facilitate this,
we will convert all statements into index statements. For item 1, the vector x is already implicitly given via
the hash value hx. As mentioned above, we will have an additional verification key which consists of an SEH

hash hM committing to the matrix M. Moreover, for all t = 1, . . . , T let z(t) = (z
(t)
i,j )i,j and let h(t) be an

SEH hash of z(t).
In our full construction of rate-1 fully local SEH, the hash value will consist of v, hx, h(1), . . . , h(T )

as well as T + 2 BARGs (1 for item 1, T for item 2, and 1 for item 3). As the size of each BARG is
independent of m and N , the total size of the hash value is still dominated by v and thus comes down to
m+ T · poly(λ) = m+ poly(λ) (as T = log(N) = O(λ))).

Finally, a local opening in this construction simply consists of a local opening of hx.

Proving Security We will now provide a high level discussion on how we establish the somewhere ex-
tractability property of our construction. Hence, assume we had a PPT adversary A who succeeds in
providing a valid local opening for a position i∗ ∈ I such that the opened value differs from the value
extracted using the trapdoor a1, . . . , am.

We will make use of the somewhere extractablity properties of the hashes hx, h
(1), . . . , h(T ) and hM.

Specifically, it will suffice to make each of these hashes extractable at a constant number of locations. Hence
the sizes of these hashes will still be poly(λ), and in particular independent of m and N .

As |I| = m, a security reduction can guess the index j∗ ∈ [m] such that i∗ = ij∗ with polynomial proba-
bility 1/m, and produce a random output if the guess was wrong. The reduction will make hx extractable at
position i∗, and each h(t) extractable at locations (0, j(t)) and (j∗, j(t)), where the j(t) are on the root-to-leaf
path to i∗. Due to the index hiding properties of the underlying SEH this modification is not noticed by the
adversary.

Hence, the reduction will now be able to extract z
(t)

0,j(t)
and z

(t)

j∗,j(t)
for each t = 1, . . . , T . Our critical

observation is now the following: If z
(t)

0,j(t)
and z

(t)

j∗,j(t)
were correctly computed, then they form an ElGamal

ciphertext of xi∗ under the secret key aj∗ , that is it would hold that

z
(t)

j∗,j(t)
= (z

(t)

0,j(t)
)aj∗ · gxi∗ .
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This follows via the definition of M and the z
(0)
i,j . Namely, as M0,j = grj , Mj∗,j = h

rj
j∗ ·gδj,i∗ and z

(0)
0,j = M

xj

0,j ,

z
(0)
j∗,j = M

xj

j∗,j , it holds that (z
(0)
0,j , z

(0)
j∗,j) is an ElGamal encryption of xi∗ for j = i∗, and otherwise an

encryption of 0.
Furthermore, the above property is efficiently testable given the trapdoor aj∗ , that is for t = 1, . . . , T the

reduction can compute X(t) = z
(t)

j∗,j(t)
· (z(t)

0,j(t)
)−aj∗ . Now, critically, if the opening provided by A opens to

something different from xi∗ , then there must be an index t∗ ∈ [T ] for which X(t∗) differs from gxi∗ . The
reduction can guess the smallest such index t∗ with polynomial probability 1/T .

If t∗ = 0, we will routinely obtain a contradiction against the soundness of the BARG establishing item
1 above, whereas if t∗ = T we will obtain a contradiction against the soundness of the BARG establishing
item 3. The challenging situation occurs if t∗ lies in between 0 and T . To deal with this case, we make
h(t∗−1) extractable at both children of j(t

∗), which is not detectable as the underlying SEH is index hiding.
Now, if the ElGamal ciphertext of one of the children is an encryption of 0 (which we can efficiently test),
we immediately get a contradiction to the soundness of the BARG in item 2 for t = t∗ as we know by the
minimality of t∗ that the ElGamal ciphertext at the other child of j(t

∗) is an encryption of xi∗ .
If the extracted ciphertext encrypts a non-zero value, we make h(t∗−2) extractable at both children of

this node, which is again undetectable by the index hiding property. If both extracted ciphertexts encrypt
0, we again get a contradiction to the soundness of the corresponding BARG. Otherwise, we can guess with
probability 1/2 which one of the two children yields a non-zero ciphertext. We will maintain this invariant
in the remaining hybrids: for one of the two children, the extracted ciphertext must decrypt to a non-zero
value, unless the soundness of the corresponding BARG is violated. We can hence “push” this inconsistency
all the way down to the leaf layer of the tree, and eventually get a contradiction to the soundness of the
BARG in item 1.

To see that the reduction has polynomial advantage, note that the overall success probability against the
BARG in item 2 comes down to

ϵ′ =
1

m · T · 2T
· ϵ = 1

m · T ·N
· ϵ,

where ϵ is the success probability of A. Noting that ϵ′ is also polynomial, we conclude this outline.

2 Preliminaries

In the following, let G be a (prime-order) group generator, that is, G is an algorithm that takes as an input
a security parameter 1λ and outputs (G, p, g), where G is the description of a multiplicative cyclic group, p
is the order of the group which is always a prime number unless differently specified, and g is a generator of
the group. In the following we state the decisional version of the Diffie-Hellman (DDH) assumption.

Definition 1 (Decisional Diffie-Hellman Assumption). Let (G, p, g) ←$ G(1λ). We say that the DDH as-
sumption holds (with respect to G) if for any PPT adversary A∣∣Pr[1← A((G, p, g), (ga, gb, gab))]− Pr[1← A((G, p, g), (ga, gb, gc))]

∣∣ ≤ negl(λ)

where a, b, c←$ Zp.

We additionally recall a shrinking procedure which compresses a DDH-based ciphertext into a rate-1
ciphertext.

Lemma 1 ([DGI+19, BBD+20]). There exists a correct pair of algorithms Shrink,ShrinkDec such that given

• h1 = gx1 , . . . , hn = gxn

• c0 = gt and ci = ht
i · gmi , where m1, . . . ,mn is a message and mi ∈ {0, 1}

it outputs
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• Shrink(c0, (c1, . . . , cn)) = ct = (K, d0, (d1, . . . , dn)), where the components are given by di = ShrinkComp(K, ci)
for i ∈ [n].

• ShrinkDec((x1, . . . , xn), ct) = (m1, . . . ,mn).

Moreover, ShrinkDec((x1, . . . , xn), ct) fails only with negligible probability in λ, and ShrinkComp(K, ci) runs
in expected polynomial time.

In particular, the construction uses a pseudo-random function PRF : {0, 1}λ × G → {0, 1}τ with output
size τ = log(2n), and ShrinkComp(K, ci) computes the least δi such that PRF(K, ci · gδi) = 0τ and outputs δi
mod 2.

The compressing key K is chosen such that PRF(K, ci/g) ̸= 0, and that we have a bound δi < D, where
D = O(nλ).

2.1 Somewhere Extractable Hash Families

Definition 2 (Somewhere Extractable Hash). A somewhere extractable hash familiy SEH consists of the
following polynomial time algorithms:

• Gen(1λ, N, i∗)→ (hk, td). A probabilistic setup algorithm that takes as input the security parameter 1λ,
the message length N , and an index i∗ ∈ [N ]. It outputs a hashing key hk and a trapdoor td.

• Hash(hk, x) → v. A deterministic algorithm that takes as input a hashing key hk and a message
x ∈ {0, 1}N , and outputs a hash value v ∈ {0, 1}ℓhash .

• Open(hk, x, j) → (b, ρ). A deterministic algorithm that takes as input a hashing key hk, a message x
and an index j ∈ [N ]. It outputs a bit b ∈ {0, 1} and an opening ρ ∈ {0, 1}ℓopen .

• Verify(hk, v, j, b, ρ) → {0, 1}. A deterministic algorithm that takes as input a hashing key hk, a hash
value v, an index i ∈ [N ], a bit b and an opening ρ, and it outputs 1 (accept) or 0 (reject).

• Extract(td, v) → u. A deterministic algorithm that takes as input the trapdoor td and a hash value v,
and it outputs a bit u ∈ {0, 1}.

It is required to satisfy the following properties:

Efficiency. The size of the hashing key |hk|, the size of the hash ℓhash, the size of the opening ℓopen and
the running time of Verify are all bounded by poly(λ, logN).

Opening completeness. There exists a negligible function negl(·) such that for any λ, any N ≤ 2λ, any
i∗ ∈ [N ], any j ∈ [N ] and any x ∈ {0, 1}N ,

Pr

 b = xj

∧ Verify(hk, v, j, b, ρ) = 1
:

(hk, td)← Gen(1λ, N, i∗),
v = Hash(hk, x),
(b, ρ) = Open(hk, x, j)

 = 1− negl(λ)

Index hiding. For any poly-time adversary A = (A1,A2) there exists a negligible function negl(·) such
that Pr

[
HIDEA1,A2(1λ) = 1

]
≤ 1

2 + negl(λ).

