
On the Two-sided Permutation Inversion Problem

Gorjan Alagic1, Chen Bai2, Alexander Poremba3, and Kaiyan Shi4

1QuICS, University of Maryland, and NIST
2Dept. of Electrical and Computer Engineering, University of Maryland

3Computing and Mathematical Sciences, California Institute of Technology
4Dept. of Computer Science, University of Maryland

Abstract

In the permutation inversion problem, the task is to find the preimage of some challenge value,
given oracle access to the permutation. This is a fundamental problem in query complexity, and
appears in many contexts, particularly cryptography. In this work, we examine the setting in
which the oracle allows for quantum queries to both the forward and the inverse direction of
the permutation—except that the challenge value cannot be submitted to the latter. Within
that setting, we consider two options for the inversion algorithm: whether it can get quantum
advice about the permutation, and whether it must produce the entire preimage (search) or
only the first bit (decision). We prove several theorems connecting the hardness of the resulting
variations of the inversion problem, and establish a number of lower bounds. Our results indicate
that, perhaps surprisingly, the inversion problem does not become significantly easier when the
adversary is granted oracle access to the inverse, provided it cannot query the challenge itself.

1 Introduction

1.1 The permutation inversion problem

The permutation inversion problem is defined as follows: given a permutation 𝜋 : [𝑁]→ [𝑁] and an
image 𝑦 ∈ [𝑁], output the correct preimage 𝑥 := 𝜋−1(𝑦). In the decision version of the problem, it
is sufficient to output only the first bit of 𝑥. If the algorithm can only access 𝜋 by making classical
queries, then making 𝑇 = Ω(𝑁) queries is necessary and sufficient for both problems. If quantum
queries are allowed, then Grover’s algorithm can be used to solve both problems with 𝑇 = 𝑂(

√
𝑁)

queries [Gro96, Amb02], which is worst-case asymptotically optimal [BBBV97, Amb02, Nay10].
In this work, we consider the permutation inversion problem in a setting where the algorithm is

granted both forward and inverse quantum query access to the permutation 𝜋. In order to make the
problem nontrivial, we modify the inverse oracle so that it outputs a reject symbol when queried
on the challenge image 𝑦. We call this the two-sided permutation inversion problem. This variant
appears naturally in the context of chosen-ciphertext security for encryption schemes based on (pseu-
dorandom) permutations [KL20], as well as in the context of sponge hashing (SHA3) [GJMG11].
We consider several variants:

1. (Auxiliary information.) With this option enabled, the inversion algorithm now consists of
two phases. The first phase is given a full description of 𝜋 (e.g., as a table) and allowed to
prepare an arbitrary quantum state 𝜌𝜋 consisting of 𝑆 qubits. This state is called auxiliary

1

information or advice. The second phase of the inversion algorithm is granted only the state
𝜌𝜋 and query access to 𝜋, and asked to invert an image 𝑦. The two phases of the algorithm
can also share an arbitrarily long uniformly random string, referred to as shared randomness.
The complexity of the algorithm is measured in terms of the number of qubits 𝑆 of the advice
state (generated by the first phase) and the total number of queries 𝑇 (made during the second
phase.)

2. (Adaptive restriction of challenge distribution.) In this case, the inversion algorithm again
consists of two phases. The first phase is again given a full description of 𝜋, and allowed to
output a string 𝜇 ∈ {0, 1}𝑚 for 𝑚 < 𝑛, where 𝑛 =

√
𝑁 . The second phase is then granted

query access to 𝜋 and asked to invert an image 𝑦 which is sampled uniformly at random from
the set of all strings whose last 𝑚 bits equal 𝜇.

3. (Search vs Decision.) Here the two options simply determine whether the inversion algorithm
is tasked with producing the entire preimage 𝑥 = 𝜋−1(𝑦) of the challenge 𝑦 (search version),
or only the first bit 𝑥0 (decision version.)

If the algorithm is solving the search problem, we refer to it as a search permutation inverter,
or SPI. If it is solving the decision problem, we refer to it as a decision permutation inverter, or
DPI. If an SPI uses 𝑆 qubits of advice and 𝑇 queries to succeed with probability at least 𝜖 in the
search inversion experiment, we say it is a (𝑆, 𝑇, 𝜖)-SPI. If a DPI uses 𝑆 qubits of advice and 𝑇
queries to succeed with probability at least 1/2+ 𝛿 in the decision inversion experiment, we say it is
a (𝑆, 𝑇, 𝛿)-DPI. If the algorithm is allowed to adaptively restrict the challenge distribution, we say
it is adaptive and denote it by aSPI or aDPI, as appropriate.

In this work, we are mainly interested in the average-case setting. This means that both the
permutation 𝜋 and the challenge image 𝑦 are selected uniformly at random. Moreover, the success
probability is taken over all the randomness in the inversion experiment, i.e., over the selection of
𝜋 and 𝑦 along with all internal randomness and measurements of the inversion algorithm.

In Section 2, we present technical preliminaries, including the swapping lemma and quantum
random access codes (QRAC), for subsequent proof. In Section 3, we introduce several definitions
of the permutation inversion problem, with both auxiliary information and adaptive restriction of
challenge distribution. Within Section 4, we show methods for amplifying the success probability
of inversion in the non-adaptive case. Subsequently, in Section 5, we illustrate two reductions:
from search-to-decision with auxiliary information and from unstructured search-to-decision without
auxiliary information. These reductions are then utilized to derive lower bounds, as shown in
Section 6. Finally, in Section 7, we propose a novel security notion, called one-way-QCCRA2, and
establish the security of two common schemes under this notion, subject to specific conditions.

1.2 Related work

Previous works have considered the quantum-query function inversion problem [HXY19, CLQ19,
CGLQ20, DKRS23, Liu23]. A number of papers gave lower bounds and time-space tradeoffs for
the (one-sided) quantum-query permutation inversion problem, with and without advice [Amb02,
Nay10, Ros21, NABT14, HXY19, CLQ19, FK15, BY23]. The relevant highlights among these are
summarized in Table 1.

We remark that some of these previous works [CX21, CLQ19, NABT14] do not fully address
the average-case setting. Specifically, they deal with inverters that are “restricted” in the following

2

manner. First, the inverter is said to “invert 𝑦 for 𝜋” if it succeeds in the inversion experiment for the
specific pair (𝜋, 𝑦) with probability at least 2/3. Second, the inverter is said to “invert a 𝛿-fraction
of inputs” if Pr𝜋,𝑦[the inverter inverts 𝑦 for 𝜋] ≥ 𝛿. This type of inverter is clearly captured by our
notion above: it is an (𝑆, 𝑇, 2𝛿/3)-SPI. However, there are successful inverters of interest that are
captured by our definition but are not restricted. For example, in a cryptographic context, one
would definitely be concerned about adversaries that can invert every (𝜋, 𝑦) with a probability of
exactly 1/𝑛. Such an adversary is clearly a (𝑆, 𝑇, 1/𝑛)-SPI, but is not a restricted inverter for any
value of 𝛿. Other works also consider the general average-case (e.g., [CGLQ20, Liu23, HXY19])
but without two-way oracle access. Note that the lower bound for restricted adversaries described
in [NABT14, CLQ19] can be translated to the more general lower bound in a black box way by
applying our amplification procedure described in Lemma 4.2.

[NABT14] [CLQ19] [HXY19] Ours
Advice classical quantum quantum quantum
Access Type one-sided one-sided one-sided two-sided
Inverter restricted restricted general general

𝑇 -𝑆 trade-off 𝑆𝑇 2 = ̃︀Ω(𝑁) 𝑆𝑇 2 = ̃︀Ω(𝜖𝑁) 𝑆𝑇 2 = ̃︀Ω(𝜖3𝑁) 𝑆𝑇 2 = ̃︀Ω(𝜖3𝑁)

Table 1: Summary of previous work on permutation inversion with advice. Success probability is
denoted by 𝜖. Note that 𝜖 = 𝑂(1) in [NABT14].

To our knowledge, the two-way variant of the inversion problem has only been considered in one
other work. Specifically, [CX21] gives a lower bound of 𝑇 = Ω(𝑁1/5) to invert a random injective
function (with two-way access and no advice) with a non-negligible success probability.

Another novelty of our work is that we give lower bounds and time-space tradeoffs for the
decision problem (rather than just search). While prior work [CGLQ20] also considered the general
decision game, their generic framework crucially relies on compressed oracles [Zha19] which are only
known to support random functions. Consequently, their techniques cannot readily be applied in
the context of permutation inversion due to a lack of “compressed permutation oracles”.

We remark that the notion of two-way quantum accessibility to a random permutation has been
considered in other works; for example, [ABKM22, ABK+22] studied the hardness of detecting
certain modifications to the permutation in this model. By contrast, we are concerned with the
problem of finding the inverse of a random image.

2 Technical preliminaries

2.1 Swapping Lemma

Let 𝒜𝑓 be a quantum algorithm with quantum oracle access to a function 𝑓 : 𝒳 → 𝒴, for some
finite sets 𝒳 and 𝒴. Let 𝒮 ⊆ 𝒳 be a subset. Then, the total query magnitude of 𝒜𝑓 on the set 𝒮 is
defined as 𝑞(𝒜𝑓 ,𝒮) =

∑︀𝑇−1
𝑡=0 ‖Π𝒮 |𝜓𝑡⟩ ‖2, where |𝜓𝑡⟩ represents the state of 𝒜 just before the (𝑡+1)st

query and Π𝒮 is the projector onto 𝒮 acting on the query register of 𝒜. We use the following simple
fact: for any subset 𝒮 ⊆ 𝒳 and 𝒜 making at most 𝑇 queries, it holds that 𝑞(𝒜𝑓 ,𝒮) ≤ 𝑇 . The
following lemma controls the ability of a query algorithm to distinguish two oracles, in terms of the
total query magnitude to locations at which the oracles take differing values.

3

Lemma 2.1 (Swapping Lemma, [Vaz98]). Let 𝑓, 𝑔 : 𝒳 → 𝒴 be functions with 𝑓(𝑥) = 𝑔(𝑥) for all
𝑥 /∈ 𝒮, where 𝒮 ⊆ 𝒳 . Let |Ψ𝑓 ⟩ and |Ψ𝑔⟩ denote the final states of a quantum algorithm 𝒜 with
quantum oracle access to the functions 𝑓 and 𝑔, respectively. Then,

‖ |Ψ𝑓 ⟩ − |Ψ𝑔⟩ ‖ ≤
√︁
𝑇 · 𝑞(𝒜𝑓 ,𝒮),

where ‖ |Ψ𝑓 ⟩ − |Ψ𝑔⟩ ‖ denotes the Euclidean distance and where 𝑇 is an upper bound on the number
of quantum oracle queries made by 𝒜.

2.2 Lower bounds for quantum random access codes

Quantum random access codes [Wie83, ANTV99, ALMO08] are a means of encoding classical bits
into (potentially fewer) qubits. We use the following variant from [CLQ19].

Definition 2.2 (Quantum random access codes with variable length). Let 𝑁 be an integer and let
ℱ𝑁 = {𝑓 : [𝑁] → 𝒳𝑁} be an ensemble of functions over some finite set 𝒳𝑁 . A quantum random
access code with variable length (𝖰𝖱𝖠𝖢-𝖵𝖫) for ℱ𝑁 is a pair (𝖤𝗇𝖼,𝖣𝖾𝖼) consisting of a quantum
encoding algorithm 𝖤𝗇𝖼 and a quantum decoding algorithm 𝖣𝖾𝖼:

• 𝖤𝗇𝖼(𝑓 ;𝑅): The encoding algorithm takes as input a function 𝑓 ∈ ℱ𝑁 together with a set of
random coins 𝑅 ∈ {0, 1}*, and outputs a quantum state 𝜌 on ℓ = ℓ(𝑓) many qubits (where ℓ
may depend on 𝑓).

• 𝖣𝖾𝖼(𝜌, 𝑥;𝑅): The decoding algorithm takes as input a state 𝜌, an element 𝑥 ∈ [𝑁] and random
coins 𝑅 ∈ {0, 1}* (same randomness used for the encoding), and seeks to output 𝑓(𝑥).

The performance of a 𝖰𝖱𝖠𝖢-𝖵𝖫 is characterized by parameters 𝐿 and 𝛿. Let 𝐿 := 𝔼
𝑓
[ℓ(𝑓)] be the

average length of the encoding over the uniform distribution on 𝑓 ∈ ℱ𝑁 , and let

𝛿 = Pr
𝑓,𝑥,𝑅

[𝖣𝖾𝖼(𝖤𝗇𝖼(𝑓 ;𝑅), 𝑥;𝑅) = 𝑓(𝑥)]

be the probability that the scheme correctly reconstructs the image of the function, where 𝑓 ∈ ℱ𝑁 ,
𝑥 ∈ [𝑁] and 𝑅 are all chosen uniformly at random.

We use the following information-theoretic lower bound on the expected length of any 𝖰𝖱𝖠𝖢-𝖵𝖫
scheme for permutations, which is a consequence of [CLQ19, Theorem 5].

Theorem 2.3 ([CLQ19], Corollary 1). For any 𝖰𝖱𝖠𝖢-𝖵𝖫 for the set of permutations 𝒮𝑁 (of the
set [𝑁]) with 𝛿 = 1− 𝑘/𝑁 for some 𝑘 = Ω(1/𝑁), we have

𝐿 ≥ log𝑁 !−𝑂(𝑘 log𝑁) .

3 The permutation inversion problem

We begin by formalizing the search version of the permutation inversion problem. We let [𝑁] =
{1, ..., 𝑁}; typically we choose 𝑁 = 2𝑛 for some positive integer 𝑛. For 𝑓 : 𝒳 → 𝒴 a function from
a set 𝒳 to an additive group 𝒴 (typically just bitstrings), the quantum oracle 𝒪𝑓 is the unitary
operator 𝒪𝑓 : |𝑥⟩ |𝑦⟩ → |𝑥⟩ |𝑦 ⊕ 𝑓(𝑥)⟩. We use 𝒜𝒪𝑓 (or sometimes simply 𝒜𝑓) to denote that
algorithm 𝒜 has quantum oracle access to 𝑓 .

4

Definition 3.1. Let 𝑚,𝑛 ∈ ℕ and 𝑀 = 2𝑚, 𝑁 = 2𝑛. An adaptive search-version permutation
inverter (aSPI) is a pair 𝖺𝖲 = (𝖺𝖲0, 𝖺𝖲1) of quantum algorithms, where

• 𝖺𝖲0 is an algorithm that receives as input a truth table for a permutation over [𝑁] and a
random string 𝑟, and outputs a quantum state as well as a classical string 𝜇 ∈ {0, 1}𝑚 with
0 ≤ 𝑚 < 𝑛;

• 𝖺𝖲1 is an oracle algorithm that receives a quantum state, a classical string 𝜇 ∈ {0, 1}𝑚, an
image 𝑦 ∈ [𝑁], and a random string 𝑟, and outputs 𝑥 ∈ {0, 1}𝑛−𝑚.

Note that 𝑚 is a parameter of the adaptivity, i.e. the length of the adaptive string.

We will consider the execution of an aSPI 𝖺𝖲 in the following experiment,

1. (sample coins) a uniformly random permutation 𝜋 : [𝑁]→ [𝑁] and a uniformly random string
𝑟 ← {0, 1}* are sampled;

2. (prepare advice) 𝖺𝖲0 is run, producing a pair consisting of a quantum state and a string
(𝜌𝜋,𝑟,𝜇, 𝜇)← 𝖺𝖲0(𝜋, 𝑟);

3. (sample instance) a random image 𝑦 ∈ [𝑁] is generated by first sampling a random string
𝑥← {0, 1}𝑛−𝑚 and then letting 𝑦 = 𝜋(𝑥‖𝜇);

4. (invert) 𝖺𝖲1 is run with the oracles below, and produces a candidate preimage 𝑥*.

𝒪𝜋 : |𝑤⟩ |𝑧⟩ → |𝑤⟩ |𝑧 ⊕ 𝜋(𝑤)⟩ 𝒪𝜋−1
⊥𝑦

: |𝑤⟩ |𝑧⟩ → |𝑤⟩ |𝑧 ⊕ 𝜋−1⊥𝑦(𝑤)⟩ , (1)

where 𝜋−1⊥𝑦 : [𝑁]× {0, 1} → [𝑁]× {0, 1} is defined by

𝜋−1⊥𝑦(𝑤‖𝑏) =

{︃
𝜋−1(𝑤)‖0 if 𝑏 = 0 and 𝑤 ̸= 𝑦

1⌈log𝑁⌉‖1 otherwise.

To keep the notation simple, we write this entire process as 𝑥* ← 𝖺𝖲
𝜋⊥𝑦

1 (𝜌𝜋,𝑟,𝜇, 𝜇, 𝑦, 𝑟). We
will use 𝜋⊥𝑦 to denote simultaneous access to the two oracles in (1) throughout the paper.

5. (check) If 𝜋(𝑥*‖𝜇) = 𝑦, output 1; otherwise output 0.

Note that the two oracles allow for the evaluation of the permutation 𝜋 in both the forward
and inverse directions. To disallow trivial solutions, the oracle outputs a fixed “reject” element
1⌈log𝑁⌉‖1 ∈ [𝑁]× {0, 1} if queried on 𝑦 in the inverse direction.

