
Proofs of Space with Maximal Hardness

Leonid Reyzin
Boston University∗

April 17, 2024

Abstract

In a proof of space, a prover performs a complex computation with a large
output. A verifier periodically checks that the prover still holds the output. The
security goal for a proof of space construction is to ensure that a prover who erases
even a portion of the output has to redo a large portion of the complex computation
in order to satisfy the verifier.

In existing constructions of proofs of space, the computation that a cheating
prover is forced to redo is a small fraction (vanishing or small constant) of the orig-
inal complex computation. The only exception is a construction of Pietrzak (ITCS
2019) that requires extremely depth-robust graphs, which result in impractically
high complexity of the initialization process.

We present the first proof of space of reasonable complexity that ensures that
the prover has to redo almost the entire computation (fraction arbitrarily close to
1) when trying to save even an arbitrarily small constant fraction of the space.
Our construction is a generalization of an existing construction called SDR (Fisch,
Eurocrypt 2019) deployed on the Filecoin blockchain. Our improvements, while
general, also demonstrate that the already deployed construction has considerably
better security than previously shown.

Technically, our construction can be viewed as amplifying predecessor-robust
graphs. These are directed acyclic graphs in which every subgraph of sufficient
relative size π contains a large single-sink connected component of relative size
απ. We take a predecessor-robust graph with constant parameters (π, απ), and
build a bigger predecessor-robust graph with a near-optimal set of parameters and
additional guarantees on sink placement, while increasing the degree only by a
small additive constant.

1 Introduction

In a proof of persistent space [DFKP15], a verifier V wants to be convinced that a
prover P is continuously using a lot of storage. To initialize a proof of space1 instance,

∗Work done while visiting Universitat Pompeu Fabra and Protocol Labs.
1We will omit the term “persistent” from now on; proofs of transient, as opposed to persistent, space

were introduced in [ABFG14].
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P takes a small instance identifier x, and generates a very large output y = f(x). P also
provides to V a commitment to y and a proof that the computation of f was correct
or at least close to correct.2 V then periodically queries random portions of y, which
P returns together with the proof of their correctness. (This periodic protocol is called
“execution.”) To be confident that P is really using the storage, we need the following
property: when storing less than all of y, it should be difficult for P to come up with
portions of y in response to the queries of V .

What does “storing less than all of y” mean? Naturally, the prover is not limited to
storing bits of y, and can store other values—for example, some intermediate values in
the computation of y = f(x). If P stores just a little bit less than |y|, perhaps answering
V ’s queries is not so hard. A proof of space is thus characterized by a space gap εspace: if
a cheating prover stores fewer than (1− εspace) · |y| bits, then answering queries becomes
“difficult”; but above (1− εspace) · |y| storage, the proof of space provides no guarantees.

What does “difficult” mean? Answering the queries of V is never harder than simply
recomputing y = f(x) from the short input x. We will use the term hardness gap
εhardness to denote the difference between the difficulty of initial computation of f and
the difficulty of cheating. In other words, a proof of space should ensure that a prover
who uses less than (1 − εspace) · |y| space will have computational cost at least (1 −
εhardness) · cost(f(x)) during execution. (Following the original definition of [DFKP15],
our computational abstraction is a strong version of the random oracle model, and cost
is measured as the total number of oracle queries.)

An optimal proof of space would get both the hardness gap εhardness and the space gap
εspace as close to 0 as possible, in order to make it maximally expensive for the adversary
to even minimally reduce storage. In particular, a smaller εhardness allows for increased
time TV between executions, by the following reasoning. In order to pass execution, a
prover can choose to expend computational effort (1 − εhardness) · cost(f(x)) or to store
at least (1− εspace) · |y| bits for time TV ; and a greater εhardness means that the tradeoff
favors storage for a greater TV . A greater TV translates into reduced costs for the honest
provers and verifiers, because they don’t have to run execution as often.

1.1 State of the Art

In most existing constructions, εspace and εhardness are close to 1, meaning that a cheating
prover can avoid most of the storage and most of the work. In such a case, it is more intu-
itive to talk about space ratio rspace = 1−εspace and hardness ratio rhardness = 1−εhardness,
because the guarantee provided by such a construction is that a prover who uses less
than rspace fraction of the storage of |y| will have to incur more than rhardness fraction of
the cost of f(x). For example, the original construction of Dziembowski et al. [DFKP15]
has space ratio of at most 1

512 , the construction of Abusalah et al. [AAC+17] has space
ratio that vanishes as |y| grows, and the construction of Ren and Devadas has a space
ratio of at most 1

2 , but only assuming that the temporary storage of P during the process
of answering V is quite constrained.

There are only two known constructions that get at least one of these two parameters
close to 0:

2There is only one construction [AAC+17] that manages to avoid this step, but it has drawbacks we
discuss later.
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• The SDR construction of Fisch [Fis19] achieves arbitrarily small εspace; however,
in that construction εhardness goes to 1 instead of to 0 as εspace decreases.

• The PoSo construction of Pietrzak using a depth-robust graph [Pie19, Lemma 8]
achieves arbitrarily small εspace and εhardness, but at an impractically high cost.
Specifically, the computational complexity of f , per bit of y, grows as (εspace ·
εhardness)

−3. And the computational complexity of the initialization protocol be-
tween P and V (in which P commits to y and proves that it was computed almost
correctly) grows as (εspace · εhardness)−4. The parameters are believed to be imprac-
tical even for εspace =

1
2 and εhardness =

3
4 (see [Fis19, Section 1.1]).

This, except for one construction of impractical (octic!) complexity, the problem
originally posed by Dziembowski et al. [DFKP15] remains open: how to build a proof of
space that requires the adversary to use almost as much storage or do almost as much
work as the honest parties?

1.2 Our Contribution

We present a new proof-of-space construction that achieves arbitrarily small εspace and
εhardness while dramatically improving on the complexity of the depth-robust-based con-
struction in [Pie19]. In our protocol, the computational complexity of f (per byte of y)
grows as

Õ

(
1

εhardness

)
,

and the complexity of the initialization protocol between P to V grows as

Õ

(
1

εhardness

(
1

εhardness
+

1

εspace

))
.

We thus reduce the dependence on εspace and εhardness from octic to nearly quadratic.
We also pay attention to constants, showing the practicality of our construction.

1.3 Technical Overview

We now elaborate on the construction and analysis.

The Model of Computation All known constructions of proofs of space are in the
random oracle model; let H denote this random oracle. Queries to H are assumed to
be atomic; space is measured in the number of H outputs stored, and time is measured
in the number of queries to H. Like most constructions of proofs of space (with the
exception of [AAC+17]), our construction, which we call SPR for reasons to be explained
shortly, uses f that is computed via a directed acyclic graph G with a single source, as
follows. Each node in G is labeled with the output of H applied to the labels of the
node’s predecessors (and the node’s index in the graph, for uniqueness); the source is
labeled with x and the labels of nodes near the sink(s) become y.

Like the original proof-of-space work by Dziembowski et al. [DFKP15], we assume
that a malicious prover P ∗ stores whole labels of some of the nodes in G (partial labels,
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functions of labels such as linear combinations, etc., are not allowed in this model).
Then, when, during execution, a query from V asks P ∗ for the label of some node v in
y, P ∗ needs to compute this label from the labels stored. This problem corresponds to
the following pebbling game on G: given pebbles on some nodes on G (the ones with
stored labels), work to place a pebble onto v; you are allowed to place a pebble onto a
node when all of its predecessors already have pebbles. The complexity of a computation
corresponds to the total number of pebbles placed in order to reach v.

A malicious prover can cheat somewhat when initially computing y = f(x), by
labeling some nodes with incorrect, easy to remember (e.g., pseudorandom), values.
The initialization protocol between P and V ensures that this cheating cannot cover
too many nodes: P commits to the labeling of G; V asks P to reveal the labels of
some random nodes together with their predecessors and verifies that the computation
of those labels was locally correct (the proof can be made noninteractive using the
Fiat-Shamir heuristic). After O( 1δ ) queries, V can be sure that P did not cheat on
more than δ fraction of the nodes; thus, the complexity of the initialization protocol is
proportional to the graph degree times 1

δ . For P , incorrectly computed nodes correspond
to additional pebbles on G, because they are already known without any work. Pebbles
of this “cheating” type are called “red” [DFKP15], in contrast to pebbles that correspond
to storage, which are “black”.

When a node v is queried by V during execution, the prover has to compute the
labels of all nodes that have unpebbled paths to v; thus, our goal is to a prove a high
lower bound on the number of such nodes, no matter how the red and black pebbles are
placed. Such nodes make up the footprint of v.

Most Relevant Prior Constructions The construction of [Pie19] mentioned above
uses an (e, d)-depth-robust graph G for the computation of f . Such a graph guarantees
the existence of an unpebbled path covering d fraction of the nodes even when e fraction
of the nodes are pebbled. y consists of the labels of the topologically last portion of the
graph. A relatively simple analysis shows that to get εspace to and εhardness approach 0,
e + d have to approach 1 (so-called “extreme” depth robustness), which results in the
graph degree having to grow as (εspace · εhardness)−3 (per the analysis in [ABP18],[EGS75,
Lemma 1]). To make the analysis go through, δ has to shrink as O(εspace · εhardness), and
thus the verification protocol cost grows as (εspace · εhardness)−4.

The SDR (“Stacked Depth-Robust”) construction of [Fis19] avoids the impracticality
of extreme depth-robustness by using constant depth-robustness combined with expan-
sion. It starts with a (0.2, d) depth-robust graph for an arbitrary d. Take such a graph
on n nodes and sort it topologically from left to right. Stack ℓ copies of this graph and
connect consecutive layers using a (particular) bipartite expander directed down (the
idea of using stacked expanders for proofs of space first appeared in [RD16]). The labels
of the bottom layer constitute y. The proof [Fis19] shows that if the adversary saves
εspace fraction of the storage, then there are

εspace
2 · n nodes at the bottom layer such

that each, in its footprint, contains an unpebbled path of length dn in some layer, as
long as there are enough layers — specifically, as long as ℓ grows as log 1

εspace
. Thus,

rhardness = d/ℓ, and εhardness = 1− rhardness goes to 1 instead instead of 0.
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Our Construction Our construction SPR (“Stacked Predecesor-Robust”) is a slight
generalization of SDR. The technical heart of this paper is in out new analysis. Recall
that our goal is to show that εhardness can go to 0. We do so by showing that for a εspace/2
fraction of the bottom-layer nodes the following is true: they each have a footprint that
covers almost the entire graph.

Specifically, we show a much better estimate of footprint sizes than the proof of
[Fis19] implies. We do so in three main steps.

• First, we generalize the approach of [Fis19] to work for arbitrary depth-robust
(actually, predecessor-robust) and expander graphs (rather than the specific ones
used in [Fis19]), and develop new techniques to give tight bounds on exactly when
the special layer with footprint dn occurs. The basic idea of the argument is
simple: expander graphs make footprints grow as you go up, but pebbles reduce
the growth. Eventually the pebbles run out, because the malicious prover P ∗

has only (1 − εspace)n black ones and some red ones. Getting a proof that can
account for all possible allocations of pebbles chosen by P ∗ is where the technical
difficulties lie.

• Second, unlike prior work, we consider how this footprint grows above the special
layer. Again, getting a proof that can account for all possible allocations of pebbles
chosen by P ∗ is where the technical difficulties lie. We show that if P ∗ does not
have enough pebbles, the footprint will contain almost all the nodes on almost
all the layers above, which is good enough for our purposes. But this argument
alone is insufficient, because P ∗ may actually have enough pebbles to prevent the
footprint above the special layer from growing. This brings us to the next step.

• The third part of our proof is to show that there are many special layers containing
a footprint of size at least dn, and that pebbles can be used to prevent only a few
these footprints from growing in layers above; eventually, one of them will grow to
fill up almost all the layers above it.

Technically, our construction can be viewed as amplifying predecessor robustness of
graphs. Predecessor robust graphs are directed acyclic graphs in which every subgraph
of sufficient relative size π contains a large single-sink connected component of relative
size απ. We start with an n-node predecessor-robust graph for some constant π and απ.
We layer ℓ = O( 1

εhardness
log 1

εspace
) copies of it using constant-degree expanders, growing

the size by a factor of ℓ, but increasing the degree only additively by a constant (specif-
ically, by 8). The properties of the graph we build can be phrased in terms of extreme

predecessor robustness: any subgraph of relative size
(ℓ−1+εspace)n

ℓn = 1−O(
(1−εspace)εhardness

log 1/εspace
)

(corresponding to the set of unpebbled nodes) has a single-sink connected component
(corresponding to the footprint of a bottom-layer node) of relative size 1 − εhardness,
which is arbitrarily close to 1. Moreover, for proofs of space we require (and achieve)
more: there are

εspace
2 · n such connected components with distinct sinks specifically on

the bottom layer (these are the nodes that, when queried by V , will cause P ∗ a lot of
work).

In Section C, we show how our results improve concrete parameters for the currently
deployed proof of space on the Filecoin blockchain.
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On Parallel vs. Sequential Time The original proofs of space definition [DFKP15],
as well as the works of [AAC+17] and [RD16], consider the total computational effort
(also known as sequential time) when measuring computational hardness of cheating
by the malicious prover. We do so as well. In practice, this measure corresponds,
roughly, to the cost of computation when cheating (to discourage cheating, this cost
ought to be lower than the cost of storage for the time interval TV between executions).
We emphasize, however, that the works of [Pie19] and [Fis19] also consider a stronger
notion: parallel time, i.e., the amount of computational steps required even if each
step can use unbounded parallelism. In practice, this measure corresponds, roughly, to
latency; to prevent cheating, the verifier should time out if the response does not come
fast enough.

Both notions have found use in practice: the prevention of cheating in Chia is based
on monetary cost [CP19, Section 2.2.2], while the prevention of cheating in Fielcoin is
based on a mix of cost and latency [GN23, Section 1.2].

Extending our results to parallel time (i.e., latency) remains an open question. The
only construction to achieve small εspace and εhardness for parallel time is the aforemen-
tioned construction of [Pie19], which incurs impractically high cost due to the need for
extremely depth-robust graphs, for which the only known constructions require very
high degree.

2 Definition and Construction

2.1 The Graph SPR

Please refer to Section 1.3 for the explanation of the construction; here we only fill in
the details.

Recall that our construction SPR is a generalization of the SDR construction by
Fisch [Fis19]. In both, y = f(x) is computed by labeling a single-source directed acyclic
graph G of ℓ levels of n nodes each. The label of the source node is x, the label of each
node except the source is computed by hashing the labels of its predecessors, and the
labels of the entire bottom level are y. We follow the numbering in [Fis19]: the top level
is 1, the bottom is ℓ, with edges going left-to-right in each level (for depth-robustness or
predecessor-robustness per level) and down from level i to level i+1 (for expansion when
going back from lower levels to upper levels). Note that this level numbering can be
confusing, as most of our arguments go bottom-to-top by induction, and thus induction
goes down in natural numbers as it goes up levels.