Experiment HIDEA1,A2(1λ)

(1N , i∗0, i
∗
1)← A1(1

λ)

b←$ {0, 1}

(hk, td)← Gen(1λ, N, i∗b)

b′ ← A2(hk)

return b′ = b
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Somewhere statistically (resp. computational) binding w.r.t. opening. For any all-powerful (resp.
poly-time) adversaryA = (A1,A2) there exists a negligible function negl(·) such that Pr

[
OPENA1,A2(1λ) = 1

]
≤

negl(λ).

Experiment OPENA1,A2(1λ)

(1N , i∗)← A1(1
λ)

(hk, td)← Gen(1λ, N, i∗)

(v, j, b, ρ)← A2(hk)

u = Extract(td, v)

return u ̸= b ∧ Verify(hk, v, j, b, ρ)

Remark 1 ([DGKV22, KLVW23]). Notice that we can easily convert any such SEH family into one that is
extractable on m indices i1, . . . , im by running each algorithm m times and concatenating the outputs.

Under this transformation, the sizes of ℓhash, ℓopen and the efficiency of the Verify will be |I|·poly(λ, logN).
We will use the shorthand notation Gen(1λ, N, I) to denote this construction, in which case Extract(td, v)

will output m bits (ui)i∈I .

Theorem 2 ([HW15]). Assuming any FHE scheme, there exists a SEH family.

Theorem 3 ([KLVW23]). Assuming any rate-1 string OT with verifiable correctness, there exists a SEH
family.

Corollary 4. There exists a SEH family from any of the {DDH, O(1)-LIN, QR, DCR, LWE} assumptions.

2.2 Somewhere Extractable Batch Arguments

We recall the notion of batch arguments (BARGs), which is an argument system to succinctly prove that,
given a language L, multiple instances x1, . . . , xk all have witnesses w1, . . . , wk, with a complexity less than∑
|wi|.
In particular, let BatchCSAT be the following language:

BatchCSAT = {(C, x1, . . . , xk) : ∃w1, . . . , wk s.t. ∀i ∈ [k], C(xi, wi) = 1},

where C : {0, 1}n × {0, 1}m → {0, 1} is a boolean circuit that checks a relation with instance size n and
witness size m.

Definition 3. A somewhere extractable batch argument seBARG for BatchCSAT consists of the following
polynomial time algorithms:

• Gen(1λ, k, 1s, i∗) → (crs, td). Given the number of instances k, an index i∗ and a circuit size s, it
outputs a crs and a trapdoor td.

• P(crs, C, {xi}i∈[k], {wi}i∈[k]) → π. Given a crs, a circuit C, k statements x1, . . . , xk ∈ {0, 1}n and k
witnesses w1, . . . , wk ∈ {0, 1}m, it generates a proof π.

• V(crs, C, {xi}i∈[k], π)→ {0, 1}. Given a crs, a circuit C, k statements {xi}i∈[k] and a proof π, it outputs
a bit b.

• Extract(td, C, {xi}i∈[k], π) → w∗. Given a trapdoor td, a circuit C, k statements {xi}i∈[k] and a proof
π, it outputs a witness w∗ for instance i∗.

L-succinctness. The crs and the proof π have length at most L(k, λ) · poly(s), and the verifier runs in
time L(k, λ) · poly[s] + k · poly(n, λ).
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Completeness. For all λ ∈ N, all k, n ∈ poly(λ), all circuits C : {0, 1}n × {0, 1}m → {0, 1} at size most s
and all (x1, . . . , xk) and (w1, . . . , wk) such that C(xi, wi) = 1 we have that

Pr

[
1← V(crs, C, {xi}i∈[k], π) :

(crs, td)← Gen(1λ, k, 1s, i∗)
π ← P(crs, C, {xi}i∈[k], {wi}i∈[k])

]
= 1.

Index hiding. For all λ ∈ N, all k, n ∈ poly(λ), all PPT adversaries A and all indices i0, i1 ∈ [k] we have
that

Pr

[
b← A(crs) : b←$ {0, 1}

(crs, td)← Gen(1λ, k, 1s, ib)

]
≤ 1

2
+ negl(λ).

Somewhere argument of knowledge. For all λ ∈ N there exists a PPT extractor Ext such that for any
PPT adversary A, there exists a negligible function negl(·) such that for any polynomials k, n = poly(λ), and
any index i∗ ∈ [k] we have that

Pr

 1← V(crs, C, {xi}i∈[k], π)
∧

C(xi∗ , w
∗) ̸= 1

:
(crs, td)← Gen(1λ, k, 1s, i∗)
(C, {xi}i∈[k], π)← A(crs)

w∗ ← Ext(td, C, {xi}i∈[k], π)

 ≤ negl(λ).

We remark that this notion is equivalent to the most common soundness notion of semi-adaptive sound-
ness [KLVW23].

Index seBARGs. We say that a seBARG scheme is an index seBARG if the instances x1, . . . , xk are all of the
form xi = (x, i) with a common x; however, in the L-succinctness property we require that the verification
algorithm runs in time L(k, λ) · poly(s), since it doesn’t have to read all the instances anymore.

Lemma 2 ([KLVW23]). Assume the existence of

• An L-succinct index BARG proof system for BatchCSAT

• A SEH family with statistical binding as in Definition 2

Then there exists an L-succinct index seBARG proof system.

Lemma 3 ([WW22, CGJ+23, CJJ22]). There exists an index seBARG with proof size and verifier running
time of poly(λ, log k, |C|) from {DDH, k-LIN, LWE} assumptions.

Remark 2 ([DGKV22, KLVW23]). As with the SEH hash families, we can easily make the seBARG ex-
tractable on a subset I ⊂ [k] of indices by running all the algorithms in parallel, incurring in a multiplicative
factor of |I| increase of all running times and sizes.

In our construction of a flSEH we will then be using the following syntax and efficiency properties of an
index seBARG.

Fix an index language L given by a relation R(x, i, wi), where x represents the common part of the
statement of the index seBARG. All the algorithms will then implicitly build the circuit C from the relation
R and the value x for the common part of the instances.

• Gen(1λ, k, I)→ (crs, td). Given the number of instances k, and the extraction set I ⊂ [k], it outputs a
crs and a trapdoor td.

• P(crs, x, {wi}i∈[k]) → π. Given a crs, a common statement x and k witnesses w1, . . . , wk ∈ {0, 1}m, it
generates a proof π.

• V(crs, x, π)→ {0, 1}. Given a crs, a common statement x and a proof π, it outputs a bit b.

• Extract(td, x, π) → (w∗
i )i∈[k]. Given a trapdoor td, a common statement x and a proof π, it outputs

witnesses w∗
i for all indices i ∈ [k].
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Efficiency. We require a (multi-extractable) index seBARG to have proofs of size |π| = |I|·poly(λ, log k, |x|,m).

Remark 3 (On large CRS). We remark that we do not impose any restrictions in the size of the crs, as it is
done in previous works. The only restriction that we require is that the verifier runs in time logarithmically in
k given RAM access to the crs. This is enough for most applications of seBARG as it is noted in [DGKV22].
Moreover, in Section 4.2 we show a generic transformation to reduce th CRS size of any rate-1 seBARG.

3 Fully Local SEH from DDH

3.1 Definition

A Fully-Local Somewhere Extractable Hash family (flSEH) is a strengthening of the SEH hash family in-
troduced by [DGKV22, KLVW23], where the verification running time is required to be independent of the
hash size (i.e. the number of binding positions).

In order to do so, we need to split the output of Hash into a long value and a short digest, and similarly
split the key output by Gen into a hashing key and a (short) verification key.

The full syntax and properties are described below.

Definition 4 (Fully Local Somewhere Extractable Hash). The syntax for a fully-local SEH hash family is
the following:

• Gen(1λ, N, I)→ (hk, vk, td). This is a probabilistic algorithm that takes as input the security parameter
1λ, the message length N , and a set of indices I ⊂ [N ]. It outputs a (long) hashing key hk, a (short)
verification key vk and a trapdoor td.

• Hash(hk, x) → (v, rt). This is a deterministic algorithm that takes as input a hashing key hk and a
message x ∈ {0, 1}N , and outputs a (long) hash value v and a (short) digest rt.

