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Abstract. In this work, we propose two novel succinct one-out-of-many
proofs from coding theory, which can be seen as extensions of the Stern’s
framework and Veron’s framework from proving knowledge of a preimage
to proving knowledge of a preimage for one element in a set, respectively.
The size of each proof is short and scales better with the size of the public
set than the code-based accumulator in [34]. Based on our new construc-
tions, we further present a logarithmic-size ring signature scheme and
a logarithmic-size group signature scheme. Our schemes feature a short
signature size, especially our group signature. To our best knowledge, it
is the most compact code-based group signature scheme so far. At 128-bit
security level, our group signature size is about 144 KB for a group with
220 members while the group signature size of the previously most com-
pact code-based group signature constructed by the above accumulator
exceeds 3200 KB.

Keywords: code-based cryptography · one-out-of-many proofs · set-
membership proofs · ring signatures · group signatures.

1 Introduction

Code-based cryptography is the study of cryptosystems based on error-correcting
codes that originated from the pioneering work of McEliece [28]. It is able to resist
quantum attacks and is widely regarded as an important research branch in
post-quantum cryptography. In particular, NIST’s recent call for post-quantum
standardization has propelled advancements in this area.

Zero-knowledge proofs are a fundamental primitive in cryptography. In 1993,
Stern proposed the first code-based zero-knowledge argument of knowledge (ZKA
oK) based on the hardness of the syndrome decoding (SD) problem [38]. This
proof enables one to demonstrate knowledge of a low-weight preimage for a syn-
drome. Later, Veron introduced a ZKAoK for the general syndrome decoding
(GSD) problem, which is the “dual” problem of the SD problem [39]. Subse-
quently, several optimization schemes have been proposed within this frame-
work [30,5,7,11,39], as well as applied to other hard problem settings [20,24,26].
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Moreover, variants of the Stern protocol or the Veron protocol have been utilized
to construct numerous advanced cryptographic schemes, such as proofs of valid
opening for code-based commitment schemes [34], verifiable encryption [33],
ring signatures [9,10,29], group signatures [1,8,17] and accumulators [3,34].

An important tool in zero-knowledge proofs is one-out-of-many proofs, which
enable one to demonstrate knowledge of an opening to a commitment within a list
of commitments. This concept is closely related to some primitives such as set-
membership proofs and ring signatures. Groth and Kohlweiss initially provided
an efficient one-out-of-many proof based on discrete logarithms and applied it
in ring signatures [21]. Subsequently, Esgin et al. constructed a lattice-based
one-out-of-many proof [16]. In 2022, Lyubashevsky et al. further constructed a
more efficient lattice-based one-out-of-many proof and based on this proof, they
proposed a logarithmic ring signature and a logarithmic group signature [27].

However, similar constructions in code-based cryptography are not practical.
In 2015, Ezerman et al. proposed a construction for proving knowledge of a
secret for one syndrome in a public set, and applied it to build a code-based
group signature scheme [17]. The group signature size is linear to the number N
of group members. While it has a short signature size with a small N , as N grows
to 220, its signature size increases to 19 MB under the 128-bit security level. The
similar construction can be found in [2]. In 2019, Nguyen et al. put forward a
code-based Merkle-tree accumulator, which is a logarithmic-size set-membership
proof [34]. Based on this building block, the authors constructed logarithmic-size
ring signature and group signature schemes. In 2020, Beullers et al. developed a
general group-action based ring signature framework [6]. Subsequently, Barenghi
et al. and Chou et al. instantiated the group action using the code equivalence
problem [4] and the matrix code equivalence problem [13], respectively, and
proposed efficient ring signature schemes. However, no group signature scheme
has been constructed based on these two problems so far.

1.1 Our contributions

Our main cryptographic results are summarized as follows (we describe them in
more detail in our technique overview):

• We propose a novel framework of one-out-of-many proofs. Our construction
can be seen as an extension of Stern’s framework from proving knowledge
of a preimage to proving knowledge of a preimage for one element in a
public set. The main advantage of our framework is that the growth rate of
the proof size relative to the public set size N is very low even compared
to the code-based accumulator (Asiacrypt 2019). This is because the term
related to N in the expression of the signature size of our schemes is simply
determined by the path of a logN -deep Merkle tree, that is 2λ logN , where
λ is the security level, and so is independent of the parameters of the hard
problem. The code-based accumulator achieves membership proof by proving
knowledge of a hash chain that is linearly related to the parameters of the
regular SD problem. This makes the coefficient of logN much larger than
ours.
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• To further reduce the proof size, we propose a more efficient GSD-based
one-out-of-many proof based on Veron’s framework and optimization tech-
niques proposed in [30,23]. Then, we apply this one-out-of-many proof to the
construction of a logarithm-size ring signature. Next, we compare our ring
signature with other code-based ring signatures in Table 1.

• We construct a new set membership proof by transforming the framework
of building one-out-of-many proofs into the framework of building set mem-
bership proofs. This transformation is similar to the ideas in [21]. Moreover,
this set membership proof serves as a building block in our group signature.

• Based on our GSD-based one-out-of-many proof and the set-membership
proof, we present a logarithm-size group signature, which is the most com-
pact code-based group signature scheme to date. We also make the compar-
ison with other code-based group signatures in Table 2. For convenience, we
use the parameter sets for SD problem in [18], and the parameter sets for the
McEliece encryption scheme in [12]. The above comparison indicates that the
signature sizes of both our ring signature and group signature schemes are
significantly shorter than previous schemes except the BBNPS in [4], whose
security relies on the code equivalence problem.

Table 1. Comparison of ring signature size (KB) under the 128-bit security level.

N asymptotic sig.size hardness assumption
28 212 220

ELLNW[17] 55 124 19273 O(N) SD
BGM [8] 134 205 19354 O(N) rank SD
NTWZ [34] 1189 1741 2847 O(logN) regular SD
BBNPS[4] 16 20 28 O(logN) code equivalence

Our work 55 65 83 O(logN) GSD

Table 2. Comparison of group signature size (KB) under the 128-bit security level.

N asymptotic sig.size Anonymity
28 212 220

ELLNW[17] 171 241 19391 O(N) CPA
BGM[8] 1322 1392 20542 O(N) CPA
NTWZ [34] 1570 2122 3228 O(logN) CCA

Our work 116 126 144 O(logN) CPA

1.2 Technical overview

SD-based one-out-of-many proofs. Our first new framework of one-out-of-
many proof is an extension to Stern’s framework. To construct our protocol, we
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begin by making a modification to the original Stern protocol. Let H ∈ F(n−k)×n
2

and s ∈ Fn−k
2 denote a matrix and a syndrome, respectively. To prove the posses-

sion of a small-weight vector e ∈ Fn
2 such thatHe⊤ = s⊤, a prover samples a ran-

dom vector r ∈ Fn
2 and a random permutation ϕ, and then sends commitments

c1 = Com(ϕ,Hr⊤ + s⊤; ρ1), c2 = Com(ϕ(r); ρ2) and c3 = Com(ϕ(r + e); ρ3)
to a verifier. If the challenge ch is 1, the prover opens c2 and c3. If ch = 2, it
opens c1 and c3. If ch = 3, it opens c1 and c2. The modified Stern protocol is
depicted in Fig. 1. The only difference between our protocol in Fig. 1 and the
original Stern protocol is that in the former c1 = Com(ϕ,Hr⊤+ s⊤; ρ1) while in
the latter c1 = Com(ϕ,Hr⊤; ρ1). Clearly, this modification does not affect the
completeness, soundness, and zero-knowledge property of the modified protocol.

Observe two key facts: (1) The modified protocol’s c1 is related to the public
key s, while c2 and c3 are not related to s. (2) During the verification phase,
only when ch = 3, the verifier needs to use the public key s to check the value
of c1. These two observations inspire us to construct a one-out-of-many proof
based on our modified protocol.

For a statement composing of a matrix H and N syndromes (s1, · · · , sN ), a
prover claims that it knows the small-weight preimage e of one of the syndromes
satisfying He⊤ = s⊤I for some I ∈ [N ], [N ] := {1, · · · , N}. To demonstrate
this, the prover begins by sampling a random mask vector r, a random permu-
tation ϕ and N random coins {bi}Ni=1 to simulate ci1 = Com(ϕ,He⊤ + s⊤i ; bi)
for all i ∈ [N ]. Subsequently, it samples two random coins ρ2 and ρ3 to gen-
erate c2 = Com(ϕ(r); ρ2) and c3 = Com(ϕ(r + e); ρ3). The prover then per-
mutes (c11, · · · , cN1 ) in random order and sends them along with c2 and c3 to
a verifier. If the verifier returns 1, the prover will open c2 and c3 by revealing
(ϕ(r), ϕ(r + e), ρ2, ρ3). This does not leak any information about the witness
e and the index I. If the verifier returns 2, the prover will open cI1 and c3 by
revealing (ϕ, r + e, ρ1, bI , ρ3). Since the verifier receives a random permutation
of (c11, · · · , cN1 ) and only verifies whether cI1 is in it, this also does not leak any
information about the index I and witness e. If the verifier returns 3, the prover
will open all {ci1}Ni=1 and c2 by outputting ϕ, r and all random coins {bi}Ni=1.
Therefore, no information about the witness e and the index I is leaked.

In the above process, the prover sends N + 2 commitments ({ci1}Ni=1, c2, c3)
during the commitment phase. In the response phase, when the received chal-
lenge is 3, the prover needs to open these N + 2 commitments by outputting
N + 2 random coins. Therefore, the proof size grows linearly with N . To re-
duce the proof size, we use a seedtree to generate N random coins required for
these N commitments {ci1}Ni=1, and compress these commitments into a root
using a Merkle tree. Specifically, the prover first samples a random seed, and
then uses a pseudo-random number generator (PRNG) to iteratively generate
N random coins required for the N commitments {ci1}Ni=1. Subsequently, the
prover arranges these N commitments in lexicographical order and compresses
the sorted list into a root using a Merkle tree. This trick is inspired by [6]. Next,
the prover sends (root, c2, c3) to the verifier. If the verifier returns 1, the prover’s
output remains unchanged. If the verifier returns 2, the prover opens cI and c3
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Round 1: P((H, s), e) chooses the following random objects:

r
$← Fn

2 , ϕ
$← Sn, ρ1, ρ2, ρ3

$← {0, 1}λ.

and sends the commitment CMT := (c1, c2, c3) to V, where

c1 = Com(ϕ,Hr⊤ + s⊤; ρ1), c2 = Com(ϕ(r); ρ2), c3 = Com(ϕ(r+ e); ρ3).

Round 2: V(CMT) sends a ch← {1, 2, 3} to P.
Round 3: P((H, s), e, ch):
- ch = 1: Set v1 = ϕ(r),v2 = ϕ(e) and send RSP = (v1,v2, ρ2, ρ3) to V.
- ch = 2: Set u1 = r+ e, π1 = ϕ and send RSP = (u1, π1, ρ1, ρ3) to V.
- ch = 3: Set u2 = r, π2 = ϕ and send RSP = (u2, π2, ρ1, ρ2) to V.
Verification: V(CMT, ch,RSP):
- ch = 1: Check if c2 = Com(v1; ρ2), c3 = Com(v1 + v2; ρ3) and v2 ∈ B(n, t).
- ch = 2: Check if c1 = Com(π1,Hu⊤

1 ; ρ1) and c3 = Com(π1(u1); ρ3).
- ch = 3: Check if c1 = Com(π2,Hu⊤

2 + s⊤; ρ1) and c2 = Com(π2(u2); ρ2).

