
Modular Sumcheck Proofs with Applications to Machine
Learning and Image Processing

David Balbás

IMDEA Software Institute &

Universidad Politécnica de Madrid

Madrid, Spain

Dario Fiore

IMDEA Software Institute

Madrid, Spain

Maria Isabel González Vasco

Universidad Carlos III de Madrid

Madrid, Spain

Damien Robissout

IMDEA Software Institute

Madrid, Spain

Claudio Soriente

NEC Laboratories Europe

Madrid, Spain

ABSTRACT
Cryptographic proof systems provide integrity, fairness, and

privacy in applications that outsource data processing tasks.

However, general-purpose proof systems do not scale well to large

inputs. At the same time, ad-hoc solutions for concrete

applications—e.g., machine learning or image processing—are

more efficient but lack modularity, hence they are hard to extend

or to compose with other tools of a data-processing pipeline.

In this paper, we combine the performance of tailored solutions

with the versatility of general-purpose proof systems. We do so

by introducing a modular framework for verifiable computation of

sequential operations. The main tool of our framework is a new

information-theoretic primitive called Verifiable Evaluation Scheme

on Fingerprinted Data (VE) that captures the properties of diverse

sumcheck-based interactive proofs, including the well-established

GKR protocol. Thus, we show how to compose VEs for specific

functions to obtain verifiability of a data-processing pipeline.

We propose a novel VE for convolution operations that can

handle multiple input-output channels and batching, and we use it

in our framework to build proofs for (convolutional) neural

networks and image processing. We realize a prototype

implementation of our proof systems, and show that we achieve

up to 5× faster proving time and 10× shorter proofs compared to

the state-of-the-art, in addition to asymptotic improvements.

KEYWORDS
Proof Systems, Verifiable Computation, Zero-Knowledge Proofs,

Machine Learning, Convolutional Neural Networks, Image

Processing.

1 INTRODUCTION
Cryptographic proof systems can be used in distributed

data-processing applications to provide both security and privacy

guarantees. This is especially relevant when clients outsource the

data processing task to a potentially untrusted server that (i) has

enough resources to carry out the computation and optionally (ii)

This is the full version of a paper that appears in the proceedings of the 2023 ACM

SIGSAC Conference on Computer and Communications Security (CCS ’23), https:

//doi.org/10.1145/3576915.3623160.

This work is licensed under a Creative Commons

“Attribution 4.0 International” licence.

.

may hold additional data that is required to complete the task but

that cannot be shared with clients.

As an example, consider the scenario where a bank owns a

machine learning model 𝐹 that decides credit worthiness

𝑌 = 𝐹 (𝑋,𝑊), given some customer data 𝑋 and model parameters

𝑊 . A proof system for this scenario should provide publicly
verifiable (hence auditable) proofs with strong guarantees for:

• Integrity: the prediction is indeed generated by the model,

given solely the data provided by the customer and the

model parameters. Integrity also guarantees that no bias or

unauthorized data—such as gender or race—were used in the

computation. This is relevant as the bank (or similar

stakeholders) must abide to legal directives that forbid

discrimination when providing goods or services [13, 14].

• Fairness: if the model is certified by a third-party auditor,

customer may obtain guarantees of fair treatment, i.e., the

decision process has been the same across all customers. We

note that Supreme Audit Institutions have recently defined

best-practices to audit ML models and certified ML may be

soon available in real-world applications [17, 38].

• Privacy: if the model parameters𝑊 are proprietary, the bank

may publish a (certified) commitment to𝑊 while proving that

𝑌 = 𝐹 (𝑋,𝑊) in zero knowledge [21]; this allows the customer

to verify that computation was carried out correctly, while𝑊

is kept private and nothing is leaked other than what can be

inferred by the prediction itself.

Despite the rapid progress in the last decade, general-purpose

cryptographic proof systems do not scale well to large inputs. The

main bottleneck appears at the prover side, both on running time

and memory usage. Among the many families of cryptographic

proof systems in the literature, sumcheck-based proof systems

[4, 22, 35, 43, 44] achieve the best prover performance (linear on

the circuit size). Nevertheless, modeling computation as a circuit

introduces high overheads that make even these systems

impractical when executed on computations that process large

amounts of data.

Dedicated proof systems trade-off generality for performance. In

particular, they avoid the general circuit encodings of their general-

purpose counterparts, and achieve better performance, albeit for

restricted classes of functions. For example, previous work has

shown how to exploit the sequentiality and low multiplicative

depth of some classes of functions to achieve low overhead both

for provers and verifiers. For example, vCNN [28] and zkCNN

1

https://doi.org/10.1145/3576915.3623160
https://doi.org/10.1145/3576915.3623160
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

D. Balbás, D. Fiore, M. González Vasco, D. Robissout, C. Soriente

[29] enable verifiable ML applications by exploiting the sequential

composition of ML functions where data is processed one layer

(i.e, function) at a time and the output of the current layer is fed as

input to the next one. The same principle is used by PhotoProof [32]

and ZK-IMG [26] that exploit the sequential composition of image

processing tasks and provide proof systems tailored to verifiable

image processing. Dedicated protocols as described above, however,

come at the price of poor composability and leave little room for

modification and improvement.

1.1 Contributions
In this work, we aim at solutions combining the best of both

worlds: the efficiency of dedicated protocols and the versatility of

general-purpose schemes. With this goal in mind, we introduce a

new framework for the modular design of sumcheck-based proof

systems, and we use it to develop new efficient protocols for

verifiable machine learning and image processing. More

specifically, our contributions are the following:

A modular framework for sumcheck-based proofs. We

develop our framework by identifying and abstracting away the

key properties of a variety of proof systems based on the sumcheck

protocol, including the well-established GKR protocol [20]. Briefly

speaking, these protocols proceed in a layer-by-layer fashion so

that at each layer the prover starts by making a “promise” about

the output, and later the verifier ends with a “promise” about the

input. Their security guarantee is that if the input’s “promise” is

correct then the initial output’s “promise” must be correct too.

We define our framework abstracting these protocols as follows:

• We introduce the notions of fingerprinting scheme and

verifiable evaluation scheme on fingerprinted data (VE).

Fingerprinting schemes characterize the aforementioned

notion of “promise” and are essentially a mechanism that

allows prover and verifier to succinctly represent vectors of

inputs/outputs. VEs are interactive protocols in which the

verifier works by only knowing fingerprints of inputs and

outputs (and thus can run sublinear in the input/output size).

• We show a generic composition theorem: given two VEs for

functions 𝑓1 and 𝑓2 and compatible fingerprints, one can

build a VE for their (partial or total) composition

𝑓 (𝑥,𝑦) = 𝑓2 (𝑓1 (𝑥), 𝑦).
• We show that a VE can be lifted to become an interactive proof

if the verifier computes the fingerprints of the inputs and

outputs of the computation (but not of intermediate steps). We

also show that a VE can be compiled into a succinct argument
by using commit-and-prove arguments for the evaluation of

fingerprints (instantiatable with polynomial commitments

[27]).

• We instantiate our fingerprints as evaluations of multilinear

polynomials, and then we show how to capture a large class of

existing protocols—such as the multilinear sumcheck protocol

of [43], GKR, and the efficient matrix multiplication from

[37]—under our framework.

By combining these results, we obtain a way to easily design

sumcheck-based proof systems in a modular way. Following the

principle of modularity, one needs only to focus on designing VE

schemes for specific functionalities, a task that likely results in

more lightweight solutions (as we confirm below). In particular, we

may take advantage of many years of great research in the field, as

our modular design allows us to nicely integrate previous tools and

gadgets. Furthermore, the practicality of modular VEs is not only

evident at design time, but also at implementation time, since the

code can be designed in blocks, in a "Lego" manner.

Applications to verifiable machine learning and image
processing.We apply our approach to construct efficient proofs

of computation for (convolutional) neural networks and image

processing. Both processes have a layered structure that is

amenable to our modular framework. Therefore, we build a VE

protocol for the full computation by composing several “gadgets”

VEs for each layer (including existing and new VEs that we

develop – see below), and then we use a multilinear polynomial

commitment to compile it into an argument of knowledge.

Following the modularity principle, then we focus on designing

efficient VEs for the main subroutines needed by these

applications.

In this application context, our main contribution is a new VE

scheme for convolution operations which is amenable to multiple

input-output channels and also to prediction batching.

Convolution is a challenging operation in proof systems, as it is

represented by arithmetic circuits with complex wiring (and up to

O
(
𝑛3

)
size for convolutions over a 𝑛 × 𝑛 matrix) which is

expensive for general purpose solutions. The most efficient

dedicated protocol in the literature appears in zkCNN [29], which

proposes a fast proving technique for Fast Fourier Transform

(FFT), achieving asymptotically optimal O
(
𝑛2

)
proving time.

Nevertheless, their approach requires proving an FFT, a Hadamard

product and an inverse FFT, which increase concrete proof size and

prover time. Moreover, in their case the convolution kernel, which

is often small in applications, needs to be padded to the input size.

We overcome these limitations by designing a compact matrix

encoding of the convolution operation to which we apply the

efficient matrix multiplication prover in [37]. Crucially, we

optimize our technique to efficiently support multiple channels

(both input and output), which is when our solutions improve even

more over the zkCNN’s approach. Notably, our convolution VE

achieves proof size and verifier time that are independent from the

input size and the number of output channels.

We obtain further improvements by designing VE gadgets that

extend techniques originally proposed in the context of the GKR

protocol for arithmetic circuits. Notably, we propose a VE for “many-

to-one reductions” for input fingerprints that extends the GKR-

specific technique of [49], and we generalize the blueprint from

Hyrax [42] in order to efficiently batch the executions of the same

VE on different inputs, e.g., 𝑌𝑖 = 𝐹 (𝑋𝑖) for 𝑖 = 1 to 𝑁 .

Finally, we leverage our framework to construct the first

dedicated proof system for recurrent neural networks.

Implementation and evaluation.We implement and benchmark

our efficient convolution prover in Rust and confirm the concrete

improvements (in overall efficiency and proof size) over the state-

of-the-art [29] for common sets of parameters. Even for a single-

channel convolution, our VE improves over previous solutions by a

factor of 5-10× in proof size, and by a similar factor in prover time

2

Modular Sumcheck Proofs with Applications to Machine Learning and Image Processing

for small kernel sizes. We additionally benchmark the prover time

for the convolutional layers of the VGG11 model.

1.2 Additional Related Work
Sumcheck-based proofs. The seminal paper of Goldwasser, Kalai

and Rothblum [20] showed how to use the sumcheck protocol [31]

to construct a doubly-efficient interactive proof (known as GKR in

the literature) for layered arithmetic circuits. Several papers

improved the proving time of GKR either in general [10], for

circuits with specific structure [37, 41, 52] or through variants of

the original protocol [43, 49]. Thaler was the first to show

sumcheck-based protocols for specialized computations, such as

matrix multiplications, with optimal prover time [37]. Another line

of works, started by Zhang et al. [51], showed how to use GKR in

combination with polynomial commitments to build

(zero-knowledge) argument systems [35, 42, 43, 50]. Arguments

based on this approach are among the most efficient ones for

proving time, as most of their computational efford relates to an

information-theoretic-secure protocol involving only finite field

operations. Recent works show how to combine the sumcheck

protocol with multilinear polynomial commitments to build

succinct non-interactive arguments [4, 22, 44].

Our modular framework is close in the spirit to that of

Campanelli, Fiore and Querol [3] who build zk-SNARKs modularly

via the efficient composition of specialized commit-and-prove

SNARKs. Our techniques work at the information-theoretic level

and are based on fingerprints and VE schemes, as opposed to

commitments and SNARKs, allowing for a less demanding security

notion than computational binding.