Definition 3.2. An (𝑆, 𝑇, 𝜖)-aSPI is a search-version adaptive permutation inverter 𝖺𝖲 = (𝖺𝖲0, 𝖺𝖲1)
satisfying all of the following:

1. Pr
[︀
𝜋−1(𝑦)← 𝖺𝖲

𝜋⊥𝑦

1 (𝜌, 𝜇, 𝑦, 𝑟) : (𝜌, 𝜇)← 𝖺𝖲0(𝜋, 𝑟), 𝑦 = 𝜋(𝑥‖𝜇)
]︀
≥ 𝜖, where the probability is

taken over 𝜋 ← 𝒮𝑁 , 𝑟 ← {0, 1}* and 𝑥← {0, 1}𝑛−𝑚, along with all internal randomness and
measurements of 𝖺𝖲;

2. 𝑆 = 𝑆(𝖺𝖲) is an upper bound on the number of qubits of 𝜌 in the above.

5

3. 𝑇 = 𝑇 (𝖺𝖲) is an upper bound on the number of oracle queries made by 𝖺𝖲1.

We emphasize that the running time of 𝖺𝖲 and the length of the shared randomness 𝑟 are only
required to be finite. We will assume that both 𝑆 and 𝑇 depend only on the parameter 𝑁 ; in
particular, they will not vary with 𝜋, 𝑦, 𝑟, or any measurements.

Definition 3.3. A search-version permutation inverter (SPI) 𝖲 = (𝖲0,𝖲1) is defined as an aSPI
with 𝑚 = 0. An (𝑆, 𝑇, 𝜖)-SPI is an (𝑆, 𝑇, 𝜖)-aSPI with 𝑚 = 0.

Decision version. The decision version of the permutation inversion problem is defined similarly
to the search version above. An adaptive decision-version permutation inverter (aDPI) is denoted
𝖺𝖣 = (𝖺𝖣0, 𝖺𝖣1), and outputs one bit 𝑏 rather than a full candidate preimage. In the “check” phase
of the experiment, the single-bit output 𝑏 of 𝖺𝖣1 is compared to the first bit 𝜋−1(𝑦)|0 of the preimage
of the challenge 𝑦. Success probability is now measured in terms of the advantage over the random
guessing probability of 1/2.

Definition 3.4. A (𝑆, 𝑇, 𝛿)-aDPI is a decision-version adaptive permutation inverter 𝖺𝖣 = (𝖺𝖣0, 𝖺𝖣1)
satisfying all of the following:

1. Pr
[︀
𝜋−1(𝑦)|0 ← 𝖺𝖣

𝜋⊥𝑦

1 (𝜌, 𝜇, 𝑦, 𝑟) : (𝜌, 𝜇)← 𝖺𝖣0(𝜋, 𝑟), 𝑦 = 𝜋(𝑥‖𝜇)
]︀
≥ 1

2 + 𝛿, where the proba-
bility is taken over 𝜋 ← 𝒮𝑁 , 𝑟 ← {0, 1}* and 𝑥← {0, 1}𝑛−𝑚, along with all internal random-
ness and measurements of 𝖺𝖣. Here 𝜋−1(𝑦)|0 denotes the first bit of 𝜋−1(𝑦)

2. 𝑆 = 𝑆(𝖺𝖲) is an upper bound on the number of qubits of 𝜌 in the above.

3. 𝑇 = 𝑇 (𝖺𝖲) is an upper bound on the number of oracle queries made by 𝖺𝖲1.

Definition 3.5. A decision-version permutation inverter (DPI) 𝖣 = (𝖣0,𝖣1) is defined as an aDPI
with 𝑚 = 0. An (𝑆, 𝑇, 𝛿)-DPI is an (𝑆, 𝑇, 𝛿)-aDPI with 𝑚 = 0.

4 Amplification

In this section, we show how to amplify the success probability of search and decision inverters, in
the non-adaptive (i.e., 𝑚 = 0) case. The construction for the search case is shown in Protocol 1.

Protocol 1 (ℓ-time repetition of (𝑆, 𝑇, 𝜖)-SPI). Given an (𝑆, 𝑇, 𝜖)-SPI 𝖲 = (𝖲0, 𝖲1) and an integer
ℓ > 0, define a SPI 𝖲[ℓ] = (𝖲[ℓ]0, 𝖲[ℓ]1) as follows.

1. (Advice Preparation) 𝖲[ℓ]0 proceeds as follows:

(a) receives as input a random permutation 𝜋 : [𝑁] → [𝑁] and randomness 𝑟 ← {0, 1}*
and parses the string 𝑟 into 2ℓ substrings 𝑟 = 𝑟0‖...‖𝑟ℓ−1‖𝑟ℓ‖...‖𝑟2ℓ−1 (with lengths as
needed for the next step).

(b) uses 𝑟0, ..., 𝑟ℓ−1 to generate ℓ permutation pairs {𝜎1,𝑖, 𝜎2,𝑖}ℓ−1𝑖=0 in 𝒮𝑁 , and then runs
𝖲0(𝜎1,𝑖 ∘ 𝜋 ∘ 𝜎2,𝑖, 𝑟𝑖+ℓ) to get a quantum state 𝜌𝑖 := 𝜌𝜎1,𝑖∘𝜋∘𝜎2,𝑖,𝑟𝑖+ℓ

for all 𝑖 ∈ [0, ℓ− 1].
Finally, 𝖲[ℓ]0 outputs the quantum state

⨂︀ℓ−1
𝑖=0 𝜌𝑖.

2. (Oracle Algorithm) 𝖲[ℓ]
𝜋⊥𝑦

1 proceeds as follows:

6

(a) receives
⨂︀ℓ−1

𝑖=0 𝜌𝑖, randomness 𝑟 and an image 𝑦 ∈ [𝑁] as input.

(b) parses 𝑟 = 𝑟0‖...‖𝑟ℓ−1‖𝑟ℓ‖...‖𝑟2ℓ−1 and uses the coins 𝑟0‖...‖𝑟ℓ−1 to reconstruct the
permutations {𝜎1,𝑖, 𝜎2,𝑖}ℓ−1𝑖=0 in 𝒮𝑁 .

(c) runs the following routine for all 𝑖 ∈ [0, ℓ− 1]:

i. run 𝖲1 with oracle access to (𝜎1,𝑖∘𝜋∘𝜎2,𝑖)⊥𝜎1,𝑖(𝑦), which implements the permutation
𝜎1,𝑖 ∘ 𝜋 ∘ 𝜎2,𝑖 and its inverse (with output ⊥ on input 𝜎1,𝑖(𝑦)). a

ii. get back 𝑥𝑖 ← 𝖲
(𝜎1,𝑖∘𝜋∘𝜎2,𝑖)⊥𝜎1,𝑖(𝑦)

1 (𝜌𝑖, 𝜎1,𝑖(𝑦), 𝑟𝑖+ℓ).

(d) queries the oracle 𝜋⊥𝑦 (in the forward direction) on each 𝜎2,𝑖(𝑥𝑖) to see if 𝜋(𝜎2,𝑖(𝑥𝑖)) =
𝑦. If such an 𝜎2,𝑖(𝑥𝑖) is found, outputs it; otherwise outputs 0.

aHow to construct this quantum oracle is described in Appendix B.1.

In the adaptive case, a difficulty arises with the above approach. To amplify the probability,
we randomize the permutation in each iteration and 𝖺𝖲[ℓ]0 produces corresponding advice for each
randomized permutation. In the adaptive case, 𝖺𝖲[ℓ]0 needs to output an adaptive string 𝜇 which
is used to produce the image 𝑦. However, running 𝖺𝖲0 for each randomized permutation will, in
general, result in a different 𝜇 in each execution, and it is unclear how one can use these to generate a
single 𝜇′ in the amplified algorithm. We remark that other works considered different approaches to
amplification, e.g., via quantum rewinding [HXY19] and the gentle measurement lemma [CGLQ20].

Lemma 4.1 (Amplification, search). Let 𝖲 be a (𝑆, 𝑇, 𝜖)-SPI for some 𝜖 > 0. Then 𝖲[ℓ] is a
(ℓ𝑆, ℓ(𝑇 + 1), 1− (1− 𝜖)ℓ)-SPI.

Proof. We consider the execution of the ℓ-time repetition of (𝑆, 𝑇, 𝜖)-SPI, denoted by SPI 𝖲[ℓ], in the
search permutation inversion experiment defined in Protocol 1. By construction, 𝖲[ℓ] runs ℓ-many
SPI procedures (𝖲0, 𝖲1). Since 𝖲 is assumed to be an (𝑆, 𝑇, 𝜖)-SPI, let 𝜋𝑖 = 𝜎1,𝑖 ∘ 𝜋 ∘ 𝜎2,𝑖, for each
iteration 𝑖 ∈ [0, ℓ− 1] it follows that

Pr

[︂
(𝜋𝑖)

−1(𝜎1,𝑖(𝑦))← 𝖲
(𝜋𝑖)⊥𝜎1,𝑖(𝑦)

1

(︀
𝜌𝑖, 𝜎1,𝑖(𝑦), 𝑟𝑖+ℓ

)︀
: 𝜌𝑖 ← 𝖲0(𝜋𝑖, 𝑟𝑖+ℓ)

]︂
≡ Pr

[︂
(𝜎2,𝑖)

−1 ∘ 𝜋−1(𝑦)← 𝖲
(𝜋∘𝜎2,𝑖)⊥𝑦

1

(︀
𝜌𝜋∘𝜎2,𝑖,𝑟𝑖+ℓ

, 𝑦, 𝑟𝑖+ℓ

)︀
: 𝜌𝜋∘𝜎2,𝑖,𝑟𝑖+ℓ

← 𝖲0(𝜋 ∘ 𝜎2,𝑖, 𝑟𝑟+ℓ)

]︂
≡ Pr

[︀
𝜋−1(𝑦)← 𝖲

𝜋⊥𝑦

1

(︀
𝜌𝜋,𝑟𝑖+ℓ

, 𝑦, 𝑟𝑖+ℓ

)︀
: 𝜌𝜋,𝑟𝑖+ℓ

← 𝖲0(𝜋, 𝑟𝑟+ℓ)
]︀
≥ 𝜖,

where the probability is taken over 𝜋 ← 𝒮𝑁 and 𝑟 ← {0, 1}* (which is used to sample permutations
𝜎𝑖), along with all internal measurements of 𝖲.

Essentially, for all 𝑖 ∈ [0, ℓ − 1], the goal of the 𝑖-th trial is to find the preimage 𝑥𝑖 such that
𝜎2,𝑖(𝑥𝑖) = 𝜋−1(𝑦). Since all {𝜎2,𝑖} are independently randomly generated, the elements 𝜎2,𝑖(𝑥𝑖)
are independent for each 𝑖 in the range [0, ℓ − 1]. Therefore, all ℓ trails are mutually independent.
Therefore, we get that

7

Pr
[︀
𝜋−1(𝑦)← 𝖲[ℓ]

𝜋⊥𝑦

1 (𝜌, 𝑦, 𝑟) : 𝜌← 𝖲[ℓ]0(𝜋, 𝑟)
]︀

= 1− Pr

[︃
ℓ−1⋂︁
𝑖=0

[︂
(𝜋 ∘ 𝜎2,𝑖)−1(𝑦) ̸← 𝖲

(𝜋𝑖)⊥𝜎1,𝑖(𝑦)

1

(︀
𝜌𝑖, 𝜎1,𝑖(𝑦), 𝑟𝑖+ℓ

)︀
: 𝜌𝑖 ← 𝖲0(𝜋𝑖, 𝑟𝑖+ℓ)

]︂]︃

= 1−
ℓ−1∏︁
𝑖=0

Pr

[︂
(𝜋 ∘ 𝜎2,𝑖)−1(𝑦) ̸← 𝖲

(𝜋𝑖)⊥𝜎1,𝑖(𝑦)

1

(︀
𝜌𝑖, 𝜎1,𝑖(𝑦), 𝑟𝑖+ℓ

)︀
: 𝜌𝑖 ← 𝖲0(𝜋𝑖, 𝑟𝑖+ℓ)

]︂
≥ 1− (1− 𝜖)ℓ.

Given that the SPI (𝖲0, 𝖲1) requires space 𝑆 and 𝑇 queries, we have that (𝖲[ℓ]0,𝖲[ℓ]1) requires space
𝑆(𝖲[ℓ]) = ℓ · 𝑆 and query number 𝑇 (𝖲[ℓ]) = ℓ · (𝑇 + 1), as both algorithms need to run either 𝖲0 or
𝖲1 ℓ-many times as subroutines. This proves the claim.

We also need a variant of the above to compute the search lower bound.

Lemma 4.2. Let 𝖲 be a (𝑆, 𝑇, 𝜖)-SPI for some 𝜖 > 0. Then, we can construct an SPI 𝖲[ℓ] =
(𝖲[ℓ]0, 𝖲[ℓ]1) using 𝑆(𝖲[ℓ]) qubits of advice and making 𝑇 (𝖲[ℓ]) queries, with

𝑆(𝖲[ℓ]) =

⌈︂
ln(10)

𝜖

⌉︂
· 𝑆 and 𝑇 (𝖲[ℓ]) =

⌈︂
ln(10)

𝜖

⌉︂
· (𝑇 + 1)

such that
Pr
𝜋,𝑦

[︂
Pr
𝑟

[︀
𝜋−1(𝑦)← 𝖲[ℓ]

𝜋⊥𝑦

1 (𝜌, 𝑦, 𝑟) : 𝜌← 𝖲[ℓ]0(𝜋, 𝑟)
]︀
≥ 2

3

]︂
≥ 1

5
.

The proof is analogous to Lemma 4.1 and is given in Appendix B.2.
We also consider amplification for the decision version; the construction is essentially the same,

except that the final “check” step is replaced by outputting the majority bit.

Lemma 4.3 (Amplification, decision). Let 𝖣 be a (𝑆, 𝑇, 𝛿)-DPI for some 𝛿 > 0. Then 𝖣[ℓ] is a
(ℓ𝑆, ℓ𝑇, 1/2− exp

(︀
−𝛿2/(1 + 2𝛿) · ℓ

)︀
)-DPI.

The proof is analogous to the search version and given in Appendix B.3.

5 Reductions

We give two reductions related to the inversion problem: a search-to-decision reduction (for the
case of advice), and a reduction from unstructured search to the decision inversion problem (for the
case of no advice).

5.1 A search-to-decision reduction

To construct a search inverter from a decision inverter, we take the following approach. We first
amplify the decision inverter so that it correctly computes the first bit of the preimage with certainty.
We then repeat this amplified inverter 𝑛 times (once for each bit position) but randomize the instance
in such a way that the 𝑗-th bit of the preimage is permuted to the first position. We then output
the string of resulting bits as the candidate preimage.

8

Theorem 5.1. Let 𝖣 be a (𝑆, 𝑇, 𝛿)-DPI. Then for any ℓ ∈ ℕ, we can construct a (𝑛ℓ𝑆, 𝑛ℓ𝑇, 𝜂)-SPI
with

𝜂 ≥ 1− 𝑛 · exp
(︂
− 𝛿2

(1 + 2𝛿)
· ℓ
)︂
, where 𝑛 = ⌈log𝑁⌉.

Proof. Given an 𝛿-DPI (𝖣0,𝖣1) with storage size 𝑆 and query size 𝑇 , we can construct a 𝜂′-DPI
(𝖣[ℓ]0,𝖣[ℓ]1) with storage size ℓ𝑆 and query size ℓ𝑇 through ℓ-time repetition. By Lemma 4.3,
we have that 𝜂′ ≥ 1

2 − exp
(︁
− 𝛿2

(1+2𝛿) · ℓ
)︁
. Note that the algorithm (𝖣[ℓ]0,𝖣[ℓ]1) runs (𝖣0,𝖣1) as a

subroutine. In the following, we represent elements in [𝑁] using a binary decomposition of length
⌈log𝑁⌉. To state our search-to-decision reduction, we introduce a generalized swap operation,
denoted by swap𝑎,𝑏, which acts as follows for any quantum state of 𝑚 qubits:

swap𝑎,𝑏 |𝑤⟩ = swap𝑎,𝑏 |𝑤𝑚−1 . . . 𝑤𝑏 . . . 𝑤𝑎 . . . 𝑤1𝑤0⟩ = |𝑤𝑚−1 . . . 𝑤𝑎 . . . 𝑤𝑏 . . . 𝑤1𝑤0⟩

Note that swap𝑘,𝑘 is equal to the identity, i.e. swap𝑘,𝑘 |𝑥⟩ = |𝑥⟩ for 𝑥 ∈ [𝑁] and 𝑘 ∈ [0, ⌈log𝑁⌉ − 1].
We construct a SPI (𝖲0, 𝖲1) as follows.

1. The algorithm 𝖲0 proceeds as follows:

(a) 𝖲0 receives a random permutation 𝜋 : [𝑁] → [𝑁] and a random string 𝑟 ← {0, 1}* as
inputs. We parse 𝑟 into ⌈log𝑁⌉ individual substrings, i.e. 𝑟 = 𝑟0‖...‖𝑟⌈log𝑁⌉−1; the
length of each substring is clear in context.

(b) 𝖲0 runs the algorithm 𝖣[ℓ]0(𝜋∘swap0,𝑗 , 𝑟𝑗) to obtain quantum advice 𝜌𝜋∘swap0,𝑗 ,𝑟𝑗 for each

𝑗 ∈ [0, ⌈log𝑁⌉ − 1]. Finally, 𝖲0 outputs a quantum state 𝜌 =
⨂︀⌈log𝑁⌉−1

𝑗=0 𝜌𝜋∘swap0,𝑗 ,𝑟𝑗 .
(Note: We let 𝜌𝑗 = 𝜌𝜋∘swap0,𝑗 ,𝑟𝑗 for the rest of the proof.)