Fig. 1. The modified Stern protocol: B(n, t) denotes the set of vectors v ∈ Fn
2 such that

its Hamming weight w(v) = t. Sn denotes the symmetric group of all permutations of
n elements. Com denotes a commitment scheme with the binding and hiding property.

by outputting (ϕ, r+ e, ρ1, bI , ρ3) and the the path of cI in the Merkle tree. So
the length of the path is logN . If the verifier returns 3, the verifier opens all
{ci1}Ni=1 and c2 by outputting (ϕ, r) and seed.

GSD-based one-out-of-many proofs. In 1997, Veron pointed that the GSD-
based protocol with a ternary challenge space has lower communication cost
than the Stern protocol [39]. The GSD problem is to find two vectors x ∈ Fk

2

and e ∈ B(n, t) such that y = xG + e given a matrix G ∈ Fk×n
2 and a vector

y ∈ Fn
2 . Although the security proof of this construction [39] has been pointed

out to have an issue [22], it has been fixed by Gaborit et al. [5]. The fixed
protocol still maintains low communication cost. This improvement is due to
the use of the GSD problem instead of the SD problem. In fact, the hardness of
two problems is equivalent, while the only difference lies in the use of a generator
matrix in the former and a parity-check matrix in the latter. Inspired by this,
we construct a GSD-based one-out-of-many proof. Additionally, we use three
techniques, namely small-weight vector compression functions [30], seedtrees and
Merkle trees [23] to reduce the communication cost of multi-iteration protocols.
Seedtrees are used to generate random objects required while Merkle trees are
employed to compress commitments in multi-iteration protocols.

Our GSD-based one-out-of-many proof naturally lead to a ring signature
scheme by the Fiat-Shamir transform [19]. Specifically, each user i has a public-
private key pair (yi, (xi, ei)), where yi = xiG + ei. The signature of user i for
a message µ is a zero-knowledge proof using our GSD-based one-out-of-many
proof for the pair (xi, ei) satisfying the above equation, where µ is the input in
the random oracle in the Fiat-Shamir heuristic.
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Set-membership proofs. First we briefly introduce the code-based commit-
ment scheme [32]. For a message m ∈ {0, 1}k2 , one initially chooses two random
vectors v ∈ Fk1

2 , e ∈ B(n, t), and obtains a McEliece-type commitment

ComMcE(m; (v, e)) = (v||m)G+ e,

whereG =

(
G1

G2

)
∈ Fk×n

2 is randomly generated,G1 ∈ Fk1×n
2 ,G2 ∈ Fk2×n

2 , k =

k1 + k2. To open a commitment c, one reveals m,v, e and a receiver verifies if
c = (v||m)G+ e.

In our set-membership proof, the public information includes a public set I =
{α1, · · · , αN} and a commitment c for some αi. A prover’s goal is to demonstrate
that c is a commitment to an element in the set I. To achieve this, the prover
first generates [c1 = c+ComMcE(α1, (0,0)), · · · , cN = c+ComMcE(αN , (0,0))],
and then proves that one of ({ci}Ni=1) is a commitment to 0. This is equivalent
to proving that a prover knows a certain ci having the form of vG1 + e, where
e ∈ B(n, t) and i ∈ [N ].
Group signatures. We use the enc-then-prove framework to construct our
group signature scheme. This framework typically requires three cryptographic
layers: a secure signature scheme, a semantically secure encryption scheme and
a zero-knowledge protocol connecting the first two layers. Let’s now explain the
construction of the three components used in our group signature scheme.

Consider a group of size N , where each user is indexed by an integer i ∈ [N ].
For each i, the public key of the i-th user is (G,yi = xiG + ei) ∈ Fk×n

2 × Fn
2 ,

and the private key is (xi, ei) ∈ Fk
2 ×B(n, t).

The signature layer. The construction in this layer is similar to our ring
signature. User i uses our GSD-based one-out-of-many proof to prove that it has
a pair (xi, ei) ∈ Fk

2 ×B(n, t) satisfying xiG+ ei = yi.
The encryption layer. To achieve the traceability of group signatures, User

i encrypts its index i using the randomized McEliece encryption scheme [35] as
follows:

ct = EncMcE(bin(i), (z, s)) = (z||bin(i))GMcE + s,

where GMcE ∈ Fℓ×m
2 is the public key of McEliece encryption scheme, bin(i) is

the binary representation of i with length ℓ2, z ∈ Fℓ1
2 , ℓ = ℓ1+ℓ2 and s ∈ B(m,w).

Then, User i needs to prove that the ciphertext ct is an encryption to an index
in the set {1, · · · , N}. This is similar to our set-membership proof. Specifically,
User i first generates the set

[ct1 = ct+ EncMcE(1, (0,0)), · · · , ctN + EncMcE(N, (0,0))],

and proves that cti is the encryption of 0, which means that cti has the form of
(z||0)GMcE + s, where z ∈ Fℓ1

2 and s ∈ B(m,w).
The third layer. User i must prove that it encrypts its own index i honestly,

which requires combining the former one-out-of-many proof with the latter set-
memberships proof. The high-level idea is to pair the N + 2 commitments from
the former proof with the N +2 commitments from the latter proof respectively,
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forming N + 2 pairs sequentially from 1 to N + 2. Then shuffle the last N
commitment pairs related to {yi}Ni=1 and {cti}Ni=1, and send them along with
another two pairs to a verifier. The remaining steps are similar to our GSD-based
one-out-of-many proof, with the difference being what needs to be revealed and
verified is the commitment pair.

Finally, we obtain a logarithmic-size group signature through the Fiat-Shamir
transform, and we also prove its correctness, traceability, and CPA-anonymity.

1.3 Roadmap

The rest of the article is organized as follows. Section 2 provides some re-
quired preliminaries for our study. In Section 3, we present our novel SD-based
and GSD-based one-out-of-many protocols. Our logarithmic-size ring signature
scheme and its security proof is provided in Section 4. In Section 5, we give our
logarithmic-size group signature scheme. Finally, we choose our parameter sets
for our ring signature scheme and group signature scheme in Section 6.

2 Preliminaries

2.1 Hard problems

For integers a, b and a ≤ b, the notation [a; b] denotes the set {a, · · · , b}. If a = 1,
then it simplifies to [b]. Bold lowercase and uppercase letters denote row vectors
and matrices respectively. The transpose of a vector x is represented by x⊤. Let
B(n, t) be a set of vectors v ∈ Fn

2 such that the Hamming weight w(v) = t.

For a set X, x
$← X means that x is sampled from X randomly and x

$, ζ←− X
denotes x is sampled from X using the seed ζ. Let O(·) denote a random oracle
and AO(·) denote that an algorithm A has access to O(·).

Problem 1 (SD Problem). On input a matrix H
$← F(n−k)×n

2 and a syndrome
s ∈ Fn−k

2 , the syndrome decoding problem SD(n, k, t) asks to find a vector e ∈ Fn
2

such that s⊤ = He⊤ and e
$← B(n, t).

We only present search version of SD problem. In [31], a reduction from the
search version to the decision version is provided. Its dual problem is as follows.

Problem 2 (GSD Problem). On input a matrix G
$← Fk×n

2 and a vector y ∈ Fn
2 ,

the general syndrome decoding problem GSD(n, k, t) asks to find a vector x ∈ Fk
2

and a vector e ∈ Fn
2 such that y = xG+ e, x

$← Fk
2 and e

$← B(n, t).

The hardness of the GSD problem is equivalent to that of the SD problem [39].

Problem 3 (DOOM Problem). On input a matrix H
$← Fk×n

2 and a set of N
syndromes {si}Ni=1, the decoding one-out-of-many problem DOOM(n, k, t,N)
asks to find a vector ei ∈ Fn

2 for some i ∈ [N ] such that s⊤i = He⊤i and

ei
$← B(n, t).
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As [37] stated, a variant of information set decoding algorithms can be
adapted to the DOOM(n, k, t,N) problem, resulting in a speedup factor of ap-
proximately

√
N . We give the dual version of the DOOM problem.

Problem 4 (GDOOM Problem). On input a matrix G
$← Fk×n

2 and a set of
N vectors {yi}Ni=1, the general decoding one-out-of-many problem GDOOM(n,
k, t,N) asks to find a vector xi ∈ Fk

2 and a vector ei ∈ Fn
2 for some i ∈ [N ] such

that yi = xiG+ ei,xi
$← Fk

2 and ei
$← B(n, t).

2.2 Merkle trees

AMerkle tree is a binary tree that compresses a list of data into a value. It is con-
structed layer by layer from bottom to top using a collision-resistant hash func-
tion. Each node in each layer is a hash value of the concatenation of its associated
child nodes. In [6] a special type of Merkle trees called index-hiding Merkle trees
was introduced. This tree has the characteristic of sorting the leaf nodes in lexi-
cographical order, rather than based on their indices. Let H : {0, 1}∗ → {0, 1}2λ
denote a collision-resistant hash function, and D = (d0, · · · , d2ℓ−1) denote a data
list. A Merkle tree includes the following algorithms.

1. Mtree(D) → (root, tree): With a data list D as input, set Tℓ,j = H(dj) for
j ∈ [0, 2ℓ − 1], and iteratively calculate

Ti,j = H(Ti+1,2j−1, Ti+1,2j), i ∈ [0, ℓ− 1], j ∈ [0, 2i − 1].

Output T0,0 as the root.
2. IH-Mtree(D) → (root, tree): With a data list D as input, set Tℓ,j = H(dj)

for j ∈ [0, 2ℓ − 1], and iteratively calculate

Ti,j = H((Ti+1,2j−1, Ti+1,2j)lex), i ∈ [0, ℓ− 1], j ∈ [0, 2i − 1].

Output T0,0 as the root.
3. Gpath(tree, B)→ path: With the structure of a tree and a subset B of D as

input, output a list of intermediate nodes that cover all D\B. Here, one says
that a node set U covers a leaf set L if the union of the leaves in a subtree
rooted at each node u ∈ U is exactly the set L.

4. Rebuild(path, B) → root′: With a subset B and a path as input, output a
rebuilt root′.

There are two important properties about Merkle trees: the binding property
and the index-hiding property of the index-hiding Merkle trees. The binding
property means that for any subset S that does not belong to the set D, finding
a path such that Rebuild(S,path) = Mtree(D) is the same as discovering a
collision in H. The index-hiding property means that for any subset B belonging
to the setD, the path of index-hiding Merkle trees will not reveal any information
about the set B.
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Lemma 1. [6] For a Merkle tree generated by a data list D, there exists an
algorithm F that uses the tree and a pair (S, path) satisfying S ̸⊂ D and
Rebuild(S, path) = root to generate a collision in H.

Lemma 2. [6] Given an integer N = 2ℓ and two distributions X1 and X2 over
{0, 1}∗, the distribution LI , for any I ∈ [N ], is defined as

LI =

 (aI ,path, root)

dI
$← X1,

di
$← X2,∀1 ≤ i ≤ N, i ̸= I,

(tree, root)← IH-Mtree(D),
path← Gpath(tree, I).

 ,

where D = (d1, · · · , dN ). Then LI = LJ for ∀I, J ∈ [N ].

2.3 Seedtrees

A seedtree is also a completely balanced binary tree, but its construction differs
from that of a Merkle tree. In this case, a sender starts by selecting a seed as
the root of a tree. Then, a pseudo-random number generator is used to create
intermediate nodes from top to bottom. By sending some intermediate nodes,
the sender reveals specific leaf nodes without disclosing any information about
the remaining leaves. Let PRNG : {0, 1}λ → {0, 1}2λ represent a pseudo-random
number generator. A seedtree includes the following algorithms.

1. Stree(root, N) → (l0, · · · , l2ℓ−1) : With a seed root and an integer N as
input, set T0,0 = root and iteratively compute

(Ti+1,2j−1, Ti+1,2j) = PRNG(Ti,j), i ∈ [0, ℓ− 1], j ∈ [0, 2i − 1].