Verifiable machine learning. The closest work to this

contribution is zkCNN [29] which shows how to exploit the

sequential nature of neural networks to build an argument system

for their verifiability. Compared to zkCNN, our work improves

prover time by showing a faster protocol for convolutions and

proposes a general framework that makes it easier to reuse,

implement, and improve the components of these protocols. vCNN

[28] and ZEN [18] also tackle the problem of zero-knowledge

neural network predictions. vCNN combines different

commit-and-prove SNARKs to efficiently prove the CNN layers,

notably they use quadratic polynomial programs for convolution

layers and quadratic arithmetic programs for ReLU and Pooling

layers. ZEN presents a quantisation mechanism (based on [25]) for

R1CS-based proof systems that achieves significantly less

constraints and hence a faster proving time and smaller public

parameters. Although we do not directly compare to vCNN and

ZEN, we observe that [29] shows that zkCNN is orders of

magnitude faster than vCNN and ZEN, and thus we achieve the

same improvements. Another related work about zero-knowledge

proofs for ML-based predictions is that of Zhang et al. [48], whose

techniques are however specialized to decision trees.

Verifiable Image Processing. Besides solutions based on

general-purpose zkSNARKs, there are a few works that build

specialized proof systems for image processing transformations,

notably PhotoProof [32], ZK-IMG [26], and VILS [5].

PhotoProof [32] presents an image authentication framework

where images are output by “secure” cameras (i.e., cameras capable

of signing images) and Proof-Carrying Data [9] is used to define

a set of admissible transformations. The PhotoProof prototype is

based on libsnark [34] and experiments show that proving one

transformation of a 128×128 image takesmore than 300 seconds and

a public key of a few GBs. ZK-IMG [26] improves over PhotoProof

by using halo2 [47] as the underlying ZK-SNARK system and

by showing how to chain proofs of sequential transformations

without revealing the intermediate outputs—a feature that may be

desirable in scenarios where the input image is private. Performance

reported in [26] show that convolution operations can take more

than 80 seconds to generate a proof for images of 1280 × 720 pixels.

Finally, VILS [5] takes an alternative approach to authenticated

image editing by computing all possible image transformation at

the source (i.e., by the secure camera) and accumulating them in a

cryptographic accumulator.

Our techniques allow us to obtain a 20× smaller proof size than

[26] (albeit not taking into account the opening size of a polynomial

commitment, since these are scheme-dependent) and faster prover

and verifier times even while running on less powerful hardware.

2 PRELIMINARIES
2.1 Notation
The definitions, games, and constructions that we introduce in our

work use standard notation. Algorithms, oracle names, and

cryptographic parameters are denoted in sans-serif font. To assign

the output of an algorithm Alg on input 𝑥 to a variable 𝑎, we write

𝑎 ← Alg(𝑥). To remark that an algorithm is randomized, we write

𝑎←$Alg(𝑥). An algorithm can input or return blank values,

represented by ⊥. The security parameter is denoted by 𝜆, and its

unary representation as 1
𝜆
. In interactive algorithms, we underline

steps that involve interaction, such as Send or Get.

2.2 Cryptographic Primitives
We define informally the main cryptographic primitives used in our

constructions – commitments and (commit-and-prove) arguments

of knowledge – and refer to appendix A for more formal definitions.

Commitment schemes allow one to commit to a value (e.g., a

scalar, a vector, a polynomial) in a way that is binding and hiding.

Binding informally means that a commitment cannot be opened to

two distinct values, while hiding guarantees that the commitment

reveals no information about the underlying value. In our work,

we denote a commitment scheme Com with a tuple of algorithms

(Setup,Com,Vf) such that: Setup(1𝜆) generates the commitment

key ck; Com(ck, 𝑥) outputs a commitment com and an opening 𝑜

for input value 𝑥 ; Vf (ck, com, 𝑥, 𝑜) returns a bit 𝑏 to indicate if 𝑜 is

a valid opening of commitment com to 𝑥 .

An argument of knowledge AoK for an NP relation R is a tuple

of algorithms (Setup, Prove,Vf) such that: Setup(1𝜆,R) outputs a
common reference string crs; Prove(crs, 𝑥,𝑤) → 𝜋 returns a proof

𝜋 for (𝑥,𝑤) ∈ R; Vf (crs, 𝑥, 𝜋) accepts or rejects 𝜋 . An AoK should

be complete and knowledge-sound. The former informallymeans that

honestly generated proofs are accepted by Vf. The latter informally

guarantees that any prover producing a valid proof for a statement

𝑥 must know a valid witness𝑤 for it. An AoK is said succinct if the
3

D. Balbás, D. Fiore, M. González Vasco, D. Robissout, C. Soriente

total communication between prover and verifier is polylogarithmic

in the witness size. AoK satisfies zero-knowledge if proofs leak no

information about the witness beyond the truth of the statement

(this is modeled through a simulator that can generate valid proofs

for a valid statements without knowing the witness).

In our work we use the notion of commit-and-prove AoKs for
relation R and commitment scheme Com, which is an AoK for

the NP relation RCom such that ((𝑥, com); (𝑢, 𝑜,𝑤)) ∈ RCom iff

(𝑥, (𝑢,𝑤)) ∈ R and Com.Vf (ck, com, 𝑢, 𝑜) = 1.

2.3 Proof Systems
We include standard background and definitions on proof systems.

In the sequel, let F be a finite field and ℓ a natural number.

Definition 2.1 (Multilinear extension). Let 𝑓 : {0, 1}ℓ → F be

a function. The multilinear extension (MLE)
˜𝑓 of 𝑓 is the unique

multilinear polynomial
˜𝑓 : Fℓ → F such that 𝑓 (𝒙) = ˜𝑓 (𝒙) for all

𝑥 ∈ {0, 1}ℓ . It has the following closed form:

˜𝑓 (𝒙) =
∑︁

𝒃∈{0,1}ℓ
𝐼 (𝒙, 𝒃) · 𝑓 (𝒃)

Where 𝐼 (𝒙, 𝒃) = ∏ℓ
𝑖=1
((1 − 𝑥𝑖) (1 − 𝑏𝑖) + 𝑥𝑖𝑏𝑖) is the MLE of the

indicator function 𝐼 : {0, 1}ℓ × {0, 1}ℓ → {0, 1} such that 𝐼 (𝒙, 𝒃) = 1

if 𝒙 = 𝒃 and 𝐼 (𝒙, 𝒃) = 0 elsewhere.

Lemma 2.2 ([40]). Given 𝑓 (𝒙) for all 𝒙 ∈ {0, 1}ℓ and a vector
𝒓 ∈ Fℓ , the value ˜𝑓 (𝒓) can be computed in O

(
2
ℓ
)
time and O(ℓ)

space.

For 𝑛 ∈ N and a vector 𝒙 ∈ F𝑛 and ℓ = ⌈log𝑛⌉, there exists a
(unique) indexing function 𝑓𝒙 : {0, 1}ℓ → F given by 𝑓𝒙 (𝒃) = 𝑥𝑖
where 𝒃 = (𝑏1, . . . , 𝑏ℓ) is the binary representation of 𝑖 . Then, we

define the MLE of 𝒙 , that we denote by 𝒙̃ : Fℓ → F, as the MLE of

the indexing function 𝑓𝒙 .

Definition 2.3 (Interactive Proof). Let F be a family of functions,

and let LF = {(𝑓 , 𝑥,𝑦) : 𝑓 ∈ F ∧ 𝑓 (𝑥) = 𝑦} the corresponding
language. An interactive proof is a pair of algorithms

𝑏 ← ⟨P,V⟩ (𝑓 , 𝑥,𝑦) such that the following properties hold:

Completeness: For any (𝑓 , 𝑥,𝑦) ∈ LF ,
Pr[⟨P,V⟩ (𝑓 , 𝑥,𝑦) → 1] = 1.

𝝐-Soundness: For any algorithm P∗ and (𝑓 , 𝑥,𝑦) ∉ LF ,
Pr[⟨P∗,V⟩ (𝑓 , 𝑥,𝑦) → 1] ≤ 𝜖.

The probabilities are over the random coins of the verifier.

3 COMPOSITION FRAMEWORK FOR
INTERACTIVE PROOFS

Our goal in this section is to introduce a framework for building

interactive proofs from the composition of function-specific

protocols. Our framework consists of three main components: (1)

fingerprinting schemes, that are a mechanism with which prover

and verifier can succinctly represent inputs and outputs of the

computation; (2) verifiable evaluation schemes on fingerprinted

data (VE), that are the function-specific protocols in which the

verifier works by only knowing fingerprints of inputs and outputs;

(3) a composition theorem which shows how to compose VEs, in

such a way that the verifier only needs to compute fingerprints for

the main input and output of the computation, but not for the

intermediate inputs of the sequential steps.

In this section, we define the syntax and the security property

of these objects, state and prove the composition and finally also

show how to compile a VE scheme into succinct arguments.

Definition 3.1 (Fingerprint). Let X be a data space, DX a

distribution over a randomness space RX , and C a finite set. A

randomized fingerprint (with fingerprint space C) is a function

H : X × RX → C. Given 𝑥 ∈ X, 𝑟 ∈ RX, we call 𝑐𝑥 ← H(𝑥, 𝑟) the
fingerprint of 𝑥 on 𝑟 . Furthermore, we say that a fingerprint H is

(statistically) sound for DX if for any pair 𝑥, 𝑥∗ ∈ X such that

𝑥 ≠ 𝑥∗, we have

Pr

𝑟 ←$ RX
[H(𝑥, 𝑟) = H(𝑥∗, 𝑟)] = negl(𝜆) .

For vectors of inputs 𝒙 ∈ ∏𝑀
𝑖=1
X𝑖 and randomness

𝒓 ∈ ∏𝑀
𝑖=1
RX𝑖 , we use the compact notation H(𝒙, 𝒓) B

(H(𝑥1, 𝑟1), . . . ,H(𝑥𝑀 , 𝑟𝑀)).

The distribution DX is an abstraction that allows us to capture

sampling (e.g. via a uniform distribution) from a space which is

yet undefined. The randomness space RX may depend on the data

space X and on the security parameter 𝜆 of the scheme, that will

generally be implicit. For instance, large domains may require large

randomness spaces
1
.

Fingerprints and CRHFs. Even though their syntax presents

similarities, fingerprints are strictly weaker objects than

collision-resistant hash functions (CRHFs). Fingerprints are only

guaranteed to be sound if the randomness 𝑟 is randomly sampled,

as opposed to controlled by the adversary. Also, the input 𝑥 has to

be chosen by the adversary before seeing 𝑟 . The closest notion to

our fingerprints are universal hash functions (when instantiated

over an exponentially large output space).

3.1 Verifiable Evaluation Schemes on
Fingerprinted Data

For our framework we consider a class of interactive proofs for the

language LF = {(𝑓 , 𝑥,𝑦) : 𝑓 ∈ F ∧ 𝑓 (𝑥) = 𝑦}, which have the

following structure (cf. Figure 1):

(1) Prover and verifier agree on a common fingerprint

𝑐𝑦 = H(𝑦, 𝑟𝑦). As an example, the verifier samples and

sends randomness 𝑟𝑦 ←$DY to the prover, and both

parties compute 𝑐𝑦 independently.

(2) Prover and verifier interact on common input (𝑓 , 𝑐𝑦, 𝑟𝑦)
through subroutines VE .P(𝑥) and VE .V(𝑟𝑥) respectively.
Notably, neither 𝑥 nor 𝑦 are used by the verifier in this

part of the interaction. At the end of a successful

interaction, both parties agree on a common fingerprint 𝑐𝑥
and randomness 𝑟𝑥 .