SDR requires the following depth-robustness guarantee: any set of 0.8n nodes in a
given level has a horizontal path of length dn. This guarantee needs to apply to all
levels. In SPR, we relax the depth-robustness guarantee. We parameterize SPR by
both ℓ and ℓpr. Of the ℓ total levels, only the lower ℓpr need to have the following
guarantee, called predecessor robustness in [AdNV17]: any subgraph of a given level
of size π · n contains single-sink subgraph of size απ · n (this guarantee is implied by
depth-robustness, as a path is, in particular, a single-sink subgraph). In contrast to
SDR, which is analyzed specifically for π = 0.8, our construction works for almost any
constant π and απ. There is a mild technical condition that relates π to the behavior
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of the expander; see Condition 2 in Section 4.1. The levels above the lowest ℓpr levels
need no horizontal edges, except level 1, which needs an edge from the leftmost (source)
node to every node.

In both SDR and SPR, the edges from level i to level i+ 1 form an expander when
viewed backward; that is, a set of nodes on level i+1 of size αn has β(α) ·n predecessors
on level i, where β(α) > α, and the ratio β(α)/α is greater than some constant for
sufficiently small values of α. In contrast to SDR, whose analysis in [Fis19] is tightly
tied to the specific function β (from the degree-8 Chung expander; see Appendix A),
most of our analysis works for general β. For most of the analysis we require only the
following:

Condition 1. β(α) is a continuous, monotonically increasing strictly concave function
on [0, 1], with β(0) = 0, β(1) = 1, and β(α) > α for all α ∈ (0, 1).

We instantiate our vertical graphs with degree-8 Chung expanders only at the end
of the proof, to measure ℓ. Other expanders would also work.

We emphasize that SDR is a special case of SPR, and our analysis works for SDR
as well.

2.2 Initialization

As in all proof of space schemes except [AAC+17], initialization starts by having P
compute the labeling of G, commit to the labels using a Merkle tree or another vector
commitment, and send the commitment to V . To ensure the computation is approx-
imately correct, V queries some number of randomly chosen labels, which P reveals
together with the labels of their predecessors; V verifies that the decommitments are
correct and that the label of the requested node is correctly computed from the predeces-
sors. For our construction, initialization will assure V with probability 1− e−λ that the
fraction of incorrectly computed labels on each layer is at most δ. This will require λ/δ
queries per layer (which can be sped up somewhat because the graph is almost the same
layer-to-layer, so entire columns of nodes can be queried and decommitted at once).3

The cost of initialization is thus O(
ℓpr·dpr+ℓ·dexp

δ ), where dpr and dexp are the degrees of
the predecessor-robust graph and expander, respectively.

From now on, we will assume that initialization has succeeded: that is, we assume V
has accepted initialization, the probability e−λ event that P ∗ was not caught cheating
has not happened, and thus at most a δ fraction of each layer is incorrect. Nodes with
incorrect labels will be said to have red pebbles on them.

After initialization the honest P stores the n labels of the bottom layer of the graph.
A malicious P ∗ stores the labels of any (1− εspace) · n nodes; these nodes will be said to
have black pebbles on them.

3It is also possible to use ℓλ/δ challenges for the entire graph G to guarantee that at most δ/ℓ fraction
of the entire graph is incorrect, which would in particular imply the per layer guarantee of δ, but the
per-layer approach is more efficient, because working with entire columns means that there are only λ/δ
decommitments.
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2.3 Execution and Security

During the execution, V queries a bottom-layer node, and P decommits its label. A
malicious P ∗ must place new pebbles in order to find the label of P ; recall that a pebble
can be placed on a node only if all of its predecessors have pebbles.

Our definition of security is in the graph pebbling model, following [DFKP15, RD16].
Note that different definitions of proofs of space highlight different parameters in paren-
theses; we avoid the positional parenthetical notation to avoid confusion.

Definition 1. Let N be the number of nodes in G and n be the number of nodes in the
output y. We will say that a proof of space in the pebbling model has space gap εspace,
hardness gap εhardness, and single-query catching probability phard if the following holds:
assuming initialization succeeded, with probability at least phard over the random choice
of a queried node, a cheating prover P ∗ who stores at most (1− εspace) · n black pebbles
before the query is issued must place pebbles onto (1− εhardness) ·N nodes4 in order to
place a pebble onto the queried node.

Note that V can query λ/phard nodes to increase the probability from phard to 1−(1−
phard)

λ/phard > 1− e−λ (however, the work of P ∗ might not grow above (1− εhardness) ·N ,
as it might be shared among all the queried nodes). Note also that phard cannot exceed
εspace (because the 1−εspace fraction of y may simply be stored); we achieve near-optimal
phard = εspace/2.

3 Main Result and Proof Overview

Theorem 1. For any εspace > 0 and εhardness > 0, there is a setting of parameters ℓ, ℓpr,
δ, and n in the SPR construction that achieves space gap εspace, single-query catching
probability phard ≥ εspace/2, and hardness gap εhardness, such that

• The cost of computing f(x), per bit of y, is

O

(
1

εhardness
· log 1

εspace

)
.

• The cost of the initialization protocol is

Õ

(
1

εhardness
·
(

1

εhardness
+

1

εspace

))
.

.

The rest of the paper is dedicated to proving this theorem. We start by providing a
proof overview.

Given a set S of nodes, let weight wt(S) denote |S|/n.
4We define εhardness in terms of nodes pebbled rather than edges traversed. If the degrees of nodes

are similar, it does not make much of a difference. We could, instead, redefine it in terms of edges
traversed, which would account for the fact that costs of hashing are roughly proportional to the input
length; this would make accounting messier, but would not change our main result of achieving εspace
and εhardness arbitrarily close to 0. It is also possible to use duplicate label inputs to H simply to make
computation time at each node the same without increasing the degree.
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Definition 2. A path is unpebbled if none of its nodes (including beginning and end)
have pebbles. For a node v, its footprint is the set of nodes that have unpebbled paths
to v. If v itself is pebbled, its footprint is empty. For a set of nodes, its footprint is the
union of the footprints of its elements.

Fix a set weight ζ, with 1− εspace + δ < ζ < 1.

Definition 3. Call a level b fertile if for every subset S of the bottom level with wt(S) ≥
ζ, the footprint of S on level b has weight at least π. That means that the predecessor
robustness guarantee applies to the footprint of S on level b, so the footprint on level b
has a single-sink connected component of weight απ.

3.1 Summary of the SDR Proof from Fisch [Fis19]

Our goal is to show that sufficiently many nodes in the bottom level have sufficiently
large footprints. We don’t know how to do that using only expansion arguments (i.e.,
vertical edges), because we can’t prove that an average single node in the bottom level
expands much as we go up.

The proof in [Fis19] first uses the expansion argument on a set of nodes to prove
that it expands, and then uses horizontal edges to prove that even a single node at the
bottom will depend on many nodes in a given level. Specifically, the proof proceeds as
follows (substituting predecesor-robustness for depth-robustness):

1. Expansion to get a large footprint of a large set. Assume S is a subset
of the bottom layer and wt(S) ≥ ζ. Prove, using vertical edges and expansion
arguments, that there exists a fertile level. At its core, the argument is relatively
simple: the set expands to the next level via β, pebbles reduce this expansion, and
you repeat. Eventually pebbles run out and you win.

The argument is suboptimal because β(α) for the specific degree-8 Chung ex-
pander used in [Fis19] is a messy function, and the proof uses its piecewise-linear
approximation to reach π = 0.8. We replace this argument with one that works
for a general π and a general β using its global properties from Condition 1; this
improved argument gives better results (i.e., the fertile level is lower) even for the
specific expander in [Fis19] (see Section C.1).

2. Predecessor robustness to get a single-sink footprint. By the predecessor
robustness property, the footprint of S on level b contains a single-sink subgraph
T of size απ.

3. Single-sink graphs to go from collective to individual footprints. At least
one node in S depends on the sink of T , and therefore the individual footprint
of that one node contains all of T and is thus of size απ (note that in SDR, as
opposed to SPR, T is a chain because of depth robustness, which implies that
pebbling this one node takes time απ even with unbounded parallelism).

4. Simple counting to get many nodes with large footprints. Because the
above holds for every S of weight ζ on level ℓ, there are at least (1− ζ) · n nodes
at level ℓ whose footprint at level b contains a graph T of weight απ (else, all the
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nodes that don’t satisfy this condition form a set S that contradicts the previous
three steps).

3.2 Main Idea of the Improvement

Our proof that footprint size is (1− εhardness)N for any εhardness > 0 proceeds in the same
steps as outlined above, but with the addition of a new step after Step 3 above:

3.5 An individual footprint on a fertile level expands in levels above. The
single-sink graph T has a footprint T ′ that is of weight (1− εhardness/2) on almost
every level above b.

Applying Step 4 to T ′ instead of T , and bounding the fraction of levels with insuf-
ficient footprints, implies that there are at least (1 − ζ) · n nodes at the bottom level
whose footprint is of size (1− εhardness)N

To make step 3.5 work, we will need to argue that above b, there are not enough
pebbles to kill this expansion of T . Unfortunately, that is not the necessarily the case,
because απ may be quite small and there may be a lot of pebbles left.

At its core, the argument will be as follows. Each infertile level costs the adversary
some black pebbles, because S wants to expand, and it costs pebbles to keep this expan-
sion in check (Section 5). This bounds the number of infertile levels. Each fertile level
has an unpebbled set T that wants to grow. We characterize the minimum footprint
of such a set in Section 6, where we use concavity of β to prove that to minimize the
footprint weight, all the pebbles should be placed on the level directly above T .

The challenge is that the adversary has enough pebbles to completely prevent the
growth of a single fertile set. Moreover, some black pebbles can be used to stop several
fertile sets at once. In Section 7, we show that, despite this ability, for each fertile
level that is prevented from growing, the adversary has to use some quantity of black
pebbles. We then show that eventually some fertile level’s footprint will outgrow the
number of black pebbles that the adversary can use above it (the main insight here is to
look at the gap between the footprint and available pebbles, thus reducing two variables
to one). Once a fertile level’s footprint outgrows the number of available pebbles, we can
lowerbound the rest of the footprint, no matter how the pebbles above are distributed.

This argument shows that if we carefully choose a fertile level in Step 1, we will be
done. We fill in the quantitative details in Section 8.

4 Proof Notation and Basic Notions

We recap notation used above and introduce some new notation.

4.1 Graph, Weights, Gains

Given a set S of nodes, let weight wt(S) denote |S|/n. The number of nodes at each
level is n, and the total number of levels is ℓ, of which the lower ℓpr have horizontal edges
to ensure predecessor robustness — i.e., to ensure that any subset of weight at least π
has single-sink subgraph of weight απ. The layers are connected via an expander so that
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Figure 1: Generic β and gainδ (see Figure 2 in Section A for the Chung expander).

a subset of weight α on level i has β(α) predecessors on level i − 1, with β satisfying
Condition 1; let gain(α) = β(α) − α, βδ(α) = β(α) − δ, and gainδ(α) = gain(α) − δ,
where δ is maximum per-level weight of red pebbles.5

We prove the following standard set of facts in Appendix B.

Fact 1. The function gain is strictly concave on the interval [0, 1], with gain(0) =
gain(1) = 0. There is a value 0 < αg < 1 that maximizes gain. The function gain (and
therefore also gainδ) is monotonically increasing on inputs from 0 to αg and monotoni-
cally decreasing on inputs from αg to 1.

We assume δ < gain(αg) (because we get to choose δ) and let [αmin
δ , αmax

δ ] denote
the interval in which gain(α) ≥ δ (i.e., gainδ(α) ≥ 0). We do not care about expansion
guarantees outside of this interval (thus, we can set n large enough so that expansion
guarantees hold on the interval once the constants αmin

δ , αmax
δ are fixed). Note that

αmin
δ < αg < αmax

δ .

Condition 2. We assume π > αg.

If this condition does not hold, decrease δ and/or increase π until it does, which
won’t hurt predecessor robustness (but may change the constants in Theorem 1). Let
gπ = gainδ(π), and let [π, π] denote the interval in which gain(α) ≥ gπ. Note that
π < αg < π. Let gαπ

= gainδ(απ).
The following definition is used to measure how fast expansion grows over multiple

layers when unimpeded by any black pebbles; our notation is on purpose analogous to
logarithms.

Definition 4. Let βcountx(y) = min{i : βi
δ(x) ≥ y}.

5One of the technical challenges in the proof is having to deal with δ red pebbles at every level, which
means the total number of red pebbles can easily exceed n. If we had a small upper bound on the total
number of red pebbles, we could just add them to the black pebbles, as long as the total was less than
n. This would simplify the proofs and improve the quantitative bounds, but require more effort during
initialization, as explained in Footnote 3.
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Claim 1. If x > αmin
δ and y < αmax

δ , then βcountx(y) is finite and is at most min(0, (y−
x)/min(gainδ(x), gainδ(y)).

Proof. If x ≥ y, we are done, so assume αmin
δ < x < y < αmax

δ . Let g = min(gainδ(x),
gainδ(y)). We will be using Fact 1. Because gainδ is strictly concave, gainδ(x) >
min(gainδ(α

min
δ ), gainδ(α

max
δ )) ≥ 0 by Claim 15; same for gainδ(y), so g > 0. Because

gainδ is concave, gainδ(α) ≥ g for x ≤ α ≤ y by Claim 15, and therefore βi
δ(x) ≥

min(y, x+ i · g), so βcountx(y) ≤ min(0, (y − x)/g).

Specifically for the degree-8 Chung expander (see Section A for details), expansion
is rapid all the way from x = δ to y = 1 − 3δ, taking just 2 log 1/δ steps, as we prove
in Claim 10.

4.2 Pebbles and Footprints

Let ρ = 1 − εspace be the maximum total weight of black pebbles, ρi be the black
pebble weight on level i, and ρi...j be black pebble weight on levels i through j, inclusive
(regardless of whether i ≤ j, i.e., ρi...j = ρj...i).

Let ζ = (1− εspace)/2 (this choice is somewhat arbitrary, and we could pick any ζ as
long as ζ > 1− εspace + δ + αmin

δ , ζ < 1, and ζ < δ + αmax
δ ; a smaller ζ will increase the

catching probability but decrease the footprint). Let ζδ = ζ − δ.
Recall Definition 2. If T is a subset of nodes at level b, define fb(T ) to be the weight

of the unpebbled part of T . For i ≤ b, inductively define

fi(T ) = max(0, βδ(fi+1(T ))− ρi) . (1)

Observe, by induction, that fi(T ) is a lower bound on weight of the footprint of T at
level i, because there are at least β(fi+1(T )) parents of the footprint at level i+ 1, and
at most ρi+δ of those are pebbled (this is not even counting horizontal edges, if any). If
fi = 0, then for all j ≤ i, fj = 0, because βδ(0) = 0. When T is clear from the context,
we will write fi(b) or simply fi instead of fi(T ) to simplify notation.

Define the functions ϕT and ϕfb as

ϕT (ρb . . . , ρ1) = ϕfb(ρb−1 . . . , ρ1) = fb + · · ·+ f1

to provide lower bounds on the total footprint of T .
We note that f and ϕ obey intuitive monotonicity constraints.

