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Abstract

We demonstrate how to build computationally secure commitment schemes with the aid of
quantum auxiliary inputs without unproven complexity assumptions. Furthermore, the quantum
auxiliary input can be prepared either (1) efficiently through a trusted setup similar to the
classical common random string model, or (2) strictly between the two involved parties in uniform
exponential time. Classically this remains impossible without first proving P # NP.

1 Introduction

In this work, we reexamine constructing quantum commitments, a central task in quantum cryptog-
raphy |Yan22, BCQ23, BEM "23|. While commitments statistically (or information theoretically)
secure against both parties are impossible [May97, |LC97], recent works have demonstrated that com-
putationally secure ones are possible under complexity assumptions [BCQ23, BEM 23, Bra23| that
are potentially milder than P # NP |[Kre21, AQY22, MY22, KQST23, LMW23|. This suggests that
achieving unconditionally computationally secure quantum cryptography might not be susceptible
to the barriers that apply to classical cryptography.

Cryptography by default considers security against non-uniform adversaries where they, in
addition to running in polynomial time, get some advice at the beginning from either an inefficient
preprocessing phase or some residual information from another protocol execution. Auxiliary-input
cryptography, studied since the 1990s [OW93|, is a non-uniform version of cryptography where
every party in the protocol also gets access to a copy of some public information that might not be
efficiently preparable.

In this work we consider quantum auxiliary input, meaning that every party receives copies of
the same quantum pure state as input. Therefore, in some sense, this quantum auxiliary information
can be thought of as a “cryptographic magic state”, extremely similar to magic states that occur in
quantum fault tolerance, where a piece of quantum state can augment the computational power of a
less powerful circuit family.

Our main theorem constructs quantum auxiliary-input commitments without unproven complexity
assumptions, improving from the prior work of Chailloux, Kerenidis, and Rosgen [CKR16| who
established the same result assuming the unproven complexity separation of QIP & QMAEI While
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!There are two different variants of auxiliary-input security considered in the literature: in this work, we focus
on the strong variant where the adversary’s success probability is small for all but finitely many auxiliary inputs;
however, there is also a weaker variant where we only require the adversary’s success probability to be small for
infinitely many auxiliary inputs [OW93|. Note that classical auxiliary input weakly secure quantum commitments
can be built assuming QCZK ¢ BQP [BCQ23]|, classical auxiliary-input (strong) quantum commitment can be built
assuming QCZK ¢ QMA, and finally standard quantum commitments without auxiliary input can be built assuming
various other unproven assumptions.
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we share some techniques, our construction uses the sparse pseudorandom ensemble constructed
with a probabilistic method instead of the hardness of a QIP-complete problem.

Theorem 1. There exists a computationally-hiding statistically-binding non-interactive quantum
commitment scheme with quantum auxiliary input. Furthermore, the quantum auxiliary input has an
exponential-size classical description that can be sampled uniformly in exponential time.

We note that a classical analogue of would still imply P # NP [IL89]. In fact, as we
show in this is true even if we consider the model where all parties get access to a single
(possibly inefficient) sampling oracle, and each sample is private to the requested party. This model
is even stronger than having access to classical auxiliary input, since the oracle could just output
that fixed string with probability 1. (Considering every party having access to the same randomized
advice can be simply replaced with a fixed classical advice by an averaging argument.) Thus in some
sense, our result is even stronger than Raz’s result of QIP/qpoly = IP/rpoly = ALL [Raz05] as the
power of the quantum advice does not come from the advice being inherently randomized and this
randomness being private to each party.

Removing trust. One might be skeptical of the security since naively it appears that the parties
need to assume they can trust the quantum auxiliary input given to them. One way to fix this
problem is to ask the skeptical party to simply inspect the classical description of the magic state
and verify that the commitment built with it is secure. This takes at most a doubly exponential
time since we can cast it as a QMA problem .

In [Section 4] we show how to achieve computationally secure commitments without any trusted
auxiliary inputs through a less inefficient preprocessing. Specifically, in the scheme we only need to
ask both the committer and the receiver to perform a uniform exponential-time preprocessing phase.

Removing inefficiency. Complementary to that, we also show how to do commitments in a
completely efficient setting with a weakly trusted setup in Specifically, we adapt our
construction into a trusted setup model where a trusted third party efficiently generates a few copies
of the quantum auxiliary information for every party in the protocol to use before the protocol begins.
However, unlike [Theorem 1] here the pure state distributed to every party is not deterministic.
Furthermore, the scheme could in fact be statistically secure against all parties if the number of
copies distributed is restricted.