(3) The verifier checks that 𝑐𝑥 = H(𝑥, 𝑟𝑥) and rejects otherwise.
In otherwords, these are interactive proofs thatmanage to reduce

the check 𝑓 (𝑥) = 𝑦 into a simpler verification that only involves the

fingerprints of the output (computed in step (1)) and of the input

(computed in step (3)). In this work, we formalize the primitive that

1
We write DF to refer to DX when the domain X is defined by a family of functions

F.
4

Modular Sumcheck Proofs with Applications to Machine Learning and Image Processing

⟨P,V⟩(𝑓 , 𝑥,𝑦)
Prover Verifier

𝑟𝑦 ←$DY

c𝑦 ← H(𝑦, 𝑟𝑦) c𝑦 ← H(𝑦, 𝑟𝑦)
𝑟𝑥 ←$DX

c𝑥 , 𝑟𝑥 ⟨VE .P(𝑥),VE .V(𝑟𝑥) ⟩ (𝑓 , c𝑦, 𝑟𝑦) 𝑐𝑥 , 𝑏

𝑏′ ← [c𝑥 = H(𝑥, 𝑟𝑥)]
return 𝑏 ∧ 𝑏′

Figure 1: Interactive proof constructed from a verifiable
evaluation scheme on fingerprinted data VE and a
fingerprinting scheme H.

takes place in step (2), that we call (interactive) verifiable evaluation
scheme on fingerprinted data (VE). The goal of a VE scheme is to

prove that, given an admissible function 𝑓 and fingerprints c𝑥 ,
c𝑦 , then c𝑥 is a valid fingerprint to the input 𝑥 and c𝑦 is a valid

fingerprint to 𝑓 (𝑥). Contrary to the intuitive setting where the

interaction starts with both parties having a common input 𝑥 (or

fingerprint c𝑥) and finishes on 𝑓 (𝑥) (or c𝑦), VE interactions start

at a common output fingerprint c𝑦 and finish with both parties

agreeing on an input fingerprint c𝑥 .

Definition 3.2. A verifiable evaluation scheme on fingerprinted
data VE for a family of functions F is a pair of interactive

algorithms (VE .P, VE .V) that, given as prover input 𝒙; as verifier
input randomness r𝒙 ; and as common input fingerprints c𝒚 ,
randomness r𝒚 , and a function 𝑓 ∈ F , the interaction outputs

(c𝒙 ; r𝒙 ;𝑏) ←$ ⟨VE .P(𝒙),VE .V(r𝒙)⟩ (c𝒚 , r𝒚 , 𝑓)
Where c𝒙 is a common output, r𝒙 a prover output, and 𝑏 a verifier

output. Furthermore, the verifier VE .V is public-coin.

The scheme VE is correct if for any valid pair (𝑓 , 𝒙) and
randomness r𝒙 , r𝒚 , we have that

Pr

 c𝒙 = H(𝒙, r𝒙)
∧ 𝑏

������ c𝒚 ← H(𝑓 (𝒙), r𝒚)
(c𝒙 ; r𝒙 ;𝑏) ←$ ⟨VE .P(𝒙),VE .V(r𝒙)⟩

(c𝒚 , r𝒚 , 𝑓)

 = 1

Our definition considers families of functions with multiple

inputs and outputs, and also with multiple input-output

fingerprints. Inputs and outputs may correspond one-to-one with

fingerprints, but it is also possible that several fingerprints

(computed on different randomness) correspond to a single input

or output. For compactness, we write vectors c𝒙 , r𝒙 (respectively

c𝒚 , r𝒚) where c𝑥 ,𝑖 ∈ C corresponds to r𝑥 ,𝑖 ∈ RX .
The security that is required for VEs is that, if c𝒙 are valid

fingerprints of 𝒙 and the verifier accepts, then c𝒚 are guaranteed

to be valid fingerprints of 𝑓 (𝒙) (except with negligible probability).

As we will show later, this property is very useful for composing

VEs. We remark that security only holds when the fingerprints of

the inputs c𝒙 are honest.

Definition 3.3 (VE Soundness). A VE scheme VE is statistically

(resp. computationally) sound if for any stateful unbounded (resp.

PPT) adversary A, the following probability is negl(𝜆):

Pr


c∗𝒚 ≠ H(𝑓 (𝒙), r𝒚)
∧ 𝑏

����������
r𝒙 , r𝒚 ←$DF
(c∗𝒚 , 𝒙, 𝑓) ← A(r𝒚)
(c∗𝒙 ; r𝒙 ;𝑏) ←$ ⟨A(𝒙),VE .V(r𝒙)⟩

(c∗𝒚 , r𝒚 , 𝑓)
c∗𝒙 = H(𝒙, r𝒙)


where the probability is taken over the choices of r𝒙 , r𝒚 , the
randomness of A and any additional randomness used by VE .V.

Next, we show that VE security is indeed sufficient for building

a sound interactive proof as described in Figure 1. The proof can

be found in Appendix C.

Proposition 3.4. The protocol in Figure 1 is an interactive proof.

3.2 Composition of VEs
Next, we show that the composition of VEs that use the same

fingerprint scheme is also a VE. This allows for constructions of

modular interactive protocols for sequential functions.

Let 𝑓 be composed of several sub-functions 𝑓1, . . . , 𝑓𝑛 , that can

place left-to-right in a pipeline fashion (see Figure 2). The high-

level approach of this procedure is the following: 1) start on a

fingerprint of the output of 𝑓 (i.e., on the right) that both prover

and verifier trust; 2) run the VE schemes for the 𝑓𝑖 in a right-to-left

order (starting with 𝑓𝑛); while 3) collecting fingerprints to inputs

of the 𝑓𝑖 obtained throughout the interaction and using them as

output fingerprints for sub-functions on the left. At the end of

the interaction, the verifier needs to check one or multiple input

fingerprints. In Figure 2, we show this procedure in a block diagram.

𝑥1, . . . , 𝑥𝑀 𝑓1 𝑓2
𝑧1, . . . , 𝑧𝐿

𝑥1, . . . , 𝑥𝐿′

𝑦1, . . . , 𝑦𝑁

𝒄𝑦

𝒓𝑦
VE2

𝒄𝒛

𝒓𝑧

𝒄𝑥

𝒓𝑥

VE1

𝒄𝑥

𝒓𝑥

H H

Computation

Verification

Figure 2: Composition of VEs for functions 𝑓1, 𝑓2 following
Proposition 3.5. Top half: computation of 𝑓2 (𝑓1 (𝒙), 𝒙),
operations are left-to-right. Bottom half: composition of VE

2

and VE
1
, interaction is right-to-left.

Proposition 3.5 (Composition of VEs). Let X =
∏𝑀

𝑖=1
X𝑖 ,Z =∏𝐿

𝑖=1
Z𝑖 , ¯X =

∏𝐿′
𝑖=1

¯X𝑖 and Y =
∏𝑁

𝑖=1
Y𝑖 be domains. Let also

𝑓1 : X → Z and 𝑓2 : Z× ¯X → Y. Finally, let 𝑓 : X× ¯X → Y be the
function given by the (partial) composition 𝑓 (𝒙, 𝒙) B 𝑓2 (𝑓1 (𝒙), 𝒙).

Then, given verifiable evaluation schemes VE1 and VE2 for 𝑓1 and
𝑓2 based on the same fingerprint scheme, the composition protocol VE
obtained by running VE2 and then VE1 as in Figure 2 is a verifiable
evaluation scheme for 𝑓 .

5

D. Balbás, D. Fiore, M. González Vasco, D. Robissout, C. Soriente

The proof appears in Appendix C. By combining Proposition 3.5

and Proposition 3.4, we obtain a framework for composing

arbitrary evaluation schemes for different functions that can be

later compiled into an interactive proof. Regarding efficiency, the

communication complexity and running time of the resulting

protocol grows additively for both prover and verifier, as VEs are

run sequentially.

For clarity, in the following sections we use a parametrization

for VE schemes that we define as follows.

Definition 3.6 (Parametrization of VEs). A verifiable evaluation

scheme VE is parametrized by:

• the fingerprint scheme H,
• the (family of) admissible functions F = {𝑓 : X → Y},
• the input and output (vectors of) fingerprints c𝒙 , c𝒚 ,
• the communication complexity |𝜋 | (of prover messages, i.e.,

we do not consider verifier challenges)

• the prover and verifier running time tP, tV,
• and the soundness 𝜖 .

3.3 From VEs to Arguments of Knowledge
We show how to turn a VE scheme for𝒚 = 𝑓 (𝒙) into a commit-and-

prove argument of knowledge for the NP relation

RΠ = {(𝑓 , com𝑥 ,𝒚; 𝒙, 𝑜𝑥) : 𝑓 ∈ F ∧ 𝑓 (𝒙) = 𝒚

∧ Com.Vf (ck, com𝑥 , 𝒙, 𝑜𝑥)}

The full scheme is presented in Appendix D. The idea is a

generalization of the vSQL approach [51] and relies on the

observation that in the VE protocol the verifier does not need to

know neither 𝒙 nor 𝒚 but only their fingerprints 𝑐𝒙 , 𝑐𝒚 . In the

VE-to-IP construction, the verifier would test if 𝑐𝒙 = H(𝒙, 𝑟𝑥) and
𝑐𝒚 = H(𝒚, 𝑟𝑦). In the AoK, the verifier instead holds the

commitment com𝑥 , and we let the prover show the correctness of

the fingerprint 𝑐𝒙 w.r.t. the committed 𝒙 . To enable this proof we

only need a commit-and-prove AoK for the computation of H
(instantiatable with a multilinear polynomial commitment).

Finally, we observe that, similarly to zkCNN, we can obtain a

zero-knowledge AoK for RΠ by using existing approaches [8, 43]

based on zero-knowledge sumcheck and low-degree extensions.

More precisely, starting from the (non-ZK) VE scheme, we first

apply the information-theoretic compiler based on zero-knowledge

sumcheck from Libra ([43], Section 4.1). Then, we require a ZK-AoK

forH in the compilation to a succinct argument. For the first step, we

also need to mask the fingerprints obtained by the verifier to avoid

leakage of intermediate values. This can also be done following

([43], Section 4.2).

4 VERIFIABLE EVALUATION FOR
MULTILINEAR POLYNOMIALS

In this section, we reinterpret the line of work for the delegation of

computation via sumchecks of multilinear polynomials, initiated

by the GKR protocol [20] and continued by [11, 37, 43, 49], in the

framework introduced in Section 3. We show that the notion of

verifiable evaluation scheme captures the soundness properties of

these core protocols, and we provide a modular approach such that

they are easily composable with function-specific VEs. This allows

us to compose these existing protocols with the new VE schemes

that we propose in the next section.

First of all, we define a fingerprint based on multilinear

extensions. From this point, we adopt the convention that

𝜆 = ⌊log|F|⌋ for a field F.

Proposition 4.1. Let F be a field, 𝒙̃ be the multilinear extension
of 𝒙 ∈ F𝑛 , and ℓ = ⌈log𝑛⌉. Then, the evaluation of a multilinear
extension at a point 𝒓 ∈ Fℓ , given by 𝒙̃ (𝒓) ← HMLE (𝒙, 𝒓), is a
statistically sound fingerprint for the uniform distribution over Fℓ .

Proof. Given two inputs 𝒙, 𝒙∗ and 𝒓 ←$F𝑑 such that 𝒙 ≠ 𝒙∗,
we have that

Pr[𝒙̃ (𝒓) = 𝒙̃∗ (𝒓)] = Pr[(𝒙̃ − 𝒙̃∗) (𝒓) = 0] ≤ 𝑑/|F|.
where the bound follows by the Schwartz-Zippel lemma. □

Multinear sumcheck VE. The following result is a generalization
of the multilinear sumcheck-based delegation schemes in the

literature, particularly of those introduced in [37, 43]. The prover

time depends on the time required to compute the multilinear

extension of each polynomial factor 𝑓𝑘,𝑖 as described below. Note

that when the multilinear sumcheck is described in the VE

framework, the function 𝑓 corresponds to the sum of the

evaluations over {0, 1}ℓ , while the polynomial factors

𝑓𝑘,𝑖 ∈ F[𝑥1, . . . , 𝑥ℓ] correspond to the input and are not necessarily

known to the verifier. In most practical cases, 𝑠 = 1 and 𝑡 is a small

constant (such as 𝑡 = 2).