2. The oracle algorithm 𝖲
𝒪𝜋 ,𝒪

𝜋−1
⊥𝑦

1 proceeds as follows:1

(a) 𝖲1 receives
⨂︀𝑛−1

𝑗=0 𝜌𝑗 , a random string 𝑟 := 𝑟0‖...‖𝑟𝑛−1 and an image 𝑦 ∈ [𝑁].

(b) 𝖲1 then runs the following routine for each 𝑗 ∈ [0, ⌈log𝑁⌉ − 1]:

i. Run 𝖣[ℓ]1 with oracle access to 𝒪𝜋∘𝗌𝗐𝖺𝗉0,𝑗 and 𝒪(𝜋∘𝗌𝗐𝖺𝗉0,𝑗)
−1
⊥𝑦

, where

𝒪𝜋∘𝗌𝗐𝖺𝗉0,𝑗 (|𝑤⟩1 |𝑧⟩2) =
(︀
𝗌𝗐𝖺𝗉0,𝑗 ⊗ 𝐼

)︀
𝒪𝜋

(︀
𝗌𝗐𝖺𝗉0,𝑗 ⊗ 𝐼

)︀
|𝑤⟩1 |𝑧⟩2

𝒪(𝜋∘𝗌𝗐𝖺𝗉0,𝑗)
−1
⊥𝑦
(|𝑤⟩1 |𝑧⟩2) = (𝐼 ⊗ 𝗌𝗐𝖺𝗉0,𝑗)𝒪𝜋−1

⊥𝑦
|𝑤⟩1 |𝑧⟩2

ii. Let 𝑏𝑗 ← 𝖣[ℓ]
(𝜋∘𝗌𝗐𝖺𝗉0,𝑗)⊥𝑦

1 (𝜌𝑗 , 𝑦, 𝑟𝑗) denote the output.

(c) 𝖲1 outputs 𝑥* ∈ [𝑁] with the binary decomposition 𝑥* =
∑︀⌈log𝑁⌉−1

𝑗=0 2𝑗 · 𝑏𝑗 .

We now argue that the probability that 𝒟[ℓ]1 correctly recovers the pre-image bits 𝑏𝑖 and 𝑏𝑗 is
independent for each 𝑖 ̸= 𝑗. From Lemma 4.3, we know that 𝖣[ℓ]1 runs 𝖣1 as a subroutine, i.e. it
decides the first bit of the pre-image of 𝑦 by running 𝖣1 (in Lemma 4.3) ℓ times with different random
coins. It actually needs to recall 𝖣1 for amplification and for each iteration in this amplification
𝑘 ∈ [0, ℓ − 1], where the actual modified permutation under use is 𝜎𝑖,𝑘 ∘ 𝜋 ∘ swap0,𝑖 and image is

1Here, we borrow the notation for 𝒪𝜋 and 𝒪
𝜋−1
⊥𝑦

from the experiment described in Section 3.

9

𝜎𝑖,𝑘(𝑦). Similarly for term 𝑗, 𝜎𝑗,𝑘∘𝜋∘swap0,𝑗 and 𝜎𝑗,𝑘(𝑦) is used as the permutation and image. Since
the random coins (𝑟𝑖 and 𝑟𝑗), which are used to modify the target permutation 𝜋, are independently
random, those random permutations (𝜎𝑖,𝑘 and 𝜎𝑗,𝑘) generated from random coins are independently
random and so do those modified composition permutations, images, and advice states.

Analyzing the success probability of (𝖲0,𝖲1), we find that

Pr
[︀
𝜋−1(𝑦)← 𝖲

𝜋⊥𝑦

1 (𝜌, 𝑦, 𝑟) : 𝜌← 𝖲0(𝜋, 𝑟)
]︀

= Pr

⎡⎣⌈log𝑁⌉−1⋀︁
𝑗=0

𝜋−1(𝑦)|𝑗 ← 𝖣[ℓ]
(𝜋∘𝗌𝗐𝖺𝗉0,𝑗)⊥𝑦

1 (𝜌𝑗 , 𝑦, 𝑟𝑗)

⎤⎦
≥

(︂
1− exp

(︂
− 𝛿2

(1 + 2𝛿)
· ℓ
)︂)︂⌈log𝑁⌉

≥ 1− ⌈log𝑁⌉ · exp
(︂
− 𝛿2

(1 + 2𝛿)
· ℓ
)︂
.

where the last line follows from Bernoulli’s inequality. Finally, we compute the resources needed for
(𝖲0, 𝖲1). By Lemma 4.3, (𝖣[ℓ]0,𝖣[ℓ]1) requires space ℓ𝑆 and query size ℓ𝑇 . For 𝑗 ∈ [0, ⌈log𝑁⌉ − 1],
𝖲0 stores 𝖣[ℓ]0’s outputs and thus 𝖲 requires storage size ⌈log𝑁⌉ℓ𝑆. Similarly, 𝖲1 runs 𝖣[ℓ]1 to
obtain 𝑏𝑗 and thus it requires ⌈log𝑁⌉ℓ𝑇 queries in total.

Comparison to O2H lemma. The one-way to hiding (O2H) lemma [AHU19] also presents a
natural reduction from search to decision in the context of general quantum oracle algorithms. How-
ever, it is quite limited in our setting. For example, given a decision inverter capable of computing
the first bit of 𝜋−1(𝑦) with certainty after 𝑞 queries, the O2H lemma yields a search inverter that can
invert 𝑦 with success probability 1

4𝑞2
after ≈ 𝑞 queries. By comparison, our amplification technique

achieves an inversion of 𝑦 with a success probability of 1 with 𝑛𝑞 queries, which is significantly
better in the relevant setting of 𝑞 ≫ 𝑛. However, in applications where only one copy of the advice
is available for the amplified algorithm, O2H still works while our amplification technique fails.

5.2 A reduction from unstructured search

Second, we generalize the method used in [Nay10] to give a lower bound for adaptive decision
inversion without advice. Unlike in Nayak’s original reduction, here we grant two-way access to the
permutation. Recall that, in the unique search problem, one is granted quantum oracle access to a
function 𝑓 : [𝑁]→ {0, 1} which is promised to satisfy either |𝑓−1(1)| = 0 or |𝑓−1(1)| = 1; the goal
is to decide which is the case. The problem is formally defined below.

Definition 5.2. (UNIQUESEARCH𝑛) Given a function 𝑓 : {0, 1}𝑛 → {0, 1}, such that 𝑓 maps at
most one element to 1, output YES if 𝑓−1(1) is non-empty and NO otherwise.

Definition 5.3. (Distributional error) Suppose an algorithm solves a decision problem with error
probability at most 𝑝0 for NO instances and 𝑝1 for YES instances. Then we say this algorithm has
distributional error (𝑝0, 𝑝1).

We now establish a reduction from unstructured search to adaptive decision inversion.

Theorem 5.4. If there exists a (0, 𝑇, 𝛿)-aDPI, then there exists a quantum algorithm that solves
UNIQUESEARCH𝑛−𝑚−1 with at most 2𝑇 queries and distributional error

(︀
1
2 − 𝛿,

1
2

)︀
.

10

Proof. Our proof is similar to that of Nayak [Nay10]: given a (0, 𝑇, 𝛿)-aDPI 𝒜, we construct another
algorithm ℬ which solves the UNIQUESEARCH𝑛−𝑚−1 problem.

Let 𝑁 = 2𝑛. For any uniform image 𝑡 ∈ [𝑁], define the NO and YES instances sets (correspond-
ing to the image 𝑡) of the decision permutation inversion problem with size 𝑁 :

𝜋𝑡,0 = {𝜋 : 𝜋 is a permutation on [𝑁], the first bit of 𝜋−1(𝑡) is 0},
𝜋𝑡,1 = {𝜋 : 𝜋 is a permutation on [𝑁], the first bit of 𝜋−1(𝑡) is 1}.

Note that for a random permutation 𝜋, whether 𝜋 ∈ 𝜋𝑡,0 or 𝜋𝑡,1 simply depends on the choice of
𝑡. Since 𝑡 is uniform, Pr[𝜋 ∈ 𝜋𝑡,0] = Pr[𝜋 ∈ 𝜋𝑡,1] = 1/2. We also consider functions 𝑕 : [𝑁] → [𝑁]
with a unique collision at 𝑡. One of the colliding pairs should have the first bit 0, and the other one
should have the first bit 1. Moreover, the last 𝑚 bits of the colloding pair is 𝜇. Formally speaking,
𝑕(0‖𝑖‖𝜇) = 𝑕(1‖𝑗‖𝜇) = 𝑡, where 𝑖, 𝑗 ∈ {0, 1}𝑛−𝑚−1. Let 𝑄𝑡,𝜇 denote the set of all such functions.

Furthermore, given a permutation 𝜋 on [𝑁], consider functions in 𝑄𝑡,𝜇 that differ from 𝜋 at
exactly one point. These are functions 𝑕 with a unique collision and the collision is at 𝑡. If
𝜋 ∈ 𝜋𝑡,0, 𝜋(0‖𝑖‖𝜇) = 𝑕(0‖𝑖‖𝜇) = 𝑡 and 1‖𝑗‖𝜇 is the unique point where 𝜋 and 𝑕 differ; if 𝜋 ∈ 𝜋𝑡,1,
𝜋(1‖𝑗‖𝜇) = 𝑕(1‖𝑗‖𝜇) = 𝑡 and 0‖𝑖‖𝜇 is the unique point where 𝜋 and 𝑕 differ. Let 𝑄𝜋,𝑡,𝜇 denote the
set of such functions 𝑕 and clearly 𝑄𝜋,𝑡,𝜇 ⊆ 𝑄𝑡,𝜇. Note that if we pick a random permutation 𝜋 in
{𝜋𝑁} and choose a uniform random 𝑕 ∈ 𝑄𝜋,𝑡,𝜇, 𝑕 is also uniform in 𝑄𝑡,𝜇. Next, we construct an
algorithm ℬ that tries to solve UNIQUESEARCH𝑛−𝑚−1 as follows, with quantum oracle access to 𝑓 :

1. ℬ first samples some randomness 𝑟 ∈ {0, 1}*, a uniform random string 𝑠 ∈ {0, 1}𝑛−𝑚 and a
permutation 𝜋 ∈ {𝜋𝑁}.

2. ℬ then runs 𝒜 with quantum orale access to 𝜋, 𝜋−1 until it receives a string 𝜇 ∈ {0, 1}𝑚 from
𝒜.

3. Let 𝑡 = 𝜋(𝑠‖𝜇), and then it follows that if 𝑠|0 = 0, 𝜋 ∈ 𝜋𝑡,0, and otherwise 𝜋 ∈ 𝜋𝑡,1.

4. ℬ then constructs a function 𝑕𝑓,𝜋,𝑡,𝜇 and 𝑕−1*𝑓,𝜋,𝑡,𝜇 as follows. If 𝜋 ∈ 𝜋𝑡,0, for any 𝑖 ∈ {0, 1} and
𝑗 ∈ {0, 1}𝑛−𝑚−1,

𝑕𝑓,𝜋,𝑡,𝜇(𝑖‖𝑗‖𝑢) =

{︃
𝑡 if 𝑖 = 1 and 𝑓(𝑗) = 1, 𝑢 = 𝜇,

𝜋(𝑖‖𝑗‖𝑢) otherwise.
(2)

If 𝜋 ∈ 𝜋𝑡,1, for any 𝑖 ∈ {0, 1} and 𝑗 ∈ {0, 1}𝑛−𝑚−1,

𝑕𝑓,𝜋,𝑡,𝜇(𝑖‖𝑗‖𝜇) =

{︃
𝑡 if 𝑖 = 0 and 𝑓(𝑗) = 1, 𝑢 = 𝜇,

𝜋(𝑖‖𝑗‖𝑢) otherwise.
(3)

No matter what instance sets 𝜋 belongs to, the corresponding "inverse" function is defined as

𝑕−1*𝑓,𝜋,𝑡,𝜇(𝑘||𝑏) =

{︃
𝜋−1(𝑘)‖0 if 𝑏 = 0 and 𝑘 ̸= 𝑡,

1‖1 otherwise.
(4)

5. ℬ then sends 𝑡, 𝜇 and 𝑟 to 𝒜, runs it with quantum oracle access to 𝑕𝑓,𝜋,𝑡,𝜇 and 𝑕−1*𝑓,𝜋,𝑡,𝜇, and
finally gets back 𝑏′. For simplicity, we write this process as 𝑏′ ← 𝒜𝑕⊥𝑡(𝑡, 𝜇, 𝑟). 2

2Note that those functions are defined classically above, and its allowance for quantum oracle access is discussed
in Appendix C, which gives 2𝑞 queries in the theorem statement.

11

6. ℬ outputs 𝑏′ if 𝜋 ∈ 𝜋𝑡,0, and 1− 𝑏′ if 𝜋 ∈ 𝜋𝑡,1.

Let 𝛿1 be the error probability of 𝒜 in the YES case and 𝛿0 be that in the NO case of (0, 𝑇, 𝛿)-DPI.
Since 𝑠 is uniform random and then Pr[𝜋 ∈ 𝜋𝑡,0] = Pr[𝜋 ∈ 𝜋𝑡,1] = 1/2, it follows that

Pr[error of 𝒜] = 1−
(︂
1

2
+ 𝛿

)︂
=

1

2
(𝛿0 + 𝛿1)⇒ 𝛿 =

1

2
− 1

2
(𝛿0 + 𝛿1).

We now analyze the error probability of ℬ in the YES and NO cases. In the NO case, 𝑓−1(1) is
empty, so no matter whether 𝜋 ∈ 𝜋𝑡,0 or 𝜋 ∈ 𝜋𝑡,1, 𝑕𝑓,𝜋,𝑡,𝜇 = 𝜋. It follows that 𝒜𝑕⊥𝑡(𝑡, 𝑟) = 𝒜𝜋⊥𝑡(𝑡, 𝑟).
Therefore,

Pr[error of ℬ in NO case] = Pr
[︀
1← ℬ𝒪𝑓 (·)

]︀
= Pr

[︁
1← 𝒜𝑕⊥𝑡(𝑡, 𝑟)|𝜋 ∈ 𝜋𝑡,0

]︁
Pr[𝜋 ∈ 𝜋𝑡,0]

+ Pr
[︁
0← 𝒜𝑕⊥𝑡(𝑡, 𝑟)|𝜋 ∈ 𝜋𝑡,1

]︁
Pr[𝜋 ∈ 𝜋𝑡,1]

=
1

2
(Pr[1← 𝒜𝜋⊥𝑡(𝑡, 𝑟)|𝜋 ∈ 𝜋𝑡,0] + Pr[0← 𝒜𝜋⊥𝑡(𝑡, 𝑟)|𝜋 ∈ 𝜋𝑡,1])

=
1

2
(Pr[error of 𝒜 in NO case] + Pr[error of 𝒜 in YES case])

=
1

2
(𝛿0 + 𝛿1) =

1

2
− 𝛿.

In the YES case, 𝑓−1(1) is not empty, so function 𝑕𝑓,𝜋,𝑡,𝜇 has a unique collision at 𝑡, with one
of the colliding pair having first bit 0 and the other one having first bit 1, no matter 𝜋 ∈ 𝜋𝑡,0 or
𝜋𝑡,1. As 𝑓 is a black-box function, the place 𝑗 where 𝑓(𝑗) = 1 is uniform and so 𝑕𝑓,𝜋,𝑡,𝜇 is uniform
in 𝑄𝜋,𝑡,𝜇. By arguments at the beginning of this proof, as 𝜋 is uniform, the function is also uniform
in 𝑄𝑡,𝜇. Let 𝑝 := Pr

𝑕𝑓,𝜋,𝑡,𝜇←𝑄𝑡,𝜇

[0← 𝒜𝑕⊥𝑡(𝑡, 𝑟)]. Therefore,

Pr[error of ℬ in YES case] = Pr
[︁
0← ℬ𝑓 (·)

]︁
= Pr

[︁
0← 𝒜𝑕⊥𝑡(𝑡, 𝑟)|𝜋 ∈ 𝜋𝑡,0

]︁
Pr[𝜋 ∈ 𝜋𝑡,0]

+ Pr
[︁
1← 𝒜𝑕⊥𝑡(𝑡, 𝑟)|𝜋 ∈ 𝜋𝑡,1

]︁
Pr[𝜋 ∈ 𝜋𝑡,1]

=
1

2

(︁
Pr

[︁
0← 𝒜𝑕⊥𝑡(𝑡, 𝑟)|𝑕𝑓,𝜋,𝑡,𝜇

$←− 𝑄𝑡,𝜇

]︁
+ Pr

[︁
1← 𝒜𝑕⊥𝑡(𝑡, 𝑟)|𝑕𝑓,𝜋,𝑡,𝜇

$←− 𝑄𝑡,𝜇

]︁)︁
=

1

2
(𝑝+ (1− 𝑝)) = 1

2
.

where the third equality comes from the fact stated above: no matter 𝜋 ∈ 𝜋𝑡,0 or 𝜋 ∈ 𝜋𝑡,1, the
corresponding 𝑕 is uniform in 𝑄𝑡,𝜇 and then can be viewed as uniform randomly generated from

𝑄𝑡,𝜇. Since 𝒜 is granted with oracle access to 𝑕, both conditions can be changed to 𝑕𝑓,𝜋,𝑡,𝜇
$←− 𝑄𝑡,𝜇.