A stronger (in terms of trust) setup model is the secret parameter model |Ps05|, where we need
to trust the setup to sample two correlated strings for each party. While statistically secure classical
non-interactive commitments are possible in the secret parameter model, our model appears to be
meaningfully weaker than the secret parameter model. In particular, we can invoke our classical
impossibility to argue that statistically secure commitments remain impossible in a
classical sampling analogue of our model, since an unbounded adversary could always solve any NP
problem.

Polynomially bounded adversaries are physical, probably. A possible concern regarding the
claimed “unconditional” nature of this result is that the security relies on the “assumption” that the
adversary is polynomially bounded during the execution of the protocol. We address that concern
by noting that it is possible to reduce this assumption to a physical assumption. On one hand,
physical assumptions and more generally modeling assumptions (the mapping between real world



and mathematics) are unavoidable in any form of provably secure cryptography. On the other hand,
this suggests a new win-win philosophy, since either we can have secure cryptography or we are able
to discover exciting new physics.

More specifically, there is most likely a fundamental physical limit to the density of quantum
information before collapsing into a black hole given by the Bekenstein bound (see [L1o00| for an
exposition of this). Since any malicious computation must be done in polynomial time, and thus
space by the no superluminal signaling principle, it follows from extended Church-Turing thesis (for
quantum information tasks) that any polynomial-time physical computation can be described by a
polynomial-size quantum circuit. Therefore, we can force adversary to be polynomially bounded by
simply limiting the protocol execution time. Even if the adversary could somehow leverage black
holes to perform useful computations, we could still monitor the energy density nearby to make sure
that this does not happen. We leave further materializing this idea to future work.

Additional applications. We note that once we have commitments then stronger applications are
also within reach, as we further detail in (see also |[BCQ23|). One notable application is
to use it to perform secure multiparty computations.

For a more concrete example, consider the classical Yao’s Millionaires’ Problem [Yao82|, except
that now it’s a Trillionaires’ Problem! This means that two trillionaires want to figure out who is richer
without revealing anything else. Also since they are trillionaires, their entire families and businesses
are somehow also on the line, so if cheating is detected then chaos would ensue. Furthermore, they
also have the world’s bestest cryptanalyst to break any computational hardness assumption should
it be necessary and possible, and they are willing to use exponential-time preprocessing as a small
sacrifice.

Secure multiparty computations with preprocessing is the perfect solution for this problem! They
first spend exponential time to set up and during the protocol execution, they ensure that the
other party finish in time and no cheating occurs. So if nothing bad occurs, then both of them can
be satisfied knowing that their secrets are safe. Additionally, using certified everlasting transfer
[IBK23|, they can achieve everlasting security by having a third party referee, who is trusted to
be uninterested in spending exponential resources recovering the input, to certifiably delete the
remaining information.

Open problems. One undesirable feature of our scheme is that there is no good way to get
additional copies of the magic state. In the trusted setup model, it is possible to redo the setup
every once in a while to preserve statistical security and efficiency, but otherwise generating new
copies still takes exponential time, although it is possible to build dedicated hardware to pipeline
this process. A natural question is whether we can construct quantum cryptography with quantum
auxiliary information that is efficiently clonable or reusable. While there are families of quantum
states that is efficiently clonable but cannot be prepared in uniform polynomial time relative to a
quantum oracle [NZ23|, even having a standard model candidate is open since the quantum oracle
there is a cloning oracle. The biggest issue with reusing our schemes is that for each invocation of
the commitment scheme, on average O(\) copies of the magic state is transferred to the other party,
and there does not appear to be a way to certifiably retrieve these states. Of course, the ultimate
goal would be to construct these without inefficient preprocessing or having trusted setup at all.



Concurrent work. Near the completion of this work, I became aware of a parallel work done by
Tomoyuki Morimae, Barak Nehoran, and Takashi Yamakawa [MNY23|. In particular, both works have
the same constructions of quantum auxiliary-input commitments (Theorem 1)) and statistically secure
commitments with a weakly trusted (stateful) setup (Corollary 6| and [Proposition 7). They have an
additional statistical commitment construction with stateless setup, however, the downside is that
this can only be secure given that at most a bounded number of copies is generated. Complementary
to the classical impossibility of they also give an impossibility of classical auxiliary-input
(quantum) commitments in a weak setup model. They in addition have the application of quantum
auxiliary-input zero-knowledge proofs for NP (with negligible simulation security). They also point
out an observation by Fermi Ma that the cube root security loss of can be improved
to square root if we instead augment the |[GK92| argument with a matrix Chernoff bound like was
done in [LMW23|.

Notably, their work point out that the quantum auxiliary-input commitment cannot be imme-
diately used to construct simulation-secure commitments through the [BCKM21| compiler due to
the use of Watrous rewinding in the simulator there. After the discussions with [MNY23]|, I present
the resolution of this in by showing how to adapt [BCKM21| to recover e-simulation

security, which still suffices to recover almost all applications of a standard quantum commitment.