Proposition 4.2. Let 𝒙 be a vector of ℓ variables, F a finite field
and 𝛼𝑖 ∈ F for 𝑖 = 1, . . . , 𝑠 . Let also

𝑓 (𝒙,𝒚) =
𝑠∑︁
𝑖=1

𝛼𝑖

𝑡∏
𝑘=1

𝑓𝑘,𝑖 (𝒙𝑘,𝑖 ,𝒚)

where each factor 𝑓𝑘,𝑖 is a multilinear polynomial over F evaluated on
a subvector 𝒙𝑘,𝑖 ⊂ 𝒙 . Then, the multilinear sumcheck protocol VEML
in Figure 3 is a MLE-based VE scheme for the relation

𝑓𝑦 (𝒓𝑦) =
∑︁

𝒙∈{0,1}ℓ
𝑓 (𝒙, 𝒓𝑦) .

VESC is parametrized by one output fingerprint c𝑓𝑦 = 𝑓𝑦 (𝒓𝑦), 𝑠 · 𝑡
input fingerprints c𝑘,𝑖 = 𝑓𝑘,𝑖 (𝒓𝑘,𝑖 , 𝒓𝑦) where each 𝒓𝑘,𝑖 ⊂ 𝒓 ∈ Fℓ ,
communication complexity |𝜋 | = (ℓ + 𝑠) · 𝑡 · 𝜆, verification time
tV = O(𝑡 · ℓ), and soundness 𝜖 = 𝑡ℓ/|F|. Furthermore, given that 𝜏𝑘,𝑖
is the time required to compute the MLE of 𝑓𝑘,𝑖 (𝒙𝑘,𝑖 , ·), the prover
time is tP = O

(
𝑠 · 𝑡2 ·max𝑘,𝑖 𝜏𝑘,𝑖

)
.

Proof. First, we recall that the sumcheck protocol over a field

F for a ℓ-variate polynomial of degree 𝑡 has soundness 𝑡ℓ/|F| [31].
Correctness, communication complexity and efficiency follow

from inspection of Figure 3 and from the efficient sumcheck and

padding techniques in previous work [43, 49]. For soundness,

consider a successful adversary against VE soundness that, given

an output fingerprint c∗
𝑓𝑦

≠ 𝑓𝑦 (𝒓𝑦), makes VESC .V accept. Let also

𝑔′
1
(𝑥1), . . . , 𝑔′ℓ (𝑥ℓ) be the sequence of degree 𝑡 polynomials that

correspond to running the protocol honestly, in addition to the

constant polynomial 𝑔′
0
= 𝑓𝑦 (𝒓𝑦). By definition of VE soundness,

we have that all input fingerprints are honestly computed, i.e.,

c𝑘,𝑖 = 𝑓𝑘,𝑖 (𝒓) for every 𝑘, 𝑖 . Therefore, as the check in line 12 of

6

Modular Sumcheck Proofs with Applications to Machine Learning and Image Processing

Figure 3 verifies, it must be that 𝑔ℓ (𝑟ℓ) = 𝑔′
ℓ
(𝑟ℓ). We conclude that

the adversary must have found a collision during the sumcheck,

which occurs with probability 𝜖 = 𝑡ℓ/|F|. □

VESC .P(c𝑓𝑦 , 𝑟𝑦, 𝑓) VESC .V(c𝑓𝑦 , 𝑟𝑦, 𝒓)

01 Evaluate 𝑓𝑘,𝑖 (𝒙𝑘,𝑖 , 𝒓𝑦) for all 𝑘, 𝑖 .
02 𝑔0 ← 𝑐 𝑓𝑦 .

03 for 𝑗 = 1 . . . ℓ :

04 for 𝑑 = 0 . . . 𝑡 :

05 𝑚 𝑗,𝑑 ←
∑
𝒃∈{0,1}ℓ−𝑗

∑𝑠
𝑖=1

𝛼𝑖
∏𝑡

𝑘=1
𝑓𝑘,𝑖 (𝑟1, . . . , 𝑟 𝑗−1, 𝑑, 𝒃, 𝒓𝑦)

06 Send 𝒎 𝑗 = (𝑚 𝑗,0, . . . ,𝑚 𝑗,𝑡) ∈ F𝑡+1

07 Interpolate 𝑔 𝑗−1 from 𝒎 𝑗−1

08 Check [𝑔 𝑗−1 (𝑟 𝑗−1) =𝑚 𝑗,0 +𝑚 𝑗,1]
09 Send 𝑟 𝑗

Final round:
10 Send c𝑘,𝑖 = 𝑓𝑘,𝑖 (𝒓𝑘,𝑖 , 𝒓𝑦), for all 𝑘, 𝑖 .
11 Interpolate 𝑔ℓ from 𝒎ℓ

12 Check

[
𝑔ℓ (𝑟ℓ) =

∑𝑠
𝑖=1

𝛼𝑖
∏𝑡

𝑘=1
c𝑘,𝑖

]
13 Set 𝑏 ← 1 if all checks pass

Output
(
{𝑐𝑘,𝑖 }𝑘,𝑖 , 𝒓

)
Output

(
{𝑐𝑘,𝑖 }𝑘,𝑖 , 𝑏

)
Figure 3: Multilinear sumcheck protocol VESC.

4.1 VE for GKR layers
In the celebrated GKR protocol [20], prover and verifier interact in a

series of sumchecks that take place at every layer of the circuit. Each

of these sumchecks can be written as a VE scheme with multiple

input fingerprints (and possibly multiple output fingerprints too).

This interpretation is straightforward following Proposition 4.2; it

also addresses the observation that the add andmult gate predicates
can be replaced by alternative gate predicates, in order to support

other operations efficiently as mentioned in [43], or larger fan-in

such as in [29].

Following the notation from Libra [43], wewrite𝑉𝑖 for the output

values at the gates of the circuit at layer 𝑖 (interpreted as a function

𝑉𝑖 : {0, 1}ℓ𝑖 → F) and 𝑉𝑖 its multilinear extension. We define the

wiring predicates add𝑖 ,mult𝑖 : {0, 1}ℓ𝑖+2ℓ𝑖−1 → F, which take one

gate label 𝑦 ∈ {0, 1}ℓ𝑖 and two gate labels 𝑥1, 𝑥2 ∈ {0, 1}ℓ𝑖−1
, and

output 1 if gate 𝑦 is an addition (respectively a multiplication)

gate that takes the outputs from gates 𝑥1, 𝑥2 in the previous layer.

Therefore, for any 𝑦 ∈ {0, 1}ℓ𝑖 , we can write 𝑉𝑖+1 as

𝑉𝑖+1 (𝑦) =
∑︁

𝑥1,𝑥2∈{0,1}ℓ𝑖
add𝑖 (𝑦, 𝑥1, 𝑥2) (𝑉𝑖 (𝑥1) +𝑉𝑖 (𝑥2))

+mult𝑖 (𝑦, 𝑥1, 𝑥2) (𝑉𝑖 (𝑥1) ·𝑉𝑖 (𝑥2)) . (1)

In the protocol, prover and verifier start on a common

fingerprint of the output 𝑉𝑖+1 (𝒓𝑦) and then run the multilinear

sumcheck from Figure 3. At the end of the sumcheck, in which the

prover sends a total of 2 · ℓ𝑖 polynomials, the verifier needs to

check the consistency of the prover’s claims by using the wiring

predicates. Namely, it needs to compute (or re-use in a layer above)

the following fingerprints: 𝑉̃𝑖 (𝒓1), 𝑉̃𝑖 (𝒓2), ˜add𝑖 (𝒓𝑦, 𝒓1, 𝒓2),
˜mult𝑖 (𝒓𝑦, 𝒓1, 𝒓2).
The following result is a reinterpretation of [43], and in particular

the observation that the prover time is linear in 2
ℓ
where ℓ =

max{ℓ𝑖 , ℓ𝑖+1} due to the sparsity of
˜add𝑖 , ˜mult𝑖 and Lemma 2.2. The

proof follows from Proposition 4.2.

Proposition 4.3. The interactive protocol that takes place at a
GKR layer is a VE scheme VEGKR for all functions computable by a
single-layered arithmetic circuit with gates of fan-in 2. The scheme is
parametrized by 1 output fingerprint (of 𝑉𝑖+1), 4 input fingerprints
(2 of 𝑉𝑖 , 1 of add𝑖 , 1 of mult𝑖), communication complexity |𝜋 | =
(3 · ℓ + 4) · 𝜆, prover time tP = O

(
2
ℓ
)
, verifier time tV = O(ℓ), and

soundness 𝜖 = 2ℓ/|F|.

4.2 VE for Many-to-One Reductions
Multivariate sumcheck-based VEs often present the issue that, from

a single output fingerprint, the interaction yields multiple input

fingerprints to be checked by the verifier at a later time. For GKR

layers, the two input fingerprints of 𝑉𝑖 obtained shall be used as

output fingerprint for layer 𝑖−1. To avoid an exponential blow-up on

the number of fingerprints to be checked, the original GKR protocol

proposes a 2-to-1 reduction protocol that, given two fingerprints of

any 𝒙 , it reduces them to a single fingerprint. An alternative to the

2-to-1 reduction is to use a random linear combination on the sum

[8].

Below we formalize 2-to-1 reductions in the VE framework and

generalize it to a𝑚-to-1 reduction. The result extends GKR-specific

techniques from Virgo++ [49].

Proposition 4.4. Let 𝒙 ∈ F𝑛 and let 𝒙̃ (𝒓1), . . . , 𝒙̃ (𝒓𝑚) be MLE
fingerprints on 𝒓𝑖 ∈ Fℓ . Let also 𝛼𝑖 ∈ F for 𝑖 = 1, . . . ,𝑚, let 𝐼 (𝒖, 𝒗) be
the indicator function on the boolean hypercube such that 𝐼 (𝒖, 𝒗) = 1

if 𝒖 = 𝒗 and is zero elsewhere, and define

𝑓 (𝒚) =
𝑚∑︁
𝑖=1

𝛼𝑖 · 𝒙 (𝒓𝑖) =
(
𝑚∑︁
𝑖=1

𝛼𝑖 · 𝐼 (𝒓𝑖 ,𝒚)
)
· 𝒙̃ (𝒚).

Then, running the multilinear sumcheck protocol from Figure 3 on
𝑓 (𝒚) yields a VE schemeVEm-1 parametrized by𝑚 output fingerprints
𝒙̃ (𝒓𝑖),𝑚 + 1 input fingerprints (𝐼 (𝒓𝑖 , 𝒓𝑦) for 𝑖 = 1, . . . ,𝑚 and 𝒙̃ (𝒓𝑦)),
communication complexity |𝜋 | = (3 · ℓ + 𝑚 + 1) · 𝜆, prover time
tP = O

(
𝑚 · 2ℓ

)
, verifier time tV = O(𝑚 + ℓ), and soundness 𝜖 =

(2ℓ + 1)/|F|.

Note the additional soundness loss of 1/|F| with respect to the

sumcheck, which comes from the choice of the 𝛼𝑖 . It is

straightforward to express the random linear combination

approach from [8] as a VE, also following Proposition 4.2. Such VE

is parametrized by 2 input fingerprints (of 𝑉𝑖+1), and 6 output

fingerprints (2 of 𝑉𝑖 , 2 of add𝑖 , 2 of mult𝑖).