Define (Tℓ,0, · · · , Tℓ,2ℓ−1) as leaf nodes (l0, · · · , l2ℓ−1) and then output them.
2. Oseeds(root, ch)→ seedinter: With a root and a challenge ch as input, return

a set seedinter that covers all the leaves with index i such that chi = 1.
3. Recover(seedinter, ch) → {li}i,s.t.chi=1: With a set seedinter and a challenge

ch as input, return all leaf nodes rooted at the nodes in seedinter.
4. Simseeds(ch)→ seedinter: With a challenge ch as input, return a set seedinter

via random sampling, enabling seedinter to cover all leaves with index i sat-
isfying chi = 0.

Lemma 3. [6] Given an integer N and a challenge ch, the distributions X1 and
X2 are defined by

X1 =

 seedinter, {leafi}chi=0

seed← {0, 1}λ,
{leafi}Ni=1 ← Stree(root, N),

seedinter ← Oseeds(seedroot, ch).

 and

X2 =

[
seedinter, {leafi}chi=0

{leafi}chi=0 ← {0, 1}λ,
seedinter ← Simseeds(ch).

]
.

For any adversary who queries an oracle Q times, the advantage of distinguishing
the two distributions X1 and X2 is at most Q/2λ.
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3 Short one-out-of-many proofs from coding theory

We first propose an SD-based one-out-of-many proof along with the security
proof. To achieve a lower communication cost, we introduce a GSD-based one-
out-of-many proof, in which we decrease the communication cost by employing
optimization techniques [30,23].

3.1 The SD-based one-out-of-many proof

In this subsection, we put forward our SD-based one-out-of-many proof in Fig. 2
for proving knowledge of the preimage for one syndrome in a public set (s1, · · · , sN ).
More specifically, the proof is a ZKAoK for the following relation:

R = {(H, s1, · · · , sN ), (eI , I)| for some I ∈ [N ], s⊤I = He⊤I , eI ∈ B(n, t)}, (1)

where H ∈ F(n−k)×n
2 and si ∈ Fn−k

2 for all i ∈ [N ].

Our idea stems from a key observation that in the modified Stern protocol
in Fig. 1, the commitment c1 = Com(δ,Hr⊤ + s⊤; ρ1) needs to be verified in
two different ways, in which one is related to the syndrome s while the other is
unrelated to s. Based on this, we replace c1 with the following set

(Com(δ,Hr⊤ + s⊤1 ; b1), · · · ,Com(δ,Hr⊤ + s⊤N ; bN )),

while keeping c2 and c3 unchanged, and compress it into a root using an index-
hiding Merkle tree. Then, the root, c2 and c3 are sent to a verifier.

When the challenge is 1, the verifier checks c2 and c3 as the original Stern
protocol. When the challenge is 2, the verifier checks the root and c3 by using
the path of the index-hiding Merkle tree, r+ eI and δ. When the challenge is 3,
the verifier calculates all leaf nodes using r and checks the root and c2 by leaf
nodes and δ.

In the following we first show that our protocol in Fig. 2 satisfies perfect com-
pleteness. That is, if P, which possesses the witness (eI , I), faithfully executes
the protocol, V will output “accept” with a probability of 1. If ch = 1, V only
needs to repeat the calculation process of c2 and c3, and so it always outputs
“accept”. If ch = 2, V needs to reconstruct the root using the I-th leaf node
and repeat the calculation process of c3. The reconstructed root is the same as
the one constructed using all leaves, and hence it always outputs “accept”. If
ch = 3, V only needs to repeat the calculation process of the root and c2, and
also it always outputs “accept”.

Next, the following Theorems 1 and 2 state that our protocol in Fig. 2 is
sound and zero-knowledge.

Theorem 1. Assuming that Com is a computational binding commitment scheme
and the hash function H used in the Merkle tree is collision-resistant, the protocol
in Fig. 2 is an argument of knowledge with soundness error 2/3.
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Proof. Assuming there is an adversary A who is accepted with a probability
greater than 2/3, i.e., A can effectively respond all challenges. Then, we can
construct an extractor E which either breaks the binding property of Com, or
outputs a collision inH, or e ∈ B(n, t) such that He⊤ = s⊤I for a certain I ∈ [N ].
Formally, given a CMT(c1, c2, c3) and its three valid responses

RSP1 = (w1,w2, ρ2, ρ3),RSP2 = (w3, ξδ, b,path, ρ3),RSP3 = (ξs, ξr, ξ
′
δ, ρ2),

each of them corresponds to distinct challenges ch = 1, ch = 2 and ch = 3
respectively. The extractor E first calculates


π1

$,ξδ←− Sn,p1
$,ξr←− Fn

2 , π2
$,ξ′δ←− Sn;

(b′1, · · · , b′N ) = Stree(ξs, N);
leaf ′ = (Com(π2,Hp⊤

1 + s⊤1 ; b
′
1), · · · ,Com(π2,Hp⊤

1 + s⊤N ; b′N ));
R′

1 = IH-Mtree(leaf ′);
R′

2 = Rebuild(path,Com(π1,Hw⊤
3 ; b)).

Due to the validity of these responses, we have c1 = R′
1 = R′

2,w2 ∈ B(n, t);
c2 = Com(w1; ρ2) = Com(π2(p1); ρ2);
c3 = Com(w1 +w2; ρ3) = Com(π1(w3); ρ3).

Then, E checks if (w1, ρ2) ̸= (π2(p1), ρ2). If so, E breaks the binding property
of Com. Similarly, E checks if (w1 +w2, ρ3) ̸= (π1(w3), ρ3). If neither of these
two inequalities holds true, we have

w1 = π2(p1),w1 +w2 = π1(w3). (2)

Next, E checks if Com(π1,Hw⊤
3 ; b) ̸= leaf ′i for all i ∈ [N ]. If so, it finds a

collision in H by employing the Merkle tree extractor in Lemma 1 with the input
(tree,Com(π1,Hw⊤

3 ; b), path). Otherwise, there must exist an index I ∈ [N ]
satisfying Com(π1,Hw⊤

3 ; b) = leaf ′I . Furthermore, E checks if (π1,Hw⊤
3 , b) ̸=

(π2,Hp⊤
1 + s⊤I , bI). If so, E breaks the binding property of Com. Otherwise, E

gets π1 = π2, Hw⊤
3 = Hp⊤

1 + s⊤I and b = bI . From this and Equation (2), we
deduce that Hπ−1

1 (w⊤
2 ) = s⊤I , where π−1

1 (w2) ∈ B(n, t). This means that E
outputs the witness e = π−1

1 (w2) ∈ B(n, t) such that He = sI , I ∈ [N ]. ⊓⊔

Theorem 2. The protocol in Fig. 2 is honest-verifier zero-knowledge, that is,
there exists a simulator Sim, such that for any statement-witness pair (s, w)
belonging to the relation (1), any ch ∈ {1, 2, 3} and any adversary A that accesses
the oracle Q times, the following holds

∣∣Pr[AO(P(s, w, ch))→ 1]− Pr[AO(Sim(s, ch))→ 1]
∣∣ ≤ 2Q

2λ
.
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Round 1: Ph
1 ((H, s1, · · · , sN ), (eI , I)):

{ζs, ζr, ζδ, ρ1, ρ2}
$← {0, 1}λ, r $,ζr←− Fn

2 , δ
$,ζδ←− Sn.

- (b1, · · · , bN ) = Stree(ζs, N).
- leaf = (Com(δ,Hr⊤ + s⊤1 ; b1), · · · ,Com(δ,Hr⊤ + s⊤N ; bN )).
- (root, tree) = IH-Mtree(leaf).
- Send the commitment CMT := (c1, c2, c3) to V, where

c1 = root, c2 = Com(δ(r); ρ2), c3 = Com(δ(r+ eI); ρ3).

Round 2: Vh
1 (CMT) sends a ch

$←− {1, 2, 3} to P.
Round 3: Ph

2 ((H, s1, · · · , sN ), (eI , I), ch):
- Case ch = 1: Set w1 = δ(r),w2 = δ(eI).

Send RSP = (w1,w2, ρ2, ρ3) to V.
- Case ch = 2: Set w3 = r+ eI , ξδ = ζδ, b = bI , path = Gpath(tree, I).

Send RSP = (w3, ξδ, b, path, ρ3) to V.
- Case ch = 3: Set ξs = ζs, ξr = ζr, ξ

′
δ = ζδ.

Send RSP = (ξs, ξr, ξ
′
δ, ρ2) to V.

Verification: Vh
2 ((H, s1, · · · , sN ),CMT, ch,RSP) :

- Case ch = 1: Check if w2 ∈ B(n, t) and

c2 = Com(w1; ρ2), c3 = Com(w1 +w2; ρ3).

- Case ch = 2: Set π1
$,ξδ←− Sn, R1 = Rebuild(path,Com(π1,Hw⊤

3 ; b)),
and check if

c1 = R1, c3 = Com(π1(w3); ρ3).

- Case ch = 3: Set (b1, · · · , bN ) = Stree(ξs, N), p1
$,ξr←− Fn

2 , π2
$,ξ′δ←− Sn and

leaf = (Com(π2,Hp⊤
1 + s⊤1 ; b1), · · · ,Com(π2,Hp⊤

1 + s⊤N ; bN )).
Compute R2 as IH-Mtree(leaf) and check if

c1 = R2, c2 = Com(π2(p1); ρ2).

V outputs 1 when all conditions are met, else it outputs 0.

Fig. 2. The SD-based one-out-of-many proof Πh = (Ph = (Ph
1 ,Ph

2 ),Vh = (Vh
1 ,Vh

2 )).

Proof. To simplify the proof, we use the random oracle O∗(·) to instantiate the
hash function, the algorithm Stree, and Com, where ∗ denotes the instantiated
object. The simulator Sim is constructed as follows:
Case ch = 1:

1. Sim selects the following random objects:

w1
$← Fn

2 ,w2
$← B(n, t), {ρ2, ρ3}

$← {0, 1}λ, c1
$← {0, 1}2λ.

2. Sim lets CMT = (c′1, c
′
2, c

′
3), where

c′1 = c1, c
′
2 = Com(w1; ρ2), c

′
3 = Com(w1 +w2; ρ3).
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3. Sim lets RSP = (w1,w2, ρ2, ρ3) and returns (CMT, 1,RSP).
Case ch = 2:

1. Sim selects the following random objects:

w3
$← Fn

2 , {b, ξδ, ρ3, {leafi}Ni=2}
$← {0, 1}λ, c2

$← {0, 1}2λ, π1
$,ξδ←− Sn.

2. Sim sets leaf1 = Com(π1,Hw⊤
3 ; b) and obtains (tree, root) = IH-Mtree(leaf).

3. Sim lets CMT = (c′1, c
′
2, c

′
3), where

c′1 = root, c′2 = c2, c
′
3 = Com(π1(w3); ρ3).

4. Sim runs the algorithm GPath(tree, 1) to retrieve the path.
5. Sim lets RSP = (w3, ξδ, b,path, ρ3) and returns (CMT, 2,RSP).

Case ch = 3:
1. Sim selects the following random objects:

{ξs, ξr, ξδ, ρ2}
$← {0, 1}λ, c3

$← {0, 1}2λ,v2
$,ξr←− Fn

2 , π2
$,ξδ←− Sn.

2. Sim sets leaf = (Com(Hp⊤
1 + s⊤1 ; b1), · · · ,Com(Hp⊤

1 + s⊤N ; bN )) and cal-
culates its root, where (b1, · · · , bN ) = Stree(ξs, N).

