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Abstract. We use theta groups to study 2-isogenies between Kummer lines, with a particular
focus on the Montgomery model. This allows us to recover known formulas, along with more
efficient forms for translated isogenies, which require only 2S + 2m0 for evaluation. We leverage
these translated isogenies to build a hybrid ladder for scalar multiplication on Montgomery
curves with rational 2-torsion, which cost 3M + 6S + 2m0 per bit, compared to 5M + 4S + 1m0
for the standard Montgomery ladder.

1. Introduction

1.1. Motivation. Elliptic curve cryptography is widely used in the TLS layer, and its speed is
determined by the scalar multiplication. Its efficiency relies on the chosen model. On a Montgomery
model, Montgomery [Mon87] provided an efficient algorithm known as the Montgomery ladder to
compute x(n · P ) with only the datum of x(P ). This allows protocols like the Diffie-Hellman key
exchange protocol to only send the coordinate x(n · P ), thus gaining in bandwidth.

Furthermore, the equation of the elliptic curve helps to recover y(n · P ) from x(n · P ), up to a
sign. The sign can also be determined with x((n + 1) · P ), which is also computed by the ladder,
at a negligible cost. To sum up, one efficient way to do a scalar multiplication on an elliptic curve
is to do it only with the x-coordinate x(P ), and recover y(n · P ) at the very end.

The mathematical object on which we only keep the x-coordinate is a Kummer line, which is
described by a morphism (x(P ), y(P )) 7→ x(P ) from the elliptic curve to the projective line. It
is a degree-2 map and its ramification points are the four 2-torsion points. An interesting fact
about Kummer lines is that they are entirely described by this ramification, made of 4 points.
This gives a very convenient and flexible approach to build models of Kummer lines as we will
see throughout the paper. Apart from scalar multiplication, Kummer lines are also used a lot for
isogeny based cryptography, as in [FJP14; CLN16].

The main goal of this paper is to provide a general method to study 2-isogenies between
different models of Kummer lines, and to find old and new formulas for these isogenies, and
notably to also study translated isogenies. Our main objective was to better understand the
isogeny formulas from isogeny based cryptography, and in particular why the Montgomery model
has fast 2-isogenies, in the hope to extend these formulas to higher dimension. For dimension 1, as
we will see in Appendix C, although our translated 2-isogeny formula is faster than the usual one,
in practice, as shown in [CH17], it is faster to decompose a 2n-isogeny as a product of 4-isogenies
rather than a product of 2-isogenies.

Our second application is to speed up the multiplication law on the Kummer line of an elliptic
curve. Indeed, composing a 2-isogeny with its dual gives the multiplication by 2 map. This
approach, pioneered by [DIK06], allows writing the doubling as a composition of two polynomials
of degree 2 rather than a polynomial of degree 4. Such a decomposition is already used in the
fast doubling formula of the Montgomery model [Mon87] or the theta model [GL09].
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1.2. Results. On the Montgomery model with full rational 2-torsion, we can evaluate a 2-isogeny,
translated by a suitable 2-torsion point in 2S+1m0, compared to 2M+1m0 for the non translated
image. Composing with the translated dual isogeny, we obtain a translated doubling formula in
4S + 2m0, compared to 2M + 2S + 1m0 for a standard doubling.

Using the translated doubling in the Montgomery ladder, and keeping track of the translation
by the 2-torsion point, we obtain a hybrid ladder arithmetic which costs 3M + 6S + 2m0 per bit,
compared to 5M + 4S + 1m0 for the standard ladder for the Montgomery model. Thus, if m0 is
sufficiently small, we obtain a more efficient scalar multiplication (while retaining the standard
side channel protection of the Montgomery ladder). We remark also that the ladder for the theta
model costs 3M + 6S + 3m0, hence our hybrid ladder is always faster than the theta ladder.

1.3. Method. We proceed to a systematic study of 2-isogenies between Kummer lines by
combining two tools:

(1) First, we use that a Kummer model is completely determined by its four ramification
points. Keeping track of the ramification along the isogeny allows us to keep track of the
model, without resorting to formal groups as in Vélu’s formulas;

(2) Secondly we make a systematic use of theta groups and their action on sections to find
invariant sections.

As explained in Remark 3.4 below (Section 2), the usual Vélu formulas [Vél71] can be seen
as a special case of the above strategy, applied to the theta group of a divisor D invariant by
translation and where the canonical action by the symmetric elements is trivial. In this paper we
rather use the action of the theta group G(2(OE1)) associated to the divisor 2(OE1), which is not
invariant by translation, hence whose associated action is not trivial.

This will allow us in future work to extend this strategy to higher dimension. Notably, we will
explain in an upcoming article how to study differential additions in dimension one on Kummer
lines, using the fact that differential additions can be described by a 2-isogeny in dimension two,
on a product of two Kummer lines. Extending our framework to a systematic study of 2-isogenies
formulas between arbitrary models of Kummer surfaces is more challenging though, because the
combinatorial description of the Kummer surface is given by a (16, 6, 2)-design in P3 rather than
by simply 4 points in P1, so is harder to keep track off.

Our paper is exhaustive as we can apply this algorithm to several known models such as
Legendre curves, Montgomery curves, but also theta functions of level 2. We give several examples,
along with examples when we start from one type of model and obtain a new type of model for
the codomain. This allows us to recover the efficient 2-isogenies formulas already in the literature
in a unified manner, showing the flexibility of the framework. A particularity of our framework
is that we do not impose the neutral point OE1 to be the point at infinity ∞ = (1 : 0) on the
Kummer line. This extra flexibility allows us to naturally find new efficient formulas for translated
isogeny images.

In particular, we study the Montgomery models of Kummer lines in more detail. Such a model
exists whenever there is a point T ′

1 of 4-torsion which is rational on the Kummer model (so the
set {T ′

1,−T ′
1} is rational on the elliptic curve). Let R1 be a 2-torsion point, and E2 the codomain

of the isogeny with kernel R1. The curve E2 admits a Montgomery model if R1 is distinct from
T1 = 2 · T ′

1, or when T1 = R1 and there exists a 8-torsion point T̃1 on E above T ′
1. We give

explicit formulas via our framework for these isogenies and their duals in both cases, recovering
well known formulas in the literature [FJP14; CH17; Ren18]. Furthermore, we also obtain the
efficient translated isogeny formula on a Montgomery model mentioned above.

We mainly focus in this paper on the study of 2-isogenies between models of Kummer lines
which have a specific Galois action on their 2n-torsion (like the Legendre model, the Montgomery
model and the theta model). This is indeed the most interesting situation: the isogeny interacts
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with the Galois action. So either we lose some of the Galois information on the codomain,
which means that we can only describe another type of model on the codomain (like Theta to
Montgomery, Montgomery to Legendre, or Legendre to Montgomery), or we need to assume that
we are given a supplementary input. For instance, for 2-isogeny formulas from theta to theta, we
need a 8-torsion point above the kernel to find a theta model of the codomain.

By contrast, a model requiring, say, a rational 3-torsion point T would not have this problem
with a 2-isogeny formula, since the image of T by the isogeny would immediately give a model of
the codomain. In a similar vein, handling the case of odd degree isogenies in the models mentioned
above (Montgomery, Legendre, Theta), is in some sense easier since the Galois structure on the
2n-torsion is respected through the isogeny, see Appendix E for formulas.

1.4. Notations. We work with elliptic curves and Kummer lines defined over a field of charac-
teristic different from 2, and with separable isogenies. When the kernel of an isogeny between
elliptic curves has order n, we call it an n-isogeny. An n-isogeny between Kummer lines is then
the projection of an n-isogeny between elliptic curves.

We will use the following complexity notations throughout the article:
• M is a generic multiplication,
• S is a generic squaring,
• m0 is a multiplication by a curve constant,
• c is a multiplication by a small constant (i.e. less than a computer word),
• a is an addition / subtraction.

1.5. Similar work. In [Mor+22], the authors introduce the generalized Montgomery coordinate h
on an elliptic curve E1, which can be seen as the composition h = x ◦ f of an isogeny f : E1 → E2
to an elliptic curve in Montgomery form, with the x-coordinate on E2 [Mor+22, Thm. 13].
They then give formulas for isogenies and scalar multiplication in the generalized Montgomery
coordinate.

Our work is in an orthogonal direction. If the isogeny f is of degree n, a generalized Montgomery
coordinate h = x ◦ f is a section of a divisor of degree 2n on E1. The work of [Mor+22] may
thus be seen as specifying a special model associated to a section of 2n(OE1) and developing the
arithmetic and isogenies on this model.

By contrast, we focus only on sections of 2(OE1) to describe models of the Kummer line, but
we don’t impose conditions on the model; our framework allows us to derive efficient isogeny
formulas between different Kummer models, including models where the neutral point is not at
infinity.

In [KS20], the authors use the theta squared coordinates on the Kummer line. One can see
that their doubling formulas in their Table 2 are indeed the one we recover up to a translation
by a 2-torsion point in Algorithm 1. Our ladder is however slightly faster because we are using
Montgomery differential addition instead of the theta squared one, a comparison is available in
Table 2 in Section 5.

1.6. Roadmap. In Section 2 we recall Kummer models and the theory of theta groups and
their action on sections, which allow us to develop our isogeny framework. We apply it in
Section 4 to study 2-isogenies between Montgomery models, and we apply those in Section 5
where we introduce the hybrid ladder. We briefly discuss applications to fast evaluations of
2n-isogenies in Appendix C. In Appendix B, we provide more examples of our technique with
different ramification structure to show its flexibility. Finally, in Appendix E, we explain how to
deal with odd degree isogenies.
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2. 2-isogenies between Kummer lines

In this whole article, k is a perfect field of characteristic different from 2.

2.1. Weierstrass coordinates. Let E/k be an elliptic curve given by an affine short Weierstrass
equation y2 = x3 + a2x2 + a4x + a6. If D is a divisor on E, we recall that a global section is
a function f ∈ k(E) from the function field k(E) of E such that div f + D ≥ 0. The set of all
global sections associated to D is denoted by Γ(D).

For instance, if D = (OE), Γ((OE)) = ⟨1⟩, Γ(2(OE)) = ⟨1, x⟩, Γ(3(OE)) = ⟨1, x, y⟩. The
Weierstrass coordinates x, y give an embedding of E into P2

k; however, since x is even (x(−P ) =
x(P )), the application E → P1, P 7→ x(P ),OE 7→ ∞ factors through E/± 1. It is not hard to
show that x gives an isomorphism of curves E/± 1 ≃ P1.

It is often convenient to work with projective coordinates to avoid divisions; the elliptic curve has
a projective equation Y 2Z = X3+a2X2Z+a4XZ2+a6Z3 in P2. Working in projective coordinates
means we pass from the divisor point of view to the line bundle point of view. We denote by OE(D)
the line bundle associated to D; this is the sheaf given by the local sections of D, i.e., such that
on a Zariski open U of E, we have OE(D)(U) = Γ(U, D) = {f ∈ k(E) | div f|U + D|U ≥ 0}. We
have Γ(OE(OE)) = ⟨Z0⟩, Γ(OE(2(OE))) = ⟨X0, Z2

0 ⟩, Γ(OE(3(OE))) = ⟨X = X0Z0, Y, Z = Z3
0 ⟩.

We remark that x = X/Z = X0/Z2
0 .