2  Quantum auxiliary-input commitment

We formally define non-interactive commitments and handle its subtleties for later applications
in To prove our main theorem, we first need the following result on the quantum
non-uniform security of pseudorandomness.

Proposition 2 (|[CGLQ20a, [Liu23|). For a random function H : [N] — [M], the best quantum
non-uniform circuit of size S (potentially depending on H ) can distinguish its output from a random

element from [M] with advantage at most 12 - {/ % (averaged over the choice of H ).

While these works consider the more general case where quantum algorithms that could addition-
ally make queries to H, the same proofs also give a polynomial upper bound for standard query-less
algorithms. For completeness, we show this precise bound in [Appendix C}

In particular, this implies the existence of a good function for which this is true against size
S — 1, since we can always use an extra bit to make the bias always have the same sign for all H. In
other words, for any (S — 1)-size algorithm A’, there is an S-size algorithm A such that

I el () - B4 |~ B |

H|x Y H

E[A(H(2))] — E[A(y)]

xT

where A simply runs A’ and XOR its output with the extra advice bit. With some small inverse
exponential security loss, we can also use Markov’s inequality to argue that even sampling a function
uniformly at random would satisfy this with overwhelming probability.

Instantiating the above with § = 2* + 1, N = 25" and M = 2%, we get the following corollary,
which generalizes the classical (inefficient) sparse pseudorandom ensemble construction of Goldreich
and Krawczyk |[GK92| to the post-quantum settingﬂ

>The naive attempt of quantizing [GK92] proof cannot seem to handle quantum advice. For readers familiar with



Corollary 3 (Exponentially secure sparse pseudorandom ensemble). There exists a pseudorandom
ensemble H : {0,1}%* — {0,1}%* against all 2*-size quantum circuits A with quantum auziliary
information, whose security |E.[A(H (z))] — Ey[A(y)]| <27 for all A > 11.

Proof of [Theorem 1. Let {H(2)},cq0,135» be the exponentially secure sparse pseudorandom ensemble
as above. We first specify the quantum auxiliary input

M) =272 N r) @ |H(x))
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a pure state of 11\ qubits that can be prepared using a circuit of size 0(25’\).
We now specify the protocol. The sender, to commit to 0, simply sends the second half of |M,);
and to commit to 1, sends the second half of a maximally entangled state
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to later decommit, the rest of the state is sent. The receiver, upon receiving the entire state and the
bit b can efficiently test by performing a SWAP test between the received state and the correct state
of either |M,) or |¥y). Finally, a A-fold parallel repetition is applied to this construction, meaning
that the committer commits to the same bit A times in parallel, and the receiver checks that all
commitment decommits to the same bit.

For binding, we note that our construction is identical to that of [CKR16, Section 4| except for
the choice of two pure states used for the commitments. In our case, since the two reduced density
matrices on the commitment register are classical, so the fidelity between them is

2
(Z = y]) <2 1)
Y

by applying Cauchy—Schwarz on y’s in the image of H. The rest follows the same proof as [CKR16,
Proposition 4.4], thus we get that our commitment after taking A-fold parallel repetition is statistical
sum binding.

For hiding, the two reduced density matrices given to the hiding adversary exactly corresponds to
the security game of the pseudorandom ensemble. Finally taking a parallel repetition also preserves
hiding by a standard hybrid argument. O

We remark that this construction can be straightforwardly “derandomized” using a (post-quantum)
pseudorandom generator, and thus eliminating the inefficiency at the cost of assuming the security
of the pseudorandom generator.

In fact, if we are only aiming for a commitment scheme with quantum auxiliary input and do not
require the classical description to be computable in exponential time, any non-trivial computationally
indistinguishable pair of quantum states suffices. The construction is essentially the same except
that the receiver does a SWAP test with the corresponding pure state for decommitments to either
bits.

that work, a natural strategy is to use union bound over all quantum algorithms/advice using an e-net, however, this
fails since the size of the e-net is doubly exponential, and thus eliminating the single exponential concentration we get
from Hoeffding’s bound.



Classical impossibility. For convenience, we focus on non-interactive statistically-binding com-
mitments for the classical case. This is a fair comparison since such a commitment with classical
auxiliary information does exist assuming existence of one-way functions, by applying averaging
argument to the first message of Naor commitment |[Nao91|. We leave improving this impossibility
to future work. The main insight is that having sample access to the oracle suffices to break the
security.

Theorem 4. If there exists a computationally-hiding statistically-binding non-interactive classical
commitment scheme where all parties share access to a sampling oracle, then NP Z P /poly.