3. Sim lets CMT = (c′1, c
′
2, c

′
3), where

c′1 = root, c′2 = Com(π2(v2); ρ2), c
′
3 = c3.

4. Sim lets RSP = (ξs, ξr, ξδ, ρ2) and returns (CMT, 3,RSP).
If Com is statistically hiding, then two CMTs generated by Sim and a honest

prover, respectively, are statistically indistinguishable. Therefore, we only need
to check the case of RSP.

ch = 1: Since Sim draws (w1,w2) at random from Fn
2 ×B(n, t), both RSPs

generated by a honest prover and Sim respectively, follow the random distribu-
tion on Fn

2 ×B(n, t).
ch = 2: Set five simulators {Simi}5i=1 to prove that Sim and a honest prover

are indistinguishable. Sim1 and Sim5 represent a honest prover and Sim, re-
spectively. Let Ei denote AO(Simi(s, ch)) = 1, for i ∈ [5].

Sim2: The only difference between Sim2 and Sim1 is that {bi}Ni=1 are ran-
domly sampled from {0, 1}λ instead of being generated by theOStree(·) algorithm
Stree with an input ζs. If ζs has not been queried by A to the oracle OStree(·),
Sim2 and Sim1 are indistinguishable. Thus, if OStree(·) is accessed Q times and
the probability of colliding with ζs is 2λ for each query, the probability of collid-
ing with ζs after Q queries is Q/2λ. Thus, we have |Pr[E2]− Pr[E1]| ≤ Q/2λ.

Sim3: The only difference between Sim3 and Sim2 is that {leafi}Ni=1,i̸=I are

randomly sampled from {0, 1}2λ instead of being generated by OCom(·) with
the tuple (π1,Hr⊤ + s⊤i ; bi) for i ̸= I. If all tuples have not been queried by A
to the oracle OCom(·), Sim3 and Sim2 are indistinguishable. We use Qcomi

to
represent the number of times OComi(·) is accessed. Since the minimum entropy
of bi is 1/2

λ, the minimum entropy of tuple (π1,Hr⊤ + s⊤i ; bi) is at most 1/2λ.
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Therefore, the probability of collision with the tuple in each query is at most
1/2λ. Furthermore, since

∑N
i=1Qleafi ≤ Q, we have |Pr[E3]− Pr[E2]| ≤ Q/2λ.

Sim4: There are two differences between Sim4 and Sim3. Firstly, c3 is ran-
domly sampled from {0, 1}2λ. Secondly, leafI = Com(π1,Hw⊤

3 ; bI), where w3 is
randomly sampled from Fn

2 . Since w3 and c3 follows the random distribution as
the real transcript, we have Pr[E4] = Pr[E3].

Sim5: The only difference between Sim5 and Sim4 is that 1 is used instead
of I in witness. Lemma 2 states that regardless of whether the selected index
is 1 or I, the root and path follow the same distribution. Therefore, we have
Pr[E5] = Pr[E4].

Thus, we have
∣∣Pr[AO(P(s, w, 2))→ 1]− Pr[AO(Sim(s, 2))→ 1]

∣∣ ≤ 2Q
2λ

.
ch = 3: Since a honest prover does not use the witness, Sim can perfectly

simulate RSP.
In summary, we obtain the required result. ⊓⊔

3.2 The GSD-based one-out-of-many proof

We first propose a GSD-based one-out-of-many proof in one-iteration in Fig. 3.
The protocol in Fig. 3 is for the following relation:

R = {(G, {yi}Ni=1), (x, e, I)| for some I ∈ [N ],yI = xG+e,x ∈ Fk
2 , e ∈ B(n, t)},

(3)
where G ∈ Fk×n

2 and yi ∈ Fn
2 for all i ∈ [N ]. Next, we present its multi-iteration

version in Fig. 4 by using additional optimization techniques such as commit-
ments compression [30,23], seedtrees [6,23] and small-weight vector compression
functions [30]. In the following we first explain how to use them to obtain the
multi-iteration version, which is called the GSD-based one-out-of-many proof.
Commitments compression: The soundness error of the GSD-based one-out-
of-many proof in one-iteration in Fig. 3 is 2/3, and so this protocol needs to
be repeated κ times to reduce the soundness error. Since three commitments
(cj1, c

j
2, c

j
3), j ∈ [κ] need to be output in each iteration, the total cost of commit-

ments is 3κ|Com |. To reduce the total cost of commitments, we optimize the
above protocol by using three Merkle trees Tree1, Tree2 and Tree3 to compress
(c11, · · · , cκ1 ), (c12, · · · , cκ2 ) and (c13, · · · , cκ3 ) as root1, root2 and root3 respectively,
where (cj1, c

j
2, c

j
3) denotes the commitment of the j-th iteration. The prover sends

CMT = H(root1, root2, root3). Since the verifier can reconstruct two out of the
three commitments (cj1, c

j
2, c

j
3) in each iteration, the prover transmits those com-

mitments that cannot be computed by the verifier through certain intermediate
nodes of the tree. In summary, this will reduce the cost of commitments from

3κ|Com | to |H|+ 5κ|Com |
6 .

Seedtrees : In one-iteration protocol, a set of seeds needs to be generated for
sampling random objects and so certain seeds are revealed based on the chal-
lenge. To reduce the communication cost of seeds, we use a set of master seeds
along with a set of seedtrees to generate κ sets of seeds in κ iterations. During
the response phase, we provide those revealed seeds by outputting certain inter-
mediate nodes in the seedtree. If the probability of a seed being transmitted in
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one iteration is 1/p, then using a seedtree reduces the transmission cost of this
seed by about 1/2p.

Small-weight vector compression: Since the protocol in Fig. 3 may transmit
a small weight vector, we employ a small vector compression function in multi-
iteration version to reduce the cost of transmitting small weight vectors from n
to approximately n/2.

By using the above optimization techniques, a multi-iteration version is pro-
posed in Fig. 4. As mentioned in [6], to ensure a tighter security proof and avoid
multi-target attacks [14], we use a ”salt”, a 2λ-bit prefix string, in these seedtrees
to distinguish the random oracles used in the seedtrees of different iterations.
The ”salt” has a negligible impact on practice.

The following theorem provides the security of the protocol in Fig.4.

Theorem 3. The protocol described in Fig. 4 is an argument of knowledge with
the perfect completeness and honest-verifier zero-knowledge.

Proof. Completeness: This protocol has perfect completeness, which is imme-
diately obtained by the correctness of the seedtrees, Merkle trees, and index-
hiding Merkle trees.

Soundness: Assume there is an adversary A who is accepted with a probability
> (2/3)κ, i.e., A is able to successfully answer all three challenges in some
iteration j where j ∈ [κ]. We construct an extractor E which either breaks the
binding property of Com, or outputs a collision in H, or outputs x ∈ Fk

2 , e ∈
B(n, t) such that xG + e = yI for some I ∈ [N ]. First, E obtains the seeds,
random coins and the commitment of the j-th iteration by RSP1,RSP2,RSP3

and the algorithms of seedtrees and Merkle trees.

{ξjs , ξju, ξ
j
δ , ξ

j
δ′ , ρ

j
1, ρ

j
2, c

j
1, c

j
2, c

j
3} ←− (RSP1,RSP2,RSP3).

Then, E performs the following steps:



(bj1, · · · , b
j
N ) = Stree(ξjs , N);

pj
1

$,ξj
δ′←− Fn

2 , π
j
1

$,ξj
δ′←− Sn,pj

2

$,ξju←− Fk1
2 ,p3

2

$,ξjδ←− Fn
2 , π

j
2

$,ξjδ←− Sn;
leafj = (Com(πj

2(p
j
2G1 + y1) + pj

3; b
j
1), · · · ,Com(πj

2(p
j
2G1 + yN ) + pj

3; b
j
N ));

Rj
1 = IH-Mtree(leafj);

Rj
2 = Rebuild(pathj ,Com(wj

2 +wj
3; b

j)).

Due to the validity of these responses, we have
cj1 = Rj

1 = Rj
2,w

j
3 ∈ B(n, t);

cj2 = Com(πj
1,p

j
1; ρ

j
2) = Com(πj

2,p
j
3; ρ

j
2);

cj3 = Com(wj
2, ρ

j
3) = Com(πj

1(w
j
1G1) + pj

1; ρ
j
3).



16 Xindong Liu and Li-Ping Wang (�)

Round 1: Pg
1 ((G,y1, · · · ,yN ), (I,x, e)) chooses the following random objects:

{ζs, ζu, ζδ, ρ1, ρ2}
$← {0, 1}λ;u $,ζu←− Fk

2 ,v
$,ζδ←− Fn

2 , δ
$,ζδ←− Sn.

- (b1, · · · , bN ) = Stree(ζs, N).
- leaf = (Com(δ(uG+ y1) + v; b1), · · · ,Com(δ(uG+ yN ) + v; bN )).
- (root, tree) = IH-Mtree(leaf).
- Send CMT := (c1, c2, c3) to V, where

c1 = root, c2 = Com(δ,v; ρ2), c3 = Com(δ((u+ x)G) + v; ρ3).

Round 2: Vg
1 (CMT) sends a challenge ch

$← {1, 2, 3} to P.
Round 3: Pg

2 ((G,y1, · · · ,yN ), (I,x, e), ch) responds as follows:
- Case ch = 1: Set ξ′δ = ζδ,w1 = u+ x.

Send RSP = (ξ′δ,w1, ρ2, ρ3) to V.
- Case ch = 2: Set

w2 = δ((u+ x)G) + v,w3 = δ(e); b = bI , path = Gpath(tree, I).

Send RSP = (w2,w3, b, path, ρ3) to V.
- Case ch = 3: Set ξs = ζs, ξu = ζu, ξδ = ζδ.

Send RSP = (ξs, ξu, ξδ, ρ2) to V.
Verification: Vg

2 ((G,y1, · · · ,yN ),CMT, ch,RSP) proceeds as follows:

- Case ch = 1: Set p1
$,ξ′δ←− Fn

2 , π1
$,ξ′δ←− Sn and check if

c2 = Com(π1,p1; ρ2), c3 = Com(π1(w1G1) + p1; ρ3).

- Case ch = 2: Compute R1 as Rebuild(path,Com(w2 +w3; b)),
Check if w3 ∈ B(n, t) and

c1 = R1, c3 = Com(w2; ρ3).

- Case ch = 3: Set p2
$,ξu←− Fk

2 ,p3
$,ξδ←− Fn

2 , π2
$,ξδ←− Sn.

(b1, · · · , bN ) = Stree(ξs, N).
leaf = (Com(π2(p2G1 + y1) + p3; b1), · · · ,Com(π2(p2G1 + yN ) + p3; bN )).

Obtain R2 as IH-Mtree(leaf) and check if

c1 = R2, c2 = Com(π2,p3; ρ2).

V outputs 1 when all conditions are met, else it outputs 0.

Fig. 3. The one-iteration GSD-based one-out-of-many proof Πg = (Pg =
(Pg

1 ,P
g
2 ),Vg = (Vg

1 ,V
g
2 )).

E first checks if (πj
1,p

j
1, ρ

j
2) ̸= (πj

2,p
j
3, ρ

j
2). If so, E breaks the binding property

of Com. Similarly, E checks if (wj
2, ρ

j
3) ̸= (πj

1(w
j
1G1)+pj

1, ρ
j
3). If neither of these

two inequalities holds true, we have

πj
1 = πj

2,p
j
1 = pj

3,w
j
2 = πj

1(w
j
1G1) + pj

1. (4)
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Round 1: Poom
1 ((G, {yi}Ni=1), (I,x, e)) chooses the following random objects:

{ζroots , ζrootu , ζrootδ , ρroot1 , ρroot2 } $← {0, 1}λ, θ $← {0, 1}2λ.
- ({ζis}κi=1) = Stree(ζroots , κ), ({ζiu}κi=1) = Stree(ζrootu , κ), ({ζiδ}κi=1) = Stree(ζrootδ , κ).