Since we are only interested in models of Kummer lines in this paper, we will change notations
and denote Γ(OE(2D)) = ⟨X, Z⟩, where Z = Z2

0 . With this notation, the full projective
Weierstrass coordinates are XZ0, Y, ZZ0.

As explained in the introduction, it will be convenient to have models of Kummer lines where
the neutral point is not at infinity. If x ∈ Γ(2(OE)) is an affine Weierstrass coordinate (resp.
(X : Z) are projective Weierstrass coordinates) this amounts to allow working with the affine
coordinate x′ = ax+b

cx+d with c ̸= 0 (resp. (X ′ : Z ′) = (aX + bZ : cX + dZ)). Notice that the divisor
of poles of x′ is not equal to 2(OE) when c ̸= 0, but to a linearly equivalent divisor, so x′ is not a
section of 2(OE), while X ′, Z ′ are still sections of OE(2(OE)).

2.2. Kummer lines. Let E be an elliptic curve defined over k. We have seen that E/± 1 ≃ P1.
However, the curve P1 by itself is not enough to recover E, so we’ll reserve the term Kummer
line to include slightly more information:

Definition 2.1. A Kummer line is the datum of a degree 2 covering of P1 by E with 4 distinct
ramification points, one of which is rational and marked:

π : E → P1 and ∃O ∈ E(k),∃T, R, S ∈ E with #π−1(π(P )) =
{

1 if P ∈ {O, T, R, S},
2 otherwise.

A way to reinterpret this is that the involution quotient E → E/± 1 ≃ P1 is a degree-2 cover
ramified at 4 points. Conversely, for such a degree-2 cover of P1, the curve on the domain is of
genus 1 by the Riemann-Hurwitz formula, and marking an explicit rational point makes it an
elliptic curve E. The cover gives an embedding k(P1)→ k(E), hence a Galois involution, which
on the level of E has to be given by P 7→ −P because the neutral point is one of the ramified
points of this involution. In particular, the fibres are π−1(π(P )) = {−P, P}. We will give more
details in a future work on the geometry of Kummer lines.

Example 2.2. The marked point is denoted with a ∗. If the ramification on the Kummer line is
given by

(1) (1 : 0)∗
, (α1 : 1), (α2 : 1), (α3 : 1),
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(with the αi potentially defined over an extension of k) then the corresponding elliptic curve has
equation, with some β ∈ k:
(2) E : βy2 = (x− α1)(x− α2)(x− α3).
Conversely, starting from Eq. (2), if the point at infinity is denoted O, then the following map is
a degree 2-covering with 4 ramification points which correspond to the 2-torsion:

E
π−→ P1

(x, y) 7→ (x : 1),
O 7→ (1 : 0).

We remark that a Kummer line cannot distinguish between an elliptic curve E and its quadratic
twist E′ which amount in the previous example to a choice of β ∈ k∗/k∗,2. Denote π′ : E′ → P1

a Kummer line associated to the quadratic twist. If p ∈ P1 is not a ramification point of π and π′,
then there are two points P ∈ E and P ′ ∈ E′ of order n > 2 such that π(P ) = π′(P ′) = p, and
either P ∈ E(k) or P ′ ∈ E′(k). Thus pushing the rational point along a 2-isogeny allows keeping
track of the twist on the codomain even while working on the Kummer lines.

We will describe Kummer lines only via their ramification, like in Eq. (1), and denote them by
K, where K ≃ P1. We will also forget about the π notation when it is not ambiguous and write
[P ] = π(P ).

The addition law is not well-defined any more on the Kummer line π, as if one knows π(P ) and
π(Q), one retrieves ±P and ±Q on the elliptic curve and won’t be able to distinguish π(P + Q)
from π(P − Q). However, with the knowledge of π(P ), π(Q) and π(P − Q), it is possible to
reconstruct π(P + Q), this is differential addition and is enough to build a scalar multiplication
on the Kummer line, see for instance Montgomery arithmetic in Appendix A.

Consider a Kummer line π, and since we are interested in 2-isogenies, assume there is a rational
2-torsion point T ∈ E(k). This is a particular case of where we can define the translation by T
on the line, as T = −T , so π(P − T ) = π(P + T ).

Main Example 1. By taking an automorphism of P1, i.e a homography, we can always send T
to the point (0 : 1) and the marked point to (1 : 0). This amounts to working on the following
curve, according to Eq. (2):

E : βy2 = x(x2 +Ax + γ).
The complete ramification on the Kummer line K associated to E is then

O = (1 : 0)∗
, T = (0 : 1), R = (α : 1), S = (γ : α) = R + T,

where α ∈ k satisfies the equation A = −α− γ
α , with A, γ ∈ k.

2.3. 2-isogenies between Kummer lines via an analogue of Vélu’s formulas. Let E1/k
be an elliptic curve, T1 ∈ E1[2](k) a 2-torsion point, K = {O1, T1} and f : E1 → E2 = E1/K be
the corresponding isogeny. Neutral elements on E1 and E2 are denoted O1 and O2 respectively.

Starting from a Kummer model of E1, with affine coordinate x1 ̸= 1, we want to build a
Kummer model of E2 with affine coordinate x2 ̸= 1. For simplicity here, we will take x1, x2 to be
Weierstrass coordinates.

Our goal is to express x2 as a rational function of x1. The coordinate x2 is a section of the
divisor 2(O2), its pullback by f is f∗(2(O2)) = 2(O1) + 2(T1). In particular, the coordinate
x2 ◦ f on E1 is a section of 2(O1) + 2(T1) which is invariant by translation by T1. Conversely,
any coordinate u ∈ Γ(2(O1) + 2(T1)) which is invariant by translation by T1 is of the form x2 ◦ f
for some x2 ∈ Γ(2(O2)), by the universal property of the quotient.

In particular, since x1 ∈ Γ(2(O1)), the trace u = x1(·) + x1(·+ T1) is in Γ(2(O1) + 2(T1)) and
is certainly invariant by translation, so is of the form x2 ◦ f .
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This is exactly like the first step of Vélu’s formulas (where Vélu takes traces under the kernel
of the isogeny of the coordinates x and y respectively, because he works with sections of 3(O1)).
In the second step of Vélu’s formulas, Vélu then uses the formal group of E1 to recover equations
for E2.

In our case, we only need to recover a model of the Kummer line E2/ ± 1; by Section 2.2
it is completely determined by the image by u of the four ramifications points of the Kummer
line E1/ ± 1. Since we are working with Weierstrass coordinates in our example, one of these
ramification points is at infinity and is sent to infinity.

In the rest of this article, rather than working with the affine coordinates x1, x2, we will work
directly with the projective coordinates X1, Z1, X2, Z2 (in other words, their numerators and
denominators).

3. A general framework for 2-isogenies on a Kummer line

In this section, we will redo Section 2.3 but with projective coordinates directly. Although
conceptually more abstract (we need to introduce Mumford’s theory of the theta group), the
same techniques apply to higher dimensional abelian varieties, by contrast to Vélu’s method, as
explained in Remark 3.4 below.

3.1. Theta group and isogenies. We reuse the notations of Section 2.3. We have the two
projective coordinates X1, Z1 associated to the divisor 2(OE1), which is a shortcut to say they
are sections of the line bundle OE1(2(OE1)). Then X2

1 , X1Z1, Z2
1 are sections of 4(OE1), and we

would like to find, like in Section 2.3, a basis of linear combinations aX2
1 + bX1Z1 + cZ2

1 which
descends to projective coordinates X2, Z2 on E2, associated to the divisor 2(OE2).

Remark 3.1 (Even coordinates). Let Dn = n(OE1). The multiplication map Γ(Dn)⊗ Γ(Dm)→
Γ(Dn+m) is surjective when n, m ≥ 2, n + m ≥ 5, but Γ(D2)⊗ Γ(D2)→ Γ(D4) only surjects onto
even global sections: all global sections of D2 are even, so their products have to be even.

In particular, since Γ(4(OE1)) is of dimension 4, there is a fourth linearly independent projective
coordinate, which is generated by an odd coordinate, because the space of even coordinates is of
dimension 3.

On the other hand, the sections s we want to construct on E2 are sections of 2(OE2), so
are even, and their pullbacks f∗s are even. Hence, it is enough to look at the even sections
Γ+(D4) = ⟨X2

1 , X1Z1, Z2
1 ⟩.

A first difficulty that arises is that, although D4 = 4(OE1) is very convenient to use to get a
nice basis of the even sections subspace, it is not invariant by translation by T1, so it does not
descend to a divisor on E2.

We first need to find a divisor D′′
4 linearly equivalent to D4 which is invariant by translation

by T1. Then sections of D′′
4 invariant by translation descends to coordinates on E2; we then need

to express this translation invariance for the sections of D′′
4 in terms of the sections of D4.

Mumford’s theory of the theta group answers these questions, in the general case of an abelian
variety. For simplicity, we only describe the case of a divisor D on an elliptic curve E here.

Let D be a divisor. The divisor D induces the polarization ΦD : E → Ê, which is the map
defined by P 7→ t∗

−P D −D ∈ Ê = Pic0(E), where t∗
−P is the pullback of the translation by −P .

We stress that ΦD(P ) is in Pic0(E), which means that we consider the divisor t∗
−P D −D up to

linear equivalence. (The correct polarization should be the map −ΦD, but to match with the
usual sign conventions on elliptic curves, we will use ΦD in this article.) We say that two divisors
D1, D2 are algebraically equivalent if the associated polarizations are the same: ΦD1 = ΦD2 . On
an elliptic curve, this is equivalent to deg D1 = deg D2. In particular, if deg D = n, to study ΦD



COMPUTING 2-ISOGENIES BETWEEN KUMMER LINES 7

we may take D = Dn, and ΦD(P ) = n(P ) − n(OE). The kernel of ΦD is E[n], since a divisor
n(P )− n(OE) is linearly equivalent to zero if and only if n · P = OE .

The theta group G(D) associated to the divisor D is the group of functions gP on k(E) such
that P ∈ E[n] = ker(ΦD), and div gP = t∗

−P D − D. The addition law of G(D) is given by
(gP · gQ)(R) = gP (R)gQ(R− P ), it is a function with divisor t∗

−P −QD −D. We have a canonical
faithful action of G(D) on Γ(D) given by (gP · s)(R) = gP (R)s(R− P ).

If D = Dn, then since Dn is symmetric (which means that [−1]∗Dn = Dn), we also have an
involution δ−1 on G(Dn) given by, for gP ∈ G(Dn) with divisor t∗

−P Dn −Dn = n(P )− n(OE),
(δ−1gP )(R) = gP (−R); this is a function with divisor n(−P )− n(OE). A function gP is said to
be symmetric if δ−1gP = g−1

P .

Theorem 3.2 (Mumford). Let D be a symmetric divisor on E, n = deg D (with n prime to the
characteristic of k), K ⊂ E[n](k) a finite subgroup, and E′ = E/K the image of the isogeny f
with kernel K. There is a bijection between descents of the divisor D to a divisor D′ on E′ = E/K

(meaning that f∗D′ ≃ D) and lifts K̃ of K ⊂ ker ΦD to the theta group G(D). Furthermore,
D′ is symmetric if and only if K̃ consists of symmetric elements. Finally, there is a canonical
isomorphism between Γ(D′) and Γ(D)K̃ .