Evaluation of mult, add and structured predicates. In all VEs

introduced so far, including those in Proposition 4.3 and 4.4, the

number of input fingerprints is larger than the number of output

fingerprints. Some of these fingerprints correspond to

unstructured data (such as the values at a circuit layer or an

7

D. Balbás, D. Fiore, M. González Vasco, D. Robissout, C. Soriente

external input), but most of them have a regular structure such as

wiring predicates mult, add and indicator functions.

When multiple VEs are composed, fingerprints coming from

structured data may be checked directly by the verifier, as opposed

to plugged into other VEs. There exist essentially two design choices

available:

• The verifier recomputes the multilinear extensions on its

own. In many cases, one can benefit from parallelism [10],

or from sparsity [43]. In [23], it is shown that most simple
predicates (those expressible as read-only branching

programs), including many regular wiring patterns such as

indicator functions, can be evaluated in logarithmic time

(i.e. polynomial in ℓ).

• The verifier performs a pre-processing phase or relies on

a trusted third party to compute (multilinear) polynomial

commitments to the data. Then, the prover provides an

opening proof on the required point. In this setting, the

evaluation is outsourced to the prover, similarly to what is

done for instance in Spartan [35].

4.3 Efficient Matrix Multiplication
Among the protocols that we can capture in our framework, a

notable example is the efficient interactive protocol for matrix

multiplication from [37]. The main idea of the protocol is to

express the product of two matrices 𝐶 = 𝐴 · 𝐵 where

𝐴, 𝐵,𝐶 ∈ F𝑛×𝑛 as a polynomial identity as

𝐶 (𝒙1, 𝒙2) =
∑︁

𝒚∈{0,1}ℓ
𝐴(𝒙1,𝒚) · 𝐵(𝒚, 𝒙2) (2)

Then, the interaction follows the sumcheck in Figure 3. Namely,

given 𝒓1, 𝒓2 ∈ Fℓ , both parties carry out a sumcheck over

𝐶 (𝒓1, 𝒓2) =
∑︁

𝒚∈{0,1}ℓ
𝐴̃(𝒓1,𝒚) · 𝐵̃(𝒚, 𝒓2) . (3)

The protocol is therefore a VE scheme parametrized by two

input fingerprints 𝐴̃(𝒓1, 𝒓3), 𝐵̃(𝒓3, 𝒓2), an output fingerprint

𝐶 (𝒓1, 𝒓2), communication complexity |𝜋 | = (3 · ℓ + 2) · 𝜆, prover
time tP = O

(
𝑛2

)
, verifier time tV = O(ℓ) and soundness 𝜖 = 2ℓ/|F|.

5 VERIFIABLE EVALUATION FOR MACHINE
LEARNING

In this section, we introduce efficient proofs for common ML

operations, following our VE framework. We focus on

Convolutional Neural Networks (CNNs) though we note that

many of these operations are also usual in image processing. We

start by introducing ML preliminaries.

5.1 Preliminaries
5.1.1 CNNs. A Convolutional Neural Network (CNN) is a layered

model where the initial input 𝑋 is transformed sequentially from

layer to layer. Let 𝑋 = 𝑋 (1) be the array of input values and

{𝑋 (𝑘) }𝐿
𝑘=1

the intermediate values between layers, as defined

before. Each 𝑋 (𝑘) ∈ F𝑐 (𝑘)×𝑛 (𝑘)×𝑛 (𝑘) , where 𝑐 (𝑘) is the number of

channels at layer 𝑘 , and 𝑛 (𝑘) × 𝑛 (𝑘) is the dimension of the arrays

at layer 𝑘 . Namely, at each intermediate layer we have 𝑐 (𝑘)

“parallel” arrays of the same size. An example of multiple channels

in an input layer is a coloured image, which commonly has 3

channels: the red, blue, and green values of each pixel.

CNNs apply layer functions 𝑓 (𝑘) sequentially, such that

𝑋 (𝑘+1) = 𝑓 (𝑘) (𝑋 (𝑘) ,𝑊 (𝑘)). Usually, models interleave linear

layers, such as convolutional layers and fully connected layers, and

nonlinear layers such as ReLU and Pooling. At some of these

layers, including convolutional layers, we have parameters𝑊 (𝑘)

(aka weights). For convolutional layers, these are 𝑐 (𝑘) × 𝑐 (𝑘+1)

matrices of size𝑚 (𝑘) ×𝑚 (𝑘) . We denote each of these matrices as

𝑊
(𝑘)
𝜎,𝜏 where 𝜎 ∈ {0, . . . , 𝑐 (𝑘) − 1} and 𝜏 ∈ {0, . . . , 𝑐 (𝑘+1) − 1}.

5.1.2 Convolution. The equation of a plain 2D convolution
2
in a

CNN for a given output channel 𝜏 is

𝑋
(𝑘+1)
𝜏 [𝑢, 𝑣] =

𝑐 (𝑘)−1∑︁
𝜎=0

𝑚 (𝑘)−1∑︁
𝑖, 𝑗=0

𝑋
(𝑘)
𝜎 [𝑢 + 𝑖, 𝑣 + 𝑗] ·𝑊 (𝑘)𝜎,𝜏 [𝑖, 𝑗] . (4)

If no padding and strides (i.e. “jumps” in the convolution) are

applied, the output matrix 𝑋
(𝑘+1)
𝜏 is a square matrix of size

𝑛 (𝑘+1) × 𝑛 (𝑘+1) where 𝑛 (𝑘+1) = 𝑛 (𝑘) −𝑚 (𝑘) + 1. It is very common

in practice to apply a zero or mirror padding such that

𝑛 (𝑘) = 𝑛 (𝑘+1) . Convolutions can be carried out via (naive) dot

products, via Fast Fourier Transforms (FFTs), via polynomial

multiplication, or via matrix multiplication
3
.

A related common operation is transposed convolution, which
is an upsampling operation that increases the size of the output

with respect to the input. We refer to [15] for a good introduction

to convolution arithmetic.

In Appendix B we briefly discuss other relevant layer types;

namely, activation, pooling, fully connected and batch

normalization.

5.1.3 Quantisation. Generally, CNNs need to be quantised to be

embedded in proof systems, since these require that values belong to

some finite field. Quantisation is actually used beyond verification,

as typical models reach a similar accuracy on short integers (such

as 8-bit). A usual quantization scheme is [25], which, as shown in

zkCNN [30], can be integrated into large fields easily. A possible

avenue for building verifiable CNNs without quantisation consists

of using proof systems with native ring arithmetic such as [6, 36].

5.2 Our VE for Convolution
In this section we present a novel approach to proving

convolutions efficiently by exploiting the symmetrical structure of

a convolution operation. We write convolutions as matrix

multiplications, seeking a more convenient form than the

commonly used Toeplitz or circulant matrices (see [39] for further

details).

Rewriting convolution. We observe that it is possible to re-write

a convolution operation in the following compact form, where we

specify a convolution of a 3 × 3 input 𝑋 by a 2 × 2 kernel𝑊 .

2
Note that 1D, 2D and 3D convolutions are equivalent in practice if the arrays are

arranged adequately.

3
It may seem that FFTs are best-performing, but in some practical cases [7] matrix

multiplication is actually preferred.

8

Modular Sumcheck Proofs with Applications to Machine Learning and Image Processing


𝑥0 𝑥1 𝑥3 𝑥4

𝑥1 𝑥2 𝑥4 𝑥5

𝑥3 𝑥4 𝑥6 𝑥7

𝑥4 𝑥5 𝑥7 𝑥8



𝑤0

𝑤1

𝑤3

𝑤4

 =


𝑤0𝑥0 +𝑤1𝑥1 +𝑤3𝑥3 +𝑤4𝑥4

𝑤0𝑥1 +𝑤1𝑥2 +𝑤3𝑥4 +𝑤4𝑥5

𝑤0𝑥3 +𝑤1𝑥4 +𝑤3𝑥6 +𝑤4𝑥7

𝑤0𝑥4 +𝑤1𝑥5 +𝑤3𝑥7 +𝑤4𝑥8

 (5)

The example is easily extended to an 𝑛𝑥 × 𝑛𝑥 input and𝑚 ×𝑚
kernel. The matrix on the left-hand side has dimensions

4 (𝑛 −𝑚 +
1)2 ×𝑚2

. More generically, this is the dimension of the flattened

output times the dimension of the flattened weight matrix, which is

𝑛2

𝑦 ×𝑚2
for a convolutional layer that has an output of size 𝑛𝑦 ×𝑛𝑦 .

We can extend this approach to capture multiple channels in a

convolutional neural network. Let us recover usual CNN notation

while ignoring layer indices; let 𝑋𝜎 be the input with channel

𝜎 ∈ [𝑐], and let𝑊𝜎,𝜏 be the weight matrix where 𝜏 ∈ [𝑑] is the
output channel. Then, in matrix form (where 𝑋,𝑊̂ are the

transformed matrix representations of the data and weights in the

form of Equation 5), we have that the layer’s output 𝑌 is given by

𝑌 = [𝑌1 | · · · |𝑌𝑑] =
𝑐∑︁

𝜎=1

𝑋𝜎 · [𝑊̂𝜎,1 | · · · |𝑊̂𝜎,𝑑] . (6)

Namely, for each input channel 𝜎 we have the product of a (𝑛𝑦)2 ×
𝑚2

matrix and a𝑚2×𝑑 matrix. Each 𝑌𝜏 is a column vector of length

𝑛2

𝑦 (i.e., a flattened channel of the output of the layer). If we apply

the efficient VE for matrix multplication at this stage, we need to

prove the result of a sum of 𝑐 matrix multiplications, where the size

of the matrices is (𝑛𝑦)2 ×𝑚2
and𝑚2 × 𝑑 .

Combining all input channels. The main efficiency advantage of

our approach is that it is straightforward to extend the sumcheck

equation for matrix multiplication (eq. (3)) to sum over the

multiple channels. To do this, we can encode both 𝑋 and 𝑊̂ as

trivariate polynomials given by 𝑋 (𝑥,𝑦, 𝜎) B 𝑋𝜎 (𝑥,𝑦) and

𝑊̂ (𝑥,𝑦, 𝜎) B 𝑊̂𝜎 (𝑥,𝑦) for every 𝜎 ∈ [𝑐]. Then, we obtain the

following sumcheck equation over 𝒙1, 𝒙2

𝑌̃ (𝒚1,𝒚2) =
∑︁
(𝒙1,𝒙2) ∈

{0,1}2⌈log𝑚⌉+⌈log𝑐⌉

𝑋̃ (𝒚1, 𝒙1, 𝒙2) · 𝑊̃ (𝒙1,𝒚2, 𝒙2) . (7)

Proposition 5.1. Let VEconv be the VE scheme for
two-dimensional convolution that is obtained by running the
multivariate sumcheck protocol in Figure 3 on Equation 7. Then,
VEconv is parametrized by two input fingerprints (one for 𝑋 and one
for 𝑊̂), one output fingerprint (for 𝑌), communication complexity
|𝜋 | = (3 · (2⌈log𝑚⌉ + ⌈log 𝑐⌉) + 2) · 𝜆, prover time

tP = O
(
𝑐 (𝑛2

𝑦𝑚
2 +𝑚2𝑑)

)
, verifier time tV = O

(
log(𝑐𝑚2)

)
, and

soundness 𝜖 = 2 · (2⌈log𝑚⌉ + ⌈log 𝑐⌉)/|F|.

Intuitively, the asymptotic benefit of our approach compared to

previous work is essentially given by expressing the input channels

in columns in eq. (6), avoiding the overhead of padding the kernels

to the input size.