Claim 2. For every j ≥ i, fi is monotone nonincreasing as a function of ρj and
monotone nondecreasing as a function of wt(T ). The function ϕ is monotone: if f ′

b ≥ fb
and ρ′i ≤ ρi for each i, then ϕf ′

b
(ρ′b−1, . . . , ρ

′
1) ≥ ϕfb(ρb−1, . . . , ρ1). Moreover, adding a

level at the end cannot decrease ϕ: ϕfb(ρb−1, . . . , ρ1, ρ0) ≥ ϕfb(ρb−1, . . . , ρ1) for any ρ0.

Proof. The first sentence follows by monotonicity of β (see Condition 1). The second
sentence can be proven by induction, as follows: using monotonicity of β, observe that
the fi values do not decrease when we change from fb to f ′

b or from ρ to ρ′. The third
sentence follows from nonnegativity of f .
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4.3 Basic Facts about Measuring Footprints

The following simple claim will turn out surprisingly useful in understanding footprints,
because it will allow us to focus on the total amount of black pebbles rather than on
their allocation to specific levels.

Claim 3.

fm = max (0, fb + gainδ(fb) + · · ·+ gainδ(fm+1)− ρm...b−1) .

Proof. By induction on m starting at b and going down to 1. The base case is trivial. For
the inductive case, note that if fm = 0, then fm−1 = 0 because β(0) = 0 by Condition 1,
and the formula in the claim also gives us 0 because gain(0) = 0 and ρm−1 ≥ 0. Else,

fm = fb +
∑b

i=m+1 gainδ(fi)− ρm...b−1 by the inductive hypothesis, so

βδ(fm)− ρm−1 = fm + gainδ(fm)− ρm−1 = fb +

b∑
i=m

gainδ(fi)− ρm−1...b−1 .

We generally will be interested in footprints that grow. The following claim allows
us to rule out some situations in which a footprint decreases even without any black
pebbles. This decrease can occur when the footprint is too low (below αmin

δ ) or too high
(above αmax

δ ), because then gainδ is negative, and thus red pebbles alone are enough
to decrease the footprint. The claim shows, in part, that if the footprint starts below
αmax
δ , it will always stay below αmax

δ , essentially because βδ(α) cannot overcome the αmax
δ

barrier.

Claim 4. Therefore, if for some m, gainδ(fm) > 0, then for all i ≤ m, either fi ≤ αmin
δ

or gainδ(fi) > 0. Moreover, if ρm−1...i = 0, then fm < fm−1 < · · · < fi.

Proof. We will proceed by induction starting at i = m and going down to i = 1. The
base case is given. For the inductive step (going from fi to fi−1), consider the following
cases that cover all the possibilities with αmin

δ < fi−1.

• if αmin
δ < fi−1 < fi, then gainδ(fi−1) > min(gainδ(α

min
δ ), gainδ(fi)) by strict

concavity of gainδ (per Fact 1 and Claim 15), and gainδ(fi) > 0 = gainδ(α
min
δ ) by

the inductive hypothesis.

• if αmin
δ < fi < fi−1, then, since fi−1 > 0, we know fi−1 = βδ(fi) − ρi−1. Then

gainδ(fi−1) = βδ(fi−1)−fi−1 = βδ(fi−1)− (βδ(fi)−ρi−1) ≥ βδ(fi−1)−βδ(fi) > 0
by monotonicity of βδ (Condition 1).

• If αmin
δ < fi = fi−1 then gainδ(fi−1) = gainδ(fi) > 0 by the inductive hypothesis

• the case fi ≤ αmin
δ < fi−1 is impossible, because then fi−1 ≤ βδ(fi) = fi +

gainδ(fi) ≤ fi, because gainδ(fi) ≤ gainδ(α
min
δ ) ≤ 0 by Fact 1.

If, moreover, ρm−1...i−1 = 0, then fi−1 ≥ fi + gainδ(fi). Because fi ≥ fm by the
inductive hypothesis and fm > αmin

δ (by Fact 1, because we assume gainδ(fm) > 0), we
know gainδ(fi) > 0 by the inductive hypothesis. Thus, fi−1 > fi.
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5 Upperbounding the Number of Infertile Levels

Recall the definition of fertile (Definition 3) and constraints on ζ (Section 4.2). The
main idea for bounding the number of infertile levels is the following. Take a subset S of
nodes on the bottom level ℓ of weight ζ. Suppose some level b is infertile, which means
the footprint weight fb(S) < π. Consider two cases:

• If fb(S) ≥ π, then the gain gainδ(fb(S)) of level b is at least gπ, so there have to
be enough pebbles so that the next infertile level above b can overcome this gain,
per Claim 3. Thus, every infertile level (except the lowest) costs at least gπ in
black pebbles. Note that this argument does not say when the gπ black pebbles
must be placed, as long as they are above the infertile level.

• If fb(S) < π, most of the black pebbles must be at level b or below, per Claim 3,
because π is small. The footprint will grow above b until it gets to π, and there
are not many pebbles left to stop this growth, so as soon as the footprint reaches
π, the remaining levels above will be fertile.

These cases essentially correspond to two possible adversarial strategies for placing
pebbles: either keep every infertile level just below π and spend gπ(π) black pebbles to
keep it infertile one level up, or spend all the black pebbles at once to get a very small
footprint, which will remain infertile for a few levels of growth. In this section we show
that the best adversarial strategy will not do much better than either of these two. Our
bounds on the number of infertile levels are nearly tight, as we further discuss below.

As a result, we obtain the following theorem.

Theorem 2. Assume gπ > 0 and αmin
δ + ρ < ζδ < αmax

δ . The number of infertile levels
is less than

max

(
1 +

ρ+ π − ζδ
gπ

, 1 + βcountζδ−ρ(π)

)
,

and the first argument of max is greater than the second whenever ζδ − ρ ≥ π.

The rest of this section is dedicated to the proof of this theorem. As we explain
following Lemmas 1 and 2, the bound in this theorem is tight up to 1 level as long
ζδ ≥ π; else it is a slight overestimate.

Proof. The following variant of Claim 3 specialized for the set S will be useful for us.

Claim 5. Assume αmin
δ + ρ < ζδ < αmax

δ . Then for all m (with 1 ≤ m ≤ ℓ)

fm(S) = ζδ + gainδ(fℓ) + · · ·+ gainδ(fm+1)− ρm...ℓ ,

and gainδ(fm) > 0.

Proof. The intuition is that at every level, because gainδ is positive below m, there are
not enough black pebbles for fm(S) to go below αmin

δ , and thus gainδ will remain positive
by Claim 4.

Formally, we proceed by induction on m from ℓ down to 1. For the base case,
0 < αmin

δ < fℓ(S) = ζδ − ρm < αmax
δ , so gainδ(fℓ) > 0. For the inductive case (going
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from m to m− 1), observe that fm ≥ ζδ − ρm...ℓ because gainδ(fi) > 0 for m ≤ i ≤ ℓ by
the inductive hypothesis. Therefore,

fm−1 ≥ fm + gainδ(fm)− ρm−1 by Claim 3

≥ fm − ρm−1 by the inductive hypothesis

≥ ζδ − ρm...ℓ − ρm−1 as shown about fm above

≥ ζδ − ρ > αmin
δ .

Thus, fm−1 is positive and the formula follows by Claim 3; since fm−1 > αmin
δ , we have

gainδ(fm−1) > 0 by Claim 4.

Theorem 2 now follows from Lemmas 1 and 2 below. Note that the first argument
to the max is greater than the second when ζδ − ρ ≥ π by Claim 1.

5.1 The simpler case: when the footprints don’t get too small

Lemma 1. Assume gπ > 0 and αmin
δ +ρ < ζδ < αmax

δ . Let m < ℓ be some level. Assume
there are k > 0 infertile levels below m, and assume that for all i > m, fi(S) ≥ π. Then

ρℓ...m+1 > ζδ − π + gπ · (k − 1)

and thus the total number of infertile levels is less than

1 +
ρ− ζδ + π

gπ
.

The bound in this lemma is tight if ζδ ≥ π, because there is a matching adversarial
strategy: spend ρℓ > ζδ − π black pebbles on level ℓ and gπ black pebbles on every
subsequent level until pebbles run out. If ζδ < π, then the adversary would have to
spend more pebbles than stated in the bound, because the bound does not take into
consideration higher gain gainδ(ζδ) > gπ for the first infertile level and a few levels above
it. This makes a difference only if ρ > ζδ is considerably smaller than π (i.e., the space
gap is large).

Proof. The footprint of every infertile level is at most π, so the footprint of every infertile
level below m is between π and π, so its gain is least gπ. The gains of other levels are
positive by Claim 5. Let m′ be the last highest infertile level below level m. Because
it’s infertile, π > fm′ , so by Claim 5

π > fm′ ≥ ζδ +

ℓ∑
i=m′+1

gainδ(fi)− ρℓ...m′ = ζδ + (k − 1) · gπ − ρℓ...m′ .

Rearranging the terms concludes the proof.
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5.2 The more complex case: small footprints

Lemma 2. Assume gπ > 0 and αmin
δ + ρ < ζδ < αmax

δ . Assume for some level i,
fi(S) < π. Then the number of infertile levels is at most βcountζδ−ρ(π).

This bound is tight up to one level, as the adversary has a matching strategy: place
all ρ black pebbles on level ℓ; there will be at least βcountζδ−ρ(π)− 1 infertile levels.

Proof. Starting with some pebble allocation, we will proceed to rearrange the pebbles
so at not to decrease the number of infertile levels. After all the rearranging is done, the
black pebble weight will be all at the bottom level, except perhaps less than gπ on the
highest infertile level. Since the lowest infertile level has footprint at most ζδ − ρ and
the second-to-highest infertile level k has footprint fk < π, and there are no pebbles on
levels ℓ− 1, . . . , k, the number of infertile levels is at most βcountζδ−ρ(π).

The intuition is that packing more pebbles into a level with an already tiny footprint
is best for the adversary, because the gain will be small, so the footprint will grow very
slowly. Turning this intuition into a proof takes a sequence of carefully chosen steps.

No matter how the pebbles are arranged, every footprint is positive by Claim 5.
Suppose level b is the lowest level with fb < π, and every level up to m ≤ b is infertile,
while level m− 1 (if m > 1) is fertile.

First, if any level i is fertile and has pebbles above it, simply lower all the pebbles
above it by one level. Let f ′

i denote the new footprint at level i. Note that f ′
i =

fi−1−gainδ(fi) is smaller than the old fi−1 (by Claim 5), and thus all the levels above i
that were infertile will remain infertile, just one level lower (by monotonicity, Claim 2).
Do so repeatedly until level ℓ is infertile and infertile levels continue, without gaps, until
some level m.

Second, if the lowest level b with fb < π is not ℓ, we know from Lemma 1 that
ρℓ...b > ζδ−π+gπ ·(ℓ−b)+ρb. Move all the pebbles from levels ℓ−1, . . . , b down to level
ℓ and let f ′

ℓ denote the new footprint at level ℓ; f ′
ℓ = fb−gainδ(fℓ)−· · ·−gainδ(fb+1) <

fb−gπ ·(ℓ−b), because gainδ(fi) for i > b was at least gπ (because fi ∈ [π, π]). The new
gain of each level up to b is less than gπ by induction (because fb < π), so the footprint
at level b is at most fb, and thus the footprints above level b have not increased by
monotonicity, so the number of infertile levels has not decreased.

We can now assume that there are sufficient pebbles on level ℓ to cause fℓ < π and
that infertile levels continue without interruption until level m, with no higher infertile
levels or black pebbles (if any are left, move them to m). If m = ℓ, we are done, because
βcountζδ−ρ(π)) ≥ 1, because ζδ − ρ < π < π by Claim 5. If m = ℓ − 1, move all
the pebbles form level ℓ − 1 to level ℓ; this will decrease fℓ and therefore will decrease
gain(fℓ) by Fact 1, because fℓ < π < αg, and therefore will decrease fℓ−1, thus not
decreasing the number of infertile levels. Thus, assume m ≤ ℓ − 2 for the rest of this
proof.

We will describe an iteration of steps that reallocates pebbles. Each step will not
decrease the number of infertile levels and will keep fℓ < π. We will always be able to
take a step until ρi = 0 for all m < i < ℓ and ρm < gπ. At each step, we will either
increase the number of levels i for which ρi = 0 without decreasing ρℓ, or increase ρℓ by
at least gπ, and therefore the sequence of steps will be finite. At the end, we will have
all pebbles on level ℓ, except at most gπ on level m.
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At each step in the iteration, we do one of the following, specified in order of priority,
unless none can be performed.

• Case 1. Suppose there exists a level i ≤ ℓ−2 with ρi+1+ρi ≥ gπ and gainδ(fi+1) ≥
gπ. Move gπ of the pebbles from levels i and i+ 1 to the bottom level ℓ and shift
the pebbles from levels ℓ− 1, . . . , i+ 1 up one level.

Let f ′
i denote the footprints after this step. Then f ′

ℓ = fℓ − gπ, so βδ(f
′
ℓ) =

fℓ − gπ + gainδ(f
′
ℓ) < fℓ − gπ + gainδ(fℓ) < fℓ (where the first inequality follows

by monotonicity of gainδ below αg, Fact 1; and the second by fℓ < π.). Note that
f ′
ℓ−1 = βδ(f

′
ℓ) < fℓ, because there are no black pebbles left on level b − 1. Thus,

by induction and monotonicity (Claim 2), for all i ∈ [ℓ−1,m+1], f ′
i < fi+1, so all

levels up tom+1 remain infertile. Because levelm now contains black pebbles that
were formerly on level m+ 1, as well as its own black pebbles, except for gπ ones
that were moved, f ′

m = βδ(f
′
m+1)−ρm+1−ρm+gπ < βδ(fm+2)−ρm+1−ρm−gπ =

fm+1−ρm+gπ = βδ(fm+1)−gainδ(fm+1)−ρm+gπ = fm−gainδ(fm+1)+gπ ≤ fm,
so level m also remains infertile.

For the rest of the cases, we assume no such level exists in this iteration.

• Case 2. Suppose there is a level i < ℓ level with fi < αg. We want to show that
fi+1 < αg. If i = ℓ− 1, that is true because fℓ < π < αg. Else, suppose not. Since
fi+1 is infertile and at least αg > π, gain(fi+1) > gπ, so fi+1+ gainδ(fi+1) ≥ αg +
gπ, so ρi > gπ, but that contradicts the assumption in Case 1. Thus, fi+1 < αg.

Move the ρi pebbles down from level i to level i + 1. This will reduce fi+1 and
will change fi from βδ(fi+1) − ρi = fi+1 + gainδ(fi+1) − ρi to βδ(fi+1 − ρi) =
fi+1 + gainδ(fi+1 − ρi)− ρi. By monotonicity of gainδ (Fact 1) and the fact that
fi+1 < αg, this reduces fi and therefore, by monotonicity of fj (Claim 2), also
reduces all fj for j < i, thus not decreasing the number of infertile levels.

For the rest of the cases, we assume no such level exists in this iteration.