Proof. For simplicity, we consider that committer and receiver each gets a private sample s,r
respectively from the sampling oracle; to commit to bit b, the committer computes a deterministic
function Commit(s,b) = 7 and sends 7 to the receiver; to decommit, the committer sends s, b and
the receiver computes a deterministic function Reveal(s,b,7,7) € {T, L} indicating accept or reject
the revealed bit b. This is without loss of generality since we can always have the oracle give multiple
samples per query and pad the oracle with uniform random bits so that the only source of private
randomness is from the oracle.

Assume NP C P/poly, we show how to efficiently break the hiding. Let each sample be ¢ bits
long. The malicious receiver, on input 7 and (¢ 4+ 1) independent samples 7 := rg, ..., 7y from the
sampling oracle, predicts the commitment is to 0 if there exists sg such that Reveal(sg,0,7,7;) =T
for all ¢, and predicts to 1 otherwise. This is also an NP language since Reveal is efficient. Then in
the case when the committer commits to 0, by completeness with overwhelming probability over 7,
Pr,.[Reveal(sg, 0, 7, 7)] is negligibly close to 1, so this receiver always predicts 0 except with negligible
probability. On the other hand, when the committer commits to 1, by statistical binding, with
overwhelming probability over 7, for every sop we have that Pr.[R(so,0,7,7)] is negligible, and by
independence of samples, Prz[Vi : Reveal(sg,0,7,7;)] < 27¢1 for all sufficiently large X, thus by
union bound, Prz[3soVi : Reveal(sg, 0, 7,7;)] < % This gives a hiding adversary with advantage at
least % — negl. O

3 Commitment in the unclonable common random state model

The common random string (CRS) model is a commonly considered relaxation of the standard
trustless model where the only trust in the setup is that a classical string is uniformly sampled and
then published. This model was first proposed in the context of non-interactive zero knowledge
(NIZK) |BFMSS| since interesting NIZK is impossible in the trustless model.

In this work, we introduce a quantum analogue of the CRS model that we call the unclonable
common random state (JUCRS)) model. In the [UCRS) model, the only trust in the setup is that
a random pure state is drawn from a state distribution, and then many copies of that pure state
are made available to all parties. Furthermore, there should be a way to efficiently generate any
polynomial (but a priori unbounded) number of the common state. We emphasize that unclonability
only indicates a lack of the cloning functionality of the common state but the scheme’s security
does not rely on the common state being unclonable — in fact in this model, any malicious party
is allowed to inefficiently process the classical description of the random state before the protocol
begins.

Going back to the commitment construction of [Theorem 1], we note that the magic state is
simply a uniform superposition query on a function H, and even using a random function H is



secure except with inverse exponential probability. Therefore, that construction is indeed also secure
in the |[UCRS) model, so the only missing piece of the puzzle is to show efficient sampling of the
magic state. This is tricky since the classical description requires an exponential size and there are a
doubly exponential number of possible states to sample from.

Nevertheless, we show that there is an efficient way to statefully sample these states. To do this,
we invoke Zhandry’s compressed oracle technique |Zhal9).

Lemma 5 (|Zhal9|). There exists a stateful simulation oracle CStO that perfectly simulate any
number of (quantum) queries to a random function H : {0,1}" — {0,1}™ for any n,m. Furthermore,
the t-th query can be processed in time polynomial in mt, and the state (also called the database)
after t queries consists of (m +n+1) -t qubits.

Since the simulation is perfect, the commitment constructed in after replacing H
with a truly random function, still works. The simulation is also efficient since both m and t are
polynomial in A\. Thus we arrive at the following corollary.

Corollary 6. There exists a computationally-hiding statistically-binding non-interactive quantum
commitment scheme in the |UCRS) model.

Interestingly, the hiding of the commitment in fact becomes statistical if at most a polynomial
number of states are given out to the adversary, and the proof of this is deferred to
Therefore, we get a completely statistically secure commitment if we in addition trust the setup to
not generate too many copies of the magic state.

Proposition 7. Assuming the receiver has at most P copies of the magic state on H, then the

commitment scheme of |Corollary 6 is (8\/5 \/]1\3,) -statistically hiding.

Another interesting consequence of this is that for our scheme, we cannot trust either party
to distribute the magic state. If the receiver chooses the magic state for the committer, then
computational hiding can be trivially broken by picking a bad magic state like the all zero state. If
the committer chooses the magic state for the receiver, then shows that this scheme is
in fact statistically hiding and thus not statistical binding. In fact, it is not even computationally
binding as we show below.

Proposition 8. Take the commitment scheme from but instead have the committer
choose H as a random function. Then this commitment scheme has computational sum binding error
of at least 1 — O(t/V/'N) even after taking t-fold parallel repetition using the same random function.