We also note that it is straightforward to extend equation 5

to support arbitrary padding or stride settings by modifying the

reshaped input 𝑋 , as done in our implementation. An advantage of

4
In this explanation, we are ignoring padding and stride parameters.

our method is that the output 𝑌 does not need to be reshaped after

the VE is applied.

5.2.1 Transpose Convolution. The transpose convolution operation
can be re-written as in Equation 5. For an example, let𝑚 = 𝑛𝑥 = 2

over a single input channel 𝑋
(𝑘)
𝜎 . A basic upscaling transposed

convolution yields 𝑛𝑦 = 3 as below.



0 0 0 𝑥0

0 0 𝑥0 𝑥1

0 0 𝑥1 0

0 𝑥0 0 𝑥2

𝑥0 𝑥1 𝑥2 𝑥3

𝑥1 0 𝑥3 0

0 𝑥2 0 0

𝑥2 𝑥3 0 0

𝑥3 0 0 0




𝑤0

𝑤1

𝑤2

𝑤3

 =



𝑥0𝑤3

𝑥0𝑤2 + 𝑥1𝑤3

𝑥1𝑤2

𝑥0𝑤1 + 𝑥2𝑤3∑
3

𝑖=0
𝑥𝑖𝑤𝑖

𝑥1𝑤0 + 𝑥3𝑤2

𝑥2𝑤1

𝑥2𝑤0 + 𝑥3𝑤1

𝑥3𝑤0


(8)

For arbitrary input channels, the output will be a𝑛2

𝑦×𝑑 matrix. As

before, we need to compute the sum over all input channels 𝜎 ∈ [𝑐],
which can be done by extending the sumcheck as in Equation 7.

This yields a prover time of tP = O
(
𝑐 (𝑛2

𝑦𝑚
2 +𝑚2𝑑)

)
and a verifier

time of tV = O
(
log(𝑐𝑚2)

)
, exactly as for convolutions.

5.3 Neural Network Layers
Neural networks, and in general many data processing algorithms,

incorporate several (generally simple) steps beyond convolution.

We succinctly describe efficient ways of constructing VEs for the

most usual operations.

5.3.1 Layer reshaping and pooling. For any sequence of

operations that can be expressed without any multiplication gate

(such as padding, rotation, compression, averaging, or any input

rearrangement –e.g., the pre-processing required for the input of

VEconv), one can encode the desired pattern in a wiring predicate

𝑃 (𝒙,𝒚) and apply the multilinear sumcheck VESC as follows. For

an input layer 𝑋 and output layer 𝑌 , let 𝑃 (𝒙,𝒚) = 𝑡 if the value

𝑡 · 𝑋 (𝒙) is added to 𝑌 (𝒚). Then, VESC can be applied over

𝑌 (𝒚) = ∑
𝑥 ∈{0,1}ℓ 𝑃 (𝒙,𝒚) · 𝑋 (𝒙). Note that 𝑃 is sparse for most

operations (except for weighted sums of many input values).

The predicate 𝑃 natively supports average pooling. For max

pooling, we recall the approach using auxiliary bit decompositions

by zkCNN [29], that can be expressed as a VE. We also note that

the described VE for reshaping can be easily used in combination

with a many-to-one VE.

5.3.2 Normalization and linear transformations. Point-wise
normalization, and in general input re-scaling operations that can

be expressed as linear transformations of the form 𝑥 ↦→ 𝛼𝑥 + 𝛽 ,
where 𝛼, 𝛽 ∈ F, can be verified via a linear shift without any

prover work. Indeed, multilinear fingerprints satisfy that given

𝑋,𝑌 ∈ F𝑛 such that 𝑌 (𝒙) = 𝛼 · 𝑋 (𝒙) + 𝛽 for all 𝒙 ∈ {0, 1}ℓ , then
𝑐𝑌 = 𝑌̃ (𝒓) = 𝛼 · 𝑋̃ (𝒓) + 𝛽 .

5.3.3 Activation functions. Due to their non-linearity, the

verification of activation layers is particularly challenging and

essentially reduces to two possibilities:

9

D. Balbás, D. Fiore, M. González Vasco, D. Robissout, C. Soriente

• Dedicated VEs with additional input. For instance, zkCNN

[29] introduces a protocol for ReLU that requires additional

bit decomposition, and can be easily seen as a VE.

• Approximate activation functions via polynomials, as is

usual in the privacy-preserving ML literature. Quadratic

polynomials may already offer good approximations [1].

For this approach, one can construct a VE that evaluates

quadratic polynomials via the following multilinear

sumcheck (which follows from a GKR-like encoding):

𝑌̃ (𝒚) =
∑︁

𝒙1,𝒙2∈{0,1}ℓ
𝐼 (𝒙1, 𝒙2,𝒚) · 𝑋̃ (𝒙1) · 𝑋̃ (𝒙2)

For a degree 𝑑 polynomial, it is possible to use a binary tree

of multiplications, such that prover time, verifier time, and

communication complexity scale with log𝑑 .

An alternative approach is using efficient lookup arguments

[16, 33, 45, 46], where one can benefit from storing all values of the

activation function (for quantised inputs) in a lookup table.We leave

the investigation of lookups in our VE framework as interesting

future work.

5.4 Neural Networks
To construct a dedicated proof system for neural networks, we

build a large VE scheme (denoted by VENN), composed by several

"gadget" VEk for each of the layers of the network. Then, we use

a multilinear polynomial commitment scheme to build a commit-

and-prove AoK that achieves succinctness and efficient verification,

following the blueprint of Proposition 3.5.

Following previous notation, let 𝑋 (𝑘) be the input and 𝑓 (𝑘) the
function at layer 𝑘 . We consider two general kinds of layers:

• Layers 𝑓 (𝑘) (𝑋 (𝑘)) that apply an input transformation

without additional parameters. For such 𝑓 (𝑘) we consider
VEk that take output fingerprints 𝒄 (𝑘+1)

𝑋
(on randomness

𝒓 (𝑘+1)
𝑋

) and produce input fingerprints 𝒄 (𝑘)
𝑋

(on randomness

𝒓 (𝑘)
𝑋

) and a (possibly empty) vector of fingerprints 𝒄 (𝑘)
𝑃

(on

randomness 𝒓 (𝑘+1)
𝑃

) to an auxiliary predicate 𝑃 (see below).

• Layers 𝑓 (𝑘) (𝑋 (𝑘) ,𝑊 (𝑘)) that require additional parameters,

not necessarily known to the verifier. For these functions,

we consider VEk that take output fingerprints

(𝒄 (𝑘+1)
𝑋

, 𝒓 (𝑘+1)
𝑋

) and produce input fingerprints

(𝒄 (𝑘)
𝑋

, 𝒄 (𝑘)
𝑊

, 𝒄 (𝑘)
𝑃

, 𝒓 (𝑘)
𝑋

, 𝒓 (𝑘)
𝑊

, 𝒓 (𝑘)
𝑃
).

Additionally, we require VEk to take as many output fingerprints

to 𝑋 (𝑘+1) as input fingerprints produced by VEk+1, such that they

are compatible. Note, we can always achieve compatibility as one

can reduce input fingerprints by applying VEm-1 (Proposition 4.4).

The predicates 𝑃 (𝑘) englobe any additional predicate that

expresses the circuit at each layer, such as the wiring predicates in

Equation (1) or additional auxiliary input as in [29]. For both 𝑃 (𝑘)

and𝑊 (𝑘) , we define𝑊 (𝒌, 𝒙) B𝑊 (𝑘) (𝒙) and 𝑃 (𝒌, 𝒙) B 𝑃 (𝑘) (𝒙)
via interpolation as

𝑇 (𝒙𝑘 , 𝒙) =
𝐿−1∑︁
𝑘=0

𝐼 (𝒙𝑘 , 𝑘) ·𝑇 (𝑘) (𝒙) (9)

where 𝑇 ∈ {𝑋,𝑊 } and 𝐼 (𝒙𝑘 , 𝑘) is the indicator function on ⌈log𝐿⌉
variables. Without loss of generality, we pad every 𝑇 (𝑘) to have

the same number of variables. For concrete implementations, it is

possible to optimize the padding.

We describe VENN and its compiled AoK ΠNN in Figure 4.

Soundness of VENN follows by Proposition 3.5 and the soundness

of VEk and VEm-1. ΠNN is an instantiation of the compiler of

Section 3.3 and Proposition D.1. By expressing the model

parameters and predicates as single polynomials, it is possible to

obtain, via many-to-one reductions, a single input fingerprint for

each of 𝑋 B 𝑋 (0) ,𝑊 , and 𝑃 . These fingerprints are verified in

ΠNN .V by three polynomial commitment opening proofs.

Proposition 5.2. The protocol VENN is a VE scheme for a neural
network architecture 𝐹NN,𝑃 , parameterized by 1 output fingerprint
(of 𝒚), and 3 input fingerprints (of 𝑋 (0) ,𝑊 , and 𝑃). Communication
complexity, prover time, verifier time, and soundness result from the
sum of the respective parameters of each VEk and VEm-1 on Figure 4.

Besides, ΠNN is an argument of knowledge for the relation

RNN = {(com𝑋 , com𝑊 , com𝑃 ,𝒚;𝑋,𝑊 , 𝑃, 𝑜𝑋 , 𝑜𝑊 , 𝑜𝑃) :

𝐹NN,𝑃 (𝑋,𝑊) = 𝒚 ∧ Com.Vf(ck, com𝑇 ,𝑇 , 𝑜𝑇),∀𝑇 ∈ {𝑋,𝑊 , 𝑃}} .

Finally, we remark that our modular approach allows verifying

pre- or post-processing operations in addition to the model, such

as an aggregation phase. In this case, one can extend VENN and

compose it with additional VE schemes for these operations.

5.5 Proof Batching
Our techniques are amenable to efficient batching where many

evaluations 𝑌𝑖 = 𝐹 (𝑋𝑖 ,𝑊) for 𝑖 = 1, . . . , 𝑁 are verified in a single

step. For VE schemes that rely on the multilinear sumcheck

protocol from Figure 3, including the convolution VE introduced in

this section, it is possible to reduce the verification time and

communication complexity from linear to constant in the number

of instances 𝑁 .

Let 𝑋 (𝒊, 𝒙) ∈ F[𝑋1, . . . 𝑋log𝑁+ℓ𝑥] be defined by 𝑋 (𝒊, 𝒙) B 𝑋𝑖 (𝒙),
and let 𝑌 (𝒊,𝒚) be defined analogously following equation (9). Then,

one can run the protocol in Figure 3 over𝑌 (𝒓𝑖 , 𝒓𝑦) where 𝒓𝑖 ∈ Flog𝑁

and 𝒓𝑦 ∈ Fℓ𝑦 . For instance, the sumcheck on the convolution VE

(equation (7)) can be written as

𝑌̃ (𝒊,𝒚1,𝒚2) =
∑︁
(𝒙1,𝒙2) ∈

{0,1}2⌈log𝑚⌉+⌈log𝑐⌉

𝑋̃ (𝒊,𝒚1, 𝒙1, 𝒙2) · 𝑊̃ (𝒙1,𝒚2, 𝒙2) . (10)

The resulting VE increases the prover time by a factor of ⌈log𝑁 ⌉
and maintains the same soundness, communication complexity and

verifier time as their single-input counterpart.