Proof. Let us give an idea of the proof. A descent of D to a divisor D′ on E′ is the same as finding
a divisor D′′ on E, linearly equivalent to D, which is invariant by translation by the points of
the kernel: to D′ we associate its pullback D′′ = f∗D′ by the isogeny. Since K ⊂ E[n] = ker ΦD,
by definition for any P ∈ K, we have that t∗

−P D ≃ D. Assume we have such a D′′. Let g be a
function with divisor D′′ −D. Then the function g(· − P ) has for divisor D′′ − t∗

−P D since D′′

is invariant, hence g′′
P := g(·)

g(·−P ) is a function with divisor t∗
−P D −D: g′′

P ∈ G(D). Mumford’s
theorem says that the functions g′′

P , when they are induced by such a function g form a group
under the theta group law (that’s the easy part).

Conversely, if for each P ∈ K we pick up a gP with divisor t∗
−P D −D, and these gP form a

group in G(D), then they are induced by a function g ∈ k(E), and D′′ = D + div g is invariant.
This is the hard part, which is a corollary of Grothendieck’s general flat descent theory.

Let K̃ be a lift of K in the theta group, and g the function induced by the gP ∈ K̃. If
s′′ ∈ Γ(D′′) is invariant by K, then s′′ = s/g is a function in Γ(D), and since gP = g(·)

g(·−P ) , the
action of gP on s is given by gP · s = s(· − P )gP = s′′(· − P )/g(·) = s because s′′ is invariant, so
s is invariant by K̃ (and conversely). □

We apply this theory to 2-isogenies, and let K = {O1, T1} be a kernel generated by a 2-torsion
point T1 ∈ E1[2](k).

First we look at the possible descents of D2 to E2, this amounts to finding an element
gT1 ∈ G(D2) above T1 of order 2. Since T1 is of 2-torsion, the divisor of δ−1gT1 is 2(−T1)−2(O1) =
2(T1)− 2(O1), and we even have δ−1gT1 = gT1 by [Mum66, Prop. 2 p.307 and Prop. 3 p.309]. So
gT1 is symmetric if and only if gT1 is of order 2, and we see that a lift K̃ of K to G(D2) corresponds
to a symmetric lift gT1 above T1, and the possible descents of D2 have to be symmetric.

Take an arbitrary lift gT1 ∈ G(D2), then since 2 ·T1 = O1, we have g2
T1

= λT1 for some λT1 ∈ k∗.
The symmetric elements above T1 are then ± gT1√

λT1
, which live possibly over a degree-2 extension

of k. Since taking another lift gT1 changes λT1 by a square, we see that λT1 is well-defined in
k∗/k∗,2. It is not hard to show that it is given by the non-reduced self Tate pairing eT,2(T1, T1):
gT1 is a function with divisor 2(T1) − 2(O1), and gT1(R)gT1(R − P ) = λT1 by definition of the
group law. So the class of λT1 ∈ k∗/k∗,2 is given by gT1(R + P )/gT1(R), which is the self Tate
pairing.
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Definition 3.3. The element [λT1 ] ∈ k∗/k∗,2 defined above is the type of T1. We say that T1 is
of Montgomery type if λT1 is already a square over k.

From the discussion above, by Mumford’s theorem, D2 descends over k to a symmetric divisor
on E2 if and only if λT1 is a square in k, if and only if T1 is of Montgomery type.

We can check this directly. First we remark that D′′ = f∗O2 = (T1) + (O1) is not linearly
equivalent to D2, so D2 cannot directly descend to (O2). The other symmetric degree-1 divisors
on E2 are given by (T2), (R2), (S2) where T2, R2, S2 are the three Weierstrass points on E2.
Set R1 and S1 to be the other Weierstrass points of E1 in addition to T1, we may assume that
f(R1) = f(S1) = T2. We let T ′

1 be a 4-torsion point above T1, and T ′′
1 = T ′

1 + R1. We may
assume that f(T ′

1) = R2 and f(T ′′
1 ) = S2. So f∗T2 = (R1) + (S1), f∗R2 = (T ′

1) + (T ′
1 + T1),

f∗S2 = (T ′′
1 ) + (T ′′

1 + T1). Only the last two are linearly equivalent to D2, they give the two
possible symmetric descents of D2 to E2.

We remark that these divisors are rational if and only if {T ′
1, T ′

1 + T1 = −T ′
1} is invariant, if

and only if the cyclic degree-4 subgroup generated by T ′
1 is rational, if and only if eT,2(T1, T1) is a

square. This explains why in general a symmetric lift gT1 only lives in a degree two extension, and
explains the terminology of Montgomery type: T1 is of Montgomery type if and only if T1 can be
sent to the point (0, 0) on a Montgomery model. In particular, there can be an asymmetry: D2
may descend to a symmetric divisor on E2 via f , while 2(O2) may not descend to a symmetric
divisor on E1 via the dual isogeny f̃ .

The situation becomes much simpler when looking at the possible descents of D4 = 4(O1) to a
degree-2 divisor on E2, which is all we need to construct a Kummer model for E2. The tensor
product gives a morphism G(D2) ⊗ G(D2) → G(D4), and if g̃T1 = ± gT1√

λT1
, its tensor squared

g̃⊗2
T1

=
g⊗2

T1
λT1

is symmetric in G(D4) and always rational. An important remark is that while the
symmetric divisor ±g̃T1 above T1 in G(D2) is only defined up to a sign, there is a canonical
symmetric divisor in G(D4) given by g̃⊗2

T1
, which does not depend on this sign.

Since 2(R2) ≃ 2(S2) ≃ 2(O2), this canonical symmetric element encodes the descent of
D4 = 4(O1) to D′

2 = 2(O2), we remark that f∗(2(O2)) = 2(T1) + 2(O1) ≃ 4(O1). The other
symmetric descent of D4 is induced by −g̃⊗2

T1
, which gives the descent of D4 to (T2) + (O2).

By Theorem 3.2, we get that the global sections Γ(D′
2) are precisely the global sections in

Γ(D4) invariant under the action by g̃⊗2
T1

.
We can now sketch our algorithm to compute 2-isogenies between Kummer lines:
(1) Compute the action of the symmetric element g̃⊗2

T1
on X2, XZ, Z2

(2) Find a basis X ′, Z ′ of invariant functions
(3) Recover the Kummer model of E′ embedded by X ′, Z ′.

We detail these steps in the next sections.

Remark 3.4 (Vélu’s formula). By Section 2.3, we certainly do not need Theorem 3.2 to find a
divisor linearly equivalent to D4 and invariant by T1: simply take D′′

4 = 2(OE1) + 2(T1).
The link with Vélu’s formula and the theta group is as follows: since D′′

4 is invariant by
translation by T1, the constant function 1 provides a canonical symmetric element h̃′′

T1
above T1

in G(D′′
4 ), which corresponds to the canonical descent of D′′

4 to 2(O2). Sections of D′′
4 invariant

by T1 thus corresponds by Theorem 3.2 to sections of 2(O2) on E2.
We will see below in Main Example 3 that as expected, on E2 these sections are exactly the

same as the ones we obtain through sections of D4 invariant by h̃T1 = g̃T1
⊗2. In fact, if g

is any function with divisor D′′
4 − D4 = 2(T1) − 2(O1), then one can check that the function

hT1 = g(·)/g(· − T1) defined in the proof of Theorem 3.2 is precisely g̃T1
⊗2.
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So Vélu’s formula can be seen as a special case of the more general framework of descending
sections and divisors through theta groups actions. The reason we work directly with theta groups
is that it provides a more flexible framework to study isogenies. In particular, it is slightly more
convenient to work with the divisor D2 = 2(O1) than with (O1) + (T1).

More importantly, in higher dimensions, we don’t have analogues of Vélu’s formula for an
ℓ-isogeny. Namely, if we start with an ample divisor Θ of degree 1 associated to a principal
polarization, then the traces of Θ under the points of K, a maximal isotropic subgroup of A[ℓ] will
be an invariant divisor of degree ℓg2 , hence descends to a divisor on B = A/K of degree ℓg(g−1),
so is associated to a principal polarization if and only if g = 1. So taking traces of principal
polarization does not work to build invariant divisors of the correct degree on A, and we need the
full power of the theta group framework as developed by Mumford.

In this paper, we study 2-isogenies between Kummer lines, from which we can deduce doubling
formulas (by composing with the dual isogeny). In a sequel to this paper we will extend this
to differential addition formulas. This amounts to studying the dimension 2 isogeny given by
E × E → E × E, (P, Q) 7→ (P + Q, P −Q). The action of the theta group G(D2) on the global
sections (X, Z) that we study in this paper will be crucial to extend the doubling formulas to
differential additions.

3.2. Computing 2-isogenies. We reuse the notations from Section 2.2, we want to compute a
2-isogeny generated by a 2-torsion point T . We will describe in this section how to build degree
2 maps which are invariant under a translation by T on Kummer lines, and how to recover
2-isogenies from that.

Remark 3.5. The automorphism τT : P 7→ P + T on the elliptic curve can be pushed to P1 via
π because T is of 2-torsion. It is an involutive map, therefore it is an automorphism of P1, i.e. it
is a homography.

First, consider the matrix [MT ] ∈ PGL2(k) associated to the homography τT .

Main Example 2. In Main Example 1, with T = (0 : 1), the homography τT is given by
τT (O) = T , τT (T ) = O and τT (R) = S. If τT (X : Z) = (aX + bZ : cX + dZ), we then have:

• τT (1 : 0) = (a : c) = (0 : 1), i.e. a = 0.
• τT (0 : 1) = (b : d) = (1 : 0), i.e. d = 0.
• τT (α : 1) = (b : cα) = (γ : α), i.e. b = cγ.

So τT (X : Z) = (bZ : cX) = (γZ : X) and the associated matrix in PGL2(k) is:

[MT ] =
[(

a b
c d

)]
=

[(
0 γ
1 0

)]
.

Lift this matrix to MT ∈ GL2(k), by definition, since T is a 2-torsion point, [M2
T ] = [I2], so

M2
T = λT I2. This lift is associated to an explicit element gT in the theta group G(D2). Indeed,

we have a projective action of E[2] on Γ(D2) ≃ k2 given by translation by a 2-torsion point on
projective coordinates. The canonical action defined in Section 3.1 lifts this to an affine group
action of G(D2) on Γ(D2). Since this group action is faithful, we can represent an element
g ∈ G(D2) by the corresponding action matrix. In particular, the element λT associated to MT

is the same as the one we associated to gT in Section 3.1. As mentioned there, because of the lift,
λT is well-defined up to a square. In particular:

Lemma 3.6. [λT ] ∈ k∗/k∗,2 is the type of T , as defined in Definition 3.3.

λT depends on the chosen lift MT , however 1√
λT

MT does not (up to a sign). This is the
invariant matrix of interest, corresponding to the action of a symmetric lift g̃T of Section 3.1.
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We want to build quadratic forms in (X, Z) invariant by 1√
λ

MT , which will be said to be
T -invariants. (Note that 1√

λ
MT is canonical and does not depend on the sign.) We will look at

the action of this matrix on X2, Z2 and XZ.

Remark 3.7. If q is a quadratic form and M =
(

a b
c d

)
, the action of M over q is given by:

M · q(X, Z) = q(aX + bZ, cX + dZ).
Here,

√
λT may be in some quadratic extension of k, but we can work around that, if MT =

(
a b
c d

)
:(

1√
λT

MT

)
· q(X, Z) = q

(
aX + bZ√

λT

,
cX + dZ√

λT

)
= 1

λT
(MT · q(X, Z)) .