• Case 3. Let i be the highest level with m < i < ℓ for which there are any black
pebbles, i.e., ρi > 0. If i = ℓ (or there is no such level at all), we are done. Note
that fi ≥ αg, because otherwise we would have applied Case 2, and because gainδ

is positive by Claim 5, the same is true of fi−1, . . . , fm+1.

– Case 3a. Suppose ρi ≥ gπ. Then i = ℓ − 1 or gainδ(fi+1) < gπ (else Case 1
applies), so either way gainδ(fi+1) < gπ, so fi+1 < π < αg. We can move the
pebbles down from level i to i+ 1, by the same argument as in Case 2.

– Case 3b. Suppose ρi < gπ. For m + 1 ≤ j ≤ i, fj ≤ π − gπ (because
fj = fj−1− gainδ(fj) and fj−1 < π and gainδ(fj) > gπ because levels j, j−1
are infertile and fj ≥ αg). Move the ρi pebbles from level i to level m + 1.
This will increase fj for m + 1 < j ≤ i, and therefore decrease their gains,
so each fj for m + 1 < j ≤ i will increase by at most ρi, and thus will
remain infertile because ρi < gπ. fm+1 will decrease because of the decrease
in the gains below it and therefore fj for j ≤ m will decrease by monotonicity
(Claim 2). Thus, the number of infertile levels will not decrease.
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Now that these pebble are on level m+1, call their weight ρm+1 instead of ρi
and use fm+1 and fm for the post-move footprints of the respective levels. If
ρm+1 + ρm ≥ gπ, apply the same process as in Case 1 to move them to level
b. We have thus created a new level with 0 black pebbles. Else, moving these
pebbles from level m + 1 to level m will not reduce the number of infertile
levels, as we show in the next paragraph, and we will do so to create a new
level with 0 black pebbles.

Indeed, suppose otherwise. fm and footprints of levels above m decrease, by
the same argument as two paragraphs ago. Thus, if a new fertile level gets
created by this move, then βδ(ρm+2) ≥ π. But because m is infertile, we
know

fm+1 + gainδ(fm+1)− ρm < π .

Plugging in βδ(fm+2)− ρm+1 for fm+1, we get

βδ(fm+2)− ρm+1 + gainδ(fm+1)− ρm < π .

Recalling that βδ(ρm+2) ≥ π, we have

ρm+1 + ρm > gainδ(fm+1) > gπ

because level m+ 1 is infertile and fm+1 ≥ αg > π. This is a contradiction.

Thus concludes the proof of Lemma 2.

6 Lowerbounding Footprints of Fertile Levels

In this section, we switch from thinking about per-level footprints of a set S of weight
ζ at level ℓ to thinking about the total footprint of a set T at level b with that has
unpebbled weight fb.

Naturally, the adversary’s goal is to place black pebbles so as to minimize ϕ. While
computing ϕ for specific input values is easy numerically, we wish to find a general lower
bound on ϕ as a function of the total number of pebbles ϕb−1...1, without having to
enumerate possible individual placements.

It may be intuitive to think that moving a pebble one level down always decreases the
total footprint, because growth stops earlier. It turns out that this intuition is not true
in general (it is not difficult to build a counterexample for concrete parameters), because
the footprint on the higher of the two levels may grow slightly as the pebble moves down,
which will cause the footprints in the levels above it to also grow, compensating for the
reduction. For example, for the parameters of Section C, ϕ0.2(0, 0.7, 0) ≈ 1.007, while
moving pebbles of weight 0.06 down increases it to ϕ0.2(0.06, 0.64, 0) ≈ 0.021.

The main result of this section is the following theorem that shows that moving all
black pebbles down results in the minimal possible ϕ.

Theorem 3. Assume T is an unpebbled set at layer b of weight fb. Assume gainδ(fb) >
0 and let σ = βδ(fb)− ρb−1...1. Assume σ > αmin

δ . Then the total footprint

ϕfb(ρb−1, . . . , ρ1) ≥ ϕfb(ρb−1...1, 0, . . . 0︸ ︷︷ ︸
b−2

) = fb +

b−2∑
i=0

βi
δ(σ) .
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Proof. The heart of the proof is the following Lemma 3. It says that moving all black
pebbles one level down from the highest level with any black pebbles will decrease (or
at least not increase) ϕ, as long as gainδ(fb) ≥ 0. This lemma, applied repeatedly b− 2
times for m = 1, 2, . . . , b− 2, suffices for proving that the smallest ϕ is with all the black
pebbles as low as possible. This implies the inequality. The equality follows simply by
computing the footprint at each level; we need only to make sure we don’t apply βδ to
negative numbers, which follows from βδ(fb)− ρb−1...1 ≥ αmin

δ .

Lemma 3. Assume T is an unpebbled set at layer b of weight fb and gainδ(fb) > 0.
Let m = mini ρi > 0 be the highest level with any black pebbles. If m < b − 1, then
moving all these pebbles down one level will not increase ϕ. That is, for all b, fb, and
ρm, . . . , ρb−1, the following holds as long as gainδ(fb) > 0.

ϕfb(ρb−1, . . . , ρm+2, ρm+1, ρm, 0, . . . 0︸ ︷︷ ︸
m−1

)

≥ϕfb(ρb−1, . . . , ρm+2, ρm+1 + ρm, 0, 0, . . . 0︸ ︷︷ ︸
m−1

)

Before proving this lemma, we will prove the following simple claim.

Claim 6. Suppose fi ≤ αg. Then moving any black weight from level i − 1 to level i
will not increase ϕ.

Proof. The footprint below level i will not change. Suppose the total weight of moved
pebbles is x ≥ 0. Then by Claim 3, fi will decrease by x (but will not go below 0).
Again by Claim 3, fi−1 will decrease by gainδ(fi)−gainδ(max(0, fi−x)) (but not below
0), which is nonnegative because gainδ is monotonically increasing below αg (Fact 1).
By Claim 2, none of the fi−1, . . . , f1 will increase, and thus ϕ will not increase.

of Lemma 3. We will consider three different pebble arrangements:

• ρb−1, . . . , ρm+2, ρm+1, 0, 0, . . . 0︸ ︷︷ ︸
m−1

(with ρm completely removed)

• ρb−1, . . . , ρm+2, ρm+1, ρm, 0, . . . 0︸ ︷︷ ︸
m−1

(as in the left-hand side, with black pebbles of

weight ρm on level m)

• ρb−1, . . . , ρm+2, ρm+1+ρm, 0, 0, . . . 0︸ ︷︷ ︸
m−1

(as in the right-hand side, with black pebbles

of weight ρm moved to level m+ 1)

Denote the per-level footprint bounds in the three cases by fi, gi, and hi, respectively,
and the totals f , g, and h. We need to prove that g ≥ h. Because Claim 6 covers the
case of fm+1 = gm+1 ≤ αg, it suffices to consider the case when fm+1 = gm+1 > αg.

The challenge in proving the desired result is that it may not necessarily be the case
that gi ≥ hi, because the g sequence has less time to grow to make up for the ρm pebbles,
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because ρm pebbles appear later in the sequence. The trick to this proof is to study how
gi recovers from ρm pebbles as compared to hi+1.

The intuition is roughly this: placing pebbles on level m+1 causes a higher reduction
in the footprint that placing the same pebbles on level m, because the function β is more
sensitive on smaller inputs, and fm+1 < fm < fm−1 < · · · < f1, so placing pebbles lower
affects smaller inputs to β. Note that this intuition (and the result) no longer holds if
there are pebbles at levels above m, because the f values are not necessarily increasing
as we go up. We will now formalize this intuition.

Case 1: No 0s among footprints. It will be easier to first handle the case when all
the fi, gi, and hi values are nonzero, as this simplifies formula (1) to fi = βδ(fi+1)− ρi
(and similarly for gi and hi).

We need to prove that g ≥ h. We will do so by proving that f − g < f − h: that is,
placing pebbles on level m reduces ϕ less than placing pebbles on level m+ 1 does.

To compute f−g, observe that fi = gi for i > m. Then fm−gm = ρm, fm−1−gm−1 =
βδ(fm)−βδ(fm−ρm), and in general for 1 ≤ i < m, fm−i−gm−i = βi

δ(fm)−βi
δ(fm−ρm),

where βi
δ denotes βδ applied i times. Thus,

f − g = ρm +

m−1∑
i=1

βi
δ(fm)− βi

δ(fm − ρm) .

To compute f − h, observe that fi = hi for i > m + 1. Then fm+1 − hm+1 = ρm,
fm − hm = βδ(fm+1) − βδ(fm+1 − ρm), and in general for 1 ≤ i < m + 1, fm−i+1 −
hm−i+1 = βi

δ(fm+1)− βi
δ(fm+1 − ρm). Thus,

f − h = ρm +

m∑
i=1

βi
δ(fm+1)− βi

δ(fm+1 − ρm) > ρm +

m−1∑
i=1

βi
δ(fm+1)− βi

δ(fm+1 − ρm)

where the inequality follows from the fact that βδ is monotonically increasing (Condi-
tion 1), so βi

δ is monotonically increasing, and ρm > 0.
Thus, to prove that f − g < f − h, it suffices to prove that βi

δ(fm)− βi
δ(fm − ρm) ≤

βi
δ(fm+1)− βi

δ(fm+1 − ρm). Note that fm = βδ(fm+1) = fm+1 + gainδ(fm+1) > fm+1,
because gainδ(fm+1) > 0 by Claim 4 (since we are assuming fm+1 > αg, and αg > αmin

δ ).
Note also that βi

δ, as a self-composition of a concave increasing function, is concave by
repeated application of Claim 17. Since a concave function is more sensitive to a change
ρm in the input when the input is smaller, the result follows. Formally, the result follows
by Claim 18 applied to x1 = fm+1, x2 = fm, and z = ρm. Because the results on concave
functions are standard, general, and separate from the rest of the proof, we present them
in Appendix B.

Case 2: 0s among footprints. Now we will deal with possible 0s among the fi, gi,
and hi values. Recall that if any of these values becomes 0 at some level, then it remains
0 at higher levels (so, conversely, if it is nonzero at some level, it is also nonzero below).
We already are considering only the case when fm+1 > αg, so fm+1 > αmin

δ , and thus
we know by applying Claim 4 that f1 > · · · > fm > fm+1 (because there are no black
pebbles on levels 1, . . . ,m), so none of the fi values is 0.
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Claim 7. For all i with 1 ≤ i ≤ m, gi ≥ hi+1.

Proof. We will proceed by induction starting at i = m and going down to i = 1. For
the base case, note that fm = βδ(fm+1) = fm+1 + gainδ(fm+1) > fm+1, because we
are considering only the case when fm+1 > αg, so we can apply Claim 4. Therefore,
gm = max(0, fm − ρm) ≥ max(0, fm+1 − ρm) = hm+1.

The inductive step follow by monotonicity of βδ, because for i < m, gi = max(0,
βδ(gi+1)) and hi+1 = max(0, βδ(hi+2)).

Applying this claim, g =
∑b

i=1 gi =
∑b

i=m+2 gi+gm+1+
∑m

i=1 gi ≥
∑b

i=m+2 hi+0+∑m
i=1 hi+1 = h−h1. If any of the gi values is ever 0, then g1 = 0, so by the above claim

h2 = 0 (since h2 ≤ g1), so h1 = 0 and we are done. Similarly, if any of the hi values is
ever 0, then h1 is 0 and we are done.

This concludes the proof of Lemma 3.

7 Upperbounding the Number of Fertile Levels that
Stop Growing

Thanks to Theorem 3, we know how the footprint of a fertile level grows. Unfortunately,
the adversary can stop the growth completely by spending enough pebbles at some level
to cover up the entire footprint. Intuitively, doing so will reduce the number of available
black pebbles, so the adversary cannot do so too many times. But this intuition, even if
we could make it formal, is insufficient: if the adversary could, just once in the middle
of the graph, stop the growth of all fertile levels below, then the best we could hope for
is a footprint of size half the graph, while we are aiming for a footprint that is almost
the entire graph.

A stronger intuitive statement is that the stopping the growth of a fertile level be-
comes more expensive the longer you wait, and becomes impossible if you wait too long.
Formalizing it requires defining what it means to “wait” and to “stop” the growth. We
will consider the growth stopped if a footprint on some level becomes less than απ.
(While this will give a slightly suboptimal bound, because such a footprint may yet
recover, we are only slightly undercounting the cost to the adversary: note that the
footprint can be dropped to 0 with βδ(απ) black pebbles, while to get a footprint to be
below απ takes at least gαπ black pebbles, and these values are close for small απ.) We
thus provide the following definition.

Definition 5. Let T be an unpebbled set of weight at least απ in level b. We will say
that T (or simply level b) is viable for k levels if fb−i(T ) ≥ απ for all 0 ≤ i < k. If
m ≥ b−k, we will say that m is a viable ancestor of b. We will say that T is extinguished
after k levels if it is viable for k levels and fb−k(T ) < απ.

The main idea for avoiding a messy case analysis based on different adversarial
strategies is to think not about per-level footprint size and pebble allocation, but rather
about the gap between the footprint and the number of available pebbles, thus reducing
the problem to a single variable. The main result of this section is the following theorem,
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which uses this idea to show that the footprint becomes big after just a constant number
of fertile levels.

Theorem 4. Assume gαπ
> 0. Let m be a fertile level; assume there are k fertile levels

up to and including m. Fix some σ so that ρ+ σ < αmax
δ and σ > αmin

δ . Assume

k ≥ max

(
ρ+ σ − απ

gαπ

, βcountαπ
(ρ+ σ)

)
.

Then there is a fertile level b ≥ m with footprint at least απ +
∑m−2

i=0 βi
δ(σ).

We defer the proof of this theorem to the end of the section. Note that m may be
a viable ancestor of several different levels; this theorem does not tell us which one we
can choose in such a situation—it tells us only that one of them will work.

The central technical piece of the proof of Theorem 4 is the following lemma about the
cost of viable levels. The main insight is to focus on the gain, rather than the footprint
or black pebbles weight of each level. Intuitively, this approach works because the gain
is easier to bound, and because to slow down the growth of the footprint (perhaps even
to stop it completely), the adversary has to overcome the total gain, by Claim 3, no
matter how the pebbles are allocated among levels.

Lemma 4. Assume gαπ
≥ 0. Assume a subset T of level b is viable for k levels. Then

the total of first k gains satisfies

gainδ(fb) + · · ·+ gainδ(fb−(k−1)) ≥ min(k · gαπ
, βk

δ (απ)− απ) .

Interpretation of Lemma 4. Note that the sum of the first k gains is a function
of k − 1 black pebble weights ρb−1 . . . ρb−(k−1). This lemma says that the minimum of
this function, subject to the viability constraint, is at one of two extremal points of its
domain: when ρb−1 = ρb−2 = · · · = ρb−(k−1) = gαπ , or when ρb−1 = · · · = ρb−(k−1) = 0.
In other words, if the adversary’s goal is to minimize the gain while maintaining viability,
the adversary can accomplish this goal by either spending enough black pebbles at each
level to bring fi value down to απ for each i, or no black pebbles at all, to let fi grow
as fast as possible. Note that the bound given by this lemma is tight.