- ({ρi1}κi=1) = Stree(ρroot1 , κ), ({ρi2}κi=1) = Stree(ρroot2 , κ).

- For j from 1 to κ do
(cj1, c

j
2, c

j
3)← P

g
1 ((G, {yi}Ni=1), (I,x, e), (ζ

j
s , ζ

j
u, ζ

j
δ , ρ

j
1, ρ

j
2), θ).

(Mtree1, C1) = Mtree(c11, · · · , cκ1 ), (Mtree2, C2) = Mtree(c12, · · · , cκ2 ),
(Mtree3, C3) = Mtree(c13, · · · , cκ3 ).

- Send the commitment CMT := (H(C1, C2, C3), θ) to V.
Round 2: Voom

1 (CMT) sends a challenge ch = (ch1, · · · , chκ)
$← {1, 2, 3}κ to P.

Round 3: Poom
2 ((G, {yi}Ni=1), (I,x, e), ch) responds as follows:

- path1 = Gpath(Mtree1, {j}chj=1).

- path2 = Gpath(Mtree2, {j}chj=2), path3 = Gpath(Mtree3, {j}chj=3).

- ζ inters ← Oseeds(ζroots , {j}chj=2).

- ζ interδ ← Oseeds(ζrootδ , {j}chj ̸=1), ζ
inter
u ← Oseeds(ζrootu , {j}chj=2).

- ζ interρ1 ← Oseeds(ζrootρ1 , {j}chj ̸=1), ζ
inter
ρ2 ← Oseeds(ζrootρ2 , {j}chj ̸=2).

- For j from 1 to κ do
If chj = 1 Then
Set wj

1 = uj + x.
rspj = wj

1.
If chj = 2 Then
Set wj

2 = δj((uj + x)G1) + vj ,wj
3 = compress(δj(e)).

bj = bjI , path
j = Gpath(treej , I).

rspj = (wj
2,w

j
3, b

j , pathj).
- Send RSP = ({rspi}κi=1, path1, path2,path3, ζ

inter
∗ ).

Verification: Voom
2 ((G, {yi}Ni=1),CMT, ch,RSP, θ) :

- {ζjs}chj=2 ← Recover(ζ inters , {j}chj=2).

- {ζjδ}chj ̸=1 ← Recover(ζ interδ , {j}chj ̸=1), {ζju}chj=2 ← Recover(ζ interu , {j}chj=2).

- {ζjρ1}chj ̸=1 ← Recover(ζ interρ1 , {j}chj ̸=1), {ζjρ2}chj ̸=2 ← Recover(ζ interρ2 , {j}chj ̸=2).

- For j from 1 to κ do
If chj = 1 Then
Set (cj2, c

j
3)← V

g
2 (ch

j , rspj , ζ
j
δ′ , ρ

j
2, ρ

j
3, θ).

If chj = 2 Then
Set (cj1, c

j
3)← V

g
2 (ch

j , rspj , ρj3, θ).
If chj = 3 Then
Set (cj1, c

j
2)← V

g
2 (ch

j , rspj , ζjs , ζ
j
r , ζ

j
δ , ρ

j
2, θ).

- C1 = Rebuild({cj1}chj ̸=1, path1), C2 = Rebuild({cj2}chj ̸=2, path2),

- C3 = Rebuild({cj3}chj ̸=3, path3).
- Check if CMT = H(C1, C2, C3). If it holds, output 1; otherwise, output 0.

Fig. 4. The GSD-based one-out-of-many proofΠoom = (Poom = (Poom
1 ,Poom

2 ),Voom =
(Voom

1 ,Voom
2 )). Let ζ inter∗ = (ζ inters , ζ interu , ζ interδ , ζ interρ1 , ζ interρ2 ).

For convenience, in later proof we let πj = πj
1,p

j = pj
1. E then checks if

Com(wj
2+wj

3; b
j)) ̸= leafji for all i ∈ [N ]. If so, by employing the Merkle tree ex-
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tractor in Lemma 1 with input (treej ,Com(wj
2+wj

3; b
j)),path), it outputs a colli-

sion inH. Otherwise, there exists an index I ∈ [N ] satisfying Com(wj
2+wj

3; b
j) =

leafjI and E further checks if (wj
2 +wj

3, b
j) ̸= (πj(pj

2G
j
1 + yj

I) + pj , bjI). If so, E
breaks the binding property of Com. Otherwise, E gets wj

2 +wj
3 = πj(pj

2G1 +

yj
I) +pj and bj = bjI and so it deduces that (wj

1−pj
2)G1 + (πj)−1(wj

3) = yI by

Equation (4), where (πj)−1(wj
3) ∈ B(n, t). This means that for some I ∈ [N ], E

outputs the witness (wj
1 − pj

2, (π
j)−1(wj

3)).

Honest-verifier zero-knowledge: Assume that the adversary A has accessed
the oracle O∗(·) a total of Q times, where O∗(·) instantiates the hash function,
algorithm Stree, and Com. Let Ei denote the AO(Simi(s, ch)) = 1, for i =
1, · · · , 6. Sim is built as follows:

Sim first runs
θ ← {0, 1}2λ, ζ interδ ← Simseeds({j}chj ̸=1, θ);
ζ interρ1

← Simseeds({j}chj ̸=1, θ), ζ
inter
ρ2

← Simseeds({j}chj ̸=2, θ);
ζ inters ← Simseeds({j}chj=2, θ), ζ

inter
u ← Simseeds({j}chj=2, θ).

Then, Sim obtains random coins by
{ζjρ1
}chj ̸=1 ← Recover(ζ interρ1

, {j}chj ̸=1); {ζjρ2
}chj ̸=2 ← Recover(ζ interρ2

, {j}chj ̸=2);

{ζjs}chj=2 ← Recover(ζ inters , {j}chj=2); {ζju}chj=2 ← Recover(ζ interu , {j}chj=2);

{ζjδ}chj ̸=1 ← Recover(ζ interδ , {j}chj ̸=1).

For j = 1 to κ : Sim performs
Case chj = 1:

1. Sim samples wj
1

$← Fk
q , c

j
1

$← {0, 1}2λ and sets pj
1

$,ξjδ←− Fn
2 , π

j
1

$,ξjδ←− Sn.
2. Sim sets cj2 = Com(πj

1,p
j
1; ρ

j
2) and cj3 = Com(πj

1(w
j
1G1) + pj

1; ρ
j
3).

3. Sim sets rspj = wj
1.

Sim computes CMT := H(C1, C2, C3), where

C1 ← Mtree(c11, · · · , cκ1 ), C2 ← Mtree(c12, · · · , cκ2 ), C3 ← Mtree(c13, · · · , cκ3 ).

and obtains pathi = Gpath(Mtreei, {j}chj=i) for i = 1, 2, 3. It sets

RSP = ({rspi}κi=1,path1,path2,path3, ζ
inter
∗ )

and returns (CMT, ch,RSP, θ).
Case chj = 2:

1. Sim chooses the following random objects:

wj
2

$← Fn
2 ,w

j
3

$← B(n, t), bj
$← {0, 1}λ; leafji

$← {0, 1}2λ,∀i ∈ [2;N ], cj2
$← {0, 1}2λ.

2. Sim sets leafj1 = Com(wj
2 +wj

3; b
j) and (treej , rootj) = IH-Mtree(leafj).

3. Sim sets cj1 = rootj and cj3 = Com(wj
2; ρ

j
3).

4. Sim runs Gpath(treej , 1) to retrieve the path and sets rspj = (wj
2,w

j
3, b

j ,pathj).
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Case chj = 3:

1. Sim samples the following random objects:

pj
2

$,ξju←− Fk1
2 ;pj

3

$,ξjδ←− Fn
2 ;π

j
2

$,ξjδ←− Sn, cj3
$← {0, 1}2λ.

2. Sim sets leafj = (Com(πj
2(p

j
2G1+y1)+pj

3; b
j
1), · · · ,Com(πj

2(p
j
2G1+yN )+

pj
3; b

j
N )) and calculates its rootj , where (bj1, · · · , b

j
N ) = Stree(ξjs , N).

3. Sim sets cj1 = rootj and cj2 = Com(πj
2,p

j
3; ρ

j
2).

Similar to the proof of Theorem 2, we only need to check the case of RSP. We
use a sequence of simulators {Simi}6i=1 to prove that Sim and an honest prover
are indistinguishable, in whcih Sim1 and Sim6 represent the honest prover and
Sim, respectively.

Sim2: The only difference between Sim2 and the honest prover is that the
tuple internal seeds ζ inter∗ are generated by the algorithm Simseeds with the input
ch intead of being generated by the algorithms Stree and Oseeds with inputs
ζroot∗ and ch. According to Lemma 3, the advantage of distinguishing between
these two tuples internal seeds is Q/2λ when the oracle OStree(·) is accessed Q
times. Therefore, we have |Pr[E2]− Pr[E1]| ≤ Q/2λ.

Observe that, if ζ inter∗ has not been queried, when chj = 1 and chj = 3, Sim2

can perfectly simulate. We only prove the case of chj = 2.

Sim3: The only difference between Sim3 and Sim2 is that {bji}Ni=1 are ran-
domly sampled from {0, 1}λ instead of being generated by OStree(·) with the
input ζjs , where ζjs is generated by OOseeds(ζ inters ). If ζjs has not been queried
by A to the oracle OStree(·), Sim3 and Sim2 are indistinguishable. Thus, if
OStree(·) is accessed Q times and the probability of colliding with ζjs each query
is 2λ, the probability of colliding with ζjs after Q queries is Q/2λ. Thus, we have
|Pr[E3]− Pr[E2]| ≤ Q/2λ.

Sim4: The only difference between Sim3 and Sim2 is that {leafji}Ni=1,i̸=I are

randomly sampled from {0, 1}2λ instead of being generated by OCom(·) with
the tuple (δj(pj

2G + yi) + pj
3; b

j
i ) for i ̸= I. If all tuples have not been queried

by A to OCom(·), Sim3 and Sim2 are indistinguishable. Let Qcomi
represent

the number of times OComi(·) is accessed. Since the minimum entropy of bji is

1/2λ, the minimum entropy of tuple (δj(pj
2G + yi) + pj

3; b
j
i ) is at most 1/2λ.

Hence, the probability of collision with the tuple in each query is at most 1/2λ.

Furthermore, since
∑N

i=1Qcomi ≤ Q, we have |Pr[E4]− Pr[E3]| ≤ Q/2λ.

Sim5: There are two differences between Sim5 and Sim4. Firstly, c
j
3 is ran-

domly sampled from {0, 1}2λ. Secondly, leafjI = Com(wj
2+wj

3; b
j
I), wherew

j
2 and

wj
3 are randomly sampled from Fn

2 and B(n, t) respectively. Since wj
2 and wj

3

follows the random distribution as the real transcript, we have Pr[E5] = Pr[E4].

Sim6: The only difference between Sim6 and Sim5 is that 1 is used instead
of I in witness. Lemma 2 states that regardless of whether the selected index
is 1 or I, the root and path follow the same distribution. Therefore, we have
Pr[E6] = Pr[E5].

Thus, we have
∣∣Pr[AO(P(s, w, ch))→ 1]− Pr[AO(Sim(s, ch))→ 1]

∣∣ ≤ 3Q
2λ

. ⊓⊔
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Communication cost: (1) The cost of commitments is 2λ(5κ/6 + 1). (2) The
cost of seeds is about (κ/3)(20λ/3) + 2λ. (3) The cost of vectors and the path
of the Merkle tree is about (κ/3)( 3n2 + k + 2λ logN).