Main Example 3. Following up with Main Example 2, we choose MT =
( 0 γ

1 0
)
, then M2

T = γI2
so the type of T is [γ]. We then compute the action of MT on X2, Z2 and XZ, and then divide
by γ:

1
γ

(
MT ·X2)

= γZ2; 1
γ

(
MT · Z2)

= 1
γ

X2; 1
γ

(MT ·XZ) = XZ.

We notice that XZ is already invariant, to build another one we can consider a trace for the
matrix action on quadratic forms, for instance:

q1 = X2 + 1
γ

(
MT ·X2)

= X2 + γZ2, then 1
γ

(MT · q1) = q1.

It appears that we retrieve the same invariant projective sections using Vélu’s formula. By
Remark 3.4, Vélu’s formula build the invariant affine section:

x′(P ) = x(P ) + x(P + T ) = x(P ) + γ

x(P ) = X(P )
Z(P ) + γZ(P )

X(P ) = X2(P ) + γZ2(P )
X(P )Z(P ) .

The numerator and denominators of this function are precisely the above invariant sections.

Say we have two linearly independent quadratic forms q and q′ which are T1-invariant where
T1 is a 2-torsion point on the Kummer line K1, and consider a basis u, v ∈ Span(q, q′). Set
MT1 =

(
a b
c d

)
the matrix of τT1 and [λT1 ] the type of T1.

τT1 : K1 → K1

P 7→ P + T1.

Set the following degree 2 map, which is well-defined by the properties of quadratic forms:
f : K1 → K2

(x : z) 7→ (u(x, z) : v(x, z)).

Since u and v are T1-invariant, we get f(P + T1) = f(τT1(P )) = f(P ). What remains to do is
determining the codomain K2 using the extra 2-torsion points we have.

Main Example 4. We add a 1 in index of notations from Main Example 1. We found earlier in
Main Example 3 that q(X, Z) = X2 + γZ2 and q′(X, Z) = XZ are T1-invariant. Consider for
instance u = q and v = q′ (or any linear combination of q and q′), then f : (X : Z) 7→ (X2 +γZ2 :
XZ) can be computed in 1M + 2S + 1m0. We have by construction of f that f(O1) = f(T1),
and since S1 = R1 + T1, we also have f(R1) = f(S1). A quick computation yields:

f(O1) = (1 : 1) and f(R1) = (α2 + γ : α) = (A : 1).
We are trying to build an isogeny with kernel T1, so f(O1) is sent to O2, and f(R1) is a

2-torsion point on K2. Note that here f(R1) is rational even if R1 may not be, this is a more
general fact proven in the following lemma:
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Lemma 3.8. f(R1) is rational.

Proof. Let σ be a Galois element on the field k. If R1 is invariant by σ, so is S1 (because
S1 = R1 + T1) and the image by f is obviously invariant by σ too. However, if R1 is not invariant
by σ, then σ(R1) ̸= R1, so we must have σ(R1) = S1 because T1 is rational. But then, since σ
commutes with f :

σ(f(R1)) = f(σ(R1)) = f(S1) = f(R1).
□

To grab the final information of 2-torsion, consider a 4-torsion point T ′
1 above T1 which may

not be rational. Such a point can be found by solving T ′
1 + T1 = T ′

1 on the Kummer line (remember
that −T ′

1 = T ′
1 in this situation). If T ′

1 = (X : Z), using the translation τT1 , this leads to:

(γZ : X) = (X : Z) i.e. X

Z
= ±√γ.

Then T ′
1 = (√γ : 1) and T ′′

1 = (−√γ : 1) are the 4-torsion points above T1, and f(T ′
1), f(T ′′

1 ) are
the remaining 2-torsion points on K2.

An optional step is to put K2 in a nice shape by a homography, but this is not mandatory and
can gain some operations. We will give more details in the next section.

4. 2-isogenies on Montgomery curves

We will focus on Montgomery curves in this section, which corresponds to the case γ = 1 in
Main Example 1. Recall from Definition 3.3:

Definition 4.1. A 2-torsion point T is said to be of Montgomery type if its type λT is a square.
Sending T to (0, 0) and O to infinity, we thus obtain a Montgomery model βy2 = x(x2 +A1x + 1).

The Montgomery Kummer line is denoted K1 over k with constant A1 ∈ k. The ramification
of our Kummer line is then:

O1 = (1 : 0)∗
, T1 = (0 : 1), R1 = (A1 : B1), S1 = (B1 : A1) = R1 + T1.

Thus, A1 = − (A1−B1)2

A1B1
and:

(3) d1 = A1 + 2
4 = −(A1 −B1)2

4A1B1
= (A1 −B1)2

(A1 −B1)2 − (A1 + B1)2 .

The constant d1 is the important one instead of A1 because it is also sufficient to recover the
elliptic curve up to a twist, but it is more importantly used in doubling formulas on Montgomery
curves, see Algorithm 5. When the codomain of an isogeny is a Montgomery curve, we want to
compute d1 efficiently to get all the necessary information about the codomain.

We computed in Main Example 3 the type of T1 which is 1 up to a square (T1 is then of
Montgomery type), and two T1-invariant quadratic forms:

q1(X, Z) = X2 + Z2, q2(X, Z) = XZ.

We also have the translation by T1 denoted τT1 : K1 → K1 computed in Main Example 2:

(4) τT1 : (X : Z) 7→ (Z : X).

We will need the translation by R1 later too, which is given by:

τR1 : (X : Z) 7→ (A1X −B1Z : B1X −A1Z).(5)
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Remark 4.2. When the curve E is fixed (as for scalar multiplication), we will count multiplication
by d or (A1 : B1) as one m0, since we can assume that B1 = 1. For the computation of a 2n-isogeny
chain, they will be given as quotients, in which case we will count them as two multiplications,
either small or generic depending on the context. See Section 5 and Appendix C.

Remark 4.3. The ramification of the Montgomery Kummer line is invariant under the involution
(X : Z) 7→ (Z : X), corresponding to translation by T1. If we apply the Hadamard transform
H(X : Z) = (X + Z : X − Z) = (X ′ : Z ′), we obtain a new model HK1 where the ramification
becomes

(1 : 1), (−1 : 1), (A1 + B1 : A1 −B1), (A1 + B1 : B1 −A1),

which is invariant by the involution (X ′ : Z ′) 7→ (−X ′ : Z ′).
The quadratic forms invariant by the canonical affine lift of this involution are q′

1 = X ′2 and
q′

2 = Z ′2. On K1, these quadratic forms correspond to (X + Z)2 and (X − Z)2, which indeed
span the same vector spaces as q1, q2 above.

4.1. Isogeny with kernel T1. Assume in this section that A1
B1
∈ k, so we have the full 2-torsion

on our curve. Recall we have these independent 4-torsion points above T1:

T ′
1 = (1 : 1), T ′′

1 = (−1 : 1) = T ′
1 + R1.

We will use the following invariant quadratic forms from Remark 4.3, using the notations of Main
Example 3:

u(X, Z) = (X + Z)2 = q1(X, Z) + 2q2(X, Z), v(X, Z) = (X − Z)2 = q1(X, Z)− 2q2(X, Z).

Set f0 : (X : Z) 7→ ((X + Z)2 : (X − Z)2). By construction, f0(P + T1) = f0(P ). Set
A2 = A1 + B1 and B2 = A1 −B1, the image of the ramification is the following:

f0(O1) = (1 : 1)∗ = f0(T1), f0(R1) = (A2
2 : B2

2) = f0(S1),
f0(T ′

1) = (1 : 0), f0(T ′′
1 ) = (0 : 1).

To get a Montgomery shaped ramification, we will multiply by C : (X : Z) 7→ (B2X : A2Z), set
f = C ◦ f0, then:

O2 = f(T ′
1) = (1 : 0), T2 = f(T ′′

1 ) = (0 : 1),
R2 = f(R1) = (A2 : B2), S2 = f(O1) = (B2 : A2)∗

.

Up to a translation by S2 we recover the 2-isogeny with kernel T1 and the image is Montgomery
shaped.

Theorem 4.4 (Translated 2-isogeny with kernel T1). Let g : K1 → K2 be the 2-isogeny with
kernel T1 on the Montgomery Kummer line K1 with extra 2-torsion (A1 : B1), and assume A1

B1
∈ k.

Set (A2 : B2) = (A1 + B1 : A1 −B1), then g = f + S2 where:

f : (X : Z) 7→
(

B2(X + Z)2 : A2(X − Z)2
)

.

f can be computed in 2S + 1m0 + 2a, the codomain K2 is a Montgomery Kummer line and the
curve constant d2 can be computed in 2S + 1a with:

d2 = B2
1

B2
1 −A2

1
.
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Proof. The fact that g is the 2-isogeny with kernel T1 and that the image is a Montgomery
Kummer line is straight-forward from the reasoning above. The curve constant d2 comes from
the computation in Eq. (3) and that (A2 : B2) = (A1 + B1 : A1 −B1):

d2 = (A2 −B2)2

(A2 −B2)2 − (A2 + B2)2 = B2
1

B2
1 −A2

1
.

□

Proposition 4.5 (Translated dual isogeny). Using notation of Theorem 4.4, the dual isogeny of
g is given by ĝ = f̂ + S1 where:

f̂ : (X : Z) 7→
(

B1(X + Z)2 : A1(X − Z)2
)

.

Then f̂ ◦ f(P ) = 2 · P + R1 where P ∈ K1 can be computed in 4S + 2m0 + 4a as in Algorithm 1.

Proof. Because the Hadamard transform is an involution, the codomain of f̂ is K1. We can then
set g0 = f̂ + S1, which is the 2-isogeny with kernel T2 thanks to Theorem 4.4. Let’s check that
g0 ◦ g = [2], the multiplication by 2, on the Kummer line. We will use the following formula:

g0(g(P )) = g0(f(P ) + S2)
= g0(f(P )) + g0(S2)

= f̂(f(P )) + f̂(S2) + 2 · S1

g0(g(P )) + R1 = f̂(f(P )).
We then study g0 ◦ g on the 2-torsion:

g0(g(O1)) = O1, g0(g(T1)) = f̂(S2) + R1 = 2 ·R1 = O1,

g0(g(R1)) = f̂(R2) + R1 = O1, g0(g(S1)) = f̂(R2) + R1 = O1.

g0 ◦ g ̸= [0] (for instance, g0(g(T ′
1)) = T1), so we must have g0 ◦ g = [2]. Similarly, we prove

g ◦ g0 = [2]. By uniqueness, g0 = ĝ. The first formula then yields f̂(f(P )) = 2 · P + R1. □

Algorithm 1: Doubling in Montgomery coordinates up to a 2-torsion point
Input: [P ] = (X1 : Z1)
Output: [2 · P + R1] = (X : Z)
Data: On K1 with extra 2-torsion [R1] = (A1 : B1), (A2 : B2) = (A1 + B1 : A1 −B1)

1 Function DoublingTranslation([P ]):
2 u← (X1 + Z1)2;
3 v ← A2

B2
(X1 − Z1)2;

4 X ← (u + v)2;
5 Z ← A1

B1
(u− v)2;

6 return (X : Z);

We will be using the translated doubling of Proposition 4.5 in Section 5 to build a “hybrid
ladder”.