Proof of Lemma 4. Suppose for every m such that b− k < m ≤ b, we have gainδ(fm) ≥
gαπ

. Then we are done because the total gain for k levels is at least k · gαπ
.

Thus, the remaining case to consider is when for some m, gainδ(fm) < gαπ . The
following simple claim will be helpful.

Claim 8. If for some i, fi ≥ αg, and there are no black pebbles above level i, then
gainδ(fi) > gainδ(fi−1) > · · · > gainδ(f1).

Proof. Because there are no black pebbles, by Claim 4, αg ≤ fi < fi−1 < · · · < f1, and
gainδ is a decreasing function above αg by Fact 1.

We will now show a sequence of changes to the allocation of black pebbles. This
sequence will be carefully constructed, so that each step in the sequence does not increase
the total gain. At the end, the total gain will be at least as big as in the statement of
the lemma.
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1. Letm (with b−k ≤ m < b) be the lowest level between b and b−k with gainδ(fm) <
gαπ . Observe that this means fm > αg (by Fact 1, because fm ≥ απ by viability,
but gainδ(fm) < gαπ

).

If there are any black pebbles at levelm and above, remove them. Doing so will not
decrease any of fm−1, . . . , fb−(k−1) (by Claim 2). Moreover, each of these fi values
will become greater that fm by Claim 4 (because fm > αg > αmin

δ ) and therefore
also greater than αg. Thus, if before this change, fi was above αg, then increasing
fi decreases its gain by Fact 1. Else, fi was between απ and αg, and therefore
gainδ(fi) was at least gαπ

by Fact 1, and it becomes smaller than gainδ(fm) < gαπ

by Fact 1 and therefore decreases.

Note the importance of removing all black pebbles at m and above at once: re-
moving black pebbles one level at a time (either from b − (k − 1) down to m or
from m to b − (k − 1)) would not allow this argument to go through, as some fi
values may increase but not go above αg.

2. Now proceed removing all black pebbles one level at a time from level m− 1 down
to b − 1, in order, as long as removing all black pebbles at that level does not
increase the total gain. If we get to level b−1, we are done, because the total gain
is fb−k − fb by Claim 3, which is βk

δ (fb)− fb because there are no black pebbles.
Else, let j be the the level at which this process stops: setting ρj = 0 increases the
total gain, even though there are no longer any black pebbles above level j.

3. Consider the total gain of levels j through b − (k − 1):
∑j

i=b−(k−1) gainδ(fi) =

β
j−(b−k)
δ (fj)− fj . Consider this total gain as a function of fj , where all the black

pebble weights are fixed, except ρj . Note that β
j−(b−k)
δ and −fj are both concave

functions of fj (the former is by Claim 17, the latter because it’s a line), and
thus their sum is concave by 16, and thus the minimum is reached at the extrema
of fj by Claim 15. The largest fj happens when ρj = 0, but we know, by the
previous step, that removing all pebbles at level j increases the total gain, so
ρj = 0 cannot give the minimum total gain. The smallest fj is απ, by viability,
and thus the minimum possible total gain happens when fj = απ. Note, again,
the importance of the careful ordering of steps: we are using the fact that there are
no black pebbles above level j, which implies (by Claim 4, which applies because
fj > απ > αmin

δ ) that fj < fj−1 < · · · < fb−(k−1), and thus as long as viability
holds at level j, it also holds above up to level b − (k − 1); without the removal
of pebbles above level j, the minimum allowed fj could be larger than απ due to
viability constraints on the levels above.

Thus, setting ρj = βδ(fj+1)− απ so that fj = απ will not increase the total gain.

We do so. The total gain is now equal to
∑b

i=j−1 gainδ(fi) + β
j−(b−k)
δ (απ)− απ.

4. By the choice of m in the first step, we know gainδ(fi) ≥ gαπ
for j < i < b (because

black pebble quantities at levels below j have not been changed yet). Note that
this step crucially uses thatm was chosen as the lowest level with gainδ(fm) < gαπ .
By the step above, gainδ(fj) = gαπ . Above fj , the f values are increasing (by
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Claim 4). If gainδ above fj is always at least gαπ , the total gain is at least k · gαπ

and we are done.

Else for some level j′ < j, gainδ(fj′) < gαπ
, which means fj′ > αg (because

fj′ ≥ απ by viability, so if fj′ ≤ αg, then gainδ(fj′) ≥ gαπ = gαπ by Fact 1).

In such a case, remove all the remaining black pebbles above level b. This shifts
the f values down by b− j steps. That is, the new values of fb, . . . , fb−(k−1)+(b−j)

become equal to the old values of fj . . . fb−(k−1) (since fb = απ and now there
are no black pebbles above b, just like before the removal of the pebbles, fj
was απ and there were no black pebbles above j). The new b − j values
f(b−k)+(b−j), . . . , fb−(k−1) all have gains less than gαπ

by the existence of j′ and
Claim 8), whereas before this removal of pebbles, the b− j values fb, . . . , fj+1 had
gains greater than gαπ . Thus, the total gain does not increase, because we removed
b − j levels at the bottom whose gain was at least gαπ , shifted k − (b − j) levels
down without changing the gains, and added b− j levels at the top whose gain is
less than gαπ

. But, by Claim 3, the total gain is now fb−k − fb = βk
δ (απ)− απ.

This concludes the proof of Lemma 4.

This lemma tells us, in particular, what it takes to extinguish a viable set.

Corollary 1. Assume gαπ ≥ 0. Assume a subset T of level b is extinguished after k
levels. Then

ρb−1...b−k ≥ min(k · gαπ
, βk

δ (απ)− απ) .

Proof. By Claim 3, fb+k ≥ απ +
∑b

i=b−(k−1) gainδ(fi) − ρb−1...b−k. Since b is extin-
guished, απ > fb+k, so

ρb−1...b−k >

b∑
i=b−(k−1)

gainδ(fi) ≥ min(k · gαπ
, βk

δ (απ)− απ)

by Lemma 4.

The following corollary, in contrast to Corollary 1, speaks of sets that have not been
extinguished. We cannot bound the number of pebbles spent on such sets, but we can
bound the sum of the number of pebbles and the expansion of the last level.

Corollary 2. Assume gαπ ≥ 0. Assume a subset T of level b is viable for k levels, and
m = b− (k − 1). Then

ρb−1...m + βδ(fm) ≥ απ +min(k · gαπ , β
k
δ (απ)− απ) .

Proof. By Claim 3 βδ(fm) = fm + gainδ(fm) ≥ απ +
∑b

i=m gainδ(fi)− ρb−1...m, so

ρb−1...m + βδ(fm) ≥ απ +

b∑
i=m

gainδ(fi) ≥ απ +min(k · gαπ
, βk

δ (απ)− απ)

by Lemma 4.
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Consider now several sets that are extinguished after some number of levels each.
Add up the total black pebbles required. The following (rather boring and technical)
claim shows that what you get is at least as big as if you had a single set extinguished
after the combined total number of levels.

Claim 9. Assume gαπ
≥ 0. Let k1 and k2 be positive integers.Then

min((k1 + k2) · gαπ
, βk1+k2

δ (απ)− απ)

≤min(k1 · gαπ
, βk1

δ (απ)− απ)

+ min(k2 · gαπ , β
k2

δ (απ)− απ) .

Proof. Intuitively, as chains get longer, per level gains eventually start decreasing, and
longer chains have more time to benefit from this decrease. Now we give the formal
proof.

If k1 · gαπ
≤ βk1

δ (απ)− απ and k2 · gαπ
≤ βk2

δ (απ)− απ, then the sum in question is
equal to (k1 + k2) · gαπ and we are done.

Else, assume, without loss of generality, that βk1

δ (απ) − απ < k1 · gαπ . Note that

βk1

δ (απ)−απ =
∑k1−1

i=0 gainδ(β
i
δ(απ)) by definition of gainδ. Therefore, for somem (with

0 ≤ m < k1), gainδ(β
m
δ (απ)) < gαπ , which, by Fact 1, means βm

δ (απ) > αg (because

βm
δ (απ) ≥ απ by Claim 4). Take the smallest such m. By Claim 8, gainδ(β

j1
δ (απ)) ≤

gainδ(β
j2
δ (απ)) < gαπ

for any j1 ≥ j2 ≥ m. From this step, we derive two inequalities.

• Because k1 ≥ m,
∑k1+k2−1

i=k1
gainδ(β

i
δ(απ)) < k2 · gαπ . Therefore,

βk1+k2

δ (απ)− απ =

k1−1∑
i=0

gainδ(β
i
δ(απ)) +

k1+k2−1∑
i=k1

gainδ(β
i
δ(απ))

≤
k1−1∑
i=0

gainδ(β
i
δ(απ)) + k2 · gαπ

= (βk1

δ (απ)− απ) + k2 · gαπ .

• Take any i ≥ 0. Set j1 = i + k1 and j2 = i. Note that j1 ≥ m because k1 ≥ m.
We can show by cases that gainδ(β

i+k1

δ (απ)) ≤ gainδ(β
i
δ(απ)), as follows: if i =

j2 ≥ m, we have already shown it, and if i = j2 < m, then gainδ(β
j2
δ (απ)) ≥ gαπ

,

while gainδ(β
j1
δ (απ)) ≥ gαπ

because j1 ≥ m. Therefore,

βk1+k2

δ (απ)− απ =

k1−1∑
i=0

gainδ(β
i
δ(απ)) +

k1+k2−1∑
i=k1

gainδ(β
i
δ(απ))

≤
k1−1∑
i=0

gainδ(β
i
δ(απ)) +

k2−1∑
i=0

gainδ(β
i
δ(απ))

= (βk1

δ (απ)− απ) + (βk2

δ (απ)− απ) .
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These two inequalities together conclude the proof of Claim 9.

Proof of Theorem 4. The assumptions imply that the βcount term is finite by Claim 1,
because gαπ ≥ 0 implies απ > αmin

δ .
Starting with level ℓ and going up, find the lowest fertile level b1; assume it becomes

extinguished after k1 levels. This gives us a lower bound

ρb1−1...b1−k1
≥ min(k1 · gαπ

, βk1

δ (απ)− απ) ,

by Corollary 1. Skip infertile levels (if any) above b1 − k1 to find a fertile level b2, and
assume it becomes extinguished after k2 levels. This, again, gives us a lower bound

ρb2−1...b2−k2 ≥ min(k2 · gαπ , β
k2

δ (απ)− απ) ,

Note that the regions for which we obtain these bounds on black pebble weight do not
overlap, as b2 − 1 < b1 − k1. Note also that we will not skip over m, as it is fertile.
Continuing in this manner, eventually we will come to a fertile level b that stays viable
until level m inclusive. Then, letting k′ = b−m+ 1

ρb−1...m + βδ(fm) ≥ απ +min(k′ · gαπ
, βk′

δ (απ)− απ)

by Corollary 2.
Adding up all the inequalities per Claim 9 and observing that the bounds on ρ values

are for nonoverlapping ranges of levels, we obtain

ρℓ...m + βδ(fm) ≥ απ +min((k1 + k2 + · · ·+ k′) · gαπ
, βk1+k2+···+k′

δ (fb)− απ) .

Note that k1 + k2 + · · · + k′ ≥ k, because the only levels we skipped were infertile (we
didn’t necessarily skip all infertile levels, as some of them may have been viable; hence
the inequality rather than equality). Replacing k1+k2+· · ·+k′ with k on the right-hand
side will not increase it. Noting that ρℓ...m = ρ− ρ1...m−1, we thus obtain

βδ(fm(b))− ρ1...m−1 ≥ min(απ + k · gαπ
, βk

δ (απ))− ρ .

By the condition on k in Theorem 4, the right-hand side of this inequality at least σ. We
can thus apply Theorem 3 to level m and substitute σ instead of βδ(fm(b)) − ρ1...m−1

by monotonicity of β (the condition fm ≥ απ is satisfied because fm is viable).

8 Finishing the Proof with Quantitative Details for
the Chung Expander

We explain and analyze Chung expanders in detail in Appendix A. Here we state only
the fact that we need for the proof of Theorem 1.

Fact 2. For any δ, a random degree-8 Chung expander of size Õ(1/δ) ensures, with
overwhelming probability, that

1. αg ≈ 0.32
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2. gain(αg) ≈ 0.36

3. Expansion is rapid for small sets: for any α satisfying δ ≤ α ≤ 0.14, β(α) > 3α,
and therefore βδ(α) > 2α.

4. Expansion quickly bridges small-to-big gap: β(β(β(0.14) − 0.14) − 0.14) − 0.14 >
0.68, i.e., β3

δ (0.14) > 0.68 assuming δ ≤ 0.14

5. Expansion quickly reaches almost everything for big sets: for any α satisfying
δ ≤ α ≤ 0.14, β(1− 3α) > 1− α. Therefore βδ(1− 3α) > 1− 2α, and moreover,
βδ(1− 3α) > 1− 3α/2 as long as 2δ ≤ α ≤ 0.14.

(Note that the last item can be inferred from item 3 via Claim 13: we have β(α) ≥ 3α,
so, by monotonicity of β, β(1− 3α) > β(1− β(α)) = 1− α.)

These facts imply that for any δ ≤ 0.14, if there are no black pebbles, expansion can
rapidly get the per layer footprint from δ to 1− 3δ, as shown in the following claim.

Claim 10. For the degree-8 Chung expander, δ ≤ 0.14, and any a ≥ δ and b ≥ 3δ

βcounta(1− b) ≤ 3 + ⌈log2(0.14/a)⌉+ ⌈log2(0.32/b)⌉ < 1 + log2 1/a+ log2 1/b .

Proof. Let k1 = ⌈log2(0.14/a)⌉. By Fact 2.3, βδ(α) > 2α for any α with δ ≤ α ≤ 0.14,
so, by monotonicity of β (Condition 1), βk1

δ (a) > min(2 · 0.14, a · 2k1) ≥ min(0.28, a ·
2log2(0.14/a)) = 0.14. By Fact 2.4 and monotonicity of β, βk1+3

δ (a) > 0.68 = 1− 0.32.

Let k2 = ⌈log2(0.32/b)⌉. By Fact 2.5, βk1+k2+3
δ (a) = βk2

δ (βk1+3
δ (a)) > βk2

δ (1−0.32) >
min(1− 3 · δ, 1− 0.32/2k2) > 1− b.

We are now ready to prove Theorem 1, which we restate here.

Theorem 1. For any εspace > 0 and εhardness > 0, there is a setting of parameters ℓ, ℓpr,
δ, and n in the SPR construction that achieves space gap εspace, single-query catching
probability phard ≥ εspace/2, and hardness gap εhardness, such that

• The cost of computing f(x), per bit of y, is

O

(
1

εhardness
· log 1

εspace

)
.

• The cost of the initialization protocol is

Õ

(
1

εhardness
·
(

1

εhardness
+

1

εspace

))
.

.