Proof sketch. We sketch how to efficiently break sum binding, even if the scheme is repeated t
times in parallel. Consider a binding adversary that commits to 0 honestly using the compressed
oracle. Certainly by sending the decommitment registers honestly, the receiver would accept 0
with probability 1. We now show how to decommit to 1 with probability 1 — O(t/v/N). First, we
measure the x for every magic state (including the ones held by the decommitter are also measured,
which is okay since the receiver does not touch those registers when checking decommitment to
1 so they are essentially traced out) and abort if not, which happens with probability at most
O(t?/N) by collision probability. Otherwise, every magic state holds a distinct . For each fold,
the decommitment register contains some x;: we apply StdDecomp,, and search in the database
where the entry x; occurs and send the corresponding image register as decommitment to 1, which



is maximally entangled with the corresponding commitment register. To make this into a malicious
committer that does not measure the x’s held by the receiver, we note that this measurement is only
used to conditionally abort the committer, so the success probability of the same adversary except
that it never aborts is still 1 — O(t/v/N) by gentle measurement. O

4 Eliminating trust with preprocessing

We first give a PromiseQMA upper bound on the complexity of verifying the computational insecurity
of H up to a constant multiplicative loss. Therefore, we can check if a function H is secure in doubly
exponential time, or even exponential time if BQP = QMA.

Proposition 9. The language L, consisting of all functions H such that the commitment constructed
mn using H is insecure, is in PromiseQMA.

Proof. We prove this by constructing a PromiseQMA verifier. The verifier, on input H (of length
Nlog M) and a witness |C) (a distinguisher quantum circuit of length S which is polynomial in
|H|), samples a random bit b and runs the universal quantum circuit on either (|C), H(x)) for a
random z € [N] or (|C),y) for a random y € [M], and accepts if the universal quantum circuit
predicts b correctly. We set completeness to be % + 27 and soundness to be % + 2721 50 the gap
is 2771 which is inverse polynomial in |H|.

If the output of H is pseudorandom, then we have that H ¢ L as desired. On the other hand, if
there exists an S-sized witness for H that distinguishes with advantage higher than 2 -27, then
He L. O

We now give an alternative unconditional approach to eliminate trust on the magic state in
uniform exponential time.

Theorem 10. There exists a computationally-hiding statistically-binding non-interactive quantum
commitment scheme with an exponential time preprocessing phase.

Proof. We again adapt the commitment from by adding a preprocessing phase to generate
the magic states for both parties. More specifically, the sender samples a random function H on their
own, then send the classical description of H to the receiver. Afterwards, they generate multiple
copies of the magic state for that function on their own before the protocol begins. (It is important
that they generate the quantum magic state on their own to not run into the impossibility of
above.)

Computational hiding is preserved since in this case H is honestly generated, and the proof
of actually suffices to show that the commitment is statistically binding for any H:
specifically, the fidelity computed in is bounded by 27 for any H. O
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A Non-interactive quantum commitments

In this section, we use x € S as the auxiliary information for a certain set S and implicitly its length
|x| as the security parameter. Thus if z is a classical unary string, then it is a standard uniform
commitment scheme. In order to prevent degeneracy, we require that S must contain arbitrarily
long bitstrings or quantum states: for any integer n, there exists x € S such that |x| > n. We refer
the readers to [BCQ23| for quantum information and cryptography background.

Definition 11. A non-interactive commitment scheme is a pair of efficient quantum algorithms
Commit and Reveal where Commit(z,b) produces a bipartite state p over the commitment register C
and the decommitment register D, and Reveal(x, p) outputs either the committed bit b/ or a rejection
symbol L. Furthermore, Pr[Reveal(z, Commit(x,b)) # b] is negligible for any b =0,1 and x € S.

We say it is computationally (or statistically) hiding if the C registers of Commit(z,0) and
Commit(x, 1) are computationally (or statistically, respectively) indistinguishable.

We say it is statistically (or computationally) sum binding if for any state p (over C,D and a
private register M) and any possibly inefficient (or efficient, respectively) unitary U not acting on
register C, pg + p1 — 1 is negligible, where py is the probability that the receiver accepts bit b. In
particular, po := Pr[Reveal(z, pcp) = 0] and p; := Pr[Reveal(z, (Up)cp) = 1].

Finally, we say it is in canonical form [Yan22], if Reveal takes the following form:

1. Perform a rank-1 projection on CD and output 0 if it succeeds.
2. Perform another orthogonal rank-1 projection on CD and output 1 if it succeeds.
3. Output L.