Remark 4.6. In ECC, if one always works on the same curve, it is possible to control the
associated constants and make them small. That way, a multiplication by a curve constant costs
way less than a multiplication by a generic number. The hybrid ladder will rely on this fact a lot.
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Because the translated point is S2 and not T2 in Theorem 4.4, it is not convenient to use these
formulas to chain isogenies.

Remark 4.7. The translated doubling formula of Algorithm 1 uses exactly the same formula
as the standard doubling formula in squared theta coordinates 1. This is not a coincidence, as
remarked in [HR19], the Montgomery Kummer line and the squared theta Kummer line differ by
translation by a 2-torsion point (one way to directly recover this result, using Section 2, is to look
at the associated ramification points), so using the squared theta doubling formula in Montgomery
coordinates gives a translated doubling. We will come back to this in an upcoming article where
we explore the Galois properties of various models of Kummer lines in more details.

4.2. Isogeny with kernel R1. Assume once again that A1
B1
∈ k, so we have full 2-torsion on our

curve. Recall that we have the following ramification on our Kummer line:
O1 = (1 : 0)∗

, T1 = (0 : 1), R1 = (A1 : B1), S1 = (B1 : A1) = R1 + T1.

In this section, we further assume that there is a 4-torsion point R′
1 = (a′

1 : b′
1) above R1. Another

independent 4-torsion point above R1 is then R′′
1 = R′

1 + T1 which can be computed easily as
R′′

1 = (b′
1 : a′

1) thanks to Eq. (4). Finally, set (a1 : b1) = (a′
1 + b′

1 : a′
1 − b′

1). A useful relation that
we will be using is the following:

(A1 : B1) = (a2
1 + b2

1 : a2
1 − b2

1) ⇐⇒ (A1 + B1 : A1 −B1) = (a2
1 : b2

1).
This comes for instance from the doubling formulas in Proposition 4.5, because 2 ·R′

1 + R1 = O1:
(A1 −B1)a2

1 − (A1 + B1)b2
1 = 0 ⇐⇒ (A1 + B1 : A1 −B1) = (a2

1 : b2
1).

We will now apply the algorithm to find invariant maps by R1. A matrix associated to τR1 is:

MR1 =
(

A1 −B1
B1 −A1

)
.

Since M2
R1

= (A2
1 − B2

1)I2, the type is λR1 = A2
1 − B2

1 = 4a2
1b2

1. This is a square, so R1 is of
Montgomery type.

Set M = MR1√
λR1

, we will be looking at the action of M on the following basis of quadratic

forms: (X + Z)2, (X − Z)2 and (X − Z)(X + Z):

M · (X + Z)2 = a2
1

b2
1

(X − Z)2
M · (X − Z)2 = b2

1
a2

1
(X + Z)2

.

M · (X − Z)(X + Z) = (X − Z)(X + Z).
The invariant quadratic forms we will be using are then:
(6) q1(X, Z) = b2

1(X + Z)2 + a2
1(X − Z)2

, q2(X, Z) = a1b1(X + Z)(X − Z).
By doing linear combination of q1 and q2, we end up with the following formulas:

Theorem 4.8 (Translated 2-isogeny with kernel R1). Let g : K1 → K2 be the 2-isogeny with
kernel R1 on the Montgomery Kummer line K1 with extra 2-torsion R1 = (A1 : B1). Assume
there is a 4-torsion point R′

1 = (a′
1 : b′

1) above R1. Set (a1 : b1) = (a′
1 + b′

1 : a′
1 − b′

1), we have the
relation (A1 : B1) = (a2

1 + b2
1 : a2

1 − b2
1). Finally, set f to be the following map:

f : (X : Z) 7→
(

(b1(X + Z) + a1(X − Z))2 : (b1(X + Z)− a1(X − Z))2
)

.

Then the ramification on the image of f is:
O2 = (1 : 0), T2 = (0 : 1), R2 = (a′2

1 : b′2
1 )∗

, S2 = (a′2
1 : b′2

1 ) = R2 + T2.

1https//hyperelliptic.org/EFD/g1p/auto-edwards-yzsquared.html

https//hyperelliptic.org/EFD/g1p/auto-edwards-yzsquared.html
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We have g = f + R2, f can be computed in 2S + 1m0 + 4a, the codomain K2 is a Montgomery
Kummer line and the curve constant d2 can be computed in 2S + 1a with:

d2 = B2
1 −A2

1
B2

1
.

Proof. We have f(X : Z) = (q1(X, Z) + 2q2(X, Z) : q1(X, Z)− 2q2(X, Z)) where q1 and q2 are
defined in Eq. (6) and are R1-invariant. So f(·+ R1) = f . It is straight-forward to compute:

f(O1) = (a′2
1 : b′2

1 )∗ = f(R1), f(T1) = (b′2
1 : a′2

1 ) = f(S1),
f(R′

1) = (1 : 0), f(R′′
1 ) = (0 : 1).

So the image is a Montgomery Kummer line and g = f + R2 with notations from the theorem.
The codomain is given by d2 using Eq. (3):

(7) d2 = (a′2
1 − b′2

1 )2

(a′2
1 − b′2

1 )2 − (a′2
1 + b′2

1 )2

Thanks to (A1 : B1) = (a2
1 + b2

1 : a2
1 − b2

1), we can simplify the expression of d2:(
(a′2

1 − b′2
1 )2 : (a′2

1 + b′2
1 )2

)
=

(
4a2

1b2
1 : (a2

1 + b2
1)2

)
= (A2

1 −B2
1 : A2

1).

□

If we compute g = f + R2 using the translation τR2 given in Eq. (4), we find back the formulas
for 2-isogenies given by Renes in [Ren18, Prop. 2]. We can also recover alternative shifted doubling
formulas instead of Algorithm 1, which only differ by the number of additions.

Remark 4.9. Unlike in Theorem 4.4, we have a translated isogeny by R2, and the kernel was
initially R1. We can therefore chain such isogenies to compute 2n-isogenies, more details are
given in Appendix C.

Since the computations only involves the 4-torsion point R′
1 above R1, one could keep track

only of the 4-torsion points. The codomain would then be given by Eq. (7), which costs 4S + 3a.

Proposition 4.10 (Dual isogeny). Using notation of Theorem 4.8, the dual isogeny of g is given
by ĝ where:

ĝ : (X : Z) 7→
(

B1(X + Z)2 : 4A1XZ
)

.

Then ĝ ◦ f(P ) = 2 · P + R1 where P ∈ K1 can be computed in 4S + 2m0 + 7a as in Algorithm 2
(using 4XZ = (X + Z)2 − (X − Z)2).

Proof. We know that the kernel of ĝ is g(K1[2]) = ⟨g(T1)⟩ = ⟨T2⟩. We also have computed two
T2-invariant quadratic forms earlier, set g0(X : Z) = ((X + Z)2 : XZ). Then g0(· + T2) = g0.
The output ramification is:

g0(O2) = (1 : 0)∗ = g0(T2), g0(R2) =
(

(a′2
1 + b′2

1 )2 : a′2
1 b′2

1

)
= g0(S2),

g0(T ′
2) = (4 : 1), g0(T ′′

2 ) = (0 : 1).

Thanks to computations already done while proving Theorem 4.8, we have g0(R2) = (4A2
1 : B2

1).
We then consider a homography h : (X : Z) 7→ (aX + bZ : cX + dZ), we want:
• h(1 : 0) = (1 : 0), then c = 0.
• h(0 : 1) = (0 : 1), then b = 0.
• h(4 : 1) = (B1 : A1), which sets (4a : d) = (B1 : A1).
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Then, h(4A2
1 : B2

1) = (4aA2
1 : dB2

1) = (A1 : B1). Finally, the map h ◦ g0 is the 2-isogeny with
kernel T2 and codomain K1, hence ĝ = h ◦ g0.

Since, ĝ(g(P )) = 2 ·P = ĝ(f(P )) + ĝ(R2), we get the alternative formula from ĝ(R2) = R1. □

Algorithm 2: Alternative doubling in Montgomery coordinates up to a 2-torsion point
Input: [P ] = (X1 : Z1)
Output: [2 · P + R1] = (X : Z)
Data: On K1 with extra 2-torsion [R1] = (A1 : B1) and [R′

1] = (a′
1 : b′

1) of 4-torsion above
[R1], (a1 : b1) = (a′

1 + b′
1 : a′

1 − b′
1)

1 Function DoublingTranslation([P ]):
2 u← (X1 + Z1);
3 v ← a1

b1
(X1 − Z1);

4 w ← (u + v)2;
5 t← (u− v)2;
6 u← (w + t)2;
7 v ← (w − t)2;
8 X ← u;
9 Z ← A1

B1
(u− v);

10 return (X : Z);

4.3. Additional 8-torsion: another formula for the isogeny with kernel T1. In this last
section, we assume A1

B1
/∈ k, so we don’t know about the full 2-torsion, but we add a hypothesis

about a 8-torsion point T̃1 = (r : s) above T ′
1 = (1 : 1) (which itself is above T1 = (0 : 1)). That

way, we ensure that there will still be a rational 4-torsion point on the Kummer line, so it will be
Montgomery shaped.

We set (γ : δ) = (4rs : (r − s)2), and because 2 · T̃1 = T ′
1 = (1 : 1), using Algorithm 5:

((γ + δ)δ : γ(δ + d1γ)) = (1 : 1) ⇐⇒ d1 = δ2

γ2 .

But we have another expression for d1 given in Eq. (3), therefore:

(δ2 : γ2) = (−(A1 −B1)2 : 4A1B1).
We are looking for a 2-isogeny with kernel T1 without the knowledge of A1

B1
. The result will be

in a similar shape to the one in Proposition 4.10. As before, we start by computing invariants by
the matrix M = ( 0 1

1 0 ), which we already did in Main Example 3. We will consider:

M · (X − Z)2 = (X − Z)2
, M ·XZ = XZ.

If f0 : (X : Z) 7→ ((X − Z)2 : XZ), then f0(·+ T1) = f0. The codomain ramification is:

f0(O1) = (1 : 0)∗ = f0(T1), f(R1) = ((A1 −B1)2 : A1B1) = (−4δ2 : γ2) = f(S1),
f(T ′

1) = (0 : 1), f(T ′′
1 ) = (−4 : 1).

To put it in a convenient shape, we consider a homography h : (X : Z) 7→ (aX + bZ : cX + dZ).
We want h(1 : 0) = (1 : 0) and h(0 : 1) = (0 : 1), which forces b = 0 and c = 0. Then, we naturally
want to send f0(T̃1) = ((r − s)2 : rs) onto (1 : 1):

h((r − s)2 : rs) = (1 : 1) ⇐⇒ (a : d) = (γ : 4δ).
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That way, we get:

h(−4δ2 : γ2) = (−4γδ2 : 4δγ2) = (−δ : γ), h(−4 : 1) = (−γ : δ).