3.3 Our set-membership proof

A set-membership proof is a concept similar to an one-out-of-many proof. It
allows one to prove that an element in a public set satisfies a given property,
i.e. given a publicly set I and a property G, one proves the existence of an
element αi such that αi ∈ I and G(αi) holds. Consider an example where a
commitment c = ComMcE and a public set I = {α1, · · · , αN} are given. The
goal is to demonstrate that c is a commitment to an element in I and so our
set-membership proof can be achieved by the protocol in Fig. 4 with the input
of the set [c1 = c+ComMcE(α1; (0,0)), · · · , cN = c+ComMcE(αN ; (0,0))] and
public commitment key G.

4 Our code-based logarithmic-size ring signature scheme

A ring signature enables a ring member to sign a message on behalf of the
ring anonymously. Our GSD-based one-out-of-many proof can be transformed
into a ring signature scheme through Fiat-Shamir transform. Specifically, each
user has a public-private key pair (yi, (xi, ei)), where yi = xiG + ei and ei is
small. The signature for a message µ is our GSD-based one-out-of-many proof
for (xi, ei) satisfying Equation (3), where µ is the input into the random oracle
of Fiat-Shamir transform. Our ring signature scheme is presented in Fig. 5.

RS.Setup(1λ):

- G
$← Fk×n

2 , where n = O(λ) and k = O(λ).
- Hcom

$← H(1λ), HFS
$← H(1λ, κ), HMerkle

$← H(1λ, N), where κ = ω(log(λ)).
- Return pp = (G,HFS ,Hcom).

RS.KeGen(pp,N):

- x
$← Fk

2 , e
$← B(n, t), y = xG+ e.

- Return (pk, sk) = (y, (x, e)).
RS.Sign(skj ,M,R): RS.Verify(M,σ):

- CMT← Poom
1 (G, R, skj). - (CMT,RSP)← σ.

- ch← HFS(M,R,CMT). - ch← HFS(M,R,CMT).
- RSP← Poom

2 (G, R, ch, skj). - Return Voom
2 (G, R, (CMT, ch,RSP)).

- Return σ = (CMT,RSP).

Fig. 5. Our ring signature scheme, where R := (pk1, · · · , pkN ).

First, we introduce the definition and security requirements of a ring signa-
ture scheme.
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Definition 1. A ring signature scheme contains four polynomial-time algorithms
RS = (RS.Setup,RS.KeyGen,RS.Sign,RS.Verify),

– pp ← RS.Setup(1λ) : Taking a security parameter 1λ as input, output the
public parameters pp.

– (pk, sk) ← RS.KeyGen(pp,N) : Taking the public parameter pp and the
number N of ring users as input, publish a pair of public and private keys
(pki, ski) for the i-th user i ∈ [N ].

– σ ← RS.Sign(R,M, sk) : Taking the list of public keys R = (pk1, · · · , pkN ),
a private key sk and a message M as input, generate a signature σ.

– b ← RS.Verify(R,M, σ) : Taking the list of public keys R, a message M ,
and a signature σ as input, output b either 1 (accept) or 0 (reject).

A ring signature needs to satisfy three properties: correctness, unforgeability,
and anonymity. Correctness ensures that a valid signature can always be verified.
Unforgeability guarantees that only users in the ring can generate valid signa-
tures. Anonymity ensures that the output signature does not leak the identity
of the signer.

Definition 2 (Correctness). A ring signature scheme achieves correctness if
for any λ ∈ N, N = poly(λ), j ∈ [N ] and every message M , the following holds:

Pr

RS.Verify(R,M, σ) = 1

pp← RS.Setup(1λ),
(pki, ski)← RS.KeyGen(pp),∀i ∈ [N ],

R = (pk1, · · · , pkN ),
σ ← RS.Sign(R,M, skj).

 = 1.

Definition 3 (Unforgeability w.r.t. insider corruption). A ring signature
scheme RS = (RS.Setup,RS.KeyGen,RS.Sign,RS.Verify) is unforgeable
if the advantage of A is negligible in the following game:

1. pp← RS.Setup(1λ), (pki, ski)← RS.KeyGen(pp,N),∀i ∈ [N ];
2. A can have access to the corrupted oracle Co(·) with any pkj ∈ R and Co(·)

returns the skj to A and adds pkj to the set CU ;
3. A can have access to the RS.Sign(·) with (pkj ,M) and then RS.Sign(·)

returns a signature σ using the secert key skj ;
4. A outputs (R∗,M∗, σ∗) such that RS.Verify(R∗,M∗, σ∗) = 1, where (R∗,M∗)

has never been asked and R∗ ∩ CU = ∅.

The advantage of breaking unforgeability is

AdvUnf
A (λ) = Pr[RS.Verify(R,M, σ) = 1].

Definition 4 (Anonymity). A ring scheme RS = (RS.Setup,RS.KeyGen,
RS.Sign,RS.Verify) is anonymous if the advantage of A is negligible in the
following game:
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1. pp← RS.Setup(1λ), (pki, ski) ← RS.KeyGen(pp,N),∀i ∈ [N ];
2. A selects a tuple (M,pki0 , pki1), i0, i1 ∈ [N ];

3. σ ← RS.Sign(M, skib), b
$← {0, 1};

4. A returns a b′.

The advantage of breaking anonymity is

AdvAnon
A (λ) = |Pr[b = b′]− 1/2|. (5)

Theorem 4. Our ring signature scheme in Fig. 5 achieves correctness, anonymity
and unforgeability with regard to. insider corruption in the random oracle model.

Proof. Correctness: The correctness in Fig. 5 can be directly inferred from the
completeness of the protocol in Fig. 4.
Anonymity: Since the protocol in Fig. 4 is zero-knowledge, it implies that the
protocol is witness-indistinguishable. As a result, the anonymity in Fig. 5 can
be obtained immediately.
Unforgeability: We only provide the proof framework without providing spe-
cific details. The proof framework is as follows: The challenger first selects an
index j∗ and set the pkj∗ as the challenge instance. The rest pkj are generated
as the same as the real RS.KeGen. If A queries RS.Sign(·) with pkj∗ , the
challenger uses the simulator of Fig. 4 to output the signature. Otherwise, the
challenger honestly generates the signature. Under the condition that j∗ has not
been queried with Co(·) and A outputs a forged signature about pkj∗ , the chal-
lenger can extract the solution to the challenge problem via rewind techniques.

⊓⊔

5 Code-based group signatures

Our GSD-based one-out-of-many proof can be applied in the construction of
a group signature. However, unlike ring signatures, a group signature scheme
cannot be obtained by directly applying the Fiat-Shamir transform to our one-
out-of-many proofs. Therefore, we first construct a ZKAoK that allows a signer
to prove membership in the group and the honest encryption of its own identity
using the public key of the openers. Then, we apply the Fiat-Shamir transform
on the ZKAoK to obtain our group signature scheme. The high-level idea of
the construction of this ZKAoK is to combine our GSD-based one-out-of-many
proof and our set-memberships proof. We first give the definitions and security
requirements of a group signature.

Definition 5. A group signature scheme contains five polynomial-time algo-
rithms (GS.Setup,GS.KeyGen,GS.Sign,GS.Verify,GS.Open) in which:

– (pp,mpk,msk) ← GS.Setup(1λ) : Taking a security parameter λ as input,
output the the public parameters pp and the group manager’s public-secret
key pair (mpk,msk).
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– (pk, sk) ← GS.KeyGen(pp,N) : Taking the public parameter pp and the
number N of group members as input, publish a pair of public and private
keys (pki, ski) for each user i, i ∈ [N ].

– σ ← GS.Sign(R,mpk,M, sk) : Taking the list of public keys R = (pk1, · · · ,
pkN ), the manager’s public key mpk, a private key sk and a message M as
input, generate a signature σ.

– b ← GS.Verify(R,M, σ) : Taking the public key R, a message M , and a
signature σ as input, output b either 1 (accept) or 0 (reject).

– i← GS.Open(R,msk,M, σ) : Taking the public key R, the group manager’s
secret key msk, a message M and a group signature σ as input, output an
index i ∈ [N ] or ⊥, indicating failure.

A group signature scheme needs to achieve three requirements: correctness,
anonymity and traceability. We give the relaxed anonymity requirement, namely
CPA-anonymity.

Definition 6 (Correctness). A group signature scheme is correct if for any
λ ∈ N, N = poly(λ), j ∈ [N ] and every message M , the following holds:

Pr

 GS.Verify(R,M, σ) = 1
GS.Open(msk,R,M, σ) = j.

(pp,mpk,msk)← GS.Setup(1λ),
(pki, ski)← GS.KeyGen(pp),∀i ∈ [N ],

R = (pk1, · · · , pkN ),
σ ← GS.Sign(R,mpk,M, skj).

 = 1.

Definition 7 (CPA-anonymity). A group signature scheme GS = (GS.Setup,
GS.KeyGen,GS.Sign,GS.Verify,GS.Open) is CPA-anonymous if the ad-
vantage of any PPT adversary A is negligible in the following game:

1. (pp,mpk,msk)← GS.Setup1λ);
2. (pki, ski)← GS.KeyGen(pp,N),∀i ∈ [N ];
3. A selects a tuple (M,pki0 , pki1), i0, i1 ∈ [N ];

4. σ ← GS.Sign(R,mpk,M, skib), b
$← {0, 1};

5. A outputs a guess b′.

The advantage of A in breaking CPA-anonymity is denoted by

AdvAnon
A (λ) = |Pr[b = b′]− 1/2|.

Definition 8 (Traceability). A group scheme GS = (GS.Setup,GS.KeyGen,
GS.Sign,GS.Verify,GS.Open) is traceable if the advantage of any PPT A is
negligible in the following game:

1. (pp,mpk,msk)← GS.Setup(1λ);
2. (pki, ski)← GS.KeyGen(pp,N),∀i ∈ [N ];
3. A can have access to the corrupted oracle Co(·) with any pkj ∈ R, and Co(·)

returns the skj to A and adds pkj to the set CU ;
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4. A can have access to the GS.Sign(·) with (pkj ,M) and GS.Sign(·) returns
a signature σ using the secert key skj ;

5. A outputs (R∗,M∗, σ∗) such that GS.Verify(R∗,M∗, σ∗) = 1, where (R∗,M∗)
have never been asked and R∗ ∩ CU = ∅.

The advantage of breaking traceability is denoted by

AdvTrac
A (λ) = Pr

[
GS.Verify(R,mpk,M∗, σ∗) = 1,
GS.Open(R,msk,M∗, σ∗) /∈ CU.

]
.

CPA-McEliece: We review the randomized McEliece encryption scheme [35].
It includes the following three algorithms: KeyGenMcE, EncMcE, and DecMcE .

- (pk = GMcE, sk = (S,G′,P)) ← KeyGenMcE(1
λ) : With an integer λ as

input, select a generator matrix G′ of a random w-error-correcting (m, ℓ)
code, and sample a random matrix S ∈ Fℓ×ℓ

2 and a random m-dimension
permutation matrix P, where m = O(λ), ℓ = O(λ), w = O(λ). Output the
encryption key as GMcE = SG′P and the decryption key as (S,G′,P).

- ct ← EncMcE(GMcE,m) : With a plaintext m ∈ {0, 1}ℓ2 and the GMcE as
input, sample two random vectors z ∈ Fℓ1

2 and s ∈ B(m,w), where ℓ = ℓ1+ℓ2.
Output the ciphertext ct = (z||m)G+ s.