Note that given 𝑕, even if 𝒜 can notice that it is not a permutation and then acts arbitrarily, this
can only influence the probability of two terms individually, i.e. the value of 𝑝 and 1 − 𝑝. But as
we only care about their summation, we do not need to handle the consequence of 𝒜 noticing the
difference, including the probability of oracle distinguishability.

12

6 Lower bounds

6.1 Search version

We now give lower bounds for the search version of the permutation inversion problem over [𝑁].
We begin with a lower bound for a restricted class of inverters (and its formal definition); these
inverters succeed on an 𝜖-fraction of inputs with constant probability (say, 2/3.). The proof uses
a similar approach as in previous works on one-sided permutation inversion with advice [NABT14,
CLQ19, HXY19].

Theorem 6.1. Let 𝑁 ∈ ℕ. Let 𝖲 = (𝖲0, 𝖲1) be a (𝑆, 𝑇, 2𝜖/3)-SPI that satisfies

Pr
𝜋,𝑦

[︂
Pr
𝑟

[︀
𝜋−1(𝑦)← 𝖲

𝜋⊥𝑦

1 (𝜌, 𝑦, 𝑟) : 𝜌← 𝖲0(𝜋, 𝑟)
]︀
≥ 2

3

]︂
≥ 𝜖.

We call those inverters restricted inverters. Suppose that 𝜖 = 𝜔(1/𝑁), 𝑇 = 𝑜(𝜖
√
𝑁) and 𝑆 ≥ 1.

Then, for sufficiently large 𝑁 we have 𝑆𝑇 2 ≥ ̃︀Ω(𝜖𝑁).

Proof. To prove the claim, we construct a 𝖰𝖱𝖠𝖢-𝖵𝖫 scheme that encodes the function 𝜋−1 and
then derive the desired space-time trade-off via Theorem 2.3. Let 𝖲 = (𝖲0,𝖲1) be an 2𝜖/3-SPI that
succeeds on a 𝜖-fraction of inputs with probability at least 2/3. In other words, 𝖲 satisfies

Pr
𝜋,𝑦

[︂
Pr
𝑟

[︀
𝜋−1(𝑦)← 𝖲

𝜋⊥𝑦

1 (𝜌, 𝑦, 𝑟) : 𝜌← 𝖲0(𝜋, 𝑟)
]︀
≥ 2

3

]︂
≥ 𝜖.

By the averaging argument in Lemma A.3 with parameter 𝜃 = 1/2, it follows that there exists a
large subset 𝒳 ⊆ 𝒮𝑁 of permutations with size at least 𝑁 !/2 such that for any permutation 𝜋 ∈ 𝒳 ,
we have that

Pr
𝑦

[︂
Pr
𝑟

[︀
𝜋−1(𝑦)← 𝖲

𝜋⊥𝑦

1 (𝜌, 𝑦, 𝑟) : 𝜌← 𝖲0(𝜋, 𝑟)
]︀
≥ 2

3

]︂
≥ 𝜖

2
.

For a given permutation 𝜋 ∈ 𝒳 we let ℐ be the set of indices 𝑥 ∈ [𝑁] such that 𝖲 correctly inverts
𝜋(𝑥) with probability at least 2/3 over the choice of 𝑟. By the definition of the set 𝒳 , we have that
|ℐ| ≥ 𝜖/2 ·𝑁 . Our 𝖰𝖱𝖠𝖢-𝖵𝖫 scheme (𝖤𝗇𝖼,𝖣𝖾𝖼) for encoding permutations is described in detail in
Protocol 2. Below, we introduce some additional notations that will be relevant to the scheme. For
convenience, we model the two-way accessible oracle given to 𝖲1 in terms of a single oracle for the
merged function of the form 3

𝜋⊥𝑦(𝑤, 𝑎)
def
=

⎧⎪⎨⎪⎩
𝜋(𝑤) if 𝑎 = 0

𝜋−1(𝑤) if 𝑤 ̸= 𝑦 ∧ 𝑎 = 1

⊥ if 𝑤 = 𝑦 ∧ 𝑎 = 1.

Let 𝑐, 𝛾 ∈ (0, 1) be parameters. As part of the encoding, we use the shared randomness 𝑅 ∈ {0, 1}*
to sample a subset ℛ ⊆ [𝑁] such that each element of [𝑁] is contained in ℛ with probability
𝛾/𝑇 (𝖲)2. Moreover, we define the following two disjoint subsets of [𝑁]× {0, 1}:

Σℛ0 = ℛ ∖ {𝑥} × {0}
Σℛ1 = 𝜋(ℛ) ∖ {𝜋(𝑥)} × {1}.

Let 𝒢 ⊆ ℐ be the set of 𝑥 ∈ [𝑁] which satisfy the following two properties:
3The (reversible) quantum oracle implementation is similar to the one in Definition 3.3. We use the function 𝜋⊥𝑦

for ease of presentation since the same proof carries over with minor modifications in the quantum oracle case.

13

1. The element 𝑥 is contained in the set ℛ, i.e.

𝑥 ∈ ℛ; (5)

2. The total query magnitude of 𝖲𝜋⊥𝑦

1 with input (𝖲0(𝜋, 𝑟), 𝑦, 𝑟) on the set Σℛ0 ∪ Σℛ1 is bounded
by 𝑐/𝑇 (𝖲). In other words, we have

𝑞(𝖲
𝜋⊥𝑦

1 ,Σℛ0 ∪ Σℛ1) ≤ 𝑐/𝑇 (𝖲). (6)

Claim 1. Let 𝒢 ⊆ [𝑁] be the set of 𝑥 which satisfy the conditions in (5) and (6). Then, there exist
constants 𝛾, 𝑐 ∈ (0, 1) such that

Pr
ℛ

[︂
|𝒢| ≥ 𝜖𝛾𝑁

4𝑇 (𝖲)2

(︂
1− 5𝛾2

𝑐

)︂]︂
≥ 0.8.

In other words, we have |𝒢| = Ω(𝜖𝑁/𝑇 (𝖲)2) with high probability.

Proof. (of the claim) Let ℋ = ℛ ∩ ℐ denote the set of 𝑥 ∈ ℛ for which 𝖲 correctly inverts 𝜋(𝑥)
with probability at least 2/3 over the choice of 𝑟. By the definition of the set ℛ, it follows that |ℋ|
has a binomial distribution. Therefore, in expectation, we have that |ℋ| = 𝛾|ℐ|/𝑇 (𝖲)2. Using the
multiplicative Chernoff bound in Lemma A.1 and the fact that 𝑇 (𝖲) = 𝑜(𝜖

√
𝑁), we get

Pr
ℛ

[︂
|ℋ| ≥ 𝛾|ℐ|

2𝑇 (𝖲)2

]︂
≥ 0.9, (7)

for all sufficiently large 𝑁 . Because each query made by 𝖲1 has unit length and because 𝖲1 makes
at most 𝑇 (𝖲) queries, it follows that

𝑞(𝖲
𝜋⊥𝑦

1 , [𝑁]× {0, 1}) ≤ 𝑇 (𝖲). (8)

We obtain the following upper bound for the average total query magnitude:

𝔼
ℛ

[︀
𝑞(𝖲

𝜋⊥𝑦

1 ,Σℛ0 ∪ Σℛ1)
]︀

= 𝔼
ℛ

[︀
𝑞(𝖲

𝜋⊥𝑦

1 ,Σℛ0) + 𝑞(𝖲
𝜋⊥𝑦

1 ,Σℛ1)
]︀

(Σℛ0 ,Σ
ℛ
1 are disjoint)

= 𝔼
ℛ

[︀
𝑞(𝖲

𝜋⊥𝑦

1 ,Σℛ0)
]︀
+ 𝔼
ℛ

[︀
𝑞(𝖲

𝜋⊥𝑦

1 ,Σℛ1)
]︀

(linearity of expectation)

= 𝔼
ℛ

[︀
𝑞(𝖲

𝜋⊥𝑦

1 ,ℛ ∖ {𝑥} × {0})
]︀
+ 𝔼
ℛ

[︀
𝑞(𝖲

𝜋⊥𝑦

1 , 𝜋(ℛ) ∖ {𝜋(𝑥)} × {1})
]︀

=
𝛾

𝑇 (𝖲)2
· 𝑞(𝖲𝜋⊥𝑦

1 , [𝑁] ∖ {𝑥} × {0}) + 𝛾

𝑇 (𝖲)2
· 𝑞(𝖲𝜋⊥𝑦

1 , 𝜋([𝑁]) ∖ {𝜋(𝑥)} × {1})

=
𝛾

𝑇 (𝖲)2
· 𝑞(𝖲𝜋⊥𝑦

1 , [𝑁] ∖ {𝑥} × {0})

+
𝛾

𝑇 (𝖲)2
· 𝑞(𝖲𝜋⊥𝑦

1 , [𝑁] ∖ {𝜋(𝑥)} × {1}) (𝜋 is a permutation)

≤ 𝛾

𝑇 (𝖲)2
·
[︀
𝑞(𝖲

𝜋⊥𝑦

1 , [𝑁]× {0}) + 𝑞(𝖲
𝜋⊥𝑦

1 , [𝑁]× {1})
]︀

(supersets)

=
𝛾

𝑇 (𝖲)2
· 𝑞(𝖲𝜋⊥𝑦

1 , [𝑁]× {0, 1}) ≤ 𝛾

𝑇 (𝖲)
. (by the inequality in (8))

14

Hence, by Markov’s inequality,

Pr
ℛ

[︂
𝑞(𝖲

𝜋⊥𝑦

1 ,Σℛ0 ∪ Σℛ1) ≥
𝑐

𝑇 (𝖲)

]︂
≤ 𝑇 (𝖲)

𝑐
· 𝛾

𝑇 (𝖲)
=
𝛾

𝑐
. (9)

Let us now denote by 𝒥 the subset of 𝑥 ∈ ℐ that satisfy Eq. (5) but not Eq. (6). Note that
Eq. (5) and Eq. (6) are independent for each 𝑥 ∈ ℐ, since Eq. (5) is about whether 𝑥 ∈ ℛ and
Eq. (6) only concerns the intersection of ℛ and [𝑁] ∖ {𝑥}, as well as 𝜋(ℛ) and 𝜋([𝑁]) ∖ {𝜋(𝑥)}.
Therefore, by (9), the probability that 𝑥 ∈ ℐ satisfies 𝑥 ∈ 𝒥 is at most 𝛾2/(𝑐𝑇 (𝖲)2). Hence, by
Markov’s inequality,

Pr
ℛ

[︂
|𝒥 | ≤ 10|ℐ|𝛾2

𝑐𝑇 (𝖲)2

]︂
≥ 0.9. (10)

Using (7) and (10), we get with probability at least 0.8 over the the choice of ℛ,

|𝒢| = |ℋ| − |𝒥 | ≥ |ℐ|𝛾
2𝑇 (𝖲)2

− 10|ℐ|𝛾2

𝑐𝑇 (𝖲)2
≥ 𝜖𝛾𝑁

4𝑇 (𝖲)2

(︂
1− 5𝛾2

𝑐

)︂
,

given that 𝛾 is a sufficiently small positive constant.

Protocol 2 (Quantum Random Access Code For Inverting Permutations).
Let 𝑐, 𝛾 ∈ (0, 1) be parameters. Consider the following (variable-length) quantum random-access
code given by 𝖰𝖱𝖠𝖢-𝖵𝖫 = (𝖤𝗇𝖼,𝖣𝖾𝖼) defined as follows:

∙ 𝖤𝗇𝖼(𝜋−1;𝑅): On input 𝜋−1 ∈ 𝒮𝑁 and randomness 𝑅 ∈ {0, 1}*, first use 𝑅 to extract random
coins 𝑟 and then proceed as follows:

Case 1: 𝜋 /∈ 𝒳 or |𝒢| < 𝜖𝛾𝑁
4𝑇 (𝖲)2

(︁
1− 5𝛾2

𝑐

)︁
. Use the classical flag case = 1 (taking one

additional bit) and output the entire permutation table of 𝜋−1.

Case 2: |𝒢| ≥ 𝜖𝛾𝑁
4𝑇 (𝖲)2

(︁
1− 5𝛾2

𝑐

)︁
. Use the classical flag case = 2 (taking one additional bit)

and output the following

1. The size of 𝒢, encoded using log𝑁 bits;
2. the set 𝒢 ⊆ ℛ, encoded using log

(︀|ℛ|
|𝒢|

)︀
bits;

3. The permutation 𝜋 restricted to inputs outside of 𝒢, encoded using
log(𝑁 !/|𝒢|!) bits;

4. Quantum advice used by the algorithm repeated 𝜌 times with 𝛼⊗𝜌, for 𝛼← 𝖲0(𝜋, 𝑟)
for some 𝜌 that we will decide later. (We can compute this as the encoder can
preprocess multiple copies of the same advice. Note that this is the only part of our
encoding that is not classical.)

∙ 𝖣𝖾𝖼(𝛽, 𝑦;𝑅): On input encoding 𝛽, image 𝑦 ∈ [𝑁] and randomness 𝑅 ∈ {0, 1}*, first use 𝑅 to
extract random coins 𝑟 and then proceed as follows:

Case 1: This corresponds to the flag case = 1. Search the permutation table for 𝜋−1 and
output 𝑥 such that 𝜋−1(𝑦) = 𝑥.

15

Case 2: This corresponds to the flag case = 2. Recover 𝒢 and 𝜋(𝑥) for every 𝑥 /∈ 𝒢. If
𝑦 = 𝜋(𝑥) for some 𝑥 /∈ 𝒢, output 𝑥 = 𝜋−1(𝑦). Otherwise, parse 𝛼1, 𝛼2, . . . , 𝛼𝜌 and run
𝖲
𝜋̄⊥𝑦

1 (𝛼𝑖, 𝑦, 𝑟) for each 𝑖 ∈ [𝜌] and output their majority vote, where we let a

𝜋̄⊥𝑦(𝑤, 𝑎) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑦 if 𝑤 ∈ 𝒢 ∧ 𝑎 = 0

𝜋(𝑤) if 𝑤 /∈ 𝒢 ∧ 𝑎 = 0

𝜋−1(𝑤) if 𝑤 /∈ 𝜋(𝒢) ∧ 𝑎 = 1

⊥ if 𝑤 ∈ 𝜋(𝒢) ∧ 𝑎 = 1.

aThe (reversible) quantum oracle implementation for 𝜋̄⊥𝑦 is provided in Appendix D.

Let us now analyze the performance of our 𝖰𝖱𝖠𝖢-𝖵𝖫 scheme (𝖤𝗇𝖼,𝖣𝖾𝖼) in Protocol 2. Let |Ψ𝜋⊥𝑦
⟩

and |Ψ𝜋̄⊥𝑦
⟩ denote the final states of 𝖲1 when it is given the oracles 𝜋⊥𝑦 and 𝜋̄⊥𝑦, respectively. By

Lemma 2.1 and the properties of the total query magnitude:

‖ |Ψ𝜋⊥𝑦
⟩ − |Ψ𝜋̄⊥𝑦

⟩ ‖ ≤
√︁
𝑇 (𝖲) · 𝑞(𝖲𝜋⊥𝑦

1 ,𝒢 ∖ {𝑥} × {0}) ∪ (𝜋(𝒢) ∖ {𝜋(𝑥)} × {1})

≤
√︁
𝑇 (𝖲) · 𝑞(𝖲𝜋⊥𝑦

1 ,Σℛ0 ∪ Σℛ1)

≤
√︂
𝑇 (𝖲) · 𝑐

𝑇 (𝖲)
=
√
𝑐.

Since 𝑥 ∈ ℐ, it follows from the definition of ℐ that measuring |Ψ𝜋⊥𝑦
⟩ results in 𝑥 with probability

at least 2/3. Given a small enough positive constant 𝑐, we can ensure that measuring |Ψ𝜋̄⊥𝑦
⟩ will

result in 𝑥 with probability at least 0.6. We now examine the length of our encoding. With
probability 1 − 𝜖/2, we have 𝜋 /∈ 𝒳 ; with probability 𝜖(1 − 0.8)/2, we have 𝜋 ∈ 𝒳 but 𝒢 is small,
i.e.,

|𝒢| < 𝜖𝛾𝑁

4𝑇 (𝖲)2

(︂
1− 5𝛾2

𝑐

)︂
.

Therefore, except with probability 1 − 0.4𝜖, our encoding will result in the flag case = 1, where
the encoding consists of 1+ log𝑁 ! classical bits and the decoder succeeds with probability 1. With
probability 0.4𝜖 , our encoding has the flag case = 2, and the size equals

1 + log𝑁 + log

(︂
|ℛ|
|𝒢|

)︂
+ log(𝑁 !/|𝒢|!) + 𝜌𝑆(𝖲).

By the assumption that 𝑇 (𝖲) = 𝑜(𝜖
√
𝑁), we have

log

(︂
|ℛ|
|𝒢|

)︂
= log

(︂
|ℛ|(|ℛ| − 1) . . . (|ℛ| − |𝒢|+ 1)

|𝒢|(|𝒢| − 1) . . . 1

)︂
= 𝑂

(︂
log

(︂
|ℛ||ℛ| . . . |ℛ|
|𝒢||𝒢| . . . |𝒢|

)︂)︂
= 𝑂(|𝒢| log(|ℛ|/|𝒢|))
= 𝑂(|𝒢| log 1/𝜖)
= 𝑜(|𝒢| log |𝒢|),

16

and we can rewrite the size of the encoding as

log𝑁 + 𝑜(|𝒢| log |𝒢|) + log𝑁 !− log |𝒢|! + 𝜌𝑆(𝖲).