• Open(hk, x, i) → (b, ρ). This is a deterministic algorithm that takes as input a hashing key hk, a
message x and an index i. It outputs a bit b ∈ {0, 1} and an opening ρ.

• Verify(vk, rt, i, b, ρ) → {0, 1}. This is a deterministic algorithm that takes as input the verification key
vk, the short digest rt, an index i, a bit b and an opening ρ. It verifies the validity of the opening (b, ρ)
against rt.

• Validate(vk, v, rt) → {0, 1}. This is a deterministic algorithm that takes as input the verification key
vk, a hash value v and a digest rt. It checks the consistency of v and rt.

• Extract(td, v) → u. This is a deterministic algorithm that takes as input the trapdoor td and a hash
value v, and it outputs an extracted message u ∈ {0, 1}|I|.

It is required to satisfy the following properties:

Efficiency. The running time of Verify is poly(λ, logN). Moreover, we say that a flSEH is rate-1 if the
length of the hash value v is |I|+ poly(λ).

Opening completeness. There exists a negligible function negl(·) such that for any λ, any N ≤ 2λ, any
I ⊂ [N ], any j ∈ [N ] and any x ∈ {0, 1}N ,

Pr

 b = xj

∧ Verify(vk, rt, j, b, ρ) = 1
:

(hk, vk, td)← Gen(1λ, N, I),
(v, rt) = Hash(hk, x),
(b, ρ) = Open(hk, x, j)

 = 1− negl(λ)
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Index hiding. For any polynomial time adversary A = (A1,A2) there exists a negligible function negl(·)
such that Pr

[
HIDEA1,A2(1λ) = 1

]
≤ 1

2 + negl(λ).

Experiment HIDEA1,A2(1λ)

(1N , I0, I1)← A1(1
λ)

b←$ {0, 1}

(hk, vk, td)← Gen(1λ, N, Ib)

b′ ← A2(hk, vk)

return |I0| = |I1| ∧ b′ = b

Somewhere extractability w.r.t opening. For any polynomial time adversary A = (A1,A2) there
exists a negligible function negl(·) such that Pr

[
OPENA1,A2(1λ) = 1

]
≤ negl(λ).

Experiment OPENA1,A2(1λ)

(1N , I)← A1(1
λ)

(hk, vk, td)← Gen(1λ, N, I)

(v, rt, (bj)j∈I , (ρj)j∈I)← A2(hk, vk)

(xj)j∈I = Extract(td, v)

return Validate(vk, v, rt) ∧

(∨
j∈I

xj ̸= bj ∧ Verify(vk, rt, j, bj , ρj)

)

3.2 Construction

Our construction of a fully local SEH is, at its core, based on the DDH-based construction of trapdoor hash
functions due to [DGI+19].

Fix a generator g ∈ G of a group G of prime order p; let P = ⌈log p⌉ be the bitlength of elements in G.
For our purposes, we will need to open up the distributed discrete logarithm compression mechanism

due to [BBD+20]; in particular, let PRF be apseudo-random function and Shrink : G → {0, 1} the related
compression function for the group (G, g), as described in Lemma 1.

Additional Ingredients. Our construction further requires as additional components a (non rate-1) some-
where extractable hash family SEH, and an index somewhere extractable batch argument system seBARG
for NP. We will use seBARG with the following index languages.

• Let seBARG0 be a BARG for the index language L0 defined by the relation

R0((hkM, hkx, hkz, hM, hx, hz), (i, j), (Mi,j , xj , zi,j , ρ
M
i,j , ρ

x
j , ρ

z
i,j))

that outputs 1 if and only if

– SEH.Verify(hkM, hM, (i, j),Mi,j , ρ
M
i,j) = 1

– SEH.Verify(hkx, hx, j, xj , ρ
x
j ) = 1

– SEH.Verify(hkz, hz, (i, j), zi,j , ρ
z
i,j) = 1

– zi,j = M
xj

i,j

In essence, this language ensures that group elements zi,j committed to in the hash value hz are
well-formed exponentiations of Mi,j (committed to in hM) with xj (committed to in hx).
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• Let seBARGmult be a BARG for the language Lmult defined by the relation

Rmult((hk1, hk2, h1, h2), (i, j), (z, zl, zr, ρz, ρzl, ρzr))

that checks the following statements

– SEH.Verify(hk1, h1, (i, j), z, ρz) = 1

– SEH.Verify(hk2, h2, (i, 2j − 1), zl, ρzl) = 1

– SEH.Verify(hk2, h2, (i, 2j), zr, ρzr) = 1

– z = zl · zr

This language ensures that the intermediate values z(t) are correctly computed in a binary tree struc-
ture.

• Let seBARGfin be a BARG for the language Lfin defined by the relation

Rfin((K, hkκ, hkv, hkz, hκ, hv, hz), (i, j), (vi, zi, κi, ρ
v
i , ρ

z
i , ρ

κ
i ))

that checks all the following

– SEH.Verify(hkv, hv, i, vi, ρ
v
i ) = 1

– SEH.Verify(hkz, hz, i, zi, ρ
z
i ) = 1

– SEH.Verify(hkκ, hκ, i, κi, ρ
κ
i ) = 1

– vi = κi mod 2

– If j < κi + 2 check if PRF(K, zi · gj−2) ̸= 0

– If j = κi + 2, check that PRF(K, zi · gκi) = 0.

This language checks that the final hash value v is correctly computed from compressing the last values
z(T ).

Construction. We now present the full construction.

Gen(1λ, N, I) :

• Let m = |I| and I = {i1, . . . , im}.

• Let T = ⌈logN⌉; assume that actually N = 2T , if need be by padding.

• Randomly sample a1, . . . , am from Zp, compute hk = gak , and set td = (a1, . . . , am).

• Randomly sample r1, . . . , rN from Zp and compute a matrix M ∈ G(1+m)×N with M0,j = grj , and
Mk,j = h

rj
k · g

δj,ik for k = 1, . . . ,m, i. e.

M =


gr1 gr2 . . . . . . grN

hr1
1 . . . h

ri1
1 g . . . hrN

1
...

. . .
. . .

. . .
...

hr1
m . . . . . . hrim

m g hrN
m


• Compute (hkx, ∗) = SEH.Gen(1λ, N, ∅)

• Compute (hkM, ∗) = SEH.Gen(1λ, (m+ 1) ·N, ∅)

• For all t = 0, . . . , T compute (hk(t), ∗) = SEH.Gen(1λ, (m+ 1) ·N/2t, ∅)
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• Compute (hkv, ∗) = SEH.Gen(1λ,m, ∅)

• Compute (hkκ, ∗) = SEH.Gen(1λ,m, ∅)

• Run (crs0, ∗) = seBARG0.Gen(1
λ, (m+ 1) ·N, ∅)

• For all t = 1, . . . , T , run (crst, ∗) = seBARGmult.Gen(1
λ, (m+ 1) ·N/2t, ∅)

• Run (crsfin, ∗) = seBARGfin.Gen(1
λ,m, ∅)

• Compute hM = SEH.Hash(hkM,M).

• Set vk =
(
hkx, hkM,

{
hk(t)

}
t∈[T ]

, hkv, hkκ,
{
crst

}
t∈[T ]

, crsfin, hM

)
.

• Set hk = (M, vk) and output hk, vk and td.

Hash(hk, x) :

• Parse hk = (M, vk) and

vk =
(
hkx, hkM,

{
hk(t)

}
t=0,...,T

, hkv,
{
crst

}
t=0,...,T

, crsfin, hM

)
.

• Compute ck =
∏N

j=1 M
xj

k,j for all k = 0, . . . ,m.

• Compute z
(0)
i,j = M

xj

i,j .

• Recursively compute z
(t+1)
i,j = z

(t)
i,2j−1 · z

(t)
i,2j , from t = 0 up until T . In particular, z

(T )
i will only have

one component, and z
(T )
i,1 = ci.

• Choose K ←$ {0, 1}λ uniformly at random and for k = 1, . . . ,m proceed as follows

– Compute the smallest κk ∈ [0, D] such that PRF(K, ci · gκk) = 0, where D is the bound needed
for the compression function.

– If no such κk exists or if PRF(K, ci/g) = 0, resample K ←$ {0, 1}λ and retry until both conditions
are met.

– Set vk = κk mod 2.

• Set v = (K, c0,v)

• Compute hκ = SEH.Hash(hkκ, κ).

• Compute hv = SEH.Hash(hkv,v).

• Compute hx = SEH.Hash(hkx, x).

• For all t = 0, . . . , T , compute h(t) = SEH.Hash(hk(t), z(t)).