- m ← DecMcE(ct, sk) : With the ciphertext ct and sk as input, compute
m′ = S−1DG′(ctP−1), where DG′ is the error-correcting algorithm. Parse
the m′ = (z,m) ∈ Fℓ1

2 × Fℓ2
2 and outputs m.

The above scheme’s CPA-security is based on the following two problems.

Problem 5 (Decisional McEliece problem [35]). Given a matrix G ∈ Fk×n
2 , de-

termine whether it is randomly sampled or generated by the KeyGenMcE.

Problem 6 (Decisional Learning Parity with (fixed-weight) Noise problem [15]).
Given a matrix G ∈ Fk×n

2 and a vector y ∈ Fn
2 , determine whether y is randomly

generated or generated by xG+ e, where x ∈ Fk
2 and e ∈ B(n, t).

5.1 The underlying protocol of our group signature

In this subsection, we construct a ZKAoK in Fig. 6 to serve as the building block
of our group signature scheme. We first give an overview of our construction. Let
k, n, ℓ = ℓ1 + ℓ2, m denote integers, and bin(j) denote the binary representation
of j with length ℓ2. The public input includes two matrices G ∈ Fk×n

2 ,GMcE =(
G1

McE

G2
McE

)
∈ Fℓ×m

2 , any vector yi ∈ Fn
2 , i ∈ [N ] and a ciphertext ct ∈ Fm

2 . The

protocol allows one to prove the following relation in zero-knowledge

− xG+ e = yI ∧ x ∈ Fk
2 , e ∈ B(n, t), (6)

− (z||bin(I))GMcE + s = ct ∧ z ∈ Fℓ1
2 , s ∈ B(m,w), (7)

− I ∈ [N ]. (8)
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Round 1: PGS
1 (△, (I,x, e, z, s)) :

{ζs, ζu,r, ζδ,ϕ, ρ1, ρ2}
$← {0, 1}λ;

u
$,ζu,r←− Fk

2 ,v
$,ζδ,ϕ←− Fn

2 , δ
$,ζδ,ϕ←− Sn;

r
$,ζu,r←− Fℓ1

2 , f
$,ζδ,ϕ←− Fm

2 , ϕ
$,ζδ,ϕ←− Sm.

- (b1, · · · , bN ) = Stree(ζs, N).
- {leafi}Ni=1 = {Com(δ(uG+ yi) + v, ϕ((r||bin(i))GMcE + ct) + f ; bi)}Ni=1.
- (root, tree) = IH-Mtree(tree).
- Send the commitment CMT := (c1, c2, c3) to V, where

c1 = root;
c2 = Com(δ, ϕ,v, f ; ρ2);
c3 = Com(δ((u+ x)G) + v, ϕ((r+ z||0)GMcE) + f ; ρ3).

Round 2: VGS
1 (CMT) sends a challenge ch

$← {1, 2, 3} to P.
Round 3: PGS

2 (△, (I,x, e, z, s), ch) :
- Case ch = 1: Set ξ′δ,ϕ = ζδ,ϕ,w1 = u+ x,w2 = r+ z.

Send RSP = (ξ′δ,ϕ,w1,w2, ρ2, ρ3) to V.
- Case ch = 2: Set{

w3 = δ((u+ x)G) + v,w4 = δ(e),w5 = ϕ((r+ z||0)GMcE) + f ;
w6 = ϕ(s), b = bI , path = Gpath(tree, I).

Send RSP = (w3,w4,w5,w6, b, path, ρ3) to V.
- Case ch = 3: Set ξs = ζs, ξu,r = ζu,r, ξδ,ϕ = ζδ,ϕ.

Send RSP = (ξs, ξu,r, ξδ,ϕ, ρ2) to V.
Verification: VGS

2 (△,CMT, ch,RSP) :

- Case ch = 1: Set p1

$,ξδ,ϕ←− Fn
2 , π1

$,ξδ,ϕ←− Sn,p2

$,ξδ,ϕ←− Fm
2 , π2

$,ξδ,ϕ←− Sm
and check if

c2 = Com(π1, π2,p1,p2; ρ2), c3 = Com(π1(w1G) + p1, π2(w2G
1
McE) + p2; ρ2).

- Case ch = 2: Compute R1 as Rebuild(path,Com(w3 +w4,w5 +w6; b)),
and check if w4 ∈ B(n, t), w6 ∈ B(m,w) and

c1 = R1, c3 = Com(w3,w5; ρ3).

- Case ch = 3: Set p3
$,ξu,r←− Fk

2 ,p4

$,ξδ,ϕ←− Fn
2 ,p5

$,ξu,r←− Fℓ1
2 ,p6

$,ξδ,ϕ←− Fm
2 , π3

$,ξδ,ϕ←− Sn,

π4

$,ξδ,ϕ←− Sm. (b1, · · · , bN ) = Stree(ξs, N).
{leafi}Ni=1 = {Com(π3(p3G+yi) +p4, π4((p5|| bin(i))GMcE + ct) +p6; bi)}Ni=1.
Obtain R2 as IH-Mtree(leaf) and check if

c1 = R2, c2 = Com(π3, π4,p4,p6; ρ2).

V outputs 1 when all conditions are met, else it outputs 0.

Fig. 6. The underlying ZKAoK ΠGS = (PGS = (PGS
1 ,PGS

2 ),VGS = (VGS
1 ,VGS

2 )) of our
group signature scheme. We use △ to denote (G,GMcE,y1, · · · ,yN , ct).
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To prove Equations (6) and (8), we can utilize our GSD-based one-out-of-
many proof with the public input (G, {y}Ni=1). Likewise, to prove Equations
(7) and (8), we can employ our set-membership proof with the public input
(GMcE, ct). To prove Equations (6), (7), and (8) simultaneously, we need to
merge these two proofs. The high-level idea is to pair the N + 2 corresponding
commitments from the former proof with the N+2 commitments from the latter
proof in sequential order, and then compress the last N pairs of commitments
related to ({yi}Ni=1, ct) into a single root using the IH-Mtree. Next, the prover
sends the root along with the remaining two pairs to the verifier. The rest steps
are similar to the Fig. 4, with the difference being that what needs to be revealed
and verified is the commitment pair. The protocol for this relation (6)(7)(8) is
in Fig. 6.

Theorem 5. The protocol in Fig. 6 is an argument of knowledge with the perfect
completeness and zero-knowledge.

Proof. We only provide the framework of this proof. Completeness: This can be
obtained from the correctness of the Merkle tree and seedtree. Soundness: If a
adversary can be accepted with a probability greater than 2/3, then we proceed
as in Theorem 3. Namely, we construct an extractor to extract (I,x, e, z, s) from
three valid responses. Zero-knowledge: Using the similar steps in Theorem 3, we
can construct a simulator for this protocol. ⊓⊔

Communication cost: (1) The cost of commitments is about 2λ(5κ/6 + 1).
(2) The cost of seeds is about (κ/3)(20λ/3) + 2λ. (3) The cost of vectors and
the path of Merkle tree is about (κ/3)( 3n2 + 3m

2 + k + ℓ+ 2λ logN).

5.2 Our logrithm-size group signature scheme

Our group signature scheme is described in Fig. 7, and its correctness can be
directly inferred from the completeness of the protocol in Fig. 6.

Theorem 6. Our group signature scheme in Fig. 7 is CPA-anonymous based
on the hardness of DMcE(m, ℓ, w) and DLPN(m, ℓ1, w) problems, and the zero-
knowledge property of protocol in Fig. 6.

Proof. Let A denote a PPT adversary who breaks the CPA-anonymity of Fig. 7
with advantage ϵ. We will prove that ϵ is negligible through the sequence of
indistinguishable games Game0, Game1, Game2, Game3 and Game4. The
advantage of A in Gamei is represented by AdvanonA,Gi

(λ).
Game0 is a real CPA-anonymous game, and its process is as follows:

1. C runs the algorithms GS.Setup and GS.KeGen to get

(mpk, pk) = (G,GMcE,y1, · · · ,yN ),msk = skMcE, {skj}Nj=1 = {(xj , ej)}Nj=1.

Then, it provides A with (mpk, pk) and skj , j ∈ [N ].
2. A returns a message M and two challenge indices j0, j1 ∈ [N ] to C.
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3. C samples b ∈ {0, 1} and returns the signature σ∗ = (ct∗, ΠGS∗)← Sign(pk, skjb),

where ct∗ = (z||bin(jb))GMcE + s, with z← Fℓ1
2 and s← B(m,w).

4. Finally, A outputs a bit b which is either 0 or 1.

Therefore, one has AdvanonA,G0
(λ) = ϵ.

Game1: Compared to Game0, the change in Game1 is that C uses the
simulator of Fig. 6 to generate a signature for message M . Specifically, C first
computes ct∗ honestly just like Game0. Then, C runs the simulator κ times with
the input (G,GMcE,y1, · · · ,yN , ct∗) to generate its proof ΠGS∗ and programs
the corresponding hash function. Finally, C returns the signature.

Due to the zero-knowledge property of the protocol in Fig. 6, the output
ΠGS∗ of the simulator is indistinguishable from the real output in Fig. 6. There-
fore, the signature returned by the challenger inGame1 is indistinguishable from
the signature returned by the challenger in Game0. So, Game1 and Game0
cannot be differentiated by A. Therefore, one has AdvanonA,G1

(λ) = AdvanonA,G0
(λ).

Game2: Compared to Game1, the change in Game2 is that C use a random
matrix G′ to replace the matrix GMcE in the encryption scheme. We will prove
that Game2 and Game2 are indistinguishable.

Assuming there is an adversary A that can distinguish between Game1 and
Game2 with a probability of 1/2 + ϵ1, then we can construct an algorithm F1

that can solve the DMcE problem with the same probability.
When given an instance G′ ∈ Fℓ×m

2 of a DMcE problem, F1 can distinguish
whether G is randomly sampled or generated by the key generation algorithm
in the encryption scheme by running the A. The details are as follows:

1. Algorithm F1 runs the algorithms GS.Setup and GS.KeGen to get
the public and private keys, and replaces the matrix GMcE in the encryption
algorithm with the matrix G′ in the challenge instance.

2. A returns a message M and two challenge indices j0, j1 ∈ [N ] to C.
3. F1 selects b ∈ {0, 1} and computes the signature σ∗ as follows:
- Calculate ct∗ = (z|| bin(jb))G′ + s, where z← Fℓ1

2 and s← B(m,w).
- Run the simulator of Fig. 6 with the input (G,GMcE, {yi}Ni=1, ct

∗) to gen-
erate Π∗ and program the corresponding hash function. Return (ct∗, ΠGS∗).

4. A outputs b = 0 when guessing the process is Game1 and b = 1 when
guessing Game2.

Clearly, if G′ is generated by the key generation algorithm in the encryption
scheme, the above process is equivalent to Game1. If G

′ is randomly generated,
the above process is equivalent to Game2. So, the advantage that A successfully
distinguishes Game1 from Game2 is equal to the probability that algorithm F1

breaks the DMcE problem. Therefore, one has AdvanonA,G2
(λ) ≈ AdvanonA,G1

(λ).
Game3: Compared to Game2, the change in Game3 is in the way ct∗ is

generated. Specifically, ct∗ in Game2 is

ct∗ = (z||bin(jb))GMcE + s = zG1
McE + s+ bin(jb)G

2
McE.

where G1
McE ∈ Fℓ1×m

2 ,G2
McE ∈ Fℓ2×m

2 satisfying GMcE =

(
G1

McE

G2
McE

)
and z ←

Fℓ1
2 , s← B(m,w).
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In Game3, we replace zG1
McE + s with a random vector r ∈ Fm

2 . We will
prove that Game3 and Game2 are indistinguishable.