Since statistical sum binding is traditionally unwieldy to use in applications, the work of Ananth,
Qian, and Yuen defines an extractor-based binding definition [AQY22, Definition 6] (hereby called
extractable binding in order to distinguish), which on a high level states that for any malicious
committer, there is an extractor that can extract the committed bit from the receiver’s view after
the commitment phase in an imperceptible way, as long as the receiver does not touch those registers
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until the reveal phase. More specifically, it is defined as an indistinguishability between a real
experiment and an ideal experiment. The real experiment simply performs the commitment normally
and outputs the revealed bit along with the committer’s residual state. The ideal experiment is
defined as follows: after a normal execution of the commit phase, the extractor is ran on the receiver’s
view to obtain a trit b € {0,1, L} and a post-measurement view; after the reveal phase, the output
is set to the revealed bit b’ along with the committer’s residual view if &’ € {b, L}, otherwise the
output is set to a special symbol | indicating extraction failure.

For canonical form commitments, it is known that many variants of binding are equivalent,
including statistical sum binding and extractable binding [FUYZ22|. It is unclear how to make
commitments constructed in this work into canonical form due to the presence of quantum auxiliary
information, so for completeness we show how to extend the equivalence to general non-interactive
schemes.

We call a commitment scheme having a projective Reveal if Reveal is a projective measurement
on the receiver’s view. For example, any post-quantum commitment with a deterministic Reveal
algorithm or any canonical-form commitment has a projective Reveal but our schemes do not due
to the swap test. Without loss of generality we can always generically make a commitment have a
projective Reveal via Stinespring dilation. In particular, we need to purify the Reveal algorithm so
that it is a unitary on registers CD and potentially some auxiliary register A (which holds = and
potentially some zeroes), followed by a complete measurement on a qutrit in the auxiliary register to
obtain the output. Furthermore, we ask the receiver to prepare the auxiliary register A immediately
after the commit phase. This change is also imperceptible from the committer’s perspective.

We remark that due to a technicality, the equivalence cannot hold without giving the extractor
access to A. Consider the following unnatural counterexample, a non-interactive (classical) com-
mitment scheme without a projective Reveal that satisfies sum binding but not extractable binding.
To commit to bit b, the committer simply send a mode bit 1 followed by b; and the decommitment
message is empty. The Reveal algorithm checks that if the mode bit is 1 then output b, and if
the mode bit is 0 then output a random bit. Intuitively this scheme is binding since no matter
which mode the malicious committer uses, he cannot later change the bit in any way since the
decommitment message is empty; and indeed it is straightforward to see that it satisfies sum binding.
However, a malicious committer can cause the extractor to fail since without access to the random
bit register later used to sample the output of Reveal, it is impossible for the extractor to predict
the bit that would be revealed later.

Theorem 12. Statistical sum binding is equivalent to extractable binding for any commitment scheme
with a projective Reveal, thus we can build an extractable binding commitment scheme from any
statistical sum binding commitment scheme (and vice versa).

Proof. Extractable binding implies sum binding is straightforward: pg+p; < 1 in the ideal experiment
where the bit is extracted and guaranteed to be correct, thus the indistinguishability between the
real and the ideal experiments implies sum binding.

For the other direction, fix any sender where the overall state before executing Reveal is p.
Without loss of generality we assume p is pure by taking the purification into committer’s private
register. Let |pg) be the state post-selected on the event that Reveal(|p)) = 0 and |p1) be the state
post-selected on the event that Reveal(|p)) = 1, or 0 if such post-selection is not possible. |po)
and |p;) are orthogonal by the fact that Reveal is projective. Consider a canonical-form variant of
Reveal where the rank-1 projections are given by |po)po| and |p1){p1|. We claim that this variant is
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still sum binding since any sum binding adversary succeeding for this variant would also succeed
in breaking sum binding against the original Reveal. Then the result of Fang, Unruh, Yan, and
Zhou [FUYZ22| (also in [MY22, Appendix B|) implies that there is an extractor for this modified
scheme, in particular, the extractor performs the optimal distinguishing measurement between these
two states on registers AC. This extractor also works for the original scheme since the extractor
almost perfectly project the state onto either |pg) or |p1) by statistical sum binding and gentle
measurement, and the two Reveal algorithms behave identically in the subspace spanned by these
states. O

B Simulation security

Simulation security captures the security of a primitive using the real-ideal world paradigm more
precisely than the game-based security definitions (which are usually used for hardness assumptions)
and is the default security notion in the context of zero knowledge and secure multiparty computations.
In this appendix, we discuss how to further augment our commitment scheme following the template
of Bartusek, Coladangelo, Khurana, and Ma [BCKM21| so that it satisfies simulation security.