• For all i, j compute the openings

– ρxj = SEH.Open(hkx, x, j)

– ρzi,j = SEH.Open(hk(0), z(0), (i, j))

– ρMi,j = SEH.Open(hkM,M, (i, j))

• Given the witnesses wi,j = (Mi,j , xj , z
(0)
i,j , ρ

M
i,j , ρ

x
j , ρ

z
i,j), compute

π0 = seBARG0.P
(
crs0, (hkM, hkx, hk

(0), hM, hx, h
(0)), {wi,j}i,j

)
.
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• For all t = 1, . . . , T

– For all i, j compute the openings

∗ ρzi,j = SEH.Open(hk(t), z(t), (i, j))

∗ ρzli,j = SEH.Open(hk(t−1), z(t−1), (i, 2j − 1))

∗ ρzri,j = SEH.Open(hk(t−1), z(t−1), (i, 2j))

– Using the witnesses wi,j = (z
(t)
i,j , z

(t−1)
i,2j−1, z

(t−1)
i,2j , ρzi,j , ρ

zl
i,j , ρ

zr
i,j), compute

πt = seBARGmult.P
(
crst, (hk

(t), hk(t−1), h(t), h(t−1)), {wi,j}i,j
)
.

• For all i = 1, . . . ,m compute the openings

– ρzi = SEH.Open(hk(T ), z(T ), i)

– ρκi = SEH.Open(hkκ, κ, i)

– ρvi = SEH.Open(hkv,v, i)

• From the witnesses wi,j = (vi, z
(T )
i,1 , κi, ρ

v
i , ρ

z
i , ρ

κ
i ), compute

πfin = seBARGfin.P
(
crsfin, (K, hkκ, hkv, hk

(T ), hκ, hv, h
(T )), {wi,j}i,j

)
,

where i = 1, . . . ,m and j = 1, . . . , D.

• Set rt =
(
hx,

(
h(t), πt

)
t=0,...,T

, c0, hv,K, hκ, πfin

)
.

• Output (v, rt).

Open(hk, x, i) :

• Parse hk = (M, vk) and

vk =
(
hkx, hkM,

{
hk(t)

}
t=0,...,T

, hkv, hkκ,
{
crst

}
t=0,...,T

, crsfin, hM

)
.

• Output SEH.Open(hkx, x, i)

Verify(vk, rt, i, b, ρ) :

• Parse vk =
(
hkx, hkM,

{
hk(t)

}
t=0,...,T

, hkv, hkκ,
{
crst

}
t=0,...,T

, crsfin, hM

)
.

• Parse rt =
(
hx,

(
h(t), πt

)
t=0,...,T

, c0, hv,K, hκ, πfin

)
.

• Check that seBARG0.V
(
crs0, (hkM, hkx, hk

(0), hM, hx, h
(0)), π0

)
= 1.

• Check that seBARGmult.V
(
crst, (hk

(t), hk(t−1), h(t), h(t−1)), πt

)
= 1 for all t = 1, . . . , T .

• Check that seBARGfin.V
(
crsfin, (K, hkκ, hkv, hk

(T ), hκ, hv, h
(T )), πfin

)
= 1.

• Check that SEH.Verify(hkx, hx, i, b, ρ) = 1.

• Output 1 if and only if all checks pass.
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Validate(vk, v, rt) :

• Parse vk =
(
hkx, hkM,

{
hk(t)

}
t=0,...,T

, hkv, hkκ,
{
crst

}
t=0,...,T

, crsfin, hM

)
.

• Parse rt =
(
hx,

(
h(t), πt

)
t=0,...,T

, crt, hv,Krt, hκ, πfin

)
.

• Parse v = (Kv, cv,v).

• Check that cv = crt and Kv = Krt.

• Check that SEH.Hash(hkv,v) = hv.

Extract(td, v) :

• Output ShrinkDec(td, v).

3.3 Security Analysis

Lemma 4. The construction in Section 3.2 is efficient and rate-1; in particular, |vk|, |rt| and the running
time of Verify are bounded by poly(λ, logN, log |I|).

Proof. By the efficiency of the underlying SEH scheme, all the hashing keys hkx, hkM, hk(t), hkv, hkκ and
all the openings that will be used as witnesses in the seBARGs for the languages L0,Lmult,Lfin are of size
poly(λ, log(mNP )), since our message is an (m+ 1)×N matrix of group elements.

This means that the circuit sizes for the seBARGs will be of size poly(λ, logm, logN), given also the
efficiency of the algorithm SEH.Verify. Since we have k = (m+ 1)×N instances, by the succinctness of the
index seBARG we get that the size of all the seBARG.crs and proofs seBARG.π, as well as the running time
of seBARG.V, are bounded by poly(λ, logm, logN).

Thus, given that we only have logN many of hk(t), πt, we get that |vk|, |rt| and the running time of Verify
are bounded by poly(λ, logN, log |I|).

Finally, by construction we have that |v| = |I|+ poly(λ), i.e. our construction is rate-1.

Lemma 5. Assume that the DDH assumption holds in the group G. Then the construction in Section 3.2
satisfies the index-hiding property.

Proof. We can easily see that by repeated application of the DDH assumption the matrices outputted by
the Gen algorithm are pseudorandom. For simplicity we can consider the 2-row matrices.

If (ga, gb, gc) is a DDH challenge, where c is either ab or random, we see that(
gr1 . . . ga . . . grN

gbr1 . . . gc+1 . . . gbrN

)
follows the distribution of Gen in the case that c = ab, and is random at the i-th column if c is random.

Lemma 6. Assume that SEH is a somewhere extractable hash function, seBARG0 is a somewhere extractable
BARG for the language L0, seBARGmult is a somewhere extractable BARG for the language Lmult and
seBARGfin is a somewhere extractable BARG for the language Lfin, where L0,Lmult and Lfin are defined
in Section 3.2. Then the scheme constructed in Section 3.2 satisfies the opening completeness property.

Proof. This follows directly from the completeness of the underlying SEH family and index seBARG system.

Theorem 4. Assume that SEH is a somewhere extractable hash function, seBARG0 is a somewhere ex-
tractable BARG for the language L0, seBARGmult is a somewhere extractable BARG for the language Lmult

and seBARGfin is a somewhere extractable BARG for the language Lfin, where L0,Lmult and Lfin are
defined in Section 3.2. Then the scheme constructed in Section 3.2 is somewhere binding with respect to
opening.
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Proof. Assume towards contradiction that there exists an a PPT adversary A with non-negligible success
probability ϵ against the somewhere binding w.r.t. opening experiment. We will proceed in a sequence of
hybrids to establish this contradiction.

Experiment Exp0 Let Exp0 be the real experiment, given as follows.

Exp0(A)

• (hk, vk, td)← Gen(1λ, N, I)

• (v, rt, (bj), (ρj))← A(hk, vk)

• (b̂j) = Extract(td, v)

• Output 1 if Validate(vk, v, rt) = 1 and there exists a j∗ ∈ [m] such that bj∗ ̸= b̂j∗ and Verify(vk, rt, j∗, bj∗ , ρj∗) =
1, otherwise output 0.

By our assumption on A it holds that Pr[Exp0(A)] > ϵ.
Denote by Eval the event that in the experiment we have Validate(vk, v, rt) = 1, and Echeat the event

that
∨

j∈I b̂j ̸= bj ∧ Verify(vk, rt, j, bj , ρj) = 1.
Then

Pr[Exp0(A)] = Pr[Eval ∩ Echeat] = Pr[Echeat |Eval ] · Pr[Eval] ≤
≤ Pr[Echeat |Eval ]

In order to show that the hypothesis Pr[Echeat |Eval ] > ϵ leads to a contradiction, we will then implicitly
condition on Eval in all the next experiments; in particular, we assume that SEH.Hash(hkv,v) = hv and
that the decryption headers K, c0 in v are the correct ones w.r.t. the digest rt.

Experiment Exp1 In the second experiment Exp1 we will change the success condition of the adversary.
Specifically, the experiment guesses the index j∗ ←$ [m] uniformly random in the very beginning, and outputs
0 if the mismatch between the extracted value and the opened value does not occur at index j∗. Exp1 is
given as follows.

Exp1(A)

• j∗ ←$ [m]

• (hk, vk, td)← Gen(1λ, N, I)

• (v, rt, (bj), (ρj))← A(hk, vk)

• (b̂j) = Extract(td, v)

• Output 1 if bj∗ ̸= b̂j∗ and Verify(vk, rt, j∗, bj∗ , ρj∗) = 1, otherwise output 0.