We then set f = h ◦ f0, we recover formulas already known in [FJP14, Eq. (19)]:

Theorem 4.11 (2-isogeny with kernel T1). Let g : K1 → K2 be the 2-isogeny with kernel T1 on
the Montgomery Kummer line K1. Assume there is a rational 8-torsion point T̃1 = (r : s) above
T ′

1 = (1 : 1). Set (γ : δ) = (4rs : (r − s)2), then g is given by:

g : (X : Z) 7→
(

γ(X − Z)2 : 4δXZ
)

.

g can be computed in 2S + 1m0 + 3a (4XZ = (X + Z)2 − (X − Z)2), the codomain K2 is a
Montgomery Kummer line and the curve constant d2 can be computed in 4S + 6a with:

d2 = (γ + δ)2

(γ + δ)2 − (γ − δ)2 .

The computation of d2 is a direct application of Eq. (3). For completeness, we also provide
the dual isogeny formula.

Proposition 4.12 (Dual isogeny). Using notation of Theorem 4.11, the dual isogeny of g is
given by ĝ where:

ĝ : (X : Z) 7→ (u(X, Z) + 2δv(X, Z) : u(X, Z)− 2δv(X, Z)) ,

u(X, Z) = (γ + δ)(X + Z)2 − (γ − δ)(X − Z)2
,

v(X, Z) = (X + Z)(X − Z).

ĝ can be computed in 1M + 2S + 2m0 + 3a.

Proof. We have that ker ĝ = ⟨R2⟩, we can’t apply results from Theorem 4.8 since we don’t know
the 4-torsion above R2. We have already computed the matrix M associated to τR2 and the type
λ = δ2 − γ2:

M =
(
−δ −γ
γ δ

)
.

Furthermore, we have seen that 1
λ (M · (X + Z)(X − Z)) = (X + Z)(X − Z), so we are looking

for one other invariant:
1
λ

(
M · (X + Z)2

)
= (γ − δ)2

δ2 − γ2 (X − Z)2 = −γ − δ

γ + δ
(X − Z)2

.

Hence, the two invariant quadratic forms we will consider are:

u(X, Z) = (γ + δ)
(

(X + Z)2 + 1
λ

(
M · (X + Z)2

))
= (γ + δ)(X + Z)2 − (γ − δ)(X − Z)2

v(X, Z) = (X + Z)(X − Z).

We then set g0(X : Z) = (au(X, Z) + bv(X, Z) : cu(X, Z) + dv(X, Z)), which by construction
verifies g0(·+ R2) = g0. Since we want it to be the dual of g, we are looking for the following
equations:

• g0(g(O1)) = g0(O2) = O1, which implies 2δc + d = 0.
• g0(g(T ′

1)) = g0(T2) = T1, which implies 2δa− b = 0.
• g0(g(T̃1)) = g0(T ′

2) = T ′
1, which implies a = c.
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We factor by a in g0 and get the following expression:
g0 : (X : Z) 7→ (u(X, Z) + 2δv(X, Z) : u(X, Z)− 2δv(X, Z)).

We then check that it behaves correctly on the remaining 2-torsion:
• g0(g(R1)) = g0(R2) = (4δλ : 0) = O1.
• g0(g(T ′′

1 )) = g0(S2) = (0 : 4δλ) = T1.
Finally, g0 = ĝ. □

5. Hybrid ladder

Let π : E → P1 ≃ K be a Montgomery Kummer line. Recall that if one knows π(P ), π(Q) and
π(P −Q), then it is possible to recover π(P + Q) using differential addition formulas which are
given in Appendix A, Algorithms 4 and 5. Special formulas for doubling are necessary because
the general formula do not work when P = Q, unlike for the theta model which uses the same
formulas for doublings and differential additions. We will also use the notation [P ] = π(P ) in the
algorithms.

Using these formulas, one can compute π(n · P ) on the Kummer line using the Montgomery
ladder (Algorithm 6). The key of the ladder is that, at each step, we have π(U−V ) = π(P ), where
U and V are the two points we keep track of. It is clear that the cost of a scalar multiplication
depends linearly on the cost of one differential addition and one doubling. In this paper, we focus
on the doubling part. If we look at the computational cost of the doubling in Algorithm 5, we get
2M + 2S + 1m0, where m0 is a multiplication by a curve constant.

On the other hand, the computational cost of a doubling up to a 2-torsion point in Proposi-
tion 4.5 and Algorithm 1 is 4S + 2m0. Depending on the context, a square tends to be faster
than a multiplication. For instance, 3S = 2M in Fp2 = Fp[i] when p ≡ 3 mod 4. The comparison
is given in Table 1.

Doubling Doubling up to a 2-torsion point
Detailed cost 2M + 2S + 1m0 4S + 2m0

3S = 2M, m0 = M ≈ 4.33M ≈ 4.67M
3S = 2M, 5m0 = M ≈ 3.53M ≈ 3.07M

Table 1. Comparison of doubling formulas computational cost

For parameters where the multiplication by a curve constant is way faster than a generic
multiplication, then our translated doubling is faster. This can be achieved for instance by having
small constants, i.e. less than a computer word. By adapting the Montgomery ladder to take into
account the additional 2-torsion point, we can build a new hybrid ladder in Algorithm 3. The
major change is that, instead of having π(U−V ) = π(P ), we allow π(U−V ) ∈ {π(P ), π(P +R1)}.
The correctness of our scalar multiplication is explained in Appendix D, the formula for the
correction step that may occur is given by Eq. (5).

Now, in the context of ECC, if we are working on a set curve like in ECDSA, we can choose a
convenient one such that the associated constants are less than a computer word, and that way
one can get m0 way smaller than M.

Remark 5.1. Since we work on a set curve, some constants can be saved. Implementation-wise,
constants are given as a numerator r and a denominator s, and because everything lives in a
projective space a multiplication by r

s can be put into two multiplications by r and by s. We will
denote by c the cost of a multiplication by a small constant.
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Algorithm 3: Scalar multiplication with hybrid ladder
Input: n = (1, bℓ−2, . . . , b0) an ℓ-bits integer, [P ] a point on K1
Output: [n · P ]
Data: On K1, [Q] = [P + R1] using Eq. (5)

1 Function ScalarMult(n, [P ]):
2 [U ]← [P ];
3 [V ]← DoublingTranslation([P ]);
4 for i← ℓ− 2 to 0 do
5 [D]← [U − V ]; // This is either [P ] or [Q] which are pre-computed
6 if bi = 0 then
7 [V ]← DiffAdd([U ], [V ], [D]);
8 [U ]← DoublingTranslation([U ]);
9 else if bi = 1 then

10 [U ]← DiffAdd([U ], [V ], [D]);
11 [V ]← DoublingTranslation([V ]);
12 end
13 end
14 if ℓ ≡ 0 mod 2 or b0 = 0 then
15 return [U + R1]; // Details in Appendix D
16 end
17 return [U ];

• In the doubling Algorithm 5, we directly choose d to be small, so 1m0 = 1c for this one.
• With the additional 2-torsion point in Algorithm 1, the curve constants are A1

B1
and A2

B2
.

We can choose B1 = 1, and that’s it because the others are tied, we end up with three
constants then: A1, A2 and B2. In this algorithm, 2m0 = 3c.

Instead of dealing with the low level libraries’ implementation of multiplication to take into
account the small constants, we provide a proof of concept as well as verification scripts on
GitLab2. The context is the following:

• We work over Fp10 = Fp5 [i] where i2 = −1 and Fp5 = Fp[u] where u5 = 2. The extension
Fp10/Fp5 is to ensure that 3S = 2M, and the extension Fp5/Fp is to have a large extension
with trivial multiplication by u and i. A small constant corresponds to an element of Fp.
The construction obviously puts some constraints on p (p ≡ 3 mod 4 and p ≡ 1 mod 5).
• We choose A1 = 1 + µi and d = ν + i for some µ, ν ∈ Fp, that way A2 = 2 + µi and

B2 = µi. Multiplication by these constants are faster to deal with than multiplication by
generic number over Fp10 .
• We repeated 100 times 100 random scalar multiplications.

The chosen parameters are the following:
• p = 14859749208866121031.
• µ = 1141088753069104366 such that A1 = 1 + µi.
• ν = 400659849698428527 such that d = ν + i.

The results are in Table 2 and show that we achieve a 6.2% gain over the Montgomery ladder.
For completeness, we also add a comparison with the theta ladder over which we achieve a 4.4%,
the doubling formulas correspond to the ones from Algorithm 1, and the differential addition can
be found in [KS20, Table 2].

2https://gitlab.inria.fr/nsarkis/poc-scalar-multiplication-kummer-lines

https://gitlab.inria.fr/nsarkis/poc-scalar-multiplication-kummer-lines
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Montgomery ladder Theta ladder Hybrid ladder
Average (s) 2.400± 0.049 2.344± 0.009 2.241± 0.005

Table 2. Timings on Intel Core i5-1145G7 @ 2.60GHz

Remark 5.2. In the differential addition Algorithm 4, since in our application π(U − V ) is also
a constant, it is possible to add a constraint for this one to be small too and that improves the
whole time saved. However, this is not necessary for our comparison as the differential addition
is the same in both ladders.
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Appendix A. Montgomery arithmetic on a Kummer line

We work on a Kummer line K associated to a Montgomery curve with constant A. Arithmetic in
Algorithms 4 and 5 was introduced by Montgomery in [Mon87]. They are used in the Montgomery
ladder (Algorithm 6).

Algorithm 4: Differential addition in Montgomery xz-coordinates
Input: [P ] = (X1 : Z1), [Q] = (X2 : Z2) and [P −Q] = (X0 : Z0) ̸= (1 : 0)
Output: [P + Q] = (X : Z)

1 Function DiffAdd([P ], [Q], [P −Q]):
2 u← (X1 + Z1)(X2 − Z2);
3 v ← (X1 − Z1)(X2 + Z2);
4 w ← (u + v)2;
5 t← (u− v)2;
6 X ← w;
7 Z ← X0

Z0
t;

8 return (X : Z);

Algorithm 5: Doubling in Montgomery xz-coordinates
Input: [P ] = (X1 : Z1)
Output: [2 · P ] = (X : Z)
Data: If A is the Montgomery curve constant, d = A+2

4

1 Function Doubling([P ]):
2 u← (X1 + Z1)2;
3 v ← (X1 − Z1)2;
4 t← u− v;
5 X ← uv;
6 Z ← t(v + dt);
7 return (X : Z);

Appendix B. More examples of 2-isogenies: Legendre and theta models

In this section, we will look at two other classical Kummer lines models.

B.1. Legendre model. An elliptic curve is said to be in Legendre form if it has full rational
2-torsion and is then put in the following shape:

E : By2 = x(x− 1)(x− γ), γ ∈ k.

In terms of Kummer lines, this is a particular case of Main Example 1. The ramification is as
follows:

O = (1 : 0)∗
, T = (0 : 1), R = (1 : 1), S = (γ : 1).

We will focus on two isogenies with kernel T . Our goal is to recover the Montgomery to Legendre
and Legendre to Montgomery isogeny formulas from [Ber+08, Theorem 5.1].
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Algorithm 6: Scalar multiplication with Montgomery ladder
Input: n = (1, bℓ−2, . . . , b0) an ℓ-bits integer, [P ] a point on K1
Output: [n · P ]

1 Function MontgomeryLadder(n, [P ]):
2 [U ]← [P ];
3 [V ]← Doubling([P ]);
4 for i← ℓ− 2 to 0 do
5 if bi = 0 then
6 [V ]← DiffAdd([U ], [V ], [P ]);
7 [U ]← Doubling([U ]);
8 else if bi = 1 then
9 [U ]← DiffAdd([U ], [V ], [P ]);

10 [V ]← Doubling([V ]);
11 end
12 end
13 return [U ];

Example B.1 (Montgomery model to Legendre model). Suppose our initial Kummer line K1 is
a Montgomery one with the following ramification:

O1 = (1 : 0)∗
, T1 = (0 : 1), R1 = (A1 : B1), S1 = (B1 : A1).