In the case when the decoder is queried on an input that is already known, that is 𝑦 /∈ 𝜋(𝒢) (which
occurs with probability 1 − |𝒢|/𝑁), the decoder recovers the correct pre-image with probability 1.
Otherwise, the analysis is the following: with just one copy of the advice, the decoder recovers the
correct pre-image with probability 2/3, and hence with 𝜌 many copies, the decoder can take the
majority vote and recover the correct pre-image with probability 1−exp(−Ω(𝜌)). The latter follows
from the Chernoff bound in Lemma A.1. Overall, the average encoding length is

0.4𝜖 · (log𝑁 + 𝑜(|𝒢| log |𝒢|)− log |𝒢|! + 𝜌𝑆(𝖲)) + log𝑁 !

where the average success probability is 1− |𝒢|/𝑁 · exp(−Ω(𝜌)). By setting 𝜌 = Ω(log(𝑁/𝜖)) =
Ω(log𝑁), the average success probability amounts to 1 − 𝑂(1/𝑁2). Therefore, using the lower
bound in Theorem 2.3, we have

log𝑁 ! + 0.4𝜖 · (log𝑁 + 𝑜(|𝒢| log |𝒢|)− log |𝒢|! + 𝜌𝑆(𝖲)) ≥ log𝑁 !−𝑂
(︂

1

𝑁
log𝑁

)︂
log𝑁 + 𝑜(|𝒢| log |𝒢|)− log |𝒢|! + 𝜌𝑆(𝖲) ≥ −𝑂 (log𝑁)

𝜌𝑆(𝖲) +𝑂 (log𝑁) ≥ log |𝒢|!− 𝑜(|𝒢| log |𝒢|)
𝑆(𝖲) log𝑁 ≥ Ω(log |𝒢|!− 𝑜(|𝒢| log |𝒢|))

where the second and the last equality comes from the fact that 𝜖 = 𝜔(1/𝑁) and 𝜌 = Ω(log𝑁),
respectively. Since log |𝒢|! = 𝑂(|𝒢| log |𝒢|), it follows that

𝑆(𝖲) log𝑁 ≥ Ω(𝑂(|𝒢| log |𝒢|)− 𝑜(|𝒢| log |𝒢|))
𝑆(𝖲) log𝑁 ≥ Ω(|𝒢| log |𝒢|).

As we are conditioning on the event that 𝒢 is large, plugging in the lower bound on |𝒢|, we have
that, for sufficiently large 𝑁 , 𝑆(𝖲) ≥ ̃︀Ω(|𝒢|), and thus

𝑆(𝖲) · 𝑇 (𝖲)2 ≥ ̃︀Ω(𝜖𝑁).

This gives the desired space-time trade-off.

We remark that the search inverter we consider in Theorem 6.1 succeeds on more than just a
constant number of inputs, that is 𝜖 = 𝜔(1/𝑁), and beats the time complexity of 𝑇 = Ω(

√
𝜖𝑁)

which is required for unstructured search using Grover’s algorithm. [Gro96, DH08, Zha19]. Next, we
remove the restriction on the inverter by applying amplification (specifically, Corollary 4.2.) This
yields a lower bound in the full average-case version of the search inversion problem.

Theorem 6.2. Let 𝖲 be a (𝑆, 𝑇, 𝜖)-SPI for some 𝜖 > 0. Suppose that 𝜖 = 𝜔(1/𝑁), 𝑇 = 𝑜(𝜖2
√
𝑁),

and 𝑆 ≥ 1. Then, for sufficiently large 𝑁 we have

𝑆(𝖲) · 𝑇 (𝖲)2 ≥ ̃︀Ω(𝜖3𝑁).

17

Proof. Let 𝖲 = (𝖲0,𝖲1) be an (𝑆, 𝑇, 𝜖)-SPI, for some 𝜖 > 0. Using Corollary 4.2, we can construct
an SPI 𝖲[ℓ] = (𝖲[ℓ]0,𝖲[ℓ]1) with space and time complexities

𝑆(𝖲[ℓ]) =

⌈︂
ln(10)

𝜖

⌉︂
· 𝑆(𝖲) and 𝑇 (𝖲[ℓ]) =

(︂⌈︂
ln(10)

𝜖

⌉︂
+ 1

)︂
· 𝑇 (𝖲)

such that
Pr
𝜋,𝑦

[︂
Pr
𝑟

[︀
𝜋−1(𝑦)← 𝖲[ℓ]

𝜋⊥𝑦

1 (𝖲[ℓ]0(𝜋, 𝑟), 𝑦, 𝑟)
]︀
≥ 2

3

]︂
≥ 1

5
.

From Theorem 6.1 it follows that for sufficiently large 𝑁 ≥ 1,

𝑆(𝖲[ℓ]) · 𝑇 (𝖲[ℓ])2 ≥ ̃︀Ω(𝑁).

Plugging in the expressions for 𝑆(𝖲[ℓ]) and 𝑇 (𝖲[ℓ]), we get that with assumption

𝜖 = 𝜔(1/𝑁), 𝑇 (𝖲) = 𝑜(𝜖2
√
𝑁) and 𝑆(𝖲) ≥ 1,

the trade-off between space and time complexities is

𝑆(𝖲) · 𝑇 (𝖲)2 ≥ ̃︀Ω(𝜖3𝑁).

Note that we incur a loss (𝜖3 versus 𝜖) in our search lower bound due to the fact that we need
to amplify the restricted search inverter in Theorem 6.1. This results in a multiplicative overhead
of Θ(1/𝜖) in terms of space and time complexity, as compared to the restricted inverter. We remark
that a similar loss as a result of amplification is also inherent in [HXY19].

6.2 Decision version

6.2.1 Space-time tradeoff, no adaptive sampling

The search lower bound of Theorem 6.2, when combined with the search-to-decision reduction of
Theorem 5.1, yields a lower bound for the decision version.

Corollary 6.3. Let 𝖣 be a (𝑆, 𝑇, 𝛿)-DPI for some 𝛿 > 0. Suppose that 𝛿 = 𝜔(1/𝑁) and 𝑇 =

𝑜
(︁
𝛿2
√
𝑁
)︁

and 𝑆 ≥ 1. Then, for sufficiently large 𝑁 we have

𝑆(𝖣) · 𝑇 (𝖣)2 ⪆ ̃︀Ω (︀
𝛿6𝑁

)︀
.

Proof. Let 𝑁 = 2𝑛. Given a (𝑆(𝖣), 𝑇 (𝖣), 𝛿)-DPI = (𝖣0,𝖣1) where 𝖣0 outputs 𝑆-qubit state and
𝖣1 makes 𝑇 queries, one can construct an (𝑆(𝖲), 𝑇 (𝖲), 𝜂)-SPI = (𝖲0, 𝖲1) by Theorem 5.1 with
𝜂 ≥ 1− negl(𝑛), and with space and time complexities

𝑆(𝖲) = 𝑛ℓ𝑆(𝖣) and 𝑇 (𝖲) = 𝑛ℓ𝑇 (𝖣)

where ℓ = Ω
(︁
𝑛(1+2𝛿)

𝛿2

)︁
. It directly follows from Theorem 6.2 that with conditions

𝛿 = 𝜔(1/𝑁), 𝑆(𝖣) ≥ 1,

𝑇 (𝖣) =
1

𝑛ℓ
· 𝑜(𝜂
√
𝑁) = 𝑜

(︂
𝛿2

𝑛2(1 + 2𝛿)

√
𝑁

)︂
= 𝑜

(︁
𝛿2
√
𝑁
)︁
,

18

𝖲 satisfies the space-time trade-off lower bound

𝑛3
(︂
𝑛(1 + 2𝛿)

𝛿2

)︂3

𝑆(𝖣) · 𝑇 (𝖣)2 ≥ ̃︀Ω(𝜂3𝑁) ≈ ̃︀Ω(𝑁)

𝑆(𝖣) · 𝑇 (𝖣)2 ⪆ ̃︀Ω (︀
𝛿6𝑁

)︀
for sufficiently large 𝑁 .

Similar to the search lower bound from before, we incur a loss that amounts to a factor 𝛿6. This
results from our specific approach which is based on the search-to-decision reduction in Theorem 5.1.
We believe that our lower bound could potentially be improved even further.

6.2.2 Time lower bound, adaptive sampling

In the case of an adaptive decision inverter without advice, we can get a tight bound by means
of the reduction from the unique search problem (Theorem 5.4), combined with well-known lower
bounds on the average-case unique search problem.

Theorem 6.4. Let 𝖣 be a (0, 𝑇, 𝛿)-aDPI. Then 𝑇 2 ≥ Ω(𝛿𝑁/𝑀).

Proof. Since 𝖣 is a (0, 𝑇, 𝛿)-DPI, by the lower bound of unique search problem [Gro96, Zal99, Nay10,
Zha19], we get a 2𝑇 -query algorithm for UNIQUESEARCH𝑛−1 with distributional error (12 − 𝛿,

1
2).

Since the YES and NO cases are uniformly distributed, we can write the overall error probability
as 1

2

(︀
1
2 − 𝛿

)︀
+ 1

2 ·
1
2 = 1

2 −
𝛿
2 . Then by the lower bound of unique search, we have

1−
(︂
1

2
− 𝛿

2

)︂
≤ 1

2
+𝑂

(︂
(2𝑇)2

2𝑛−𝑚

)︂
𝑇 2 ≥ Ω(𝛿 · 2𝑛−𝑚)

𝑇 2 ≥ Ω

(︂
𝛿𝑁

𝑀

)︂
.

We note that with non-adaptive 𝖣, i.e. 𝑚 = 0, the above bound reduces to query lower bound
𝑇 2 ≥ Ω (𝛿𝑁).

7 Applications

In this section, we give a plausible security model for symmetric-key encryption and a scheme whose
security in that model is based on the hardness of our adaptive two-sided permutation inversion
problem. Recall that a symmetric-key encryption scheme consists of three algorithms:

• (key generation) 𝖦𝖾𝗇: given randomness 𝑠 and security parameter 𝑛; outputs key 𝑘 :=
𝖦𝖾𝗇(1𝑛; 𝑠);

• (encryption) 𝖤𝗇𝖼: given key 𝑘, plaintext 𝑚, and randomness 𝑟; outputs ciphertext 𝑐 :=
𝖤𝗇𝖼𝑘(𝑚; 𝑟);

• (decryption) 𝖣𝖾𝖼: given key 𝑘, ciphertext 𝑐; outputs plaintext 𝑚 := 𝖣𝖾𝖼𝑘(𝑐).

19

When the key randomness is to be selected uniformly, we suppress it and simply write 𝖦𝖾𝗇(1𝑛).
Consider the following security definition.

Definition 7.1. (𝖮𝖶-𝖰𝖢𝖢𝖱𝖠𝟤) Let 𝖲𝖪𝖤 = (𝖦𝖾𝗇,𝖤𝗇𝖼,𝖣𝖾𝖼) be a private-key encryption scheme.
We say that 𝖲𝖪𝖤 is 𝖮𝖶-𝖰𝖢𝖢𝖱𝖠𝟤 if the advantage for any quantum polynomial-time adversary 𝒜
in the following OW-QCCRA2 experiment is at most negligible:

1. A key 𝑘 is generated by running 𝖦𝖾𝗇(1𝑛; 𝑠);

2. 𝒜 gets quantum oracle access to 𝖤𝗇𝖼𝑘(· ; ·) and 𝖣𝖾𝖼𝑘(·), and then outputs a (𝑚− 1)-bit string
𝜇 and a quantum state 𝜌 with size 𝑆. Let 𝑡(𝑛) be the number of quantum queries that 𝒜 makes
in this phase.

3. Uniform 𝑏 ∈ {0, 1} and 𝑟 ∈ {0, 1}𝑛−1 are chosen, and a challenge ciphertext 𝑐 = 𝖤𝗇𝖼𝑘(𝑏‖𝜇; 𝑟)
is computed and given to 𝒜;

4. 𝒜 gets quantum oracle access to 𝖤𝗇𝖼𝑘(· ; ·) and 𝖣𝖾𝖼⊥𝑐𝑘 (·), and eventually outputs a bit 𝑏′. Let
ℓ(𝑛) be the number of quantum queries that 𝒜 makes in this phase.

5. The experiment outputs 1, if 𝑏′ = 𝑏, and 0 otherwise.

We remark that, unlike in most definitions of security, here the adversary is allowed to choose
both inputs to the encryption oracle: the plaintext as well as the randomness. To generate the
challenge ciphertext, the coin 𝑟 needs to be chosen truly randomly; otherwise, the scheme will
degenerate into a deterministic one that cannot be secure. Moreover, we do not yet make any
restriction on the computational power of 𝒜, or on the functions 𝑡 and ℓ.

Next, we define two simple encryption schemes.

RP Scheme. Consider the following (inefficient) scheme that uses uniformly random permutations.

• 𝖦𝖾𝗇 is given 1𝑛 and outputs a description 𝑘 of a uniformly random permutation 𝜋 on {0, 1}2𝑛;

• 𝖤𝗇𝖼 is given 𝑘, 𝑚 ∈ {0, 1}𝑛 and 𝑟 ∈ {0, 1}𝑛, and outputs 𝑐 := 𝜋(𝑚||𝑟);

• 𝖣𝖾𝖼 is given 𝑘 and 𝑐 ∈ {0, 1}2𝑛, and outputs the first 𝑛 bits of 𝜋−1(𝑐).

Definition 7.2. (𝜖-Qsecure PRP)[KL20, Zha16] Let 𝑃𝑘 : {0, 1}𝜆 × {0, 1}𝑛 → {0, 1}𝑛 be a permu-
tation family. We call 𝑃𝑘 a 𝜖-Qsecure PRP if for any efficient quantum adversary 𝒜 who makes 𝑞
quantum queries, there exist a negligible function 𝜖(𝜆) such that⃒⃒⃒

Pr
[︁
𝒜𝑃𝑘(·),𝑃−1

𝑘 (·) (1𝑛) = 1
]︁
− Pr

[︁
𝒜𝜋(·),𝜋−1(·) (1𝑛) = 1

]︁⃒⃒⃒
≤ 𝜖 · poly(𝑞) ,

where 𝜋 : {0, 1}𝑛 → {0, 1}𝑛 is a truly random permutation.

PRP Scheme. Let {𝑃𝑘 : {0, 1}2𝑛 ↦→ {0, 1}2𝑛} be a family of 𝜖-Qsecure PRPs and consider the
following scheme:

• 𝖦𝖾𝗇 takes as input a security parameter 1𝑛 and returns a key 𝑘 ∈ {0, 1}𝑛 for 𝑃𝑘;

• 𝖤𝗇𝖼 is given key 𝑘 ∈ {0, 1}𝑛, 𝑚 ∈ {0, 1}𝑛 and 𝑟 ∈ {0, 1}𝑛, and outputs 𝑐 := 𝑃𝑘(𝑚||𝑟);

20

• 𝖣𝖾𝖼 is given key 𝑘 ∈ {0, 1}𝑛 and 𝑐 ∈ {0, 1}2𝑛, and outputs the first 𝑛 bits of 𝑃−1𝑘 (𝑐).

Of course, any practical scheme should be efficient, and indeed we can show that the PRP
scheme is OW-QCCRA2 in two special cases: when there is no advice, i.e., 𝑆 = 0 (we call this
OW-QCCRA2-v1) and when there is no adaptivity, i.e., |𝜇| = 0 (we call this OW-QCCRA2-v2). We
are able to prove the following theorems.

Theorem 7.3. The PRP scheme is 𝖮𝖶-𝖰𝖢𝖢𝖱𝖠𝟤-𝗏𝟣. In other words, for any quantum adversary
𝒜 who makes 𝑡(𝑛) quantum queries in the pre-challenge phase and ℓ(𝑛) quantum queries in the
post-challenge phase, it holds that

Pr
[︁
𝖤𝗑𝗉𝖮𝖶-𝖰𝖢𝖢𝖱𝖠𝟤-𝗏𝟣

𝒜,PRP (1𝑛) = 1
]︁
≤ 1

2
+ 𝛿 + 𝜖 · 𝑇 (𝑛).

Here, 𝛿 ≤ 𝑂(ℓ
22𝑛−1

22𝑛
), 𝑇 (𝑛) = 𝑡(𝑛) + ℓ(𝑛) and 𝜖 is a negligible function.

Proof. Given an adversary 𝒜 that attacks the RP scheme in the OW-QCCRA2 experiment described
in Definition 7.1 with 𝑆 = 0, we can construct a (0, 𝑇, 𝛿)-aDPI 𝖺𝖣 = (𝖺𝖣0, 𝖺𝖣1) in the decision
inversion experiment, which takes place as follows:

1. (sample instance and coins) a random permutation 𝜋 : {0, 1}𝑛 → {0, 1}𝑛 is sampled;

2. (prepare advice) 𝖺𝖣0 is given the whole permutation table of 𝜋. Then it constructs oracles
𝖤𝗇𝖼(·; ·) = 𝜋(·‖·) and 𝖣𝖾𝖼(·) = 𝜋−1(·) and gives 𝒜 quantum oracle access. 𝖺𝖣0 will get back a
(𝑛− 1)-bit output string 𝜇 and then output it. Suppose 𝒜 makes 𝑡(𝑛) quantum queries.