Define S be the set of indices i for which bi ̸= b̂i. Conditioned on j∗ ∈ S, Exp0(A) and Exp1(A) are
identically distributed. Hence it holds that

Pr[Exp1(A) = 1] = Pr[Exp1(A) = 1 and j∗ ∈ S]︸ ︷︷ ︸
=Pr[Exp0(A)=1 and j∗∈S]

+Pr[Exp1(A) = 1 and j∗ ̸∈ S]︸ ︷︷ ︸
=0

= Pr[j∗ ∈ S|Exp0(A) = 1] · Pr[Exp0(A) = 1]︸ ︷︷ ︸
>ϵ

> Pr[j∗ ∈ S|Exp0(A) = 1] · ϵ
≥ ϵ/m,

where the last inequality holds as S is non-empty conditioned on Exp0(A) = 1 and j∗ is independent of Exp0.
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Experiment Exp2 In experiment Exp2 we will modify the hashing keys hkx, hkM, hk(t), hkv and hkκ to be
extractable on the root-to-leaf path corresponding to j∗, both for the “header” row and for the “payload”
row.

Specifically, we modify the Gen algorithm such that hkx, hkM, hk(t), hkκ and hkv are generated as follows
depending on j∗. Let I = {i1, . . . , im} and define i∗ = ij∗ and i∗t = ⌈i∗/2t⌉ for t = 0, . . . , T .

• Compute (hkx, tdx) = SEH.Gen(1λ, N, {i∗})

• Compute (hkM, tdM) = SEH.Gen(1λ, (m+ 1) ·N, {(0, i∗), (j∗, i∗)})

• Compute (hk(t), td(t)) = SEH.Gen(1λ, (m+ 1) ·N/2t, {(0, i∗t ), (j∗, i∗t )}) for all t = 0, . . . , T

• Compute (hkκ, tdκ) = SEH.Gen(1λ,m, {j∗})

• Compute (hkv, tdv) = SEH.Gen(1λ,m, {j∗})

Computational indistinguishability between Exp1 and Exp2 follows routinely via a simple hybrid argument
from the index-hiding property of SEH. Hence we have that

Pr[Exp2(A) = 1] ≥ Pr[Exp1(A) = 1]− negl(λ) ≥ ϵ/m− negl(λ).

Experiment Exp3 In this experiment we will extract M0,i∗ and Mj∗,i∗ from hM, xi∗ from hx, z
(t)
0,i∗t

and

z
(t)
j∗,i∗t

from each h(t), κj∗ from hκ and vj∗ from hv, i.e.

• M0,i∗ = SEH.Extract(tdM, hM, (0, i∗))

• Mj∗,i∗ = SEH.Extract(tdM, hM, (j∗, i∗))

• xi∗ = SEH.Extract(tdx, hx, i
∗)

• z
(t)
0,i∗t

= SEH.Extract(td(t), h(t), (0, i∗t ))

• z
(t)
j∗,i∗t

= SEH.Extract(td(t), h(t), (j∗, i∗t )).

• κj∗ = SEH.Extract(tdκ, hκ, j
∗)

• vj∗ = SEH.Extract(tdv, hv, j
∗)

Note that this modification does not affect the outcome of the experiment, hence it is merely syntactical,
that is

Pr[Exp3(A) = 1] = Pr[Exp2(A) = 1]− negl(λ) ≥ ϵ/m− negl(λ).

We will now define events E0, Et for t ∈ [T ] and Efin via

E0 = 1 :⇔
(
z
(0)
0,i∗ ̸= Mxi∗

0,i∗ or z
(0)
j∗,i∗ ̸= Mxi∗

j∗,i∗

)
Et = 1 :⇔ z

(t)
j∗,i∗t

̸= (z
(t)
0,i∗t

)aj∗ · gxi∗

Efin = 1 :⇔
(
vj∗ ̸= ShrinkComp(K, z

(T )
j∗,1) or PRF(K, z

(T )
j∗,1/g) = 0

)
where td = (a1, . . . am) is the trapdoor of the matrix M. Now note that if none of the events E0, Et for

some t ∈ [T ] or Efin hold, then it must hold that bj∗ = b̂j∗ . Consequently, if Exp3 outputs 1, then at least
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one of these events must hold, and therefore

ϵ/m− negl(λ) ≤Pr[(E0 ∨ Efin ∨ ∃t ∈ [T ] s.t. Et) and Verify(vk, rt, j∗, bj∗ , ρj∗) = 1]

≤Pr[E0 and Verify(vk, rt, j∗, bj∗ , ρj∗) = 1]

+ Pr[Efin and Verify(vk, rt, j∗, bj∗ , ρj∗) = 1]

+ Pr[∃t ∈ [T ] s.t. Et and Verify(vk, rt, j∗, bj∗ , ρj∗) = 1]

≤Pr[E0 and seBARG0.V
(
crs0, (hkM, hkx, hk

(0), hM, hx, h
(0)), π0

)
= 1]

+ Pr[Efin and seBARGfin.V
(
crsfin, (K, hkκ, hkv, hk

(T ), hκ, hv, h
(T )), πfin

)
= 1]

+ Pr[∃t ∈ [T ] s.t. Et and seBARGmult.V
(
crst, (hk

(t), hk(t−1), h(t), h(t−1)), πt

)
= 1]

where the first inequality follows by the union bound,
That is, one of these three events must have non-negligible probability of occurrence. Hence we will now

distinguish 3 cases.

1. Assume that

Pr[E0 and seBARG0.V
(
crs0, (hkM, hkx, hk

(0), hM, hx, h
(0)), π0

)
= 1] > ϵ0

for a non-negligible ϵ0.

Define an experiment Exp3,0,1 which is identical to Exp3, but outputs 1 if and only if E0 and

seBARG0.V
(
crs0, (hkM, hkx, hk

(0), hM, hx, h
(0)), π0

)
= 1 holds. Clearly, by our assumption it holds

that Pr[Exp3,0,1 = 1] > ϵ0. In the next experiment will make seBARG0 extractable at positions (0, i∗)
and (j∗, i∗). Specifically, define an experiment Exp3,0,2 which is identical to Exp3,0,1 except that we
compute crs0 via

• (crs0, td
∗
0) = seBARG0.Gen(1

λ, (m+ 1) ·N, {(0, i∗), (j∗, i∗)})

It follows routinely from the index-hiding property of seBARG0 that Exp3,0,1 and Exp3,0,2 are compu-
tationally indistinguishable, that is it holds that

Pr[Exp3,0,2 = 1] ≥ Pr[Exp3,0,1 = 1]− negl(λ) ≥ ϵ0 − negl(λ).

Now we immediately get a contradiction against the somewhere argument of knowledge/somewhere

soundness property of seBARG0, as either the statement z
(0)
0,i∗ = Mxi∗

0,i∗ or the statenent z
(0)
j∗,i∗ = Mxi∗

j∗,i∗

is false, and the keys hkx, hkM and hk(0) are statistically binding to the corresponding positions.

2. Assume that

Pr[Efin and seBARGfin.V
(
crsfin, (K, hkκ, hkv, hk

(T ), hκ, hv, h
(T )), πfin

)
= 1] > ϵfin

for a non-negligible ϵfin.

We modify Exp3 into an experiment Exp3,fin,1 which outputs 1 if and only if Efin and

seBARGfin.V
(
crsfin, (K, hkκ, hkv, hk

(T ), hκ, hv, h
(T )), πfin

)
= 1 hold. Again, by our assumption it

holds immediately that Pr[Exp3,fin,1 = 1] > ϵfin.

We also define events Oκ such that Oκ = 1 if and only if κ < κj∗ such that PRF(K, z
(T )
j∗,1 · gκ) = 0.

Notice that

Pr[Exp3,fin,1 = 1] =Pr[Exp3,fin,1 = 1 and ∃κ,Oκ = 1]+

+Pr[Exp3,fin,1 = 1 and ∀κ,Oκ ̸= 1]
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We now define an experiment Exp3,fin,2 where we first make a guess κ∗ ∈ [0, κj∗ ] and then output 1 if

also event Oκ∗ = 1, i.e. if PRF(K, z
(T )
j∗,1 · gκ

∗
) = 0. Since our guess is independent from the experiment,

we get that
Pr[Exp3,fin,2 = 1] ≥ Pr[Exp3,fin,1 and ∃κ,Oκ = 1]/D,

where D = O(mλ).

We then define experiment Exp3,fin,3, where we make seBARGfin extractable at index (j∗, κ∗). That
is, experiment Exp3,fin,3 is identical to experiment Exp3,fin,2 except that we compute crsfin via

• (crsfin, td
∗
fin) = seBARGfin.Gen(1

λ,m, {(j∗, κ∗)}).