A1
B1

may not be rational. We also know about the 4-torsion points above T1, which are T ′
1 = (1 : 1)

and T ′′
1 = (−1 : 1).

We can use the invariants from Section 4.1. Set f : (X : Z) 7→
(

(X + Z)2 : (X − Z)2
)

, it is
T1-invariant and the ramification on the codomain is:

• f(O1) = f(T1) = (1 : 1)∗,
• f(R1) = f(S1) = ((A1 + B1)2 : (A1 −B1)2),
• f(T ′

1) = (1 : 0),
• f(T ′′

1 ) = (0 : 1).
We notice that this is exactly a Legendre model with γ2 = (A1+B1)2

(A1−B1)2 up to translation by a 2-torsion
point. We already justified in Main Example 4 that f(R1) = f(S1) is rational even if R1 is not.
The ramification of the codomain is:

O2 = (1 : 0), T2 = (0 : 1), R2 = (1 : 1)∗
, S2 = (γ2 : 1).

The 2-isogeny is then g = f + R2 and can be computed in 2S + 2a, γ2 can be computed in 2S + 2a.
Another idea is to use invariants (X + Z)2 and XZ via g0 : (X : Z) 7→ ((X + Z)2 : XZ), the

ramification on the codomain this time is:
• g0(O1) = f0(T1) = (1 : 0)∗,
• g0(R1) = f0(S1) = ((A1 + B1)2 : A1B1),
• g0(T ′

1) = (4 : 1),
• g0(T ′′

1 ) = (0 : 1).
We have to change the shape of our ramification, we are looking for a homography h such that:

• h(1 : 0) = (1 : 0),
• h(4 : 1) = (1 : 1),
• h(0 : 1) = (0 : 1).
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We find that h(X : Z) = (X : 4Z) satisfies these conditions. By setting g = h ◦ g0 and:

γ2 = h((A1 + B1)2 : A1B1) = (A1 + B1)2

4A1B1
.

The ramification on the codomain is:

O2 = (1 : 0)∗
, T2 = (0 : 1), R2 = (1 : 1), S2 = (γ2 : 1).

This can be computed in 2S + 3a using 4XZ = (X + Z)2 − (X − Z)2, and γ2 also in 2S + 3a.

Example B.2 (Legendre model to Montgomery model). On the other hand, it is also possible to
go from a Legendre model to a Montgomery one via a 2-isogeny. Suppose our initial Kummer
line K1 is a Legendre one with the following ramification:

O1 = (1 : 0)∗
, T1 = (0 : 1), R1 = (1 : 1), S1 = (γ1 : 1).

In Main Example 3, we computed the following quadratic forms that are T1-invariant:

u(X, Z) = X2 + γ1Z2, v(X, Z) = XZ.

In Main Example 4, we also computed the 4-torsion above T1:

T ′
1 = (√γ1 : 1) T ′′

1 = (−√γ1 : 1).

First, set g0 : (X : Z) 7→ (X2 + γ1Z2 : XZ), it is T1-invariant and the ramification on the
codomain is:

• g0(O1) = f0(T1) = (1 : 0)∗,
• g0(R1) = f0(S1) = (1 + γ1 : 1),
• g0(T ′

1) = (2√γ1 : 1),
• g0(T ′′

1 ) = (−2√γ1 : 1).
To recover a Montgomery Kummer line, we also need a 4-torsion point. Set R′

1 = (r : s)
to be a 4-torsion point above R′

1. Let σ be an element of the Galois group of our field k.
Then either [σ(R′

1)] = [R′
1], or [σ(R′

1)] = [R′′
1 ] is another 4-torsion point above R1 because

2σ(R′
1) = σ(R1) = R1. We can’t have R′′

1 = R′
1 +R1 because on the Kummer line [R′

1] = [R′
1 +R1],

therefore R′′
1 = R′

1 + T1 = R′
1 + S1 on the Kummer line. Hence, σ(g0(R′

1)) = g0(σ(R′
1)) =

g0(R′
1 + T1) = g0(R′

1). In all cases, g0(R′
1) is invariant by Galois.

The translation by R1 is given by τR1 : (X : Z) 7→ (X − γ1Z : X −Z). Because R′
1 + R1 = R′

1,
we find using τR1 that r2 + γ1s2 = 2rs. Then g0(R′

1) = (2 : 1).
To go to a Montgomery model, we want a homography h : (X : Z) 7→ (aX + bZ : cX + dZ)

such that:
• h(1 : 0) = (1 : 0), i.e. c = 0,
• h(1 + γ1 : 1) = (0 : 1), i.e. b = −a(1 + γ1),
• h(2 : 1) = (1 : 1), i.e. d = 2a + b = a(1− γ1).

This yields h(X : Z) = (X − (1 + γ1)Z : (1− γ1)Z). One can check that:

h(2√γ1 : 1) = (√γ1 − 1 : √γ1 + 1) h(−2√γ1 : 1) = (√γ1 + 1 : √γ1 − 1).

We end up on the following Montgomery model with the 2-isogeny g = h ◦ g0:

O2 = (1 : 0)∗
, T2 = (0 : 1), R2 = (√γ1 − 1 : √γ1 + 1), S2 = (√γ1 − 1 : √γ1 + 1).



REFERENCES 25

B.2. Theta model. In this section we look at another model where the neutral point is not at
infinity this time. Let a, b ∈ k be two constants that will define our ramification:

O1 = (a : b)∗
, T1 = (−a : b), R1 = (b : a), S1 = (−b : a).

This is called a theta model with theta constants (a : b), we will again focus on 2-isogenies with
kernel T1.

We first want to compute potential 4-torsion points, we have:

τT1(X : Z) 7→ (−X : Z), τR1 : (X : Z) 7→ (Z : X), τS1 : (X : Z) 7→ (−Z : X).

If T ′
1 = (X : Z) is a 4-torsion point above T1, we want to solve T ′

1 + T1 = T ′
1. With a similar

approach, these are the 4-torsion points on this model:
• Above T1: T ′

1 = (1 : 0) and T ′′
1 = (0 : 1).

• Above R1: R′
1 = (1 : 1) and R′′

1 = (−1 : 1).
• Above S1: S′

1 = (i : 1) and S′′
1 = (−i : 1) with i2 = −1.

Aside S′
1 and S′′

1 which may not be rational, there are always two rational independent 4-torsion
points on this model: T ′

1 and R′
1. This is one more occurrence of a Montgomery model where this

time two points of two torsion are required to be of Montgomery type. In the theta model, the
ramification is then put in a way to be invariant both by (X : Z)→ (Z : X) as in the Montgomery
model, but also by (X : Z) 7→ (−X : Z). In particular the full 2-torsion is always rational in the
theta model.

The matrix associated to τT1 is M =
( −1 0

0 1
)

and M2 = I2, so the type is 1 as expected and M
acts as:

M ·X2 = X2 M · Z2 = Z2 M ·XZ = −XZ.

Example B.3 (Theta model to Montgomery model). We will use X2 and Z2 as the invariants,
set f : (X : Z) 7→ (X2 : Z2). A quick computation yields:

• f(O1) = f(T1) = (a2 : b2)∗,
• f(R1) = f(S1) = (b2 : a2),
• f(T ′

1) = (1 : 0),
• f(T ′′

1 ) = (0 : 1).
We also have f(R′

1) = (1 : 1) and f(S′
1) = (−1 : 1), the 4-torsion above (1 : 0). The ramification

is Montgomery shaped up to a translation, the 2-isogeny is then g = f + R2 with:

O2 = (1 : 0), T2 = (0 : 1), R2 = (a2 : b2)∗
, S2 = (b2 : a2).

f can be computed in 2S, the codomain in 2S too.
This can be used to find doubling formulas on the theta model. If ĝ is the dual of g, we

have that ker ĝ = ⟨T2⟩. We use the same invariants as in Theorem 4.4 because we start on a
Montgomery model, and we set ĝ0 : (X : Z) 7→ ((X + Z)2 : (X − Z)2). One computes, with
(A2 : B2) = (a2 + b2 : a2 − b2):

• ĝ0(O2) = ĝ0(T2) = (1 : 1)∗,
• ĝ0(R2) = ĝ0(S2) = (A4 : B4),
• ĝ0(T ′

2) = (1 : 0),
• ĝ0(T ′′

2 ) = (0 : 1).
Because we want to compute the dual, we are aiming for the following equations:
• ĝ(g(O1)) = O1 i.e. ĝ(O2) = (a : b),
• ĝ(g(S′

1)) = S1 i.e. ĝ(T ′
2) = (−b : a),

• ĝ(g(R′
1)) = R1 i.e. ĝ(T ′′

2 ) = (b : a),
• ĝ(g(T ′

1)) = T1 i.e. ĝ(R2) = (−a : b).
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As usual, we look for a homography h such that ĝ = h ◦ ĝ0. Using the first three equations, we
find that:

h : (X : Z) 7→ (b(B2X + A2Z) : a(−B2X + A2Z)).
We finally check that indeed h(A4 : B4) = (−a : b), and therefore we have ĝ = h ◦ ĝ0. Because
ĝ(g(P )) = 2 · P and ĝ(R2) = T1, we can then compute 2 · P + T1 = ĝ ◦ f(P ) in 4S + 2m0 + 2a,
which is essentially 2 · P because τT1(X : Z) = (−X : Z).

Example B.4 (Theta model to theta model). We recall the theta model here:
O1 = (a : b)∗

, T1 = (−a : b), R1 = (b : a), S1 = (−b : a).

Assume in this example that we have a 8-torsion point T̃1 = (r : s) above T ′
1. Using invariants X2

and Z2, we set g0(X : Z) = (X2 + Z2 : X2 − Z2) and once again (A2 : B2) = (a2 + b2 : a2 − b2).
One computes:

• g0(O1) = g0(T1) = (A2 : B2)∗,
• g0(R1) = g0(S1) = (−A2 : B2),
• g0(T ′

1) = (1 : 1),
• g0(T ′′

1 ) = (−1 : 1).
The 4-torsion is g0(T̃1) = (r2 + s2 : r2 − s2) := (u : v), g0(R′

1) = (1 : 0) and g0(S′
1) = (0 : 1).

By setting h : (X : Z) 7→ (BX : AZ), the ramification is put in the correct shape. It remains
to check is that (A : B) is indeed rational in this context. To do so, we will look at the 4-torsion
on the intermediate model, set:

O0 = (A2 : B2)∗
, T0 = (−A2 : B2), R0 = (1 : 1), S0 = (−1 : 1).

We then have T ′
0 = (1 : 0) and T ′′

0 = (0 : 1) and R′
0 = (u : v) by the 2-isogeny. On this model,

the translation by R0 is τR0 : (X : Z) 7→ (A2Z : B2X). The 4-torsion verifies R′
0 + R0 = R′

0,
therefore:

(A2v : B2u) = (u : v) ⇐⇒ u

v
= ±A

B
.

Hence, (A : B) is rational, so is h and g = h ◦ g0 which gives the following theta model:
O2 = (A : B)∗

, T2 = (−A : B), R2 = (B : A), S2 = (−B : A).