5.6 Verifiable Recurrent Neural Networks
As an additional application of our modular framework, we show

how to construct a protocol for the verification of recurrent neural

network (RNN) predictions, a problem that has not been addressed

efficiently in the literature. RNNs are a type of neural network

designed to process sequential data such as time series or natural

language text. Unlike feedforward neural networks, which process

input data in a single pass and do not maintain memory, RNNs have

10

Modular Sumcheck Proofs with Applications to Machine Learning and Image Processing

VENN .P(𝑐𝑦, 𝑟𝑦, 𝐹 , (𝑋,𝑊 , 𝑃))

01 𝑐
(𝐿)
𝑋
← 𝑐𝑦 , 𝑟

(𝐿)
𝑋
← 𝑟𝑦

02 for 𝑘 = 𝐿 − 1, . . . , 0 :

03 Run (𝒄 (𝑘)
𝑋

, 𝒄 (𝑘)
𝑊

, 𝒄 (𝑘)
𝑃

, 𝒓 (𝑘)
𝑋

, 𝒓 (𝑘)
𝑊

, 𝒓 (𝑘)
𝑃
) ←

VEk .P
(
𝒄 (𝑘+1)
𝑋

, 𝒓 (𝑘+1)
𝑋

, 𝐹 (𝑘) , (𝑋 (𝑘) ,𝑊 (𝑘) , 𝑃 (𝑘))
)

04 for𝑇 ∈ {𝑊,𝑃 } :

05 Run (𝑐𝑇 , 𝑟𝑇) ← VEm-1 .P
(
𝒄 (0)
𝑇

, . . . , 𝒄 (𝐿−1)
𝑇

, 𝒓 (0)
𝑇

, . . . , 𝒓 (𝐿−1)
𝑇

,𝑇

)
06 Run (𝑐𝑋 , 𝑟𝑋) ← VEm-1 .P

(
𝒄 (0)
𝑋

, 𝒓 (0)
𝑋

, 𝑋 (0)
)

07 return (𝑐𝑋 , 𝑐𝑊 , 𝑐𝑃 , 𝑟𝑋 , 𝑟𝑊 , 𝑟𝑃)

ΠNN .P((crs, crs′), (com𝑋 , com𝑊 , com𝑃 ,𝒚;𝑋,𝑊 , 𝑃, 𝑜𝑋 , 𝑜𝑊 , 𝑜𝑃)):

08 for𝑇 ∈ {𝑊,𝑃 } : 𝜋1,𝑇 ← AoKCom .Prove(crs′, com𝑇 , (𝑇,𝑜𝑇))
09 Send 𝜋1 ← (𝜋1,𝑋 , 𝜋1,𝑊 , 𝜋1,𝑃)
10 Get 𝑟𝑦 ←$DY from V

11 𝑐𝑦 ← H(𝒚, 𝑟𝑦)
12 Run (𝑐𝑋 , 𝑐𝑊 , 𝑐𝑃 , 𝑟𝑋 , 𝑟𝑊 , 𝑟𝑃) ← VENN .P(𝑐𝑦, 𝑟𝑦, 𝐹 , (𝑋,𝑊 , 𝑃)) .
13 for𝑇 ∈ {𝑊,𝑃 } : 𝜋𝑇 ← AoKH .Prove(crs, (𝑐𝑇 , com𝑇), (𝑇,𝑜𝑇))
14 Send (𝜋𝑋 , 𝜋𝑊 , 𝜋𝑃) to V

ΠNN .V(ck, (com𝑋 , com𝑊 , com𝑃 ,𝒚)):

15 Get (𝜋1,𝑋 , 𝜋1,𝑊 , 𝜋1,𝑃)
16 Send 𝑟𝑦 ←$DY and compute 𝑐𝑦 ← H(𝒚, 𝑟𝑦)
17 𝑟𝑇 ←$DT for𝑇 ∈ {𝑋,𝑊 , 𝑃 }
18 Run (𝑐𝑋 , 𝑐𝑊 , 𝑐𝑃 , 𝑏0) ← VENN .V(𝑐𝑦, 𝑟𝑦, 𝐹 , 𝑟𝑋 , 𝑟𝑊 , 𝑟𝑃)
19 Get (𝜋𝑋 , 𝜋𝑊 , 𝜋𝑃)
20 for𝑇 ∈ {𝑋,𝑊 , 𝑃 } 𝑏𝑇 ← AoKCom .Vf (crs′, com𝑇 , 𝜋1,𝑇)

∧ AoKH .Vf (crs, (com𝑇 , 𝑐𝑇 , 𝑟𝑇), 𝜋𝑇) .
21 return 𝑏0 ∧ 𝑏𝑋 ∧ 𝑏𝑊 ∧ 𝑏𝑇

Figure 4: Modular construction of VENN and compilation
to an argument of knowledge ΠNN. The verifier VENN .V is
omitted as it simply runs VEk .V sequentially.

a loop that allows information to be passed from one time step to

the next, following a cyclic computation graph.

Let 𝑇 be the length of the longest cycle in the graph described

by a RNN of 𝐿 layers. For example, 𝑇 = 1 in the RNN in Figure

5, as the only cycle is a self-loop. We construct a VE that verifies

the computation of 𝑆 predictions (𝑌 (1) , . . . , 𝑌 (𝑆)) from (streaming)

inputs (𝑋 (1)
0

, . . . , 𝑋
(𝑆)
0
) as follows.

• The prover computes the predictions and stores all

intermediate values 𝑋
(𝑖)
𝑘

for 𝑖 = 0, . . . , 𝑆 . Then, it "unrolls"

the intermediate computations of the RNN as in Figure 6.

The resulting computation trace is a circuit of depth

𝐷 = 𝐿 + 𝑆 ·𝑇 with an evident layer structure.

• The prover embeds each layer of the computation trace in a

multilinear polynomial 𝑍𝑘 (𝒋, 𝒙) B 𝑍
(𝒋)
𝑘
(𝒙) as in equation

(9), and defines𝑊𝑘 , 𝑃𝑘 accordingly. In total, one obtains 𝐷

multilinear polynomials, structured as the layers in Figure 6.

• The VE proceeds similarly to the VENN of Figure 4. Instead

of obtaining fingerprints for each 𝑋
(𝑖)
𝑘

via separate VEs,

one can work directly with the (batched) 𝑍𝑘 as follows. Let

𝑔𝑘,𝑘+1 be the product of multilinear polynomials that relates

𝑍𝑘+1 (𝒊,𝒚) and 𝑍𝑘 (𝒋, 𝒙). 𝑔𝑘,𝑘+1 contains factors of 𝑍𝑘 ,𝑊𝑘 , 𝑃𝑘 ,

subsequently defined over variables (𝒋, 𝒙). Then, we have

𝑍𝑘+1 (𝒊,𝒚) =
∑︁
𝒙,𝒋

𝑔𝑘,𝑘+1 (𝑍𝑘 ,𝑊𝑘 , 𝑃𝑘) (𝒊, 𝒋, 𝒙,𝒚) .

Finally, by summing over all layers that are input to𝑍𝑘+1 and
polynomials 𝑔𝑘′,𝑘+1 for 𝑘

′ ≤ 𝑘 , we can verify a fingerprint

of 𝑍𝑘+1 in a single sumcheck. The evaluation of 𝑔𝑘,𝑘+1 yields
fingerprints of 𝑍𝑘 ,𝑊𝑘 , 𝑃𝑘 that can be handled as in VENN.

The resulting VE scheme has communication complexity and

verifier time tV = |𝜋 | = 𝑂 (𝐷 · log 𝑆 · ℓmax), where

ℓmax = max
𝐿−1

𝑘=0
⌈log𝑛𝑘 ⌉ and 𝑛𝑘 is the size of 𝑋̃

(·)
𝑘

. Even if the proof

size scales linearly in the length of the stream 𝑆 , we believe that

our approach may present good concrete performance for small

streams, in particular due to the batching technique.

𝑋0 𝑓0 𝑋1 𝑓1 𝑋2 𝑓2

Figure 5: Illustration of a RNN with a loop at layer 𝑋1.

. . .

. . .

. . .

. . .

𝑋
(1)
0

𝑋
(2)
0

𝑋
(3)
0

𝑋
(4)
0

𝑋
(𝑆)
0

𝑋
(1)
1

𝑋
(1)
2

𝑋
(2)
1

𝑋
(1)
3

𝑋
(2)
2

𝑋
(3)
1

. . .𝑌 (1) 𝑌 (2) 𝑌 (3) 𝑌 (4) 𝑌 (𝑆)

𝑍0

𝑍1

𝑍2

𝑍3

𝑌

Figure 6: Computation trace of a sequence of inputs
𝑋
(1)
0

, . . . , 𝑋
(𝑆)
0

in the RNN in Figure 5.

5.7 Image Processing
The techniques developed in these sections find a direct application

in the verification of image processing operations. For instance,

convolution is used in applications such as edge detection (such

as using Sobel or Canny kernels), image blurring (Gaussian blur),

and feature extraction. Below we provide a brief description how

to construct a VE for some common applications.

• Operations that require geometric modifications or

rearrangements of the original picture, such as cropping,

rotation, mirroring, padding, or partial censoring (i.e.

removal or replacement of sectors of an image) can be

verified following Section 5.3.1.

• For convolution-related operations, one can directly apply

our VECNN with the desired parameters.

11

D. Balbás, D. Fiore, M. González Vasco, D. Robissout, C. Soriente

• Multiple transformations can be merged in a single

sumcheck by merging wiring predicates. For instance,

rotation + cropping + input reshaping (1) and a posterior

convolutional filtering (2) can be verified with only two

sumchecks.

For images encoded in RGB or other multi-channel format, we

can apply batching techniques for the channels as shown in

equation (10). If negative values appear in convolution kernels,

linear shifts need to be applied to avoid wrapping of field elements.

We compare the performance of our approach to ZK-IMG [26] and

PhotoProof [32] in Section 6.3.

6 EVALUATION
In this section we discuss the performance of our solution and

compare it to previous work. We focus the evaluation on our VEconv
for convolution operations introduced in Section 5.2, as this is the

most novel proof gadget compared to previous work.

6.1 Theoretical comparison
Recalling previous notation, let 𝑛𝑥 × 𝑛𝑥 be the input size, 𝑛𝑦 × 𝑛𝑦
the output size,𝑚 ×𝑚 the kernel size, and 𝑐, 𝑑 the number of input

and output channels, respectively. We also write 𝑛 = max{𝑛𝑥 , 𝑛𝑦}.
In Table 1, we compare the the prover and verifier running times

as well as the proof size of our convolution VE to the FFT-based

approach from zkCNN [29].

VEconv zkCNN

Prover tP O
(
𝑚2𝑐 (𝑛2

𝑦 + 𝑑)
)

O
(
𝑛2𝑐𝑑

)
Verifier tV O

(
log(𝑛2

𝑦𝑐)
)

O
(
log

2 (𝑛2𝑐𝑑)
)

Proof size |𝜋 | (6⌈log𝑚⌉ + 3⌈log 𝑐⌉ + 2) · 𝜆 O
(
log

2 (𝑛2𝑐𝑑)
)

Table 1: Comparison between VEconv and the convolution
proofs in zkCNN [29].

We observe that our approach is always more efficient in

communication complexity and verification time, while our prover

is more efficient asymptotically when𝑚2 ≤ 𝑑 , which is often the

case in practice (e.g., VGG16 presents 𝑚 = 3 and 𝑑 grows up to

512), and its running time is independent of 𝑑 when the term 𝑛2

𝑦𝑚
2

dominates in the sum. Additionally, in zkCNN, they need to either

compute the FFT matrix or outsource this to the prover, thereby

increasing proof size. We avoid all the complications of the

multiple sumchecks in our direct approach. We also note that their

FFT-sumcheck-based protocol can be easily expressed as a VE.

We note that, in many typical ML models, 𝑛 ≫ 𝑚,𝑐 in early

layers, and 𝑐 ≫ 𝑛 ≈𝑚 in ‘deep’ intermediate layers. Hence, even if

our approach does not outperform the prover time of the FFT-based

polynomial multiplication approach in all parameter regimes, it will

improve it for many parameter sets in intermediate layers. Based on

the characteristics of the layer, one could select the most efficient

VE for convolution.