Indistinguishability of Exp3,fin,3 and Exp3,fin,2 follows from index-hiding of seBARGfin. Moreover,

since Lfin checks that PRF(K, z
(T )
j∗,1 · gκ

∗
) ̸= 0, and we can extract a witness for the event Oκ∗ , i.e.

PRF(K, z
(T )
j∗,1 · gκ

∗
) = 0, we get that Pr[Exp3,fin,3 = 1] ≤ negl(λ) by the soundness of seBARGfin.

This means that Pr[Exp3,fin,1 and ∃κ,Oκ = 1] ≤ D·Pr[Exp3,fin,2 = 1] ≤ negl(λ), and thus Pr[Exp3,fin,1 =
1 and ∀κ,Oκ ̸= 1] ≥ ϵfin − negl(λ).

Now we deal with the second part of the probability, Pr[Exp3,fin,1 = 1 and ∀κ,Oκ ̸= 1]. We define
experiment Exp3,fin,4, which is identical to experiment Exp3,fin,1 except that we compute crsfin via

• (crsfin, td
∗
fin) = seBARGfin.Gen(1

λ,m, {(j∗, 0)}).

Computational indistinguishability of Exp3,fin,4 and Exp3,fin,1 follows again routinely from the index-
hiding property of seBARGfin. Consequently, it holds that

Pr[Exp3,fin,4 = 1 and ∀κ,Oκ ̸= 1] ≥ ϵfin − negl(λ).

Notice now that given that all events Oκ are false, the computation ShrinkComp(K, z
(T )
j∗,1) is correct.

This means that the extracted witness, conditioned on the event Efin, is not valid for the language Lfin,
thus breaking the somewhere argument of knowledge/somewhere soundness property of seBARGfin,
which is a contradiction.

3. Finally assume that

Pr[∃t ∈ [T ] s.t. Et and seBARGmult.V
(
crst, (hk

(t), hk(t−1), h(t), h(t−1)), πt

)
= 1] > ϵ′

for a non-negligible ϵ′. Now, let Exp′3,1 be identical to Exp3, except that the experiment outputs 1 if and

only if there exists a t ∈ [T ] s.t. Et holds and seBARGmult.V
(
crst, (hk

(t), hk(t−1), h(t), h(t−1)), πt

)
= 1.

Clearly, by our assumption it holds that Pr[Exp′3,1 = 1] > ϵ′.

In the next experiment Exp′3,2 we guess an index t∗ ←$ [T ] such that t∗ is the smallest t for which Et

holds. Specifically, Exp′3,2 outputs 0 if the guess t∗ was wrong. Via the essentially same reasoning as
in the step between Exp0 and Exp1 it holds that

Pr[Exp′3,2 = 1] ≥ Pr[Exp′3,1 = 1]/T > ϵ′/T.

In the next experiment, we make hk(t
∗−1) also extractable at the other child node of i∗t , that is let

ī∗t∗−1 =

{
2i∗t − 1 if i∗t∗−1 = 2i∗t
2i∗t otherwise

.

Thus, in Exp′3,3 we will compute hk(t
∗−1) via
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• (hk(t
∗−1), td(t

∗−1)) = SEH.Gen(1λ, (m+ 1) ·N/2t, {(0, i∗t∗−1), (j
∗, i∗t∗−1), (0, ī

∗
t∗−1), (j

∗, ī∗t∗−1)})

Computational indistinguishability of Exp′3,2 and Exp′3,3 follows from the index-hiding property of SEH.
Thus we have

Pr[Exp′3,3 = 1] ≥ Pr[Exp′3,2 = 1]− negl(λ) > ϵ′/T − negl(λ).

Note that by Remark 2, our notion of being able to extract at several points is essentially for notational
convenience; we have a fresh key (and hash value) for each extraction slot, thus we can introduce a
new extraction slots while maintaining the ability to extract at previously planted extraction slots.

In the next hybrid Exp′3,4 we extract h(t∗−1) at (0, ī∗t∗−1) and (j∗, ī∗t∗−1), that is we compute

• z
(t∗−1)

0,̄i∗
t∗−1

= SEH.Extract(td(t
∗−1), h(t∗−1), (0, ī∗t∗−1))

• z
(t∗−1)

j∗ ,̄i∗
t∗−1

= SEH.Extract(td(t
∗−1), h(t∗−1), (j∗, ī∗t∗−1))

Notice that this modification has no effect on the output of the experiment.

Moreover, in Exp′3,4 we also make seBARGmult extractable at positions (0, i∗t∗) and (j∗, i∗t∗), that is, we

will now generate crs(t
∗) via

• (crs(t
∗), t̂d

(t∗)
)← seBARGmult.Gen(1

λ, (m+ 1) ·N/2t
∗
, {(0, i∗t∗), (j∗, i∗t∗)}).

By the index-hiding property of seBARGmult, Exp
′
3,3 and Exp′3,4 are computationally indistinguishable,

that is
Pr[Exp′3,4 = 1] ≥ Pr[Exp′3,3 = 1]− negl(λ) > ϵ′/T − negl(λ).

In Exp′3,5 we will introduce an additional condition which causes the experiment to output 0. Specif-

ically, let Ft∗ be the event that (z
(t∗−1)

0,̄i∗
t∗−1

, z
(t∗−1)

j∗ ,̄i∗
t∗−1

) is an encryption of 0, that is Ft∗ = 1 if and only

if
z
(t∗−1)

j∗ ,̄i∗
t∗−1

= (z
(t∗−1)

0,̄i∗
t∗−1

)aj∗ .

Exp′3,5 is identical to Exp
′
3,4, except that it outputs 0 if Ft∗ = 1. Note that the event Ft∗ can be efficiently

tested for given aj∗ . We can appeal to the extractability property of seBARGmult to argue that
Pr[Ft∗ = 1] ≤ negl(λ). Otherwise, we would get a violation of the somewhere extractability/somewhere
soundness of seBARGmult. Specifically, assume that Ft∗ holds, i.e.

z
(t∗−1)

j∗ ,̄i∗
t∗−1

= (z
(t∗−1)

0,̄i∗
t∗−1

)aj∗ . (2)

We will argue that this implies that either

z
(t∗)
0,i∗

t∗
̸= z

(t∗−1)
0,i∗

t∗−1
· z(t

∗−1)

0,̄i∗
t∗−1

or
z
(t∗)
j∗,i∗

t∗
̸= z

(t∗−1)
j∗,i∗

t∗−1
· z(t

∗−1)

j∗ ,̄i∗
t∗−1

,

which routinely implies a contradiction to the somewhere soundness of seBARGmult. To see this, assume
that both

z
(t∗)
0,i∗

t∗
= z

(t∗−1)
0,i∗

t∗−1
· z(t

∗−1)

0,̄i∗
t∗−1

, (3)

z
(t∗)
j∗,i∗

t∗
= z

(t∗−1)
j∗,i∗

t∗−1
· z(t

∗−1)

j∗ ,̄i∗
t∗−1

. (4)
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Recall now that t∗ is the smallest t for which z
(t)
j∗,i∗t

̸= (z
(t)
0,i∗t

)aj∗ · gxi∗ , hence it holds that

z
(t∗−1)
j∗,i∗

t∗−1
= (z

(t∗−1)
0,i∗

t∗−1
)aj∗ · gxi∗ (5)

Thus, by exponentiating (3) and (4) by aj∗ and combining (2) and (5) we can conclude that

z
(t∗)
j∗,i∗

t∗
= (z

(t∗)
0,i∗

t∗
)aj∗ · gxi∗ ,

but this means that Et∗ does not hold, i.e. it is a contradiction to t∗ be the smallest t for which Et

holds. Hence we conclude that

Pr[Exp′3,5 = 1] ≥ Pr[Exp′3,4 = 1]− negl(λ) > ϵ′/T − negl(λ).

Now, to simplify notation define ĩ = ī∗t∗−1. In experiment Exp′3,5 we have the guarantee that if the
experiment outputs 1 (which happens with non-negligible probability ϵ′/T − negl(λ)), then we have

the equation z
(t∗−1)

j∗ ,̃i
= (z

(t∗−1)

0,̃i
)aj∗ · gτ for a non-zero τ .