Proof. Set ζ = 1− εspace/2 = ρ+ εspace/2 and σ = εspace/2. Set δ to satisfy the following
conditions:

δ < min

(
gain(π)

2
,
εspace
6

,
1− π

3
,
gain(απ)

2
, απ,

εhardness
6

, 0.14

)
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Set m1 to be the largest integer smaller than

max

(
1 +

π + δ − εspace/2

gπ
, 1 + βcountεspace/2−δ(π)

)
.

The first condition on δ (namely, δ < gain(π)
2 ) ensures that the denominator gπ =

gainδ(π) = gain(π)− δ in the calculation of m1 is at least gain(απ)/2 and thus constant
(note that the numerator is at most 1). The second, third, and last condition ensure
that βcountεspace/2−δ(π) is logarithmic in 1/εspace by Claim 10, because εspace/2 − δ > δ
and π < 1− 3δ is a constant. Thus, m1 is most logarithmic in 1/εspace.

Set m2 to be the largest integer no greater than

max

(
ρ+ σ − απ

gainδ(απ)
, βcountαπ

(ρ+ σ)

)
.

A similar argument, using the fourth, fifth, and second condition on δ, and remembering
that ρ+ σ = 1− εspace + εspace/2 = 1− εspace/2 < 1− 3δ, shows that m2 is logarithmic
in 1/εspace.

Set ℓpr = m1 +m2. Somewhere among the lowest ℓpr levels, there must be a fertile
level with m2 − 1 fertile levels below it, because if not, then the total number of fertile
levels among the lowest ℓpr levels is less than m2, so the total number of infertile levels
is greater than m1, which contradicts Theorem 2.

Therefore, Theorem 4 applies (because ρ + σ < 1 − δ < αmax
δ and σ > δ > αmin

δ ),
which means that among the lowest ℓpr levels, there is a fertile level with footprint weight
at least

απ +

ℓ−ℓpr−1∑
i=0

βi
δ(σ) . (2)

It remains to find a lower bound on (2). Let m3 = βcountσ(0.68) (this is again
logarithmic in 1/εspace by Claim 10). Ignore the first m3 terms of the summation in (2).
Now let m4 = ⌈log2 0.32/(εhardness/2)⌉. The next m4 terms of the summation add up to
at least

(1− 0.32) + (1− 0.32/2) + · · ·+ (1− 0.32/22)) + · · ·+ (1− 0.32/2m4−1) > m4 − 1

by Fact 2.5, because 3δ < εhardness/2 by the sixth condition on δ. Each subsequent term
is at least 1− εhardness/2, and so the lower bound on (2) is

(ℓ− ℓpr −m3 − 1) · (1− εhardness
2

) .

Setting ℓ = 2(m1+m2+m3+1)
εhardness

= O( 1
εhardness

log 1
εspace

) gives that this footprint weight,

relative to the weight ℓ of the entire graph, is greater than 1 − εspace. The cost of
computing f(x) per output byte of y is proportional to ℓ, and is thus

O

(
1

εhardness
· log 1

εspace

)
.
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Per Fact 2, n grows as Õ(1/δ) in order to ensure expansion works as desired for
αmin
δ < α < αmax

δ (though for practically relevant parameter values, a typical n dictated
by the desired storage size will be sufficient for any reasonably relevant δ); per [ABP18],
the degree of depth-robust graphs grows logarithmically in n (it may be that predecessor-
robust graphs can have a smaller dependence on n than depth-robust graphs, but we do
not know that). Thus, dpr grows at most logarithmically in 1/δ; dexp is the constant 8.

Therefore, the intialization complexity, per Section 2.2 is

O

(
ℓpr · dpr + ℓ · dexp

δ

)
= Õ

(
1

εhardness
·
(

1

εhardness
+

1

εspace

))
.
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Chung graph has this expansion function with overwhelming probability as n grows.
The main results of this section are Equation (4) and Claim 14 below.

Chung expanders were first in the context of proofs of space by [RD16]. However,
the work of [RD16] used expansion at one point α, whereas we want it to work almost
the entire [0, 1] — specifically, on the interval [αmin

δ , αmax
δ ]. We will do so by taking the

union bound over (at most n) possible values of α (for integer αn), which requires us
to understand the probability that expansion fails more precisely than in prior work.
Thus, we first reprove [RD16, Theorem 1] with more precise constants.

Claim 11. For every fixed u and v, the probability (over the choice of the permutation p)
that there exists a set of u nodes at the bottom that does not have at least v predecessors
at the top is at most

c

n
· 2n·(Hb(x)+Hb(y)+d·(yHb(x/y)−Hb(x))) ,

where x = u/n, y = v/n, Hb is the binary entropy function Hb(x) = −(x log2 x + (1 −
x) log2(1− x)), and

c <
exp(1/8)

2π
· 1√

x(1− y)(y − x)
.

Proof. Before we proceed, it helps to introduce notation C(a, b) = a!/b!/(b − a)! for
combinations and P (a, b) = a!/(b − a)! for permutations. We show a very tight bound
on the binomial coefficient in the following claim (the slack in the bound is just 13%,
because exp(−1/8) ≈ 0.88).

Claim 12. For any q ≥ 1 and 1/q ≤ a < 1, there is a value κ such that exp(−1/8) <
κ < 1 and

C(q, aq) = κ · 1√
2πa(1− a)

· 1
√
q
· 2qHb(a) .

Proof. The result of Stănică [Stă01, Theorem 2.6] tells us that for all m > p ≥ 1 and
for all k ≥ 1,

C(mk, pk) = κ ·
√

m

2πk(m− p)p

(
mm

(m− p)m−p · pp

)k

for some value κ with exp(−1/(8k)) < κ < 1.
Plugging in p = 1, k = aq, and m = 1/a (note that so that m > p ≥ 1 and k ≥ 1 are
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satisfied), we have exp(−1/8) ≤ exp(−1/(8k)) < κ < 1, m− p = (1− a)/a, and

C(n, an) = κ ·

√
1/a

2πaq(1− a)/a

(
(1/a)1/a

((1− a)/a)(1−a)/a

)aq

= κ ·

√
1

2πqa(1− a)

(
(1/a)

((1− a)/a)1−a

)q

= κ ·

√
1

2πqa(1− a)

(
a−1 · a1−a

(1− a)1−a

)q

= κ ·

√
1

2πqa(1− a)

(
1

aa(1− a)1−a

)q

= κ ·

√
1

2πqa(1− a)
· 2qHb(a) .

This concludes the proof of Claim 12.

We use the same reasoning as Ren and Devadas [RD16, Theorem 1]. Fix x and
y. Call a bipartite graph (x, y)-bad if there exists a set of size xn in the bottom part
that has fewer than yn predecessors in the top part. How many bad Chung graphs
are there? To construct a bad Chung graph, there are at most C(n, xn) candidates
for the bottom set, at most C(n, yn) candidates for the top set, at most P (dyn, dxn)
choices for where in the top set the edges that go to the bottom set originate, and
P (d(n− xn), d(n− xn)) = (dn− dxn)! choices for where the remaining edges originate.
Since there are a total of (dn)! possible graphs, the probability that a graph is (x, y)-bad
is at most

Pr[graph is (x, y)-bad] ≤ C(n, xn) · C(n, yn) · P (dyn, dxn) · (dn− dxn)!/(dn)!

= C(n, xn) · C(n, yn) · C(dyn, dxn)/C(dn, dxn)

Thus, by Claim 12, as long as

1/n ≤ x < 1, 1/n ≤ y < 1, 1/(dyn) ≤ x/y < 1, and 1/(dn) ≤ x < 1 (3)

(note that the last two conditions are redundant, as they are both implied by the first),
we have

Pr[graph is (x, y)-bad] ≤ c · 1
n
· 2n(Hb(x)+Hb(y)+d(yHb(x/y)−Hb(x))
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for some c satisfying

c < exp(1/8)

√
2πd · x(1− x)

(2π)3dy · x(1− x) · y(1− y) · (x/y)(1− x/y)

<
exp(1/8)

2π

√
1

y · y(1− y) · (x/y)(1− x/y)

=
exp(1/8)

2π

√
1

x(1− y)(y − x)
.

This concludes the proof of Claim 11.

Claim 11 tells us that if Hb(x) +Hb(y) + d · (yHb(x/y)−Hb(x)) is negative and n is
sufficiently large, expansion is overwhelmingly likely.

We can thus define

βoptmial(α) = sup{y : Hb(α) + Hb(y) + d · (yHb(α/y)− Hb(α)) < 0} .

This function satisfies Condition 1 (we have verified this fact by plotting the function;
analytical verification appears to be doable but painful and uninsightful). However, to
get a handle on the probability that a random Chung graph of a given size n is an
expander, we need a slightly stronger condition that simple negativity. We will have to
pick a small value εchung << δ (in our concrete example in Section C, εchung = 2−23) and
define

β(α) = sup{y : Hb(α) + Hb(y) + d · (yHb(α/y)− Hb(α)) < −εchung} . (4)

This change has a very small effect on β: βoptmial(α) − β(α) < εchung, because the
derivative of the left-hand side of the inequality in (4) as a function of y is greater than
1 in the relevant region. As long as δ ≫ εchung, this change is therefore not significant,
because we are interested only in α for which gain(α) ≥ δ.

The following claim helps understand expansion.

Claim 13. β(x) = y if and only if β(1− y) = 1− x

Proof. Hb(1− y) = Hb(y) and Hb(1− x) = Hb(x) by definition of Hb.

yHb(x/y)− Hb(x) = −y ·
(
x

y
· log x

y
+

y − x

y
log

y − x

y

)
+ x log x+ (1− x) log(1− x)

= −x log x+ x log y − (y − x) log(y − x)− x log y + y log y

+ x log x+ (1− x) log(1− x)

= (x− y) log(y − x) + y log y + (1− x) log(1− x) ,

which remains invariant if we substitute 1−x for y and 1−y for x. Thus, the inequality
in (4) is true for (α, y) if and only if it is true for (1− y, 1− α).
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0.0940.021 0.9790.9060.32 0.68

0.360.226 0.226 0.0730.073

Figure 2: Expansion speed for the Chung expander: β(0.021) ≈ 0.094, β(0.094) ≈ 0.32,
etc. The top numbers show the gain.

The above claim implies that for all α, gain(α) = β(α)−α = (1−α)− (1− β(α)) =
β(1−β(α))−(1−β(α)) = gain(1−β(α)). Therefore, gain(1−β(αmin

δ )) = gain(αmin
δ ) = δ,

so αmax
δ = 1 − β(αmin

δ ) (because αmax
δ is the only value other than αmin

δ value with gain
of δ).

The next claim shows that a random sufficiently large Chung graph is an expander
with overwhelming probability.

Claim 14. The probability that there exists α ∈ [αmin
δ , αmax

δ ] and a set of nodes at the
bottom of size α · n whose predecessor set has size less than β(α) · n is at most

exp(1/8)

2π · αmin
δ ·

√
δ
· 2−n·εchung .

Proof. Using Claim 11 and taking a union bound over all possible values of u (there are
almost n of them, from αmin

δ · n to αmax
δ · n), we get that the probability there exists an

integer u and subset of weight α = u/n whose predecessor set weight is less than β(α) is

at most cmax · 2−n·εchung , where cmax = supx∈[αmin
δ ,αmax

δ ],y=β(x)
exp(1/8)

2π
1√

x(1−y)(y−x)
. Noting

that x ≥ αmin
δ , 1− y ≥ 1− β(αmax

δ ) = αmin
δ , and y − x ≥ δ, we have cmax ≤ exp(1/8)

2παmin
δ

√
δ
.

Thus, given a particular δ and a security parameter λ, we will set εchung ≪ δ to
ensure Condition 1 holds on the interval [αmin

δ , αmax
δ ], and set

n >

(
λ− 2.4− log2 α

min
δ − 1

2
log2 δ

)
/εchung = Õ

(
1

δ

)
(sufficient because log2(exp(1/8)/(2π)) < −2.4). This will ensure, with probability 2−λ,
that a random Chung graph has expansion β(α) for every α ∈ [αmin

δ , αmax
δ ]. We show a

concrete example of parameter setting in Section C.

A.1 Concrete Parameters of Expansion

We will be using d = 8. Using a numerical calculation for βoptmial (defined in the previous
section), and the fact that we can set εchung small enough to ensure that β is a close
approximation of βoptmial, we can see that expansion is quite fast (see Figure 2).

Numerical experiments show that expansion is by a factor of at least 3 for α satisfying
δ ≤ α ≤ 0.14 and that β3

δ (0.14) > 1−3 ·0.14 assuming δ ≤ 0.14; by Claim 13, expansion
for weight 1 − 3 · 0.14 and above rapidly gets the weight close to 1. These statements
are summarized in Fact 2 in Section 8.
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B Facts about Concave Functions

Recall the definition of a concave function: F is concave if for all a, b, the graph of F
on the segment [a, b] does not dip below the line connecting the points (a, F (a)) and
(b, F (b)). Algebraically, for all 0 ≤ λ ≤ 1, F (λa + (1 − λ)b) ≥ λF (a) + (1 − λ)F (b).
F is strictly concave is the inequality is strict for 0 < λ < 1. Recall also that F is
monotonically nondecreasing (respectively, increasing, nonincreasing, decreasing) if for
all a > b, F (a) ≥ F (b) (respectively, F (a) > F (b), F (a) ≤ F (b), F (a) < F (b)).

The first three claims are below standard; the last one only slightly less so.

Claim 15. The minimum of a concave function on a line segment [a, b] is reached at
either a or b, and nowhere else if concavity is strict.

Proof. Let c ∈ [a, b] and λ = (b − c)/(b − a). Let m = min(F (a), F (b)). Then F (c) =
F (λa+(1−λ)b) ≥ λF (a)+(1−λ)F (b) ≥ λm+(1−λ)m = m. If the concavity is strict,
then whenever a < c < b, 0 < λ < 1 and so the first inequality is strict.

Claim 16. The sum of two concave functions is concave and, moreover, is strictly
concave if one of the two functions is strictly concave.

Proof. Assume F and G are concave and H = F +G. H(λa+ (1− λ)b) = F (λa+ (1−
λ)b)+G(λa+(1−λ)b) ≥ λF (a)+(1−λ)F (b)+λG(a)+(1−λ)G(b) = λH(a)+(1−λ)H(b).
The inequality will be strict if the inequality for F or G is strict.

Claim 17. Let F and G be concave nondecreasing functions. Then F ◦G is a concave
nondecreasing function wherever it is defined (which may not on the entire domain of
G, because we do not require F to be defined on the entire range of G). (Note that for
concavity of F ◦G, it suffices for F to be nondecreasing, and it doesn’t matter whether
G is nondecreasing.)

Proof. Let a ≥ b be in the domain of F ◦ G. Since G is nondecreasing, G(a) ≥ G(b),
and thus, since F is nondecreasing, F (G(a)) ≥ F (G(b)). Thus, F ◦G is nondecreasing.

Because G is concave, G(λa + (1 − λ)b) ≥ λG(a) + (1 − λ)G(b). Because F is
nondecreasing and concave, F (G(λa+(1−λ)b) ≥ F (λG(a)+(1−λ)G(b)) ≥ λF (G(a))+
(1− λ)F (G(b)).