The simulation security for a bit commitment is morally trying to capture the following ideal
world: (1) in the commit phase, the committer sends a bit b to the ideal functionality; (2) in the
reveal phase, the committer asks the ideal functionality to open and the ideal functionality sends
the bit b to the receiver. More specifically, the security against receiver is called equivocality, which
states that the commitment can be simulated in a way that b is only determined at the beginning
of the reveal phase. The security against committer is called extractability, which states that the
commitment can be simulated in a way that b can be extracted from the committer after the commit
phase completes.

e-simulation security for inefficient preprocessing. We first consider augmenting the base
protocol with simulation security. We note some caveats before proceeding.

The first caveat is that we allow the simulator to take a few copies of the auxiliary input state
as additional inputs. Intuitively, this means that a malicious party can come out of the protocol
obtaining a few extra copies of the magic state. Indeed, if we look at the construction of
the receiver after an honest interaction gains one copy of the magic state from the committer for
each fold of repetition, and there does not seem to be a way for the committer to certifiably retrieve
the state back. We believe that this weakening is still meaningful and non-trivial since (1) the magic
state is supposed to be public knowledge anyways (everyone should have many copies), and (2) the
simulation security still guarantees that the “real” input is hidden from the other party.

The second caveat is that we only achieve e-simulation security (with quantum auxiliary informa-
tion |auz)), which states that there is an efficient simulator S and some polynomial ¢ such that for
every adversary A (that is possibly entangled with the distinguisher) and every ¢, the view outputted
by (I ® S)(A, |aux>®t(1/ E)) is distinguishable from the real view except with advantage no more than
€, where S does not touch the distinguisher’s private register. We stress that the protocol itself is
independent of . Furthermore, this still suffices for almost any game-based application that needs
simulation security although with a larger polynomial security loss. To see this, for example, suppose
an adversary can break a downstream game-based security with some non-negligible probability p,
then we can set our overall simulation error to be p/2 to reach a contradiction. On the other hand,
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to prove a downstream e-simulation security, we can similarly pick a smaller € for each fold and
invoke hybrid argument.

The main technical ingredient we need is to implement reflection unitary for an arbitrary initial
state, which in this case could contain some inefficient auxiliary information. This is proven in the
following lemma, which constructs such an algorithm by using a generalized SWAP test.

Lemma 13 (Approximate state reflection). For any pure state |¢), let Ry be the unitary channel
for unitary Ry := I —2|y)Xt|. Then there is a uniformly efficient channel R such that R(-, [¢}|*™)

18 1/n+1 -close to Ry, in diamond norm for all ¢,n > 0.

Proof. We describe the algorithm as follows. We denote the registers as Xg, ..., X, with Xg being the
input register and the rest being initialized to |1).

Initialize a uniform superposition |+)y m Yoo N
Controlled on N being |7}, swap Xg and X;.

Controlled on N being |+), apply phase —1.
Uncompute step 2.

Trace out everything except Xg.

CU N

We begin analyzing the algorithm by considering pure state inputs. If the input is [¢)) then phase
—1 is correctly applied since steps 2 and 4 do not affect the state. If the input is some orthogonal
state |¢), let |¢;) denote the state where X; is |¢) and everywhere else is [¢). Then after step 3, we
get the state

1 & 9 '
T 9 (9 =2h) = =2 Sl - o e,

Therefore after step 4, we get

3= (1= o2 ) o) 1) —;m 7).

We compare this state with the expected output and get that the overlap

2 n 4
1+ >1- .
\/n+1< n+1>_ vn+1
By decomposing a general pure state |z) = \/p[¢)) + /T — p|¢) and let [b,) := [1)*™ |+), we have
that
4

Vil 2
as well by combining the two cases above. Furthermore, generalizes to a larger entangled pure
state by simply applying linearly to the Schmidt decomposition. For diamond norm, it suffices
to consider any input state where the overall entangled state is pure (since we can without loss
of generality purify the state for the distinguisher), thus we have that the trace distance between
(I ® Ry) |x) @ |1hp) and |Z) is at most

< 4 )2 .| 64
1—(1- < .
vn+1 n+1

({(do] (+])|#) =1 -

(2] R, ® (tn]) [7) > 1 -




This completes the proof since trace distance cannot increase after the operation of tracing out the
auxiliary registers holding |1, ), which is CPTP. O]

Theorem 14. e-simulation secure commitment schemes with quantum auziliary input exist. Further-
more, it can be built from any non-interactive extractable-binding computationally-hiding commitment
scheme with quantum auziliary input.