The 4-torsion is T ′
2 = g(R′

1) = (1 : 0), T ′′
2 = g(S′

1) = (0 : 1) and R′
2 = g(T̃1) = (1 : 1) when we

choose (A : B) = (u : v).
We recover the usual duplication formula on theta coordinates. Since the codomain is in the

theta model, we can also easily compute the dual isogeny by swapping (a : b) and (A : B) in the
formulas, and recover the doubling formulas from [GL09].

Appendix C. Computing 2n-isogenies between Montgomery models

As explained in Section 2, 2n-isogenies can be computed via chaining 2-isogenies. Starting
with a point P0 of 2n-torsion on an elliptic curve E0, one can reduce its order by:

• Either computing 2 · P0, in which case we stay on the curve E0.
• Or computing the image of P0 via the 2-isogeny of kernel 2n−1 · P0, in which case we end

up on some curve E1

We then have two important operations: doubling and image by a 2-isogeny. One thing to keep in
mind is that we have to do operations in the correct order, it is not possible to compute an image
without the kernel, and it is not possible to compute a doubling without the curve constant.

As a first step, one always need to compute every 2i · P0. Then a naive approach would be to
compute the 2-isogeny with kernel 2n−1 · P0, compute every image, and repeat this process on
the new curve. One could also only compute the image of P0, compute every doubling of the new
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point P1 on the new curve and repeat the process. It is convenient to represent such strategies as
trees, like in Fig. 1. The leaves are 2-torsion points on the corresponding curve.

P0

2 · P0

22 · P0

23 · P0

24 · P0

25 · P0

26 · P0

P1

2 · P1

22 · P1

23 · P1

24 · P1

25 · P1

P2

2 · P2

22 · P2

23 · P2

24 · P2

P3

2 · P3

22 · P3

23 · P3

P4

2 · P4

22 · P4

P5

2 · P5

P6

E0 E1 E2 E3 E4 E5 E6 E7
f0 f1 f2 f3 f4 f5 f6

P0

2 · P0

22 · P0

23 · P0

24 · P0

25 · P0

26 · P0

P1

2 · P1

22 · P1

23 · P1

24 · P1

25 · P1

P2

2 · P2

22 · P2

23 · P2

24 · P2

P3

2 · P3

22 · P3

23 · P3

P4

2 · P4

22 · P4

P5

2 · P5

P6

E0 E1 E2 E3 E4 E5 E6 E7
f0 f1 f2 f3 f4 f5 f6

fi : Ei → Ei+1
is a 2-isogeny

Pi+1 := fi(Pi)

do
ub

lin
g

image

Figure 1. 27-isogeny f = f6 ◦ · · · ◦ f0 with kernel P0 — naive approaches

This is obviously not optimal however, too many useless points are computed, and we end
up with O(n2) operations for a 2n-isogeny. In their paper [FJP14, § 4.2.2], De Feo, Jao and
Plut explain how to find optimal strategies, taking into account the relative cost of a doubling
compared to an image. An example is given in Fig. 2, where using a binary tree gives O(n log n)
operations for a 2n-isogeny.

P0

2 · P0

22 · P0

23 · P0

24 · P0

25 · P0

26 · P0

P1

23 · P1

25 · P1

P2

23 · P2

24 · P2

P3

23 · P3

P4

2 · P4

22 · P4

P5

2 · P5

P6

E0 E1 E2 E3 E4 E5 E6 E7
f0 f1 f2 f3 f4 f5 f6

Figure 2. 27-isogeny f = f6 ◦ · · · ◦ f0 with kernel P0 — optimized approach

In this section, we focus on 2n-isogenies where the intermediate Kummer lines are given by
Montgomery models. We will denote them as Ki with i ≥ 0, so K0 is the initial Kummer line,
and the ramification will be denoted as follows:

Oi = (1 : 0)∗
, Ti = (0 : 1), Ri = (Ai : Bi), Si = (Bi : Ai) = Ri + Ti.
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As shown in Section 4, the point Ri = (Ai : Bi) can be used for the translated doubling formula
on Ki. It can also be used to recover the curve constant for standard doubling, it is always
rational, even if Ri and Si are not:

di = (Ai −Bi)2

(Ai −Bi)2 − (Ai + Bi)2 .

We also denoted earlier (a′
i : b′

i) the 4-torsion point above Ri and (ai : bi) = (a′
i + b′

i : a′
i − b′

i).
We will focus on the case where P0 is above the 2-torsion point R0, as we want to com-

pare it to Renes formulas provided in [Ren18, Prop. 4.2], and for simplicity we neglect the
cost of the additions. Recall from Section 4 that for the isogeny with kernel Ri, the trans-
lated by fi(R′

i) = Ri+1 = (a′
i
2 : b′

i
2) isogeny formula Ki → Ki+1 is given by (X : Z) 7→(

(bi(X + Z) + ai(X − Z))2 : (bi(X + Z)− ai(X − Z))2
)

. The codomain Ki+1 is represented by
Ri+1 and can be computed in 2S, and the translated image costs 2M + 2S.

Since Ri+1 = fi(R′
i) is the kernel of the next isogeny fi+1, computing translated images by

Ri+1 does not matter, except at the very last step where we can use the standard non translated
formula instead. Thus, similarly to what was done in Section 5, we can build a hybrid algorithm
which combines Montgomery doubling (standard or translated by Ri) and our translated image
formula.

Remark C.1. As we can see, our image formula only involves the 4-torsion point R′
i above Ri

(we can also recover from it the constant di), so the leaves in our strategy tree will be the 4-torsion
points instead of the 2-torsion ones. This also implies that if we want to compute a 2n-isogeny,
we have to assume we are given a 2n+1-torsion point, or we do the last step with Renes formulas
which doesn’t have this constraint.

What matters now is to compare the standard costs operations from [Ren18, Prop. 4.2] with
the ones provided in Section 4, this is done in Table 3. Unlike in Section 5, after the first 2-isogeny,
we don’t have control on curve constants any more, so m0 must be counted as two generic
multiplications because of the numerator and the denominator.

Doubling ImageOperation [Mon87] Proposition 4.5 [Ren18] Theorem 4.8
Cost 2M + 2S + 1m0 4S + 2m0 2M + 1m0 2S + 1m0

Cost (m0 = 2M) 4M + 2S 4M + 4S 4M 2M + 2S
Constants used di (Ai : Bi), (Ai+1 : Bi+1) (Ai : Bi) (ai : bi)

Table 3. Comparison of operations on Kummer lines to compute 2n-isogenies

We see that our formulas for images should be faster than the ones by Renes. The cost of the
codomain is more tricky: Renes formulas directly give di+1 in 2S. Our formulas give Ri+1 in 2S;
but from Ri+1 we can only use our translated doubling formulas, which are in this context more
expensive than the standard doubling formulas. Thus, we need to compute di+1 from Ri+1 which
costs 2S by the formula

di+1 = (a′2
i − b′2

i )2

(a′2
i − b′2

i )2 − (a′2
i + b′2

i )2 ,

for a total codomain cost of 4S.
Asymptotically, since there are exactly n codomains to compute, they are negligible compared

to images and doublings which are in O(n log n). An implementation to compute a 2n-isogeny
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using this hybrid method with SIKEp434 parameters is available in the same GitLab repository
and shows that we do end on the same curve as the one with Renes formulas. For these parameters,
our implementation shows that our hybrid method is slower, because the n considered is not large
enough that the faster images compensate the slower codomains.

Another reason why this would not be viable anyway is that there exists efficient 4-isogeny
formulas [CH17, § A], which saves half of the steps while having competitive costs for multiplication
by 4 and images, hence are much faster. Indeed, the 4-isogeny codomain costs 4S (computing
di+2 from di and R′

i), and a 4-isogeny image costs 6M + 2S. We remark that this is the same cost
as combining our translated 2-isogeny image with the standard 2-isogeny image. In particular,
by composing our translated 2-isogeny image twice, there is also a translated (by a 2-torsion
point) 4-isogeny image in only 4M + 4S. However, to be able to use these translated images, our
codomain formula would be slower.

Only in some hypothetical context where we would need to compute a lot of images, assuming
we already know the codomains, then the hybrid approach would be faster.

Appendix D. Correctness of the hybrid ladder

Fig. 3 shows two steps of Algorithm 3 and explains why we are cycling between 1 and 2
translated points. We want to compute n ·P , with n an ℓ-bits integer, its bits are denoted bi. Set
also Q = P + R where R is the extra 2-torsion point and assume the input is U0 = m · P and
V0 = (m + 1) · P + R, this corresponds to the initialization of our algorithm. According to Fig. 3,
the correction to the end result is as follows:

• If we have an odd number of steps, i.e. ℓ is even, we get U = n · P + R, so we always
need to correct U .
• On the other hand, if ℓ is odd, we get V = n · P + R if and only if the last bit is 0,

otherwise we have U = n · P .

Appendix E. Odd degree isogenies on Kummer lines

In this section, we extend the work of [Ren18] to build isogenies of odd degrees on any model
of a Kummer line.

Let E be an elliptic curve, and K be a cyclic kernel of odd degree ℓ, and f : E → E′ the
corresponding isogeny. To build a model of the Kummer line associated to E′ = E/K, we need
to build sections of 2(OE′), hence invariant sections of f∗(2(OE′)) =

∑
T ∈K 2(T ) on E.

If s is an invariant section, its associated divisor div s is invariant. The converse is not true,
there is an obstruction coming from the Weil-Cartier pairing.
Lemma E.1. Let D =

∑
i ai

∑
T ∈K(Pi + T ) = div sD a principal divisor and P0 :=

∑
aiPi.

Then sD is invariant by translation if and only if P0 ∈ K.
Proof. Since div sD is invariant by K, if T ∈ K, the function sD(P + T ) has the same divisor
as sD, hence differ by a constant. By definition of the Weil-Cartier pairing ef , this constant is
precisely equal to ef (T, f(P0)). So sD is invariant by K if and only if P0 ∈ E[ℓ] is orthogonal to
K, if and only if P0 ∈ K, if and only if f(P0) = OE′ .

Another equivalent proof is to remark that sD is invariant by translation if and only if D
descends to a divisor D′ =

∑
i ai

∑
T ∈K f(Pi) on E′ which is linearly equivalent to 0, which is

the case if and only if P0 ∈ K. □

Example E.2. Take Q1, Q2 ∈ E(k), sD =
∏

T ∈K
x−x(Q1+T )
x−x(Q2+T ) (we use the convention that

x− x(OE) := 1). Its associated divisor is

D =
∑

T ∈K

((Q1 + T ) + (−Q1 + T )− (Q2 + T )− (−Q2 + T )) .
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Figure 3. Two steps of scalar multiplication based on hybrid ladder

Then sD is invariant by translation and descends to x−f(Q1)
x−f(Q2) on E/K, x a Weierstrass coordinate.

When Q2 = OE, we recover a formula from [CH17; Ren18].
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As illustrated by Example E.2, we can use Lemma E.1 to construct divisors associated
to an invariant section. From such a divisor we can use Miller’s algorithm to construct the
associated section s. Since the isogeny is of odd degree, it preserves the 2-torsion, so by evaluating
s on the ramification point of the Kummer model of E we can efficiently recover the Kummer
model of E′ given by s.
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