Claim 18. Let F be a concave function. Suppose x1 ≤ x2 and z ≥ 0. Let δ1 =
F (x1)− F (x1 − z) and δ2 = F (x2)− F (x2 − z). Then δ1 ≥ δ2.

Proof. The intuition is simple: because F is concave, F (x1) and F (x2 − z) are both
above the straight line that connects (x1 − z, F (x1 − z)) with (x2, F (x2)). If we lowered
F (x1) and F (x2 − z) to this line line, we would decrease δ1 and increase δ2, and we
would make them equal. So δ1 > δ2.

Algebraically, let a = x1 − z, b = x2, λ = x2−x1

x2−x1+z , µ = z
x2−x1+z . Note that

λa+ (1− λ)b = x1 and µa+ (1− µ)b = x2 − z, and that λ+ µ = 1.
The concavity of F gives two inequalities:

F (x1) = F (λa+ (1− λ)b) ≥ λF (a) + 1− λF (b) = λF (x1 − z) + (1− λ)F (x2)
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F (x2 − z) = F (µa+ (1− µ)b) ≥ µF (a) + 1− µF (b) = µF (x1 − z) + (1− µ)F (x2)

Adding them together, we get

F (x1) + F (x2 − z) ≥ F (x1 − z) + F (x2)

and the result follows by subtracting F (x1 − z) + F (x2 − z) from both sides of the
inequality.

We restate and prove Fact 1 from Section 4.1.

Fact 1. The function gain is strictly concave on the interval [0, 1], with gain(0) =
gain(1) = 0. There is a value 0 < αg < 1 that maximizes gain. The function gain (and
therefore also gainδ) is monotonically increasing on inputs from 0 to αg and monotoni-
cally decreasing on inputs from αg to 1.

Proof. gain is a continuous strictly concave function as a sum of two continuous concave
functions β (per Condition 1) and −α (with β strictly concave), per claim Claim 16.
It is bounded because β is bounded by 1, and a bounded continuous function reaches
its maximum on the compact set [0,1]; this maximum is nonzero (because β(α) > α
on (0, 1)) and therefore not reached at 0 or 1, where gain is 0, so 0 < αg < 1. It is
easy to show that a violation of the monotonicity conditions on either side of αg would
imply a violation of concavity of gain: if gain(y) ≤ gain(x) for some x < y < αg, then
(y, gain(y)) lies below the line connecting (x, gain(x)) with (αg, gain(αg), as that line
slopes up, since gain(x) < gain(αg). Same proof works, mutatis mutandis, for the other
side.

C Concrete Results for the Filecoin Instantiation

The Filecoin blockchain [GN23, Lab23] uses a degree-8 Chung expander, connecting
horizontal layers of size n = 230 each. It assumes (with some evidence [FBGB18] but
not a proof) that its horizontal degree-6 graph is depth robust, so that a path containing
20% of the nodes exists in any given layer even if 20% of the nodes in that layer are
removed (as we already discussed, we can relax this assumption, as we do not need a
path, but rather a single-sink connected subgraph). The number of levels is ℓ = 11; they
all have horizontal edges, even though, as we show below, only the lowest ℓpr = 8 need
to. Filecoin initialization ensure that δ = 0.0378. The spacegap εspace of interest is 0.2.
We use these parameters to state the following theorem.

Theorem 5. Suppose SPR is instantiated with a degree-8 Chung expander, a predecessor-
robust graph with π = 0.8 and απ = 0.2, ℓpr = 8, and ℓ ≥ 11. Assume εspace = 0.2 and
δ = 0.0378. Then it has hardness ratio

rhardness ≥
2.24 + 0.93(ℓ− 11)

ℓ

and single-query catching probability 10%.
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The result of this theorem is slightly better than what follows directly from the proof
of Theorem 1; in particular, crucially, this theorem gives a nontrivial result for ℓ = 11,
which is the deployed instantiation, while the constants from Theorem 1 would have
nothing to say until ℓ = 15 and thus would say nothing about the deployed instantiation.
Thus, theorem requires additional work, which we show in the rest of this section. Prior
to this work, the best hardness ratio known for SDR with these parameters was 0.2/ℓ
[Fis19, GN23] (importantly, that hardness ratio is proven for parallel hardness, which
corresponds to latency, while our result is only for sequential hardness, which corresponds
to cost).

We will set εchung = 2−22, so that by Claim 14 that a random degree-8 Chung graph
satisfies the expansion condition with probability at least 1−2−249. For the rest of this
section we assume the specific choice of the Chung graph satisfies it.

As before, we set ζ = 1− εspace/2 = 0.9 and thus ζδ = ζ − δ = 0.8622.
In this section we use numerical estimates for values of β on specific inputs, obtained

via a simple implementation of formula (4) from Section A, which finds upper and lower
bounds on β(α) using binary search. With these parameter settings, we can compute

• 0.0508 < π < 0.0509

• 0.9491 < β(π) < 0.9492

• 0.1113 < gπ < 0.1114

• 0.2925 < gαπ
< 0.2926

• 0.0097 < αmin
δ < 0.0098

• 0.9524 < αmax
δ < 0.9525

• 0.3200 < αg < 0.3202 and

• 0.3599 < gain(αg) < 0.3600

In the rest of this section we prove Theorem 5.
For the rest of this section, let S be a set of weight ζ on level ℓ. We will use αi to

denote fi(S) (so as to easily distinguish it from fi(T )).
We could simply plug in the above numbers into the proof of Theorem 1 to get

results for this insantiation. We could pick σ = 0.1 and r = 0.92 and we would get
m1 = 7 from Theorem 2 (see Corollary 3), m2 = 3 = βcount0.2(0.9) from Theorem 4
(thus ℓpr = m1 + m2 = 10), and m3 = 4 = βcount0.1(0.92) = 4. This would give us
a total footprint of 0.92 · (ℓ − 14). What we get instead is better by about 5 levels
(0.93 · 3+ 2.24 > 0.92 · 5). While the difference may seem minor, it is crucial for small ℓ
and, in particular, for the deployed version of SDR, where ℓ = 11.

We find room for improvement for these specific parameters for the following reasons:

• The proof of Theorem 1 separately counts, and skips, the maximum number of
infertile levels (Theorem 2) and the maximum number of fertile levels that are not
going to grow (Theorem 4). But keeping fertile levels from growing takes a lot of
pebbles, which reduces not only the footprint of T , but also the footprint αi of S.

37



A lower αi results in a bigger gain in the footprint of S, which increases the number
of pebbles necessary to make an infertile level, and therefore reduces the number
of infertile levels. In other words, the existing proof does not take advantage of
the fact that more levels for Theorem 4 means fewer levels for Theorem 2 and vice
versa.

• The proof of Theorem 4 ignores fertile levels whose footprints dip below απ before
rebounding and growing.

• The proof of Theorem 1 ignores the footprint of a growing fertile level until it
reaches weight r.

C.1 Number of Infertile Levels as a Function of Pebble Arrange-
ments

Most of the work in this section is simply in applying the general results in Section 5
to the specific parameters of Theorem 5. However, Claims 22, 23, and 24 are new, and
address the relationship between footprints, pebbles spent, and the number of fertile
levels.

Claim 19. For all i, αi ≥ 0.0622 > π and therefore for every infertile level m,
gainδ(αm) ≥ gπ > 0.1113.

Proof. By Claim 5, αi never falls below ζδ − ρ = 0.0622 and 0.0622 > π, because
gainδ(0.0622) > gainδ(0.8).

Thus, the simple case of Theorem 2—namely, the one given by Lemma 1—applies
and we have the following corollary to Theorem 2. Note that we get at most 7 for the
number of infertile levels (we argue that this is tight in Section C.4), while the best
previously known bound was 10 [Fis19, GN23].

Corollary 3. For the parameter settings in Theorem 5, the number of infertile levels is
at most 7 and the following holds for any level m:

if number of infertile levels then maximum weight of black pebbles
below level m is ρ1...m at level m and above is at most

1 0.7378
2 0.6265
3 0.5152
4 0.4039
5 0.2926
6 0.1813
7 0.0700

It is helpful to have the following variant of Lemma 1.

Claim 20. Let m be the highest infertile level (assuming one exists).

ℓ∑
i=m

gainδ(αi) < 0.8492
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Proof. By Claim 5,
∑

i>m gainδ(αi) ≤ αm − ζ + ρ + δ. Add gainδ(αm) to both sides
of the inequality, and recall that αm + gainδ(αm) = β(fm) − δ < β(π) − δ because
π < fm < π because αi > π for all i by Claim 19 and level m is fertile so αi < π.

Claim 21. If i is the lowest fertile level, then gainδ(αi) ≥ 0.0313.

Proof. If i = ℓ, then αi ≤ ζδ = 0.8622. Else, the level below i is infertile, and thus
αi+1 < π, so αi < βδ(π) < 0.9114. Because gainδ monotonically decreases above π, and
αi ≥ π because i is fertile, we have gainδ(αi) > gainδ(0.9114) > 0.0313.

The following claim shows that if the number of infertile levels is maximum possible,
then fertile levels cannot be extinguished, because gainδ(απ) > 0.2107. This shows that
the maximum number of levels for Theorem 2 leaves no levels for Theorem 4.

Claim 22. Let b be the lowest fertile level. If there are 7 infertile levels, then for every
level m < b above b, ρm < 0.2107.

Proof. First, note that gainδ(αm) < 0.1501. Indeed, this is automatically true for fertile
m, because for a fertile m, gainδ(αm) ≤ gπ < 0.1114. If this is false for some infertile m,
then, since there are 7 infertile levels total, taking m′ to be the highest infertile level, we
have

∑ℓ
i=m′ gainδ(αi) ≥ gainδ(αb)+0.1501+6·gπ > 0.0313+0.1501+6·0.1113 = 0.8492

(by Claim 19 and 21), which contradicts Claim 20.
There are two regions of [0,1] where gainδ(α) ≤ 0.1501: one requires that 0 ≤ α <

0.0703 and the other requires that 0.7418 < α ≤ 1. By Claim 5,

αm ≥ αb + gainδ(αb)− ρ = βδ(αb)− 0.8 ≥ βδ(π)− 0.8 > 0.0703 ,

so we must have αm > 0.7418.
Note that βδ(αm+1) < αmax

δ (else gainδ(βδ(αm+1)) ≤ 0, which contradicts Claim 5).
Since αm = βδ(αm+1)−ρm, we have ρm < αmax

δ −0.7418 < 0.9525−0.7418 < 0.2107.

The next claim shows how a small footprint αm (which can happen when a lot of
pebbles are used to extinguish a fertile level) reduces the number of infertile levels.

Claim 23. If there is m with αm ≤ 0.5015, then there are at most 5 infertile levels.

Proof. Suppose there are 6 or more infertile levels. If at least four of those are below m,
then by Claim 5 and Claim 19

αm ≥ ζ − δ − ρ+ 4 · gπ = 0.0622 + 0.1113 · 4 > 0.5015 ,

which is a contradiction. Thus, at most three infertile levels are below m, so there are
at least two levels above m.

The main idea of the proof is to show that the gains of levels m and m − 1 are too
high. We will consider two cases: αm > 0.2023 and αm ≤ 0.2023.

Suppose αm > 0.2023. By Claim 15, because gain is concave (Fact 1), we know
gainδ(αm) ≤ min(gainδ(0.2023), gainδ(0.5015)) > 0.2804 To have αm ≤ 0.5015, we had
to place black pebbles of weight at least ζδ − 0.5015 = 0.8622− 0.5015 = 0.3607 at level
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m or below (by Claim 5), which means that the weight of the black pebbles above level
m is at most ρ− 0.3607 = 0.4393. Then we know

αm−1 > βδ(αm)− 0.4393 > βδ(0.2023)− 0.4393 > 0.0567

and
αm−1 ≤ βδ(0.5015) < 0.7820 ,

so gainδ(αm−1) ≥ min(gainδ(0.0567), gainδ(0.7820)) > 0.1236. Note also that level
m− 1 is infertile, because αm−1 < 0.7820 < 0.8 = π.

Taking m′ to be the highest infertile level, we have by Claim 19

ℓ∑
i=m′

gainδ(αi) ≥ 4 · gπ + gainδ(αm) + gainδ(αm−1)

> 0.4452 + 0.2804 + 0.1236 = 0.8492 ,

which contradicts Claim 20. This concludes the first case.
Now consider the second case: suppose αm ≤ 0.2023. By Claims 5 and 19, because

there are at least 5 infertile levels below the highest fertile level m′, αm′ ≥ 0.0622 + 5 ·
0.1113 = 0.6187 > 0.5015. We thus know that there exists at least one level above m for
which αi > 0.5015. Let i < m be the lowest such level. Then αi+1 > 0.2023 (because
βδ(0.2023) < 0.5015) but αi+1 ≤ 0.5015 by the definition of i, and thus we can apply
the previous case to m = i+ 1.

Finally, we show that extinguishing even one fertile level (which costs gαπ
> 0.2925

pebble weight) while keeping at least six infertile levels reduces the number of available
black pebbles.

Claim 24. Suppose level b ≤ ℓ − 6 is infertile, and at least five levels below it are also
infertile. If there is a level m ≥ b with ρm > 0.2925, then the weight ρ1...b−1 of black
pebbles above b is at most 0.0607.

Proof. First consider the case m > b.
Note that level m is infertile because αm < 1− 0.2925 < 0.8 = π. Because level b is

infertile, 0.8 > αb, and thus by Claims 5, 19, and 21 (because at least four levels below
b, besides level m, are infertile; at there is at least one more level that is either fertile
or infertile)

0.8 > αb = ζδ +
∑
i>b

gainδ(αi)− ρℓ...b

≥ 0.8622 + 0.0313 + 0.1113 · 4 + gainδ(αm)− ρℓ...b .

Level m has αm = βδ(αm+1) − 0.2925. We know βδ(αm+1) < αmax
δ < 0.9525 (because

otherwise gainδ(βδ(αm+1) ≤ 0, which contradicts Claim 5), so we have αm < 0.66. Since
there are at least six infertile levels, by Claim 23, αm > 0.5015. Because gain is mono-
tonically decreasing on inputs in the range from 0.5015 to 0.66 by Fact 1, gainδ(αm) >
gainδ(0.66) > 0.2006. Thus, we have ρℓ...b > 0.7393 and ρ1...b−1 < ρ− 0.7393 = 0.0607.
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If m = b, let m′ > b be the highest infertile level below m. It has at least four
infertile levels below it, so by Claims 5 and 21

0.8 > αm′ = ζδ +
∑
i>m′

gainδ(αi)− ρℓ...m′

≥ 0.8622 + 0.1113 · 4− ρℓ...m′ ,

and so ρℓ...m′ ≥ 0.5074. Thus, ρℓ...b ≥ 0.5074 + ρb > 0.7999, so ρ1...b−1 < ρ − 0.7999 =
0.0001 < 0.0607.