Proof. This follows the same construction and proof strategy as [BCKM21}, AQY22| except for one
change. In particular, Watrous rewinding [Wat06] was used for a total of A times in the equivocal
simulator [BCKM21, Section 4.1], which involved applying a unitary I — 2]0)0| on a certain private
register of the simulator’s. The purpose of this unitary was to check whether this register returned to
all zero state. In our context, this register would be initialized to |0) ® |auz)®" instead for a suitably
large zero register and some polynomial ¢(\), and similarly we need to reflect around this state in
order for the analysis to go throughﬂ

We establish e-equivocality as follows. We first consider a simulator that runs the [BCKM21]|
equivocal simulator with access to an inefficient reflection oracle: this gives a negligible simulation
error, and thus it is at most /2 for all sufficiently large \. We now instantiate this inefficient oracle
with where n = [1024(\/e)*] — 1 and [¢) = |0) ® |auz)®’, then by a standard hybrid
argument we arrive that the overall simulation error is at most €. Furthermore, the number of copies
of |auz) used is O(t(\/e)*) which is polynomial.

The rest of the proof follows as [BCKM21| using a similar trick of running the inner simulator
with a polynomially smaller error. O

Simulation security in the unclonable common random state model. We conclude by
remarking on the simulation security of the commitment scheme with trusted setup from
First of all, we can still apply the [BCKM21| transformation, but in this case we would get negligible
simulation security since with access to the compressed database register, the simulator can efficiently
test/uncompute the magic state.

However, we note that the argument of gives an adversary that breaks honest
binding when the adversary could control the sampling of the random function using compressed
oracles, and thus an analogous argument can show that the commitment of is in fact
already negligibly equivocal even without any further modification to the scheme.

Using similar ideas this commitment is probably also negligibly extractable as well, however,
the argument is more complicated since in this case we need to be able to extract any malicious
committer (this is unlike the equivocal case where the only freedom a passive but malicious receiver
has is to distinguish the views, so it suffices to simply show simulation correctness). We leave
formalizing this to future work.

C Post-quantum pseudorandomness

We view a quantum query-less circuit with auxiliary input of total size S as an S-qubit input fed
to a universal quantum circuit, which itself is independent of the random function H. (Indeed we

30ne naive idea to fix this is to ask the simulator to only reflect the zero part and ignore the auxiliary information.
However, this does not work since we can calculate and see that such a rewinding algorithm (without any further
changes) would not work for an adversary that picks its challenge by measuring the auxiliary information it receives
from the simulator.
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can without loss of generality even take S to be the number of qubits that actually depend on the
function H.)

The first polynomial upper bound for this problem was established by Chung, Guo, Liu, and
Qian |[CGLQ20a] and was subsequently improved by Liu |Liu23|. We follow the second work in this
proof. We first recall a game G in a P-BF-QROM |Liu23]| to be the following:

0. A random function H : [N] — [M] is sampled uniformly at random.

1. The adversary starts by making P (quantum) queries to H, and then we postselect on measuring
its first qubit being 1 (abort if it is not possible). This postselection may affect its residual
state as well as the conditional distribution of the random function.

2. The challenger then samples a random classical challenge to the adversary, using Tsqmp queries.

3. The adversary produces a response, using 7' queries.

4. The challenger outputs a bit indicating accept or reject, using Tierify queries.

We say G is v(P,T)-secure in the P-BF-QROM if any adversary with 7" queries cannot make the
challenger accept with probability higher than v. In our case, the security game of a pseudorandom
ensemble (or PRG) against a query-less adversary corresponds to Tsamp = 1 and T = Tyepify = O:
the challenger flips a random bit and either sends a pseudorandom H(x) (using a single query) or a
random vy, and asks the adversary to predict the bit.

Similarly, an (S,7) non-uniform quantum adversary plays the same security game, except that
in step 1 it can do an arbitrary amount of queries but is not allowed to do post-selection, and its
output (to be used later in step 3) is restricted to at most S qubits.

Lemma 15 (|Liu23, Lemma 4|, with the coefficient from |[CGLQ20b} Proof of Lemma 5.13|). The
PRG game has v(P,T) = & +4v/2 -/ PX2 in the P-BF-QROM.

Theorem 16 (|Liu23, Theorem 5|). Any game G that has security v in the P-BF-QROM has
security
0(5,T) < min{v(P/y,T) +}
>

against (S,T) non-uniform adversaries in QROM, where P = S(T + Tyerify + Toamp)-

Proof of [Proposition 3. Combining [Lemma 15| and [Theorem 16} we find that for any non-uniform
algorithm A of size S (that potentially depends on H),

1
‘E[E[A(H(x))] — E[A(y)]] ' = 2‘5(5 -1,0) — ‘
H|x Yy 2
S
< omi 5.2
= 23251{\/2 N +'y}
S
_ 3
=12 N’
showing the bound above. O

Proof of [Proposition 7. Since each copy of the magic state can be efficiently prepared through a
single quantum query to H, any distinguishing adversary is a valid query-less adversary in the

P-BF-QROM, and thus we arrive at the proposition by invoking O
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