3. (invert) An instance 𝑐 = 𝜋(𝑏‖𝜇‖𝑟) is computed, with 𝑏 ∈ {0, 1} and 𝑟 ∈ {0, 1}𝑛 are sampled.
𝖺𝖣1 is run with 𝑐, auxiliary string 𝜇 and quantum oracle access 𝒪𝜋 and 𝒪𝜋−1

⊥𝑦
. It then directly

passes 𝑐 and two oracles to 𝒜 and gets back a bit 𝑏′ and outputs it. Suppose 𝒜 makes ℓ(𝑛)
quantum queries.

4. (check) If 𝑏′ = 𝑏, output 1; otherwise output 0.

It trivially follows that

Pr
[︁
ExpOW-QCCRA2-v1

𝒜,RP (1𝑛) = 1
]︁
≤ Pr[𝖣𝖾𝖼𝗂𝗌𝗂𝗈𝗇𝖨𝗇𝗏𝖾𝗋𝗍𝖺𝖣 = 1].

By assumption we have that, for all efficient quantum adversary 𝒜, there exists a negligible 𝜖 such
that ⃒⃒⃒

Pr
[︁
𝒜𝑃𝑘(·),𝑃−1

𝑘 (·) (1𝑛) = 1
]︁
− Pr

[︁
𝒜𝜋(·),𝜋−1(·) (1𝑛) = 1

]︁⃒⃒⃒
≤ 𝜖 · poly(𝑡(𝑛) + ℓ(𝑛)),

Therefore

Pr
[︁
ExpOW-QCCRA2-v1

𝒜,PRP (1𝑛) = 1
]︁
≤ Pr

[︁
ExpOW-QCCRA2-v1

𝒜,RP (1𝑛) = 1
]︁
+ 𝜖 · 𝑇 (𝑛)

≤ Pr[𝖣𝖾𝖼𝗂𝗌𝗂𝗈𝗇𝖨𝗇𝗏𝖾𝗋𝗍𝖺𝖣 = 1] + 𝜖 · 𝑇 (𝑛)

=
1

2
+ 𝛿 + 𝜖𝑇 (𝑛).

Where 𝛿 ≤ 𝑂(ℓ
22𝑛−1

22𝑛
) by Theorem 6.4, and by Definition 7.2 𝜖 is negligible. Remark that the above

bound becomes 1
2 + 𝗇𝖾𝗀𝗅(𝑛) when 𝒜 is a quantum polynomial time (QPT) adversary since both 𝛿

and 𝜖𝑇 are negligible when 𝑡 and ℓ are of polynomial size.

21

Theorem 7.4. The PRP scheme is 𝖮𝖶-𝖰𝖢𝖢𝖱𝖠𝟤-𝗏𝟤. In other words, for any quantum adversary
𝒜 who makes 𝑡(𝑛) quantum queries in the pre-challenge phase and ℓ(𝑛) quantum queries in the
post-challenge phase, it holds that

Pr
[︁
𝖤𝗑𝗉𝖮𝖶-𝖰𝖢𝖢𝖱𝖠𝟤-𝗏𝟣

𝒜,PRP (1𝑛) = 1
]︁
≤ 1

2
+ 𝛿 + 𝜖 · 𝑇 (𝑛).

Here, 𝛿 ≤ 𝑂(ℓ
2𝑆
22𝑛

)
1
6 , 𝑇 (𝑛) = 𝑡(𝑛) + ℓ(𝑛) and 𝜖 is a negligible function.

Proof. Given an adversary 𝒜 that attacks the RP scheme in the OW-QCCRA2 experiment described
in Definition 7.1 with |𝜇| = 0, we can construct a (𝑆, 𝑇, 𝛿)-DPI 𝖣 = (𝖣𝟢,𝖣𝟣) in the decision inversion
experiment. The construction is the same as Theorem 7.3, with slight modifications at the "prepare
advice" and the "invert" step:

(prepare advice) 𝖣𝟢 is given the whole permutation table of 𝜋. Then it constructs oracles
𝖤𝗇𝖼(·; ·) = 𝜋(·‖·) and 𝖣𝖾𝖼(·) = 𝜋−1(·) and gives 𝒜 quantum oracle access. 𝖣𝟢 will get back a
𝑆-qubit quantum state 𝜌 and then output it. Suppose 𝒜 makes 𝑡(𝑛) quantum queries.

(invert) An instance 𝑐 = 𝜋(𝑏||𝑟) is computed, with 𝑏 ∈ {0, 1} and 𝑟 ∈ {0, 1}𝑛 are sampled. 𝖣𝟣 is
run with 𝑐, quantum advice 𝜌 and quantum oracle access 𝒪𝜋 and 𝒪𝜋−1

⊥𝑦
. It then directly passes 𝑐

and two oracles to 𝒜 and gets back a bit 𝑏′ and outputs it. Suppose 𝒜 makes ℓ(𝑛) quantum queries.
By following the same procedure as in Theorem 7.3 but using the bound of Corollary 6.3, we

get the desired bound.

Finally, we remark that the above results hold for the following strengthening of OW-QCCRA2,
described as follows. Suppose that an encryption scheme satisfies the property that there exists an
alternative decryption algorithm that can both compute the plaintext and also deduce the random-
ness that was initially used to encrypt. This property is true for the RP and PRP schemes, as well as
some other standard encryption methods (e.g., Regev’s secret-key LWE scheme, implicit in [Reg09]).
For schemes in this category, one can also grant access to such an alternative decryption algorithm,
thus expanding the form of “randomness access” that the adversary has. Our proofs show that the
RP and PRP schemes are secure (in their respective setting) even against this form of additional
adversarial power.

8 Future Work

For future applications, the two-sided permutation inversion problem appears naturally in the
context of sponge hashing [GJMG11] which is used by the international hash function standard
SHA3 [Dwo15]. Previous work [CGH+18, CMSZ21] studied the post-quantum security of the sponge
construction where the block function is either a random function or a (non-invertible) random per-
mutation. However, as the core permutation in SHA3 is public and efficiently invertible, the “right
setting” of theoretical study is one in which the block function consists of an invertible permutation.
This setting is far less understood, and establishing the security of the sponge in this setting is a
major open problem in post-quantum cryptography. Our results on two-sided permutation inversion
may serve as a stepping stone towards this goal.

22

References

[ABK+22] Gorjan Alagic, Chen Bai, Jonathan Katz, Christian Majenz, and Patrick Struck. “Post-
Quantum Security of the (Tweakable) FX Construction, and Applications”. In: Cryp-
tology ePrint Archive (2022). url: https://eprint.iacr.org/2022/1097 (cit. on
p. 3).

[ABKM22] Gorjan Alagic, Chen Bai, Jonathan Katz, and Christian Majenz. “Post-quantum se-
curity of the Even-Mansour cipher”. In: Annual International Conference on the The-
ory and Applications of Cryptographic Techniques. Springer. 2022, pp. 458–487. doi:
https://doi.org/10.1007/978-3-031-07082-2_17 (cit. on p. 3).

[AHU19] Andris Ambainis, Mike Hamburg, and Dominique Unruh. “Quantum security proofs
using semi-classical oracles”. In: Advances in Cryptology–CRYPTO 2019: 39th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 18–22, 2019,
Proceedings, Part II 39. Springer. 2019, pp. 269–295. doi: https://doi.org/10.
1007/978-3-030-26951-7_10 (cit. on p. 10).

[ALMO08] Andris Ambainis, Debbie Leung, Laura Mancinska, and Maris Ozols. “Quantum ran-
dom access codes with shared randomness”. In: arXiv preprint arXiv:0810.2937 (2008).
doi: https://doi.org/10.48550/arXiv.0810.2937 (cit. on p. 4).

[Amb02] Andris Ambainis. “Quantum lower bounds by quantum arguments”. In: Journal of
Computer and System Sciences 64.4 (2002), pp. 750–767. doi: https://doi.org/10.
1145/335305.335394 (cit. on pp. 1, 2).

[ANTV99] Andris Ambainis, Ashwin Nayak, Ammon Ta-Shma, and Umesh Vazirani. “Dense quan-
tum coding and a lower bound for 1-way quantum automata”. In: Proceedings of the
thirty-first annual ACM symposium on Theory of computing. 1999, pp. 376–383. doi:
https://doi.org/10.1145/301250.301347 (cit. on p. 4).

[BBBV97] Charles H Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. “Strengths
and weaknesses of quantum computing”. In: SIAM journal on Computing 26.5 (1997),
pp. 1510–1523. doi: https://doi.org/10.1137/S0097539796300933 (cit. on p. 1).

[BY23] Aleksandrs Belovs and Duyal Yolcu. “One-Way Ticket to Las Vegas and the Quantum
Adversary”. In: arXiv preprint arXiv:2301.02003 (2023). doi: https://doi.org/10.
48550/arXiv.2301.02003 (cit. on p. 2).

[CGH+18] Jan Czajkowski, Leon Groot Bruinderink, Andreas Hülsing, Christian Schaffner, and
Dominique Unruh. “Post-quantum security of the sponge construction”. In: Interna-
tional Conference on Post-Quantum Cryptography. Springer. 2018, pp. 185–204. doi:
https://doi.org/10.1007/978-3-319-79063-3_9 (cit. on p. 22).

[CGLQ20] Kai-Min Chung, Siyao Guo, Qipeng Liu, and Luowen Qian. “Tight quantum time-
space tradeoffs for function inversion”. In: 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS). IEEE. 2020, pp. 673–684. doi: 10.1109/
FOCS46700.2020.00068 (cit. on pp. 2, 3, 7).

[CLQ19] Kai-Min Chung, Tai-Ning Liao, and Luowen Qian. “Lower bounds for function inversion
with quantum advice”. In: arXiv preprint arXiv:1911.09176 (2019). doi: https://doi.
org/10.48550/arXiv.1911.09176 (cit. on pp. 2–4, 13).

23

https://eprint.iacr.org/2022/1097
https://doi.org/https://doi.org/10.1007/978-3-031-07082-2_17
https://doi.org/https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/https://doi.org/10.48550/arXiv.0810.2937
https://doi.org/https://doi.org/10.1145/335305.335394
https://doi.org/https://doi.org/10.1145/335305.335394
https://doi.org/https://doi.org/10.1145/301250.301347
https://doi.org/https://doi.org/10.1137/S0097539796300933
https://doi.org/https://doi.org/10.48550/arXiv.2301.02003
https://doi.org/https://doi.org/10.48550/arXiv.2301.02003
https://doi.org/https://doi.org/10.1007/978-3-319-79063-3_9
https://doi.org/10.1109/FOCS46700.2020.00068
https://doi.org/10.1109/FOCS46700.2020.00068
https://doi.org/https://doi.org/10.48550/arXiv.1911.09176
https://doi.org/https://doi.org/10.48550/arXiv.1911.09176

[CMSZ21] Jan Czajkowski, Christian Majenz, Christian Schaffner, and Sebastian Zur. “Quan-
tum lazy sampling and game-playing proofs for quantum indifferentiability”. In: arXiv
preprint arXiv:1904.11477 (2021). doi: https://doi.org/10.48550/arXiv.1904.
11477 (cit. on p. 22).

[CX21] Shujiao Cao and Rui Xue. “Being a permutation is also orthogonal to one-wayness in
quantum world: Impossibilities of quantum one-way permutations from one-wayness
primitives”. In: Theoretical Computer Science 855 (2021), pp. 16–42. doi: https://
doi.org/10.1016/j.tcs.2020.11.013 (cit. on pp. 2, 3).

[DH08] Catalin Dohotaru and Peter Hoyer. “Exact quantum lower bound for Grover’s prob-
lem”. In: arXiv preprint arXiv:0810.3647 (2008). doi: https://doi.org/10.26421/
QIC9.5-6-12 (cit. on p. 17).

[DKRS23] Orr Dunkelman, Nathan Keller, Eyal Ronen, and Adi Shamir. “Quantum time/memory/data
tradeoff attacks”. In: Designs, Codes and Cryptography (2023), pp. 1–19. doi: https:
//doi.org/10.1007/s10623-023-01300-x (cit. on p. 2).

[Dwo15] Morris J Dworkin. “SHA-3 standard: Permutation-based hash and extendable-output
functions”. In: Federal Inf. Process. Stds. (NIST FIPS) (2015). doi: https://doi.
org/10.6028/NIST.FIPS.202 (cit. on p. 22).

[FK15] Bill Fefferman and Shelby Kimmel. “Quantum vs classical proofs and subset verifica-
tion”. In: arXiv preprint arXiv:1510.06750 (2015). doi: https://doi.org/10.48550/
arXiv.1510.06750 (cit. on p. 2).

[GJMG11] Bertoni Guido, Daemen Joan, P Michaël, and VA Gilles. Cryptographic sponge func-
tions. 2011. url: https://keccak.team/files/CSF-0.1.pdf (cit. on pp. 1, 22).

[Gro96] Lov K Grover. “A fast quantum mechanical algorithm for database search”. In: Pro-
ceedings of the twenty-eighth annual ACM symposium on Theory of computing. 1996,
pp. 212–219. doi: https://doi.org/10.1145/237814.237866 (cit. on pp. 1, 17, 19).

[HXY19] Minki Hhan, Keita Xagawa, and Takashi Yamakawa. “Quantum random oracle model
with auxiliary input”. In: International Conference on the Theory and Application
of Cryptology and Information Security. Springer. 2019, pp. 584–614. doi: https:
//doi.org/10.1007/978-3-030-34578-5_21 (cit. on pp. 2, 3, 7, 13, 18).

[KL20] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography. CRC press,
2020. doi: https://doi.org/10.1201/9781420010756 (cit. on pp. 1, 20).

[Liu23] Qipeng Liu. “Non-uniformity and Quantum Advice in the Quantum Random Oracle
Model”. In: Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques. Springer. 2023, pp. 117–143. doi: https://doi.org/10.1007/
978-3-031-30545-0_5 (cit. on pp. 2, 3).

[NABT14] Aran Nayebi, Scott Aaronson, Aleksandrs Belovs, and Luca Trevisan. “Quantum lower
bound for inverting a permutation with advice”. In: arXiv preprint arXiv:1408.3193
(2014). doi: https://doi.org/10.48550/arXiv.1408.3193 (cit. on pp. 2, 3, 13).

[Nay10] Ashwin Nayak. “Inverting a permutation is as hard as unordered search”. In: arXiv
preprint arXiv:1007.2899 (2010). doi: https://doi.org/10.48550/arXiv.1007.2899
(cit. on pp. 1, 2, 10, 11, 19).

24

https://doi.org/https://doi.org/10.48550/arXiv.1904.11477
https://doi.org/https://doi.org/10.48550/arXiv.1904.11477
https://doi.org/https://doi.org/10.1016/j.tcs.2020.11.013
https://doi.org/https://doi.org/10.1016/j.tcs.2020.11.013
https://doi.org/https://doi.org/10.26421/QIC9.5-6-12
https://doi.org/https://doi.org/10.26421/QIC9.5-6-12
https://doi.org/https://doi.org/10.1007/s10623-023-01300-x
https://doi.org/https://doi.org/10.1007/s10623-023-01300-x
https://doi.org/https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/https://doi.org/10.48550/arXiv.1510.06750
https://doi.org/https://doi.org/10.48550/arXiv.1510.06750
https://keccak.team/files/CSF-0.1.pdf
https://doi.org/https://doi.org/10.1145/237814.237866
https://doi.org/https://doi.org/10.1007/978-3-030-34578-5_21
https://doi.org/https://doi.org/10.1007/978-3-030-34578-5_21
https://doi.org/https://doi.org/10.1201/9781420010756
https://doi.org/https://doi.org/10.1007/978-3-031-30545-0_5
https://doi.org/https://doi.org/10.1007/978-3-031-30545-0_5
https://doi.org/https://doi.org/10.48550/arXiv.1408.3193
https://doi.org/https://doi.org/10.48550/arXiv.1007.2899

[Reg09] Oded Regev. “On lattices, learning with errors, random linear codes, and cryptogra-
phy”. In: Journal of the ACM (JACM) 56.6 (2009), pp. 1–40. doi: https://doi.org/
10.1145/1568318.1568324 (cit. on p. 22).

[Ros21] Ansis Rosmanis. “Tight bounds for inverting permutations via compressed oracle ar-
guments”. In: arXiv preprint arXiv:2103.08975 (2021). doi: https://doi.org/10.
48550/arXiv.2103.08975 (cit. on p. 2).

[Vaz98] Umesh Vazirani. “On the power of quantum computation”. In: Philosophical Transac-
tions of the Royal Society of London A 365: 1759-1768 (1998). doi: https://doi.
org/10.1137/S0097539796298637 (cit. on p. 4).

[Wie83] Stephen Wiesner. “Conjugate coding”. In: ACM Sigact News 15.1 (1983), pp. 78–88.
doi: https://doi.org/10.1145/1008908.1008920 (cit. on p. 4).

[Zal99] Christof Zalka. “Grover’s quantum searching algorithm is optimal”. In: Physical Review
A 60.4 (1999), p. 2746. doi: https://doi.org/10.1103/PhysRevA.60.2746 (cit. on
p. 19).

[Zha16] Mark Zhandry. “A note on quantum-secure PRPs”. In: arXiv preprint arXiv:1611.05564
(2016). doi: https://doi.org/10.48550/arXiv.1611.05564 (cit. on p. 20).

[Zha19] Mark Zhandry. “How to record quantum queries, and applications to quantum indif-
ferentiability”. In: Advances in Cryptology–CRYPTO 2019: 39th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 18–22, 2019, Proceedings,
Part II 39. Springer. 2019, pp. 239–268. doi: https://doi.org/10.1007/978-3-030-
26951-7_9 (cit. on pp. 3, 17, 19).