In the following hybrids, we will consider a path ĩt∗−1, . . . , ĩ0 from ĩt∗−1 = ĩ to a leaf node ĩ0 and

establish the invariant that all ciphertexts (z
(k)

0,̃ik
, z

(k)

j∗ ,̃ik
) encrypt non-zero values, while maintaining

non-negligible probabilities for the experiments to output 1. We will achieve this using the somewhere
extractability of SEH and seBARGmult. Eventually, once we reached a leaf-node we will arrive at a
contradiction against the soundness of seBARG0. We will thus consider a sequence of experiments
Exp′′k,0,Exp

′′
k,1,Exp

′′
k,2,Exp

′′
k,3,Exp

′′
k,4 for k = t∗ − 1, . . . , 0. We chain them by defining Exp′′t∗,0 = Exp′3,5

and Exp′′k−1,0 = Exp′′k,4.

The experiment Exp′′k,1 is identical to the experiment Exp′′k,0, except that we make hk(k−1) extractable

at the children nodes of (0, ĩk) and (j∗, ĩk), i.e. at positions (0, 2̃ik − 1), (0, 2̃ik), (j
∗, 2̃ik − 1), (j∗, 2̃ik).

In particular, we generate hk(k−1) via

• (hk(k−1), td(k−1)) = SEH.Gen(1λ, (m+ 1) ·N/2k−1, {(0, 2̃ik − 1), (0, 2̃ik), (j
∗, 2̃ik − 1), (j∗, 2̃ik)}).

Computational indistinguishability of Exp′′k,1 and its preceeding experiment follows from the index-
hiding property of SEH.

In experiment Exp′′k,2, we make seBARGmult extractable at positions (0, ĩk) and (j∗, ĩk).

• (crs(k−1), t̂d
(k−1)

) = seBARGmult.Gen(1
λ, (m+ 1) ·N/2t, {(0, ĩk), (j∗, ĩk)}).

Computational indistinguishability follows from the index-hiding property of seBARGmult.

In experiment Exp′′k,3, we extract both ciphertexts at the children nodes of ĩk, that is we compute

• z
(k−1)

0,2ĩk−1
= SEH.Extract(td(k−1), h(k−1), (0, 2̃ik − 1))

• z
(k−1)

j∗,2ĩk−1
= SEH.Extract(td(k−1), h(k−1), (j∗, 2̃ik − 1))

• z
(k−1)

0,2ĩk
= SEH.Extract(td(k−1), h(k−1), (0, 2̃ik))

• z
(k−1)

j∗,2ĩk
= SEH.Extract(td(k−1), h(k−1), (j∗, 2̃ik))

20



Furthermore, let Fk be the event that both (z
(k−1)

0,2ĩk−1
, z

(k−1)

j∗,2ĩk−1
) and (z

(k−1)

0,2ĩk
, z

(k−1)

j∗,2ĩk
) are encryptions of

0, that is it holds that both

z
(k−1)

j∗,2ĩk−1
= (z

(k−1)

0,2ĩk−1
)aj∗ ,

z
(k−1)

j∗,2ĩk
= (z

(k−1)

0,2ĩk
)aj∗ .

Note that we can efficiently test for this event given aj∗ .

In Exp′′k,3 we add the additional condition that the experiment outputs 0 if the event Fk holds.

We will now argue that given that seBARGmult is somewhere extractable/somewhere sound, the event
Fk happens only with negligible probability.

Given that Fk happens, we claim it must hold that either

z
(k)

0,̃ik
̸= z

(k−1)

0,2ĩk−1
· z(k−1)

0,2ĩk

or
z
(k)

j∗ ,̃ik
̸= z

(k−1)

j∗,2ĩk−1
· z(k−1)

j∗,2ĩk

which routinely leads to a contradiction to the somewhere extractability/somewhere soundness of
seBARGmult. Otherwise, if both equations

z
(k)

0,̃ik
= z

(k−1)

0,2ĩk−1
· z(k−1)

0,2ĩk
,

z
(k)

j∗ ,̃ik
= z

(k−1)

j∗,2ĩk−1
· z(k−1)

j∗,2ĩk

hold, then given the equations for the event Fk, this implies that

z
(k)

j∗ ,̃ik
= (z

(k)

0,̃ik
)aj∗ ,

i.e. (z
(k)

0,̃ik
, z

(k)

j∗ ,̃ik
) is an encryption of 0. But this violates our invariant that (z

(k)

0,̃ik
, z

(k)

j∗ ,̃ik
) is an encryption

of a non-zero value. Hence the claim follows, and Exp′′k,3 is computationally indistinguishable from

Exp′′k,2.

In Exp′′k,4, we guess a random bit βk−1 ←$ {0, 1} uniformly at random at the beginning of the experiment

and set ĩk−1 = 2̃ik − 1 if βk−1 = 0 and ĩk−1 = 2̃ik if βk−1 = 1. Let Gk−1 be the event that

(z
(k−1)

0,̃ik−1
, z

(k−1)

j∗ ,̃ik−1
) is an encryption of 0, i.e. Gk−1 = 1 if and only if

z
(k−1)

j∗ ,̃ik−1
= (z

(k−1)

0,̃ik−1
)aj∗ .

Now, in Exp′′k,4 we add the additional condition that the experiment outputs 0 if the event Gk−1 holds.

Since the bit βk−1 is chosen uniformly at random and we have the promise (from experiment Exp′′k,3)

that either (z
(k−1)

0,2ĩk−1
, z

(k−1)

j∗,2ĩk−1
) or (z

(k−1)

0,2ĩk
, z

(k−1)

j∗,2ĩk
) is an encryption of a non-zero value, we get that the

event Gk−1 has probability at least 1/2, and therefore

Pr[Exp′′k,4 = 1] ≥ Pr[Exp′′k,3 = 1]/2.

In particular, we have that

Pr[Exp′′k,4 = 1] ≥ Pr[Exp′′k,0 = 1]/2− negl(λ),
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and given that Pr[Exp′′k,0 = 1] = Pr[Exp′′k+1,4 = 1], this implies that for the final experiment Exp′′0,4 in
this sequence it holds that

Pr[Exp′′0,4 = 1] ≥ Pr[Exp′′t∗,1 = 1]/2t
∗
≥ Pr[Exp′′t∗,1 = 1]/2T ≥ ϵ′/(2T · T )− negl(λ),

which is non-negligible as ϵ′ is non-negligible and T = O(log(λ)).

In the final two experiments we will proceed analogously to the first case above, namely, we will
make hkx and hkM extractable at positions corresponding to ĩ0 and establish a contradiction to the
somewhere extractability/somewhere soundness of seBARG0.

That is, in Exp′′′0 we switch hkx to be extractable at position ĩ0 and hkM to be extractable at positions
(0, ĩ0) and (j∗, ĩ0), formally we compute

• (hkx, tdx) = SEH.Gen(1λ, N, {i∗, ĩ0})
• (hkM, tdM) = SEH.Gen(1λ, (m+ 1) ·N, {(0, i∗), (j∗, i∗), (0, ĩ0), (j∗, ĩ0)})

Computational indistinguishability of Exp′′0,4 and Exp′′′0 follows routinely from the index-hiding property
of SEH.

In experiment Exp′′′1 , we switch crs0 to be extractable at positions (0, ĩ0) and (j∗, ĩ0), that is we set

• (crs0, td0) = seBARG0.Gen(1
λ, (m+ 1) ·N, {(0, ĩ0), (j∗, ĩ0)}).

Computational indistinguishability again follows routinely from the index-hiding property of seBARG0.

We can now finally show a contradiction to the somewhere extractability/somewhere soundness prop-
erty of seBARG0.

Note that by our invariant (z
(0)

0,̃i0
, z

(0)

j∗ ,̃i0
) is an encryption of a non-zero value (conditioned on Exp′′′1 = 1).

At the same time it holds that

M
xĩ0

0,̃i0
= grĩ0 ·xĩ0

M
xĩ0

j∗ ,̃i0
= ga

∗
j ·rĩ0 ·xĩ0 ,

that is (M
xĩ0

0,̃i0
,M

xĩ0

j∗ ,̃i0
) is an encryption of 0. But this means that either

z
(0)

0,̃i0
̸= M

xĩ0

0,̃i0

or
z
(0)

j∗ ,̃i0
̸= M

xĩ0

j∗ ,̃i0
,

which routinely leads to a contradiction to the somewhere extractability of seBARG0.

This concludes the proof.

4 Applications

4.1 Rate-1 seBARGs

Rate-1. Finally, we define the rate-1 property. A seBARG is said to be rate-1 if the proof is of size
|π| = m+ o(m) · poly(λ, log k).

The following lemma states that rate-1 BARGs exist given an index BARGs and a rate-1 fully-local SEH.
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Lemma 7 ([DGKV22]). Assuming the existence of an index seBARG and a rate-1 fully-local SEH, there
exists a rate-1 seBARG.

Instantiating the rate-1 flSEH with the construction from Section 3.2 and the BARG with one from
Lemma 3, we obtain the following corollary.