Assuming there is an adversary A that can distinguish between Game2 and
Game3 with a probability of 1/2 + ϵ2, then we can construct an algorithm F2

that can solve the DLPN problem with the same probability.
When given an instance of the DLPN problem (A,w) ∈ Fℓ1×m

2 × Fm
2 , F2

can distinguish whether w is randomly sampled or generated by w = zA+ s for
z← Fℓ1

2 and s← B(m,w) by running A. The details are as follows:
1. F2 samples a randommatrixG2 ∈ Fℓ2×m

2 and runs the algorithmsGS.Setup
and GS.KeGen to get the public and private keys. It then replaces the matrix

GMcE in the encryption algorithm with the matrix G∗ =

(
A
G2

)
, where A is

from the challenge instance.
2. A returns a message M and two challenge indices j0, j1 ∈ [N ] to F2.
3. F2 selects b ∈ {0, 1} and computes the signature σ∗ as follows:
- Calculate ct∗ = w + bin(jb)G2, where w is from the challenge instance.
- Run the simulator of Fig. 6 with the input (G,G∗, {yi}Ni=1, ct

∗) to generate
ΠGS∗ and program the corresponding hash function. Return σ∗ = (ct∗, ΠGS∗).

4. A outputs b = 0 when guessing the process is Game2 and b = 1 when
guessing Game3.

Clearly, if w has the form w = zA + s, where z ∈ Fℓ1
2 and s ∈ B(m,w),

the above process is equivalent to Game2. If w is randomly generated, the
above process is equivalent to Game3. So, the advantage that A successfully
distinguishes Game2 from Game3 is equal to the probability that algorithm
F1 breaks the DLPN problem. Therefore, one has AdvanonA,G3

(λ) ≈ AdvanonA,G2
(λ).

Game4: Compared to Game3, the change in Game4 is in the way ct∗ is
generated. In this game, ct∗ is randomly sampled from Fm

2 . It is important to
note that the distribution of ct∗ in Game4 and Game3 are identical. Hence, one
has AdvanonA,G4

(λ) = AdvanonA,G3
(λ). However, Game4 is independent of the indices

j0, j1 which implies that AdvanonA,G4
(λ) = 0.

Due to the indistinguishability of the above 5 games and AdvanonA,G4
(λ) = 0,

the advantage of A breaking the CPA-anonymity is negligible. ⊓⊔

Theorem 7. Our group scheme satisfies full traceability based on the hardness
of GSD problem in the random oracle model.

Proof. Assuming there exists a PPT adversary A with a probability of ϵ to break
the traceability of our group signature, then we can construct an algorithm B to
break the GSD problem with a probability polynomially related to ϵ.

When B receives a challenge instance GSD(n, k, t), that is, (G̃, ỹ) ∈ Fk×n
2 ×

Fn
2 , it performs the following steps:

1. Select a random j ∈ [N ].

2. Set G = G̃ and sample xj ← Fk
2 , ej ← B(n, t) for ∀j ∈ [N ], j ̸= j. Then,

compute pkj as yj = xjG+ ej for ∀j ∈ [N ], j ̸= j and set pkj as yj = ỹ.
3. Obtain the key pair (GMcE, skMcE) by running the algorithm KeyGenMcE.
4. Return (G,GMcE,y1, · · · ,yN ) to A.



Short Code-based One-out-of-Many Proofs and Applications 29

Clearly, the output of this process is perfect indistinguishable from the output
of the real GS.KeyGen algorithm for any A. To respond to the inquiry of A,
B first initializes an empty set CU , and then executes the following steps:

1. If A makes a query to the hash oracle, B returns a random value from the
set {1, 2, 3}κ. Assuming A makes t queries to the hash oracle, we use (r1, · · · , rt)
to denote the result of the querying.

2. If A makes a query to Co(·) with an index j such that j ̸= j, B will return
skj to A and add j to the set CU . If j = j, B will abort.

3. If A makes a query to GS.Sig(·) with an index-message pair (j,M) such
that j ̸= j, B will honestly generate signature σ with secret key (xj , ej). If j = j,
B first encrypts the index j∗ with GMcE to get the ciphertext ct. Then, B uses
the simulator of the protocol in Fig. 6 with the input (G,GMcE,y1, · · · ,yN , ct)
to generate proof ΠGS , and programs the corresponding hash function. B then
returns the signature σ = (ct, ΠGS).

Assume that A outputs a forged signature about message M∗ at some point:σ∗ = (ct∗;
{
CMTi

}κ

i=1
;
{
Chi

}κ

i=1
;
{
RSPi

}κ

i=1
),

GS.Verify(gpk,M∗, σ∗) = 1,
GS.Open(skMcE,M

∗, σ∗) = j∗ ∧ j∗ /∈ CU.

B employs skMcE to open σ∗. If the opening algorithm fails to return j, B
aborts. Since no information about the selection of j was leaked and the key
generation process is perfect indistinguishable from GS.Setup, the probability
that B aborts is no more than (N−1)/N+(2/3)κ, where (2/3)κ is the probability
of the soundness of protocol being compromised. Therefore, with at least a 1/N−
(2/3)κ probability, the following holds

GS.Verify(gpk,M∗, σ∗) = 1 ∧GS.Open(skMcE,M
∗, σ∗) = j. (9)

Assuming that Equation (9) holds, B then runs A in the following manner.

Let Ω represents the tuple (M∗;
{
CMTi

}κ

i=1
; ct∗;G,GMcE, R). If Ω is not in

the query-result list, then the probability of (Ch1, · · · ,Chκ) being identical to
H(Ω) is at most 3−κ. Hence, with probability at least ϵ−3−κ, there exists certain
η∗ ≤ t such that Ω was the input of the η∗-th query. Then, B selects η∗ as the
target forking point and repeats A multiple times using the identical random
tape and input as in the initial run. During each rerun, for the first η∗−1 queries,
B uses the same values as in the original run as responses, while starting from
the η∗-th query, B uses new random values r′η∗ , · · · , r′t ← {1, 2, 3}κ as responses.

According to the Forking Lemma [36], B can get a 3-fork regarding the tuple
Ω with probability greater than 1/2 by rerunning A at most 32QH/(ϵ − 3−κ)
times. The responses of B with regard to the 3-fork branches is denoted by

r1,η∗ =
(
Ch11, · · · ,Ch

κ
1

)
; r2,η∗ =

(
Ch12, · · · ,Ch

κ
2

)
; r3,η∗ =

(
Ch13, · · · ,Ch

κ
3

)
.

After a simple probability calculation, one immediately obtains

Pr
[
∃θ ∈ {1, · · · , κ} :

{
Chθ1,Ch

θ
2,Ch

θ
3

}
= {1, 2, 3}

]
= 1− (7/9)κ.



30 Xindong Liu and Li-Ping Wang (�)

Therefore, B get three responses RSPθ
1, RSP

θ
2 and RSPθ

3 with a probability of
1− (7/9)κ, and they are the responses to three different challenges correspond-
ing to the same CMTθ. Then, using the extractor of the protocol in Fig. 6, B
efficiently extract the tuple (j′,x′, e′, z′, s′) ∈ [N ]×Fk

2×Fn
2 ×F

ℓ1
2 ×Fm

2 satisfying:

{
x′G+ e′ = yj′ ∧ x′ ∈ Fk

2 , e
′ ∈ B(n, t),

(z′|| bin(j′))GMcE + s′ = ct∗ ∧ z′ ∈ Fℓ1
2 , s′ ∈ B(m,w).

(10)

On one hand, due to Equation (10) and the correctness of our group signature
scheme, the output of the opening algorithm is j′. On the other hand, since
Equation (9) holds, we haveGS.Open(skMcE,M

∗, σ∗) = j, which implies j′ = j.

Therefore, we have x′G + e′ = x′G̃ + e′ = yj′ = ỹ, and e′ ∈ B(n, t). In other

words, B successfully finds a valid solution to the challenge instance (G̃, ỹ).

In summary, if A can break the traceability of our group signature scheme
with a non-negligible probability ϵ within time T , then B can solve GSD problem
with a non-negligible probability 1/2 (1/N − (2/3)κ) (1− (7/9)κ) within time
32 · T ·QH/ (ϵ− 3−κ). It contradicts the hardness of GSD problem. ⊓⊔

GS.Setup(1λ):
- G← Fk×n

2 , where n = O(λ) and k = O(λ).
- (GMcE, skMcE)← KeyGenMcE(1

λ), where GMcE ∈ Fℓ×m
2 .

- Hcom
$← H(1λ), HFS

$← H(1λ, κ), HMerkle
$← H(1λ, N) where κ = ω(log(λ)).

- Return pp = (G,GMcE,HFS ,Hcom).
GS.KeGen(pp):

- x
$← Fk

2 , e
$← B(n, t), y = xG+ e.

- Return (pk, sk) = (y, (x, e)).
GS.Sign(skj ,M,R = (pk1, · · · , pkN )): GS.Verify(R,M, σ):

- z
$← Fℓ

2, s
$← B(m,w). - (ct,CMT,RSP)← σ.

- ct = EncMcE(M, (z, s)) - ch = HFS(M,R,CMT, ct).
= (z||bin(j))GMcE + s. - Return VGS

2

(
G,GMcE, R,

- for i = 1 toκ : (CMT, ch,RSP), ct
)
.

CMTi ← PGS
1 (G,GMcE, ct, R, skj).

- CMT← (CMT1, · · · ,CMTκ).
- ch← HFS(M,R,CMT). GS.Open(skMcE,M, σ):
- for i = 1 toκ : - (ct,CMT,RSP)← σ.

RSPi ← PGS
2 (G,GMcE, ct, R, chi, skj). - If DecMcE(skMcE, ct) fails,

- RSP← (RSP1, · · · ,RSPκ). return ⊥, else return
- Return σ = (ct,CMT,RSP). j ← DecMcE(skMcE, ct).

Fig. 7. Our group signature scheme.
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6 Concrete instantiation

We choose parameter sets for our ring signature and group signature schemes
under the 128-bit security level. The parameters are set as follows:

1. The parameters (n, k, t) for GSD problem and the parameters (m, ℓ, w) for
McEliece encryption scheme are set to achieve the 128-bit security level.

2. To ensure the one-wayness of the public and private keys, the parameters
(n, k, t,N) for GDOOM problem 4 are set to achieve the 128-bit security
level.

3. The repetition number κ of the protocols in Fig. 4 and Fig. 6 is set to 220
in order to achieve soundness error 2−128.

4. We use cSHAKE to instantiate the hash functions in our scheme and the
Merkle tree, as well as the pseudorandom number generator in the seedtree [25].

5. The signature size of our ring signature scheme is equal to the proof size in
Fig. 4, i.e. 2λ( 5κ6 + 2) + κ

3 (
20λ
3 + 3n

2 + k + 2λ logN).
6. The signature size of our group signature scheme is equal to the proof size in

Fig. 6 plus the size of ct, i.e. 2λ( 5κ6 +2)+κ
3 (

20λ
3 + 3n

2 +k+ 3m
2 +ℓ+2λ logN)+m.

We set (n, k, t) = (1280, 640, 132), (1300, 650, 135), (1360, 680, 141) for N =
26, 212, 221, respectively, and (m, ℓ, w) = (3488, 2720, 64) as in [12]. Then, we
present the signature sizes of our ring signature scheme and group signature
scheme under different N in Table 3 and Table 4.

Table 3. Ring signature sizes for N .

N (user) PK size Signature Size

26 0.240KB 51KB
212 0.247KB 65KB
221 0.255KB 87KB

Table 4. Group signature sizes for N .

N (user) PK size Signature Size

26 0.240KB 112KB
212 0.247KB 126KB
221 0.255KB 148KB
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