A Some basic probabilistic lemmas

In this section we collect a series of known probabilistic results, which we used in our main proofs.
We first record some basic lemmas about the behavior of certain types of random variables.

Lemma A.1 (Multiplicative Chernoff Bound). Let 𝑋1, . . . , 𝑋𝑛 be independent random variables
taking values in {0, 1}. Let 𝑋 =

∑︀
𝑖∈[𝑛]𝑋𝑖 denote their sum and let 𝜇 = 𝔼[𝑋] denote its expected

value. Then for any 𝛿 > 0,
Pr[𝑋 < (1− 𝛿)𝜇] ≤ 2𝑒−𝛿

2𝜇/2.

Specifically, when 𝑋𝑖 is a Bernoulli trial and 𝑋 follows the binomial distribution with 𝜇 = 𝑛𝑝 and
𝑝 > 1

2 , we have Pr[𝑋 ≤ 𝑛/2] ≤ 𝑒−𝑛(𝑝−
1
2
)2/(2𝑝).

Lemma A.2 (Reverse Markov’s inequality). Let 𝑋 be a random variable taking values in [0, 1]. Let
𝜃 ∈ (0, 1) be arbitrary. Then, it holds that

Pr[𝑋 ≥ 𝜃] ≥ 𝔼[𝑋]− 𝜃
1− 𝜃

.

Proof. Fix 𝜃 ∈ (0, 1). We first show that

(1− 𝜃) · 𝕀[𝑋≥𝜃] ≥ 𝑋 − 𝜃, (11)

25

https://doi.org/https://doi.org/10.1145/1568318.1568324
https://doi.org/https://doi.org/10.1145/1568318.1568324
https://doi.org/https://doi.org/10.48550/arXiv.2103.08975
https://doi.org/https://doi.org/10.48550/arXiv.2103.08975
https://doi.org/https://doi.org/10.1137/S0097539796298637
https://doi.org/https://doi.org/10.1137/S0097539796298637
https://doi.org/https://doi.org/10.1145/1008908.1008920
https://doi.org/https://doi.org/10.1103/PhysRevA.60.2746
https://doi.org/https://doi.org/10.48550/arXiv.1611.05564
https://doi.org/https://doi.org/10.1007/978-3-030-26951-7_9
https://doi.org/https://doi.org/10.1007/978-3-030-26951-7_9

where 𝕀[𝑋≥𝜃] is the indicator function for the event that 𝑋 ≥ 𝜃. Suppose that 𝑋 ≥ 𝜃. Then, Eq. (11)
amounts to 1− 𝜃 ≥ 𝑋 − 𝜃, which is satisfied because 𝑋 ≤ 1. Now suppose that 𝑋 < 𝜃. In this case
Eq. (11) amounts to 0 ≥ 𝑋 − 𝜃, which is satisfied whenever 𝑋 ≥ 0. Taking the expectation over
Eq. (11) and noting that 𝔼[𝕀[𝑋≥𝜃]] = Pr[𝑋 ≥ 𝜃], we get

(1− 𝜃) · Pr[𝑋 ≥ 𝜃] ≥ 𝔼[𝑋]− 𝜃.

This proves the claim.

Lemma A.3 (Averaging argument). Let 𝒳 and 𝒴 be any finite sets and let Ω : 𝒳 × 𝒴 → {0, 1} be
a predicate. Suppose that Pr𝑥,𝑦[Ω(𝑥, 𝑦) = 1] ≥ 𝜖, for some 𝜖 ∈ [0, 1], where 𝑥 is chosen uniformly at
random in 𝒳 . Let 𝜃 ∈ (0, 1). Then, there exists a subset 𝒳𝜃 ⊆ 𝒳 of size |𝒳𝜃| ≥ (1 − 𝜃) · 𝜖|𝒳 | such
that

Pr
𝑦
[Ω(𝑥, 𝑦) = 1] ≥ 𝜃 · 𝜖, ∀𝑥 ∈ 𝒳𝜃.

Proof. Define 𝑝𝑥 = Pr𝑦[Ω(𝑥, 𝑦) = 1], for 𝑥 ∈ 𝒳 . Then, for 𝜖 ∈ [0, 1], we have

𝔼𝑥[𝑝𝑥] = Pr
𝑥,𝑦

[Ω(𝑥, 𝑦) = 1] = |𝒳 |−1
∑︁
𝑥∈𝒳

Pr
𝑦
[Ω(𝑥, 𝑦) = 1] ≥ 𝜖.

Fix 𝜃 ∈ (0, 1). Because the weighted average above is at least 𝜖, there must exist a subset 𝒳𝜃 such
that

𝑝𝑥 = Pr
𝑦
[Ω(𝑥, 𝑦) = 1] ≥ 𝜃 · 𝜖, ∀𝑥 ∈ 𝒳𝜃.

Recall that 𝑥 is chosen uniformly at random in 𝒳 . Using the reverse Markov’s inequality, it follows
that

|𝒳𝜃|
|𝒳 |

= Pr[𝑝𝑥 ≥ 𝜃 · 𝜖] ≥
𝔼[𝑝𝑥]− 𝜃 · 𝜖
1− 𝜃 · 𝜖

≥ 𝜖 · (1− 𝜃)
1− 𝜃 · 𝜖

> 𝜖 · (1− 𝜃).

In other words, the subset 𝒳𝜃 ⊆ 𝒳 is of size at least |𝒳𝜃| ≥ (1− 𝜃) · 𝜖|𝒳 |.

B Amplification proofs

B.1 Quantum oracle construction in Protocol 1

In Protocol 1 step 2(𝑐), 𝖲[ℓ]1, with quantum oracle access to𝒪𝜋,𝒪𝜋−1
⊥𝑦

, needs to grant 𝖲1 quantum or-
acle access to (𝜎1,𝑖∘𝜋∘𝜎2,𝑖)⊥𝜎1,𝑖(𝑦), which is a simplified notation of𝒪𝜎1,𝑖∘𝜋∘𝜎2,𝑖 and𝒪(𝜎1,𝑖∘𝜋∘𝜎2,𝑖)

−1
⊥𝜎1,𝑖(𝑦)

.

Here we give detailed constructions of these two oracles:

• Whenever the algorithm 𝖲1 queries the oracle 𝒪𝜎1,𝑖∘𝜋∘𝜎2,𝑖 on |𝑤⟩1 |𝑧⟩2, 𝖲[ℓ]1 performs the

26

following reversible operations

|𝑤⟩1 |𝑧⟩2
add aux registers−−−−−−−−−−→|𝑤⟩1 |𝑧⟩2 |0⟩𝖺𝗎𝗑𝟣 |0⟩𝖺𝗎𝗑𝟤

𝒪𝜎2,𝑖,1,𝖺𝗎𝗑𝟤−−−−−−−→|𝑤⟩1 |𝑧⟩2 |0⟩𝖺𝗎𝗑𝟣 |𝜎2,𝑖(𝑤)⟩𝖺𝗎𝗑𝟤
𝒪𝜋,𝖺𝗎𝗑𝟤,𝖺𝗎𝗑𝟣−−−−−−−→|𝑤⟩1 |𝑧⟩2 |𝜋 ∘ 𝜎2,𝑖(𝑤)⟩𝖺𝗎𝗑𝟣 |𝜎2,𝑖(𝑤)⟩𝖺𝗎𝗑𝟤
𝒪𝜎1,𝑖,𝖺𝗎𝗑𝟣,2−−−−−−−→|𝑤⟩1 |𝑧 ⊕ 𝜎1,𝑖 ∘ 𝜋 ∘ 𝜎2,𝑖(𝑤)⟩2 |𝜋 ∘ 𝜎2,𝑖(𝑤)⟩𝖺𝗎𝗑𝟣 |𝜎2,𝑖(𝑤)⟩𝖺𝗎𝗑𝟤
𝒪𝜋,𝖺𝗎𝗑𝟤,𝖺𝗎𝗑𝟣−−−−−−−→|𝑤⟩1 |𝑧 ⊕ 𝜎1,𝑖 ∘ 𝜋 ∘ 𝜎2,𝑖(𝑤)⟩2 |0⟩𝖺𝗎𝗑𝟣 |𝜎2,𝑖(𝑤)⟩𝖺𝗎𝗑𝟤
𝒪𝜎2,𝑖,1,𝖺𝗎𝗑𝟤−−−−−−−→|𝑤⟩1 |𝑧 ⊕ 𝜎1,𝑖 ∘ 𝜋 ∘ 𝜎2,𝑖(𝑤)⟩2 |0⟩𝖺𝗎𝗑𝟣 |0⟩𝖺𝗎𝗑𝟤

drop 𝖺𝗎𝗑−−−−−→|𝑤⟩1 |𝑧 ⊕ 𝜎1,𝑖 ∘ 𝜋 ∘ 𝜎2,𝑖(𝑤)⟩2 .

Then, 𝖲[ℓ]1 sends the final state back to 𝖲1.

• Whenever 𝖲1 queries the oracle 𝒪(𝜎1,𝑖∘𝜋∘𝜎2,𝑖)
−1
⊥𝜎1,𝑖(𝑦)

on |𝑤⟩1 |𝑧⟩2, the algorithm 𝖲[ℓ]1 performs

the following reversible operations:

|𝑤⟩1 |𝑧⟩2
add aux register−−−−−−−−−−→|𝑤⟩1 |𝑧⟩2 |0⟩𝖺𝗎𝗑𝟣 |0⟩𝖺𝗎𝗑𝟤
𝒪

𝜎−1
1,𝑖,*,1,𝖺𝗎𝗑𝟣−−−−−−−−→|𝑤⟩1 |𝑧⟩2 |𝜎

−1
1,𝑖,*(𝑤)⟩𝖺𝗎𝗑𝟣 |0⟩𝖺𝗎𝗑𝟤

𝒪
𝜋−1
⊥𝑦

,𝖺𝗎𝗑𝟣,𝖺𝗎𝗑𝟤

−−−−−−−−→|𝑤⟩1 |𝑧⟩2 |𝜎
−1
1,𝑖,*(𝑤)⟩𝖺𝗎𝗑𝟣 |𝜋

−1
⊥𝑦 ∘ 𝜎

−1
1,𝑖,*(𝑤)⟩𝖺𝗎𝗑𝟤

𝒪
𝜎−1
2,𝑖,*,2,𝖺𝗎𝗑𝟤−−−−−−−−→|𝑤⟩1 |𝑧 ⊕ 𝜎

−1
2,𝑖,* ∘ 𝜋

−1
⊥𝑦 ∘ 𝜎

−1
1,𝑖,*(𝑤)⟩2 |𝜎

−1
1,𝑖,*(𝑤)⟩𝖺𝗎𝗑𝟣 |𝜋

−1
⊥𝑦 ∘ 𝜎

−1
1,𝑖,*(𝑤)⟩𝖺𝗎𝗑𝟤

𝒪
𝜋−1
⊥𝑦

,𝖺𝗎𝗑𝟣,𝖺𝗎𝗑𝟤

−−−−−−−−→|𝑤⟩1 |𝑧 ⊕ 𝜎
−1
2,𝑖,* ∘ 𝜋

−1
⊥𝑦 ∘ 𝜎

−1
1,𝑖,*(𝑤)⟩2 |𝜎

−1
1,𝑖,*(𝑤)⟩𝖺𝗎𝗑𝟣 |0⟩𝖺𝗎𝗑𝟤

𝒪
𝜎−1
1,𝑖,*,1,𝖺𝗎𝗑𝟣−−−−−−−−→|𝑤⟩1 |𝑧 ⊕ 𝜎

−1
2,𝑖,* ∘ 𝜋

−1
⊥𝑦 ∘ 𝜎

−1
1,𝑖,*(𝑤)⟩2 |0⟩𝖺𝗎𝗑𝟣 |0⟩𝖺𝗎𝗑𝟤

drop 𝖺𝗎𝗑−−−−−→|𝑤⟩1 |𝑧 ⊕ 𝜎
−1
2,𝑖,* ∘ 𝜋

−1
⊥𝑦 ∘ 𝜎

−1
1,𝑖,*(𝑤)⟩2 .

where 𝜎−1·,𝑖,* : [𝑁]× {0, 1} → [𝑁]× {0, 1} is given below

𝜎−1·,𝑖,*(𝑤‖𝑏) := 𝜎−1·,𝑖 (𝑤)‖𝑏.

Then, 𝖲[ℓ]1 sends the final state back to 𝖲1.

B.2 Another amplification lemma proof

Lemma 4.2. Let 𝖲 = (𝖲0, 𝖲1) be an 𝜖-SPI with space and time complexity given by 𝑆(𝖲) and 𝑇 (𝖲),
respectively, for some 𝜖 > 0. Then, we can construct an SPI 𝖲[ℓ] = (𝖲[ℓ]0, 𝖲[ℓ]1) with space and time

27

complexities

𝑆(𝖲[ℓ]) =

⌈︂
ln(10)

𝜖

⌉︂
· 𝑆(𝖲) and 𝑇 (𝖲[ℓ]) =

⌈︂
ln(10)

𝜖

⌉︂
· (𝑇 (𝖲) + 1)

such that
Pr
𝜋,𝑦

[︂
Pr
𝑟

[︀
𝜋−1(𝑦)← 𝖲[ℓ]

𝜋⊥𝑦

1 (𝜌, 𝑦, 𝑟) : 𝜌← 𝖲[ℓ]0(𝜋, 𝑟)
]︀
≥ 2

3

]︂
≥ 1

5
.

Proof. Let ℓ =
⌈︁
ln(10)

𝜖

⌉︁
. Using Lemma 4.1, we can construct an ℓ-time repetition of 𝖲 (𝜂)-SPI,

denoted by 𝖲[ℓ] = (𝖲[ℓ]0, 𝖲[ℓ]1), with 𝜂 = 1−(1−𝜖)ℓ and space and time complexities 𝑆(𝖲[ℓ]) = ℓ·𝑆(𝖲)
and 𝑇 (𝖲[ℓ]) = ℓ · (𝑇 (𝖲) + 1). In other words,

Pr
𝜋,𝑦,𝑟

[︀
𝜋−1(𝑦)← 𝖲[ℓ]

𝜋⊥𝑦

1 (𝜌, 𝑦, 𝑟) : 𝜌← 𝖲[ℓ]0(𝜋, 𝑟)
]︀
≥ 1− (1− 𝜖)ℓ ≥ 9

10
.

Let 𝒮𝑁 denote the set of permutations over [𝑁]. From Lemma A.3 it follows that there exists
𝜃 = 7/9 and a subset 𝒳𝜃 ⊆ 𝒮𝑁 × [𝑁] of size at least

|𝒳𝜃| ≥ (1− 𝜃) · 9
10
·
⃒⃒
𝒮𝑁 × [𝑁]

⃒⃒
=

1

5
·
⃒⃒
𝒮𝑁 × [𝑁]

⃒⃒
.

such that, for every (𝜋, 𝑦) ∈ 𝒳𝜃, we have

Pr
𝑟

[︀
𝜋−1(𝑦)← 𝖲[ℓ]

𝜋⊥𝑦

1 (𝜌, 𝑦, 𝑟) : 𝜌← 𝖲[ℓ]0(𝜋, 𝑟)
]︀
≥ 𝜃 · 9

10
>

2

3
.

Because |𝒳𝜃| · |𝒮𝑁 × [𝑁]|−1 ≥ 1
5 , it follows that

Pr
𝜋,𝑦

[︂
Pr
𝑟

[︀
𝜋−1(𝑦)← 𝖲[ℓ]

𝜋⊥𝑦

1 (𝜌, 𝑦, 𝑟) : 𝜌← 𝖲[ℓ]0(𝜋, 𝑟)
]︀
≥ 2

3

]︂
≥ 1

5
.

This proves the claim.

B.3 Decision amplification proof

Same as the search amplification, we amplify the success probability of a 𝛿-DPI through ℓ-time
repetition defined in Protocol 3.

Protocol 3 (ℓ-time repetition of 𝛿-DPI). Given a 𝛿-DPI 𝖣 = (𝖣0,𝖣1), the construction of an
"ℓ-time serial repetition of 𝖣" 𝖣[ℓ] = (𝖣[ℓ]0,𝖣[ℓ]1) is as follows:

1. (Advice Preparation) the algorithm 𝖣[ℓ]0 proceeds as follows:

(a) 𝖣[ℓ]0 receives as input a random permutation 𝜋 : [𝑁] → [𝑁] and randomness 𝑟 ←
{0, 1}* and parses the string 𝑟 into 2ℓ substrings, i.e. 𝑟 = 𝑟0‖...‖𝑟ℓ−1‖𝑟ℓ‖...‖𝑟2ℓ−1 (the
length is clear in context).

(b) 𝖣[ℓ]0 uses 𝑟0, ..., 𝑟ℓ−1 to generate ℓ permutation pairs {𝜎1,𝑖, 𝜎2,𝑖}ℓ−1𝑖=0 in 𝒮𝑁 , where 𝜎1,𝑖
is a random permutation, 𝜎2,𝑖 has the following form

𝜎2,𝑖(𝑥1, ..., 𝑥𝑛) = (𝑥1 ⊕ 𝑟*𝑖 , 𝑥2, ..., 𝑥𝑛), (12)

where 𝑟*𝑖 is some random bit generated from 𝑟𝑖 for all 𝑖 ∈ [0, ℓ−1]. Then runs 𝖣0(𝜎1,𝑖 ∘

28

𝜋 ∘ 𝜎2,𝑖, 𝑟𝑖+ℓ) to get a quantum state 𝜌𝑖 := 𝜌𝜎1,𝑖∘𝜋∘𝜎2,𝑖,𝑟𝑖+ℓ
for all 𝑖 ∈ [0, ℓ− 1]. Finally,

𝖣[ℓ]0 outputs a quantum state
⨂︀ℓ−1

𝑖=0 𝜌𝑖.