C.2 Footprints For Specific Pebble Arrangements

Start with an unpebbled set T of weight fb = απ = 0.2 on level b. In this section,
we show lower bounds on the total footprint of b in several different situations. These
situations do not cover all possibilities, but they turn out to be sufficient for the final
proof in Section C.3. The specific situations addressed in this section are:

• When b ≥ 4 and ρb−1...1 ≤ 0.07 (Claim 25)

• When b ≥ 5 and ρb−1...1 ≤ 0.30 (Claim 26)

• When b ≥ 6 and ρb−1...1 ≤ 0.44 (Claim 27)

• When b ≥ 8 and T is viable for at least three levels (Claim 28)

• When b ≥ 8 and ρb−1 + ρb−2 ≤ 0.36 and ρb−1...1 ≤ 0.8 (Claim 29)

• When b ≥ 8 and ρb−1 ≤ 0.1525, ρb−1 + ρb−2 ≤ 0.73, and ρb−1...1 ≤ 0.8 (Claim 30)

The first four of these claims simply apply the results of Sections 6 and 7 to the
specific parameters of Theorem 5. The last two are new, because they deal footprints
of fertile sets that may lose viability for a few levels and then regain it. These claims
require calculations of the functions β, gain, and ϕ. We do not show these calculations
explicitly—they are done by straightforward code that computes the function β for the
Chung expander.

Claim 25. Suppose b ≥ 4, fb = 0.2, and the total weight ρb−1...1 of black pebbles above
level b is at most 0.07. The total footprint is at least ϕfb(ρb−1, . . . , ρ1) > 2.24 + 0.93 ·
(b− 4).

Proof. Applying Theorem 3, we know ϕfb(ρb−1, . . . , ρ1) ≥ ϕfb(0.07, 0, . . . , 0) > 2.24 +
0.93 · (b− 4).

Claim 26. Suppose b ≥ 5, fb = 0.2, and the total weight ρb−1...1 of black pebbles
above level b is at most 0.3. Then the total footprint is at least ϕfb(ρb−1, . . . , ρ1) >
2.54 + 0.94 · (b− 5).

Proof. Applying Theorem 3, we know ϕfb(ρb−1, . . . , ρ1) ≥ ϕfb(0.3, 0, . . . , 0) > 2.54 +
0.94 · (b− 5).
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Claim 27. Suppose b ≥ 6, fb = 0.2, and the total weight ρb−1...1 of black pebbles above
level b is at most 0.44. The total footprint is at least ϕfb(ρb−1, . . . , ρ1) > 2.49 + 0.93 ·
(b− 6).

Proof. Applying Theorem 3, we know ϕfb(ρb−1, . . . , ρ1) ≥ ϕfb(0.44, 0, . . . 0) > 2.49 +
0.93 · (b− 6).

Claim 28. Suppose T is an unpebbled subset of level b ≥ 8 of weight fb = απ = 0.2 that
is viable for at least 3 levels. Then the total footprint of T is at least ϕfb(ρb−1, . . . , ρ1) >
3.4 + 0.94 · (b− 8).

Proof. By Corollary 2, ρb...b−2+βδ(fb−2) ≥ min(0.2+3·gainδ(0.2), β
3
δ (0.2)) = β3

δ (0.2) >
0.9037. Therefore, βδ(fb−2)−ρb−3...1 = βδ(fb−2)+ρℓ...b−2−ρ > 0.1037. Thus, by Theo-
rem 3. the footprint of T is at least 0.2·2+ϕ0.2(ρb−3...1, 0, . . . , 0︸ ︷︷ ︸

b−4

) = 0.6+ϕ0.1037(0, . . . 0︸ ︷︷ ︸
b−4

) ≥

0.6 + 2.8 + 0.94 · (b− 8).

Claim 29. Suppose b ≥ 8, fb = 0.2, ρb−1 + ρb−2 ≤ 0.36, and the total weight
ρb−1...1 of black pebbles above level b is at most 0.8. Then the total footprint is at
least ϕfb(ρb−1, . . . , ρ1) > 3.07 + 0.93 · (b− 8).

Proof. We have ϕfb(ρb−1, . . . , ρ1) ≥ ϕfb(ρb−1, ρb−2, ρb−3...1, 0, . . . , 0) ≥ ϕfb(ρb−1, ρb−2,
0.8− ρb−1 − ρb−2, 0, . . . , 0) (by applying Lemma 3 b− 4 times followed by Claim 2)

For ease of notation, fix b = 8 for now. We will provide a lower bound for ϕfb(ρ7, ρ6,
0.8− ρ7 − ρ6, 0, 0, 0, 0), where ρ7 + ρ6 ≤ 0.36. The f1, . . . , f8 values discussed in the rest
of the proof are with respect to this calculation of ϕ.

Since βδ(0.2)− 0.36 ≤ f7 ≤ βδ(0.2), and gain is concave, we have

gainδ(f7) ≥ min(gainδ(βδ(0.2)), gainδ(βδ(0.2)− 0.36))

= gainδ(βδ(0.2)− 0.36) > 0.2389 .

Using Claim 3, f6 = βδ(0.2) + gainδ(f7)− (ρ6 + ρ7), and thus

βδ(0.2) + gainδ(βδ(0.2)− 0.36)− 0.36 < f6 ≤ βδ(f7) ≤ βδ(βδ(0.2)) .

Therefore, 0.3715 < f6 < 0.7766.
Because gain is concave, gainδ(f6) ≥ min(gainδ(0.3715), gainδ(0.7766)) =

gainδ(0.7766) > 0.1271. Thus, using Claim (3), f5 = βδ(0.2) + gainδ(f7) + gainδ(f6)−
0.8 ≥ βδ(0.2) + gainδ(βδ(0.2)− 0.36) + gainδ(0.7766)− 0.8 > 0.0586.

Thus, by Claim 2, f5+f4+3+f2+f1 = ϕf5(0, 0, 0, 0) > ϕ0.0586(0, 0, 0, 0) > 2.37. And
by Lemma 3 and Claim 2, f8 + f7 + f6 = ϕ0.2(f7, f6) ≥ ϕ0.2(f7 + f6, 0) ≥ ϕ0.2(0.36, 0) >
0.7, giving us a total of 2.37 + 0.7 = 3.07.

If b > 8, we simply replace ϕ0.0586(0, 0, 0, 0) with ϕ0.0586(0, . . . 0︸ ︷︷ ︸
b−4

) > 2.37 + 0.93 · (b−

8).

Claim 30. Suppose b ≥ 8, fb = 0.2, ρb−1 ≤ 0.1525, ρb−1 + ρb−2 ≤ 0.73, and the total
weight ρb−1...1 of black pebbles above level b is at most 0.8. Then the total footprint is at
least ϕfb(ρb−1, . . . , ρ1) > 3.17 + 0.94 · (b− 8).
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Proof. We have ϕfb(ρb−1, . . . , ρ1) ≥ ϕfb(ρb−1, ρb−2, ρb−3...1, 0, . . . , 0) ≥ ϕfb(ρb−1, ρb−2,
0.8− ρb−1 − ρb−2, 0, . . . , 0) (by Applying Lemma 3 b− 4 times followed by Claim 2).

For now, for ease of notation, we will fix b = 8 and provide a lower bound for
ϕfb(ρ7, ρ6, 0.8 − ρ7 − ρ6, 0, 0, 0, 0), where ρ7 ≤ 0.1525 and ρ7 + ρ6 ≤ 0.73. The f1 . . . f8
values discussed in the rest of the proof are with respect to this calculation of ϕ.

Since βδ(0.2) − 0.1525 ≤ f7 ≤ βδ(0.2), we have 0.34 < f7 < 0.4926. Since gainδ is
decreasing above βδ(0.2)− 0.1525 > αg, we have

gainδ(f7) ≥ gainδ(βδ(0.2)) > 0.2839 .

Using Claim 3, f6 = βδ(0.2) + gainδ(f7)− (ρ6 + ρ7), and thus

βδ(0.2) + gainδ(βδ(0.2))− 0.73 < f6 ≤ βδ(f7) ≤ βδ(βδ(0.2)) .

Therefore, 0.0465 < f6 < 0.7766.
Because gainδ is concave, gainδ(fb−2) ≥ min(gainδ(0.0465), gainδ(0.7766)) =

gainδ(0.0465) > 0.1016. Thus, using Claim 3, f5 = βδ(0.2)+gainδ(f7)+gainδ(f6)−0.8 ≥
βδ(0.2) + gainδ(βδ(0.2)) + gainδ(0.0464)− 0.8 > 0.0782.

Thus, by Claim 2, f5 + f4 + 3 + f2 + f1 = ϕf5(0, 0, 0, 0) > ϕ0.0782(0, 0, 0, 0) > 2.59.
In addition, f8 + f7 + f6 > 0.2 + 0.3399 + 0.0464 > 0.58, for a total of at least 3.17.

If b > 8, we simply replace ϕ0.0782(0, 0, 0, 0) with ϕ0.0782(0, . . . 0︸ ︷︷ ︸
b−4

) > 2.59 + 0.94 · (b−

8).

C.3 Putting the Proof of Theorem 5 Together

We now prove Step 3.5 described in Section 3.2, which suffices for proving Theorem 5.

Lemma 5. There is a fertile level b ≥ ℓ − 7 with the following property. Let T be an
unpebbled subset of this level with weight at least 0.2. The total footprint of T is at least
2.24 + 0.93 · (ℓ− 11).

Proof. Let m1 be the lowest fertile level. We know m1 ≥ ℓ − 7, because there are at
most 7 infertile levels by Corollary 3.

If m1 = ℓ− 7, then there are at least 7 infertile levels below m1, and thus the weight
of black pebbles above m1 is at most 0.07 by Corollary 3, and thus we can set b = m1

and apply Claim 25 to bound the total footprint.
If m1 = ℓ− 6, then there are at least 6 infertile levels below m1, and thus the weight

of black pebbles above m1 is at most 0.1813 by Corollary 3, and thus we can set b = m1

and apply Claim 26 to bound the total footprint.
If m1 = ℓ− 5 or m1 = ℓ− 4, then there are at least 4 infertile levels below m1, and

thus the weight of black pebbles above m1 is at most 0.4039 by Corollary 3, and thus
we can set b = m1 and apply Claim 27 to bound the total footprint.

If m1 ≥ ℓ − 3, the proof gets harder, because now the adversary may have enough
pebbles above m1 to stop the growth of T on m1 completely (since βδ(απ) ≈ 0.4925,
pebble weight 0.4925 right above m1 suffices, and Corollary 3 cannot rule it out). We
will have to proceed by cases: in some cases, there won’t be enough pebbles immediately
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above m1, and T will grow, and in other cases, there will be many pebbles immediately
above m1, but then second or third lowest fertile level will grow, because there won’t be
enough pebbles to stop the growth above those levels.

If m1 ≥ ℓ − 3 and there are exactly 7 infertile levels (there cannot be more by
Corollary 3), then for each i < ℓ− 3, each ρi ≤ 0.2107 < gπ by Claim 22, and thus, by
simple induction, m1 can never be extinguished, so we can apply Claim 28 to bound the
total footprint.

If m1 ≥ ℓ − 3 and there are 6 or fewer infertile levels, let m2 be the second lowest
fertile level. Note that m2 ≥ ℓ− 7 because there are at most 6 infertile levels.

• If m2 = ℓ − 7. We will do a proof by cases, depending on how concentrated the
pebbles are above m1. If no level i such that m2 < i < m1 has ρi > gπ > 0.2925,
set b = m1. By simple induction, m1 is viable for at least 3 levels, so we can apply
Claim 28 to bound the total footprint. Else, we know that the weight of black
pebbles above level m2 is at most 0.0607 by Claim 24 (where b in Claim 24 is set
to m2 + 1 = ℓ − 6; note that there are six levels below ℓ − 6 and all but m1 are
infertile). So we set b = m2 and can apply Claim 25 to bound the total footprint.

• If m2 = ℓ − 6, then there are at least 5 infertile levels below m2, and thus the
weight of black pebbles above m2 is at most 0.2926 by Corollary 3, and thus we
can set b = m2 and apply Claim 26 to bound the total footprint.

• If m2 = ℓ−5, then there are at least 4 fertile levels below m2, and thus the weight
of black pebbles above m2 is at most 0.4039 by Corollary 3, and thus we can set
b = m2 and apply Claim 27 to bound the total footprint.

• If m2 ≥ ℓ− 4, we again have the problem that the adversary has enough pebbles
to stop the growth of T from m2. We consider two cases, with two subcases each.

– m1 ≥ m2 + 2. We will show that either m1 or m2 will grow, since there is
not enough pebble weight to stop the growth of both. The cases will focus
on how much pebble weight there is between m1 and m2. Specifically, if
ρm2...m1

≥ 0.36, set b = m2. We know the weight of black pebbles above m2

is at most ρ− ρm2...m1
≤ 0.44, and since m2 > ℓ− 5, we can apply Claim 27

to bound the total footprint. And if ρm2...m1
< 0.36, then in particular

ρm1−2...m1−1 < 0.36, so we set b = m1 and apply Claim 29 to bound the total
footprint.

– m1 = m2 + 1. Since we have two fertile levels in a row, m1 has a chance
to grow for at least one level. Specifically, we know ρm2

≤ 0.1525 because
ρm2

= β(m1) −m2 ≤ αmax
δ − π < 0.1525 (since β(m1) < αmax

δ by Claim 4).
This growth can still be stopped, but it will require a lot of pebbles in the
level above m2. Specifically, if ρm2+ρm2−1 ≤ 0.73, then set b = m1 and apply
Claim 30 to bound the total footprint. Else, there are at most five infertile
levels by Claim 23, because αm2−1 ≤ 1−ρm2−1−δ ≤ 1−(0.73−0.1525)−δ =
0.3847. Thus, there is a fertile levelm3 such that ℓ−7 ≤ m3 ≤ m2−1, and the
weight of black pebbles above m3 is less than 0.8−ρm2−1+ρm2

< 0.8−0.73 =
0.07. Set b = m3. Claim 25 applies to bound the total footprint.
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This concludes the proof of Lemma 5.

C.4 On Optimality of the Result

Suppose the adversary places its black pebbles as follows: ρℓ = 0.0623, ρℓ−1 = · · · =
ρℓ−6 = 0.1114, ρℓ−7 = 0, ρℓ−8 = 0.0693, and ρℓ−9...1 = 0. Then the bottom seven levels
are infertile; the remaining ones are fertile. If we set b = ℓ − 7, we get fℓ−7 = 0.2,
fℓ−8 ≈ 0.42, fℓ−9 ≈ 0.73, and fℓ−10 ≈ 0.89, for a total of about 2.24 when ℓ = 11.
Setting b = 3, 2, or 1 gives smaller results. If we have more levels, fℓ−11 ≈ 0.94 and
fi ≈ 0.95 for i < ℓ− 11.

Thus, arguments that are based on the same framework of simply counting sizes
(i.e., looking at vertical expansion and subtracting pebbles) for this construction are
unlikey to overcome the 2.24+0.95 · (ℓ−11) bound, which essentially matches the result
of Theorem 5. That doesn’t mean the result can’t be improved—perhaps other proof
frameworks than the one in Section 3 are possible. In particular, it may be possible
to reason about single-node expansion, or to measure footprint growth via horizontal
edges, or take into account pebble positions, or use ancestor robustness of different size
sets.
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