Corollary 5. There exists a rate-1 BARG from subexponential DDH or k-LIN where the proof has size
m+ poly(λ).

Previously, this was known from the same assumptions by plugging the rate-1 SEH construction from
[KLVW23] with the construction of [PP22] with proof size m+ 3m

λ + poly(λ).

4.2 Rate-1 BARGs with Short CRS

Our rate-1 BARG from Section 4.1 has a large CRS, that is, the size of the CRS grows with the number of
instances. In this section, we show a generic transformation from rate-1 BARGs with large CRS to a rate-1
BARG with a compact CRS, that is, a CRS with size poly(λ) (independent of the number of instances).

In particular, we prove the following theorem.

Theorem 5. Suppose seBARG0 is a somewhere extractable BARG for language L with proof size m +
poly(λ, log k) and CRS size poly(λ, k), where k is the number of instances and m is the size of a witness for
L. Then there exists a somewhere extractable BARG seBARG1 for L with proof size m + poly(λ, log k) and
CRS size poly(λ, log k).

Construction. We first sketch a construction of seBARG1, which is based on a binary tree, where each
node is a seBARG0 proof that the two children are themselves valid seBARG0 proofs, i.e. at each layer we use
the BARG for just 2 statements.2 Concretely, at the leaf level, let L0 = L be the base language for which
we want a BARG. For each following layer layer j ≥ 1, we define the language Lj : a statement is a tuple
yj = (x1, . . . , x2j ), a witness is a proof π, and the relation Rj is

Rj(yj , π) = seBARG0.V(crsj−1,Lj−1, {(x1, . . . , x2j−1), (x1+2j−1 , . . . , x2j )}, π).

The algorithms (Gen,P,Vf,Extract) for seBARG1 are then given by the following description.

• seBARG1.Gen(1
λ, k, 1s, i∗)→ (crs, td).

LetK = ⌈log k⌉, and let iK−1iK−2 . . . i1i0 be the binary representation of i∗; denote by ĩj = ⌊i∗/2j+1⌋ =
iK−1iK−2 . . . ij+1.
For each j ∈ [K], run (crsj , tdj) = seBARG0.Gen(1

λ, 2, 1sj , ij), where s0 = s, and sj+1 is an upper
bound to the size of the verification circuit Rj at layer j.
Return crs = {crsj}, td = {tdj}.

• seBARG1.P(crs, C, {xi}i∈[k], {wi}i∈[k])→ π.
Recursively compute proofs in the following way: in the first step, compute

π
(0)
i = seBARG0.P(crs0,L, {x2i, x2i+1}, {w2i, w2i+1}).

Now, for any 1 ≤ j ≤ K − 1 define y
(j)
i = (xi·2j , . . . , x(i+1)·2j−1).

Then, recursively compute

π
(j)
i = seBARG0.P

(
crsj ,Lj ,

{
y
(j)
2i , y

(j)
2i+1

}
,
{
π
(j−1)
2i , π

(j−1)
2i+1

})
.

Output π
(K−1)
0 as the proof.

2This framework can also be trivially adapted to use a ℓ-ary tree, instead of a binary one. The resulting CRS has size
logℓ(k) · poly(λ, ℓ).
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• seBARG1.V(crs, C, {xi}i∈[k], π)→ {0, 1}.
Recursively recompute the y

(j)
i s and output the result of

seBARG0.V
(
crsK−1,LK−1,

{
y
(K−1)
0 , y

(K−1)
1

}
, π

)
.

• seBARG1.Extract(td, C, {xi}i∈[k], π)→ w∗.
Recursively extract the proofs until the last layer, and then extract the witness. In particular, recom-

pute the y
(j)
i s, define π(K−1) = π and then recursively compute

π(j−1) = seBARG0.Extract
(
tdj ,Lj ,

{
y
(j)

2ĩj
, y

(j)

2ĩj+1

}
, π(j)

)
.

Finally, return

w∗ = seBARG0.Extract
(
td0,L,

{
x2ĩ0

, x2ĩ0+1

}
, π(0)

)
.

4.2.1 Properties

We sketch a proof for all the required properties of the resulting scheme seBARG1.

CRS succinctness. The CRS of seBARG1 consists of log k many CRSs of seBARG0 with a constant number
of statements (in particular, 2). Thus, it is of size log k · poly(λ).

Rate. Since seBARG0 is rate-1, we have that |π(j)
i | = |π

(j−1)
i |+ poly(λ). Thus, if m is the size of a witness

for L, the proof size of seBARG1 is m+ log k · poly(λ).

Index hiding. This property follows directly from index hiding of seBARG0, since the crs of seBARG1 is
the union of many independent crs of seBARG0.

Somewhere argument of knowledge. The following lemma establishes that seBARG1 is a somewhere
argument of knowledge, given that seBARG0 is a somewhere argument of knowledge.

Lemma 8. Let seBARG0 be a somewhere extractable argument of knowledge, then seBARG1 given above is
also a somewhere argument of knowledge.

Proof. Let A be an adversary against the somewhere argument-of-knowledge property of seBARG1. In partic-
ular, let i∗ the extractable index, and π the proof given byA. We denote by w∗ = seBARG1.Extract(td, C, {xi}i∈[k], π)

the extracted witness, and recall that the extraction algorithm also extracts witnesses wj = π(j) for each
layer. Consider then the following hybrids.

• Hybrid H0: This is the real experiment

• Hybrid Hk (for k = 1, . . . ,K − 1): This is the same as hybrid Hk−1, except that the experiment

outputs 0 if the conditions Rj(y
(j)

ĩj
, wj) ̸= 1 and seBARG0.V

(
crsj ,

{
y
(j)

2ĩj
, y

(j)

2ĩj+1

}
, π(j)

)
= 1 hold, where

j = K − 1− k.

Note that the last experiment HK−1 aborts if R0(xi∗ , w
∗) ̸= 1. But since xi∗ /∈ L0 = L, this experiment

always outputs 0, i.e. A has advantage 0 in this experiment.
It remains to show that experimentsHk−1 andHk are indistinguishable given that seBARG0 is somewhere

extractable. Concretely, if |Pr[Hk = 1] − Pr[Hk−1 = 1]| ≥ ϵ we can construct an adversary A′ against the
somewhere argument of knowledge property of seBARG0 with advantage ϵ as follows. A′ simulates Hk−1 but

only outputs the statements y
(j)

2ĩj
and y

(j)

2ĩj+1
as well as the proof π(j). If y

(j)

ĩj−1
∈ Lj both experiments are

identically distributed. Hence, it must holds that y
(j)

ĩj−1
/∈ Lj but seBARG0.V

(
crsj ,

{
y
(j)

2ĩj
, y

(j)

2ĩj+1

}
, π(j)

)
= 1

with probability at least ϵ. Hence A′ breaks the somewhere argument of knowledge property of seBARG0

with advantage ϵ, which concludes the proof.
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4.3 RAM SNARGs with Partial Input Soundness

A RAM SNARG allows a verifier to verify that a RAM computation was well performed given just the hash
of the input (or initial database) h and a proof π. Importantly, the verifier should run in time poly(λ, log T )
where T is the running time of the RAM computation.

Here, we are interested in RAM SNARGs that achieve a strong soundness property known as partial
input soundness [KLVW23]. This guarantees that if the memory is digested using a SEH function that
is extractable on a set of coordinates I, and if the RAM computation only reads coordinates in I, then
soundness holds. We refer the reader to [DGKV22, KLVW23] for formal definitions.

It is known that a flexible RAM SNARG can be constructed from seBARGs and a fully-local SEH
function.

Lemma 9 ([KLVW23]). Assuming the existence of a seBARG and a fully-local SEH, there exists a RAM
SNARG with partial input soundness.

Let S be the size of a single intermediate state of the RAM computation. Then the RAM SNARG
construction presented in [KLVW23] has proof size S ·poly(λ)+poly(λ, log T, S), where S ·poly(λ) corresponds
to the output of the (fully-local) SEH and poly(λ, log T, S) corresponds to the size of the seBARG proof.
Additionally, assume that only V positions are read from the initial memory X. Then the hash value of X
has size V · poly(λ).

If we instantiate the underlying seBARG with a rate-1 BARG (from Corollary 5) and the fully-local SEH
with a rate-1 scheme (as the one from Section 3.2), we obtain the following corollary.

Corollary 6. There exists a RAM SNARG with partial input soundness from subexponential DDH or k-LIN
assumptions with proof size O(S) + poly(λ) and an hash value (of the initial database) of size V + poly(λ).
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