2. (Oracle Algorithm) 𝖣[ℓ]
𝜋⊥𝑦

1 is an oracle algorithm that proceeds as follows:

(a) 𝖣[ℓ]1 receives
⨂︀ℓ−1

𝑖=0 𝜌𝑖, randomness 𝑟 and an image 𝑦 ∈ [𝑁] as input.

(b) 𝖣[ℓ]1 parses 𝑟 = 𝑟0‖...‖𝑟ℓ−1‖𝑟ℓ‖...‖𝑟2ℓ−1 and uses the coins 𝑟0‖...‖𝑟ℓ−1 to generate ℓ
different permutation pairs {𝜎1,𝑖, 𝜎2,𝑖}ℓ−1𝑖=0 in 𝒮𝑁 as shown above.

(c) 𝖣[ℓ]1 then runs the following routine for all 𝑖 ∈ [0, ℓ− 1]:

i. Run 𝖣1 with oracle access to (𝜎1,𝑖 ∘ 𝜋 ∘ 𝜎2,𝑖)⊥𝜎1,𝑖(𝑦), which implements the permu-
tation 𝜎1,𝑖 ∘ 𝜋 ∘ 𝜎2,𝑖 and its inverse (but ⊥ at 𝜎1,𝑖(𝑦)).

ii. Get back 𝑏𝑖 ← 𝖣
(𝜎1,𝑖∘𝜋∘𝜎2,𝑖)⊥𝜎1,𝑖(𝑦)

1 (𝜌𝑖, 𝜎1,𝑖(𝑦), 𝑟𝑖+ℓ).

(d) 𝖣[ℓ]1 pads 𝑏𝑖 with all zero string of size 𝑛− 1 and computes 𝑏*𝑖 = 𝜎2,𝑖(𝑏𝑖‖0𝑛−1)|0 for all
𝑖 ∈ [0, ℓ− 1], then outputs 𝑏* which is the majority vote of {𝑏*0, . . . , 𝑏*ℓ−1}.

Lemma 4.3. Let (𝖣0,𝖣1) be a 𝛿-DPI, where 𝖣0 outputs an 𝑆-qubit state and 𝖣1 makes 𝑇 queries.
Then, we can construct an ℓ-time repetition of 𝖣, denoted by 𝖣[ℓ] = (𝖣[ℓ]0,𝖣[ℓ]1), which is an 𝜂-DPI
for 𝜂 ≥ 1

2 − exp
(︁
− 𝛿2

(1+2𝛿) · ℓ
)︁
, and has space and time complexities given by

𝑆(𝖣[ℓ]) = ℓ · 𝑆(𝖣) and 𝑇 (𝖣[ℓ]) = ℓ · 𝑇 (𝖣).

Proof. Let (𝖣0,𝖣1) be a 𝛿-DPI for some 𝛿 > 0, where 𝖣0 outputs an 𝑆-qubit state and 𝖣1 makes
𝑇 queries. Similarly as in Lemma 4.1, we consider the execution of the ℓ-time repetition of 𝛿-DPI,
denoted by DPI 𝖣[ℓ], which we define in Protocol 3. For each iteration 𝑖 ∈ [0, ℓ− 1], we have

Pr
[︀
𝑏𝑖 = 𝜋−1(𝑦)|0

]︀
= Pr

[︂
(𝜋̄)−1(𝜎1,𝑖(𝑦))|0 ← 𝖣

(𝜋̄)⊥𝜎1,𝑖(𝑦)

1

(︀
𝜌𝑖, 𝜎1,𝑖(𝑦), 𝑟𝑖+ℓ

)︀
: 𝜌𝑖 ← 𝖣0(𝜋̄, 𝑟𝑖+ℓ)

]︂
≡ Pr

[︀
((𝜎2,𝑖)

−1 ∘ 𝜋−1(𝑦))|0 ← 𝖣
𝜋⊥𝑦

1

(︀
𝜌𝜋∘𝜎2,𝑖,𝑟𝑖+ℓ

, 𝑦, 𝑟𝑖+ℓ

)︀
: 𝜌𝜋∘𝜎2,𝑖,𝑟𝑖+ℓ

← 𝖣0(𝜋 ∘ 𝜎2,𝑖, 𝑟𝑖+ℓ)
]︀

≥ 1

2
+ 𝛿,

where 𝜋̄ = 𝜎1,𝑖 ∘ 𝜋 ∘ 𝜎2,𝑖. The probability is taken over 𝜋 ← 𝒮𝑁 , 𝑟 ← {0, 1}* (which is used to
sample permutations 𝜎𝑖) and 𝑥← [𝑁], along with all internal measurements of 𝖣.

Recall that 𝑏𝑖 ← 𝖣
(𝜎1,𝑖∘𝜋∘𝜎2,𝑖)⊥𝜎1,𝑖(𝑦)

1 (𝜌𝑖, 𝜎1,𝑖(𝑦), 𝑟𝑖+ℓ), for 𝑖 ∈ [ℓ]. Let 𝑋𝑖 be the indicator variable
for the event that 𝑏𝑖 = (𝜋∘𝜎2,𝑖)−1(𝑦)|0. Similar to the search case, we argue that all 𝑋𝑖 are mutually
independent. For any 𝑖 ∈ [0, ℓ− 1] and any subset 𝐾 ⊂ [0, 𝑙 − 1] where 𝑖 /∈ 𝐾, let

Event 𝐴 = {𝑋𝑖 = 0}
= {𝑏𝑖 ̸=

(︀
(𝜎2,𝑖)

−1 ∘ 𝜋−1(𝑦)
)︀
|0}

= {𝑏𝑖||0𝑛−1|0 ̸=
(︀
(𝜎2,𝑖)

−1 ∘ 𝜋−1(𝑦)
)︀
|0}

= {
(︀
𝜎2,𝑖 ∘ (𝑏𝑖||0𝑛−1)

)︀
|0 ̸= 𝜋−1(𝑦)|0},

29

Note that the last equality holds because of Equation 12. We then define another event

Event 𝐵 =
⋂︁
𝑗∈𝐾
{𝑋𝑗 = 0}

=
⋂︁
𝑗∈𝐾
{
(︀
𝜎2,𝑗 ∘ (𝑏𝑗 ||0𝑛−1)

)︀
|0 ̸= 𝜋−1(𝑦)|0}

Given that 𝐵 happens, we have {𝑏𝑗}𝑗∈𝐾 such that for all 𝑗 ∈ 𝐾,
(︀
𝜎2,𝑗 ∘ (𝑏𝑖||0𝑛−1)

)︀
|0 ̸= 𝜋−1(𝑦)|0.

We now consider the probability that 𝐴 happens. In Equation 12, since all 𝑟*𝑖 are independently
randomly generated, the value of

(︀
𝜎2,𝑖 ∘ (𝑏𝑖||0𝑛−1)

)︀
|0 is independent of all other values of

(︀
𝜎2,𝑗 ∘

(𝑏𝑖||0𝑛−1)
)︀
|0. Therefore, the event that

(︀
𝜎2,𝑖 ∘ (𝑏𝑖||0𝑛−1)

)︀
|0 ̸= 𝜋−1(𝑦)|0 is not correlated with all

other
(︀
𝜎2,𝑗 ∘ (𝑏𝑖||0𝑛−1)

)︀
|0 ̸= 𝜋−1(𝑦)|0, i.e., Pr[𝐴|𝐵] = Pr[𝐴]. This is true for any 𝑖 and 𝐾. Same

as the search case, in each trial, the base inverter is solving a completely independent permutation
inversion problem, thus we conclude that all ℓ trails are mutually independent.

Let 𝑋 =
∑︀ℓ−1

𝑖=0 𝑋𝑖, we have that 𝔼[𝑋] ≥ ℓ · (12 + 𝛿) by the linearity of expectation. Note that
𝖣[ℓ] succeeds in 𝖣𝖾𝖼𝗂𝗌𝗂𝗈𝗇𝖨𝗇𝗏𝖾𝗋𝗍 if and only if 𝖣[ℓ]1 can output 𝑏* = 𝜋−1(𝑦)|0, i.e. 𝑋 > ℓ

2 in which
case more than half of the elements in {𝑏0, ..., 𝑏ℓ−1} are equal to 𝜋−1(𝑦)|0. By the multiplicative
Chernoff bound in Lemma A.1, the probability that 𝖣𝖾𝖼𝗂𝗌𝗂𝗈𝗇𝖨𝗇𝗏𝖾𝗋𝗍 fails is at most

Pr

[︂
𝑋 <

ℓ

2

]︂
≤ exp

(︂
− 𝛿2

(1 + 2𝛿)
· ℓ
)︂
.

Note that the resource requirements needed for the amplification procedure amount to space
and time complexities ℓ𝑆 and ℓ𝑇 , respectively, similar as in Lemma 4.1.

C Quantum oracle constructions in Theorem 5.4

In Theorem 5.4, ℬ, with quantum oracle access to 𝑓 , needs to grant 𝒜 quantum oracle access to
𝑕𝑓,𝜋,𝑡,𝜇 and 𝑕−1*𝑓,𝜋,𝑡,𝜇. Here we give detailed constructions of 𝒪𝑕𝑓,𝜋,𝑡,𝜇

and 𝒪𝑕−1*
𝑓,𝜋,𝑡,𝜇

. Note that 𝜋 is

sampled by ℬ and so it is easy for it to construct quantum oracles 𝒪𝜋 and 𝒪𝜋−1
⊥𝑡

. Since 𝑕−1*𝑓,𝜋,𝑡,𝜇 = 𝜋−1⊥𝑡 ,
the partial inverse oracle 𝑂𝑕−1*

𝑓,𝜋,𝑡,𝜇
can be simply simulated by 𝒪𝜋−1

⊥𝑡
. So we only need to show how

to construct 𝒪𝑕𝑓,𝜋,𝑡,𝜇
.

Let 𝑥 = 𝑥0 . . . 𝑥𝑛−1, where 𝑛 = log𝑁 . When 𝜋 ∈ 𝜋𝑡,0,𝜇, the function becomes

𝑕𝑓,𝜋,𝑡,𝜇(𝑥0 . . . 𝑥𝑛−1) = (𝑥0 · 𝑓(𝑥1...𝑥𝑛−𝑚−1) · 1(𝑥𝑛−𝑚...𝑥𝑛 = 𝜇)) · 𝑡
+ (𝑥0 · 𝑓(𝑥1...𝑥𝑛−𝑚−1) · 1(𝑥𝑛−𝑚...𝑥𝑛 = 𝜇)) · 𝜋(𝑥).

Then define a function 𝑔 : [𝑁] → {0, 1}, such that 𝑔(𝑥) = 𝑥0 · 𝑓(𝑥1...𝑥𝑛−𝑚−1) · 1(𝑥𝑛−𝑚...𝑥𝑛 = 𝜇).
With access to 𝒪𝑓 , it is easy to construct 𝒪𝑔 by applying 𝒪𝑓 to the last 𝑛− 1 bits followed by an
AND gate.

30

Now when 𝒜 queries the oracle 𝒪𝑕𝑓,𝜋,𝑡,𝜇
on |𝑥⟩ |𝑦⟩, ℬ performs the following reversible operations

|𝑥⟩ |𝑦⟩
add aux registers−−−−−−−−−−→|𝑥⟩1 |𝑦⟩2 |0⟩3 |0⟩4 |0

𝑛⟩5 |0
𝑛⟩6

𝒪𝑔,1,3𝑋4𝒪1,4𝒪𝜋,1,5𝑈𝑡−−−−−−−−−−−−−−→|𝑥⟩ |𝑦⟩ |𝑔(𝑥)⟩ |𝑔(𝑥)⟩ |𝜋(𝑥)⟩ |𝑡⟩
CCNOT3,6,2−−−−−−−−→|𝑥⟩ |𝑦 ⊕ (𝑔(𝑥) · 𝑡)⟩ |𝑔(𝑥)⟩ |𝑔(𝑥)⟩ |𝜋(𝑥)⟩ |𝑡⟩
CCNOT4,5,2−−−−−−−−→|𝑥⟩ |𝑦 ⊕ (𝑔(𝑥) · 𝑡)⊕ (𝑔(𝑥) · 𝜋(𝑥))⟩ |𝑔(𝑥)⟩ |𝑔(𝑥)⟩ |𝜋(𝑥)⟩ |𝑡⟩

𝒪𝑔,1,3𝑋4𝒪1,4𝒪𝜋,1,5𝑈𝑡−−−−−−−−−−−−−−→|𝑥⟩ |𝑦 ⊕ (𝑔(𝑥) · 𝑡)⊕ (𝑔(𝑥) · 𝜋(𝑥))⟩ |0⟩ |0⟩ |0𝑛⟩ |0𝑛⟩
drop aux−−−−−→|𝑥⟩ |𝑦 ⊕ (𝑔(𝑥) · 𝑡)⊕ (𝑔(𝑥) · 𝜋(𝑥))⟩

It is easy to see that 𝑦 ⊕ (𝑔(𝑥) · 𝑡) ⊕ (𝑔(𝑥) · 𝜋(𝑥)) = 𝑦 ⊕ 𝑕𝑓,𝜋,𝑡,𝜇(𝑥). Therefore, to respond to one
query to 𝑂𝑕𝑓,𝜋,𝑡,𝜇

, ℬ needs to query 𝒪𝑓 twice (once for computing and once for eliminating). The
same thing can be done when 𝜋 ∈ 𝜋𝑡,1,𝜇.

D Quantum oracle constructions in Protocol 2

Here, we show how to implement the function 𝜋̄⊥𝑦 by means of a (reversible) quantum oracle. This
can be done by two separate oracles 𝒪𝜋̄ and 𝒪𝜋̄−1

⊥𝑦
, where the corresponding functions are

𝜋̄(𝑤) =

{︃
𝑦 if 𝑤 ∈ 𝒢
𝜋(𝑤) if 𝑤 /∈ 𝒢

and

𝜋̄−1⊥𝑦(𝑤, 𝑏) =

{︃
𝜋−1(𝑤)||0 if 𝑤 /∈ 𝜋(𝒢) ∧ 𝑏 = 0

1||1 if 𝑤 ∈ 𝜋(𝒢) ∧ 𝑏 = 1.

Let 𝑓 be an indicator function on whether 𝑤 ∈ 𝒢. Given 𝛽 as an input, the permutation 𝜋
restricted to inputs outside of 𝒢 is known (denoted as 𝜋′). Therefore given input 𝑦, with quantum
oracle access to 𝒪𝑓 and 𝒪𝜋′ , we can easily construct 𝒪𝜋̄ and 𝒪𝜋̄−1

⊥𝑦
.

The following procedure gives a construction of 𝒪𝜋̄.

|𝑤⟩ |𝑧⟩
add aux registers−−−−−−−−−−→|𝑤⟩1 |𝑧⟩2 |0⟩3 |0⟩4 |0

𝑛⟩5 |0
𝑛⟩6

𝒪𝑓,1,3𝑋4𝒪1,4𝒪𝜋′,1,5𝑈𝑦

−−−−−−−−−−−−−−→|𝑤⟩ |𝑧⟩ |𝑓(𝑤)⟩ |𝑓(𝑤)⟩ |𝜋′(𝑤)⟩ |𝑦⟩
CCNOT3,6,2−−−−−−−−→|𝑤⟩ |𝑧 ⊕ (𝑓(𝑤) · 𝑦)⟩ |𝑓(𝑥)⟩ |𝑓(𝑤)⟩ |𝜋′(𝑤)⟩ |𝑡⟩
CCNOT4,5,2−−−−−−−−→|𝑥⟩ |𝑧 ⊕ (𝑓(𝑤) · 𝑦)⊕ (𝑓(𝑤) · 𝜋′(𝑤))⟩ |𝑓(𝑤)⟩ |𝑓(𝑤)⟩ |𝜋′(𝑤)⟩ |𝑦⟩

𝒪𝑓,1,3𝑋4𝒪1,4𝒪𝜋′,1,5𝑈𝑦

−−−−−−−−−−−−−−→|𝑥⟩ |𝑧 ⊕ (𝑓(𝑤) · 𝑦)⊕ (𝑓(𝑤) · 𝜋′(𝑤))⟩ |0⟩ |0⟩ |0𝑛⟩ |0𝑛⟩
drop aux−−−−−→|𝑥⟩ |𝑧 ⊕ (𝑓(𝑤) · 𝑦)⊕ (𝑓(𝑤) · 𝜋′(𝑤))⟩

≡ |𝑥⟩ |𝑧 ⊕ 𝜋̄(𝑤)⟩

31

The backward oracle 𝒪𝜋̄−1
⊥𝑦

would be constructed similarly.

32

	Introduction
	The permutation inversion problem
	Related work

	Technical preliminaries
	Swapping Lemma
	Lower bounds for quantum random access codes

	The permutation inversion problem
	Amplification
	Reductions
	A search-to-decision reduction
	A reduction from unstructured search

	Lower bounds
	Search version
	Decision version
	Space-time tradeoff, no adaptive sampling
	Time lower bound, adaptive sampling

	Applications
	Future Work
	Some basic probabilistic lemmas
	Amplification proofs
	Quantum oracle construction in Protocol 1
	Another amplification lemma proof
	Decision amplification proof

	Quantum oracle constructions in Theorem 5.4
	Quantum oracle constructions in Protocol 2