0

50

100

150

200

250

P
ro

v
e
r

ti
m

e
 (

m
s)

d = 1

d = 32

d = 128

c=1 c=2
c=4

c=16

c=32

c=64

Figure 7: Prover time for varying number of channels 𝑐, 𝑑 and
fixed 𝑛 = 64 and𝑚 = 4.

6.2 Experimental evaluation
We implemented VEconv in Rust.

5
We use the arkworks library

[2] for implementing field arithmetic over the 256-bit prime field

from the bls12-381 curve, the same field used in [29]. We also

utilize several components of the arkworks sumcheck library that

implements the doubly efficient protocol in [43].

We carry out different benchmarks in a virtual machine running

Debian GNU/Linux with 8 cores Xeon-Gold-6154 at 3GHz and with

98 GB of RAM. Our implementation can be run using the natively

supported parallelisation in arkworks, but we run our experiments

on a single thread to facilitate comparison to previous work. All

timings correspond to the average over 10 executions.

Single-channel convolution. Our first set of benchmarks run a

single convolution with different input and kernel sizes. For small

kernels𝑚 = 4, our VE prover requires 1.3 ms for a 𝑛 = 32 input,

and 98 ms for 𝑛 = 256. In this parameter regime, our prover time is

5× faster than the FFT prover (and also the naive prover) in [29].

Our prover also outperforms [28] by two orders of magnitude. For

large convolution kernels, the prover in zkCNN remains faster.

Verification is very fast and scales logarithmically on the kernel

size, as expected. Verifying a moderate-size convolution such as

𝑛 = 256 (in fact, for any 𝑛) and𝑚 = 8 takes 0.157 ms, whereas large

kernels𝑚 = 128 require 0.362 ms.

Multiple channels. Our approach is optimized for multiple

convolution channels, as we show in Figure 7. We display our

results for a small fixed kernel𝑚 = 4 and input 𝑛 = 64, for 𝑐 up to

64 and 𝑑 = 1, 32, 128. As seen in the chart, the prover time is

essentially constant in 𝑑 since 𝑛2 · 𝑚2
dominates the sum. The

verifier time is also very small, ranging from 0.07 ms for 𝑐 = 1 to

0.210 ms for 𝑐 = 64, and also constant in 𝑑 .

We do not have concrete running times for multiple channels in

zkCNN, but we expect their prover time to increase linearly on 𝑐 · 𝑡 .
5
Our code is available at https://github.com/imdea-software/MSCProof

12

https://github.com/imdea-software/MSCProof

Modular Sumcheck Proofs with Applications to Machine Learning and Image Processing

Communication complexity. We also provide concrete figures

of the communication complexity (equivalently, the proof size of

the non-interactive protocol), which is deterministic for VEconv
(Proposition 5.1). For the single-channel experiments, the proof size

amounts to 0.64 KB for𝑚 = 8, and 1.4 KB for𝑚 = 128, for any input

size. This is a 8× improvement over zkCNN, which ranges from

5.6 KB to 8.4 KB for the same experiments. For the multi-channel

setting in Figure 7, the instance 𝑛 = 64,𝑚 = 8 and 𝑐 = 32 yields a

proof size of 1.12 KB for any 𝑑 .

Image Processing. We benchmark a convolution proof of a 8 × 8

kernel (such as blurring) with a RGB image (720×480) with the goal

of comparing to ZK-IMG [26], which already outperforms [32] by

several orders of magnitude. The comparison is only approximate

as their benchmarks are run on more powerful hardware than ours,

and image sizes are not identical.

In this regime, VEconv takes 3.3 s of proving time, 0.12 ms of

verification time and yields a proof size of 0.64 KB. In ZK-IMG, a

3× larger 1280 × 720 convolution input involves 78 s of proving

(ignoring key generation), 8.12 ms of verification, and 11 KB proof

size (a 20× increase).

For a 128 × 128 input, they report 2.7 s of proving time and 5.3

ms of verification on standard hardware. For the same size and a

8 × 8 kernel, our prover takes 110 ms (25× faster) and our verifier

0.117 ms.

Nevertheless, ZK-IMG implements a complete proof system,

while our approach requires an additional polynomial

commitment. We expect other simple transformations (cropping,

padding, partial censoring...) to present similar running times.

Pre-Processing in VEconv. As discussed in Sections 5.2 and 5.3.1,

a pre-processing reshaping step, which can often be embedded

into other steps such as activation layers, is required if VEconv is
used to prove a standalone convolution. In that case, the sumcheck

in Section 5.3.1 needs to be executed after VEconv. We note that

this step induces a minimal overhead as (1) the sumcheck involves

strictly less variables and rounds than VEconv, and (2) the prover

already has the fingerprints to the reshaped input. We empirically

evaluate this overhead in the VGG11 benchmark in Figure 8 as we

discuss below.

Polynomial Commitment Overhead. Apolynomial commitment is

used in the AoK described in Proposition 5.2 but not at the VE level.

The overhead induced by the PC depends on the chosen scheme

and affects the efficiency of our solution and prior work’s [29] in

the same way. In the case of zkCNN, sumchecks take roughly 2/3 of

the total prover time, whereas PCs take the remaining 1/3 (see [29],

Table 1). Our improvements in the information-theoretic protocol

significantly reduce the fraction taken by the sumchecks.

For completeness, we benchmark the multilinear KZG from

HyperPlonk [4] together with our VEconv. For a single-channel

convolution of 𝑛 = 256,𝑚 = 4, a PC opening takes 400 ms, whereas

the VE sumcheck prover takes 98 ms. The commit operation takes

191 ms. We remark that the PC opening cost gets further

amortized when more VEs are composed sequentially. In general,

the deeper the model is, the more significant the sumcheck

overhead becomes.

Commit
Conv1

 3x2242 Conv2

 64x1122Conv3

 128x562Conv4

 256x562Conv5

 256x282Conv6

 512x282Conv7

 512x142Conv8

 512x142 Open
0

100

200

300

400

500

600

700

800

Pr
ov

er
 ti

m
e

(m
s)

Reshape Sumcheck
Convolution Sumcheck
PC - HyperPlonk

Figure 8: Prover time for the convolution layers of a VGG11
network. The network presents 𝑐 × 𝑛2 convolution layers as
indicated in the x axis. All kernels are of size 3 × 3.

CNN Evaluation. We also benchmark the proof generation for

the convolution layers of a VGG11 neural network (without

activation and fully connected layers), that we summarize in

Figure 8. As shown in the figure, the overhead of the polynomial

commitment gets amortized across multiple layers. The figure also

shows the small overhead from the reshape sumcheck compared to

the convolution sumcheck. Finally, the empirical prover time for

an increasing number of channels (larger 𝑐, 𝑑) and decreasing

inputs (smaller 𝑛2
) remains similar, in agreement with the claimed

prover complexity.

6.3 Discussion
Our protocols achieve, overall, faster prover times, reduced

communication and faster verification times than existing

solutions. As in other works [26, 28, 29], we found memory usage

to be the main bottleneck, the reason being the dynamic

programming technique used by the prover to compute the

multilinear extensions. Yet, our approach allows for clearing the

memory after every sequential step, as opposed to solutions such

as [28] or [26] (built upon general-purpose proof systems). A

solution towards improving memory bottlenecks is to trade

memory usage for proving time by applying streaming algorithms

for multilinear extensions [12], which is an interesting direction

for future work.

ACKNOWLEDGMENTS
We are grateful to anonymous reviewers for insightful comments

and remarks that helped to improve this article. This work is

supported by the PICOCRYPT project that has received funding

from the European Research Council (ERC) under the European

Union’s Horizon 2020 research and innovation programme (Grant

agreement No. 101001283), partially supported by projects

PRODIGY (TED2021-132464B-I00) and ESPADA

(PID2022-142290OB-I00) funded by

MCIN/AEI/10.13039/501100011033/ and the European Union

13

D. Balbás, D. Fiore, M. González Vasco, D. Robissout, C. Soriente

NextGenerationEU / PRTR, partially funded by the European

Commission through the HORIZON-JU-SNS-2022 ACROSS project

with Grant Agreement number 101097122, partially funded by

Ministerio de Universidades (FPU21/00600) and MINECO Project

CREEME (PID2019-109379RB-I00).

REFERENCES
[1] Ramy E. Ali, Jinhyun So, and Amir Salman Avestimehr. 2020. On Polynomial

Approximations for Privacy-Preserving and Verifiable ReLU Networks. CoRR
abs/2011.05530 (2020). arXiv:2011.05530 https://arxiv.org/abs/2011.05530

[2] arkworks contributors. 2022. arkworks zkSNARK ecosystem. https://arkworks.rs

[3] Matteo Campanelli, Dario Fiore, and Anaïs Querol. 2019. LegoSNARK: Modular

Design and Composition of Succinct Zero-Knowledge Proofs. In ACM CCS 2019:
26th Conference on Computer and Communications Security, Lorenzo Cavallaro,

Johannes Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.). ACM Press, 2075–

2092. https://doi.org/10.1145/3319535.3339820

[4] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. 2023. HyperPlonk:

Plonk with Linear-Time Prover and High-Degree Custom Gates. In Advances in
Cryptology – EUROCRYPT 2023, Carmit Hazay and Martijn Stam (Eds.). Springer

Nature Switzerland, Cham, 499–530.

[5] Haixia Chen, Xinyi Huang, Jianting Ning, Futai Zhang, and Chao Lin. 2022. VILS:

A Verifiable Image Licensing System. IEEE Transactions on Information Forensics
and Security 17 (2022), 1420–1434. https://doi.org/10.1109/TIFS.2022.3162105

[6] Shuo Chen, Jung Hee Cheon, Dongwoo Kim, and Daejun Park. 2019. Verifiable

Computing for Approximate Computation. Cryptology ePrint Archive, Report

2019/762. https://eprint.iacr.org/2019/762.

[7] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John

Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cudnn: Efficient primitives

for deep learning. arXiv preprint arXiv:1410.0759 (2014).
[8] Alessandro Chiesa, Michael A. Forbes, and Nicholas Spooner. 2017. A Zero

Knowledge Sumcheck and its Applications. Cryptology ePrint Archive, Report

2017/305. https://eprint.iacr.org/2017/305.

[9] Alessandro Chiesa and Eran Tromer. 2010. Proof-Carrying Data and Hearsay

Arguments from Signature Cards. In Innovations in Computer Science - ICS 2010,
Tsinghua University, Beijing, China, January 5-7, 2010. Proceedings. 310–331.

[10] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. 2012. Practical

verified computation with streaming interactive proofs. In ITCS 2012: 3rd
Innovations in Theoretical Computer Science, Shafi Goldwasser (Ed.). Association

for Computing Machinery, 90–112. https://doi.org/10.1145/2090236.2090245

[11] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. 2012. Practical

Verified Computation with Streaming Interactive Proofs. In Proceedings of
the 3rd Innovations in Theoretical Computer Science Conference (Cambridge,

Massachusetts) (ITCS ’12). Association for Computing Machinery, New York, NY,

USA, 90–112. https://doi.org/10.1145/2090236.2090245

[12] Graham Cormode, Justin Thaler, and Ke Yi. 2011. Verifying Computations

with Streaming Interactive Proofs. Proc. VLDB Endow. 5, 1 (sep 2011), 25–36.

https://doi.org/10.14778/2047485.2047488

[13] Council of European Union. 2000. Council Directive 2000/43/EC of 29 June 2000

implementing the principle of equal treatment between persons irrespective of

racial or ethnic origin.

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32000L0043.

[14] Council of European Union. 2004. Council Directive 2004/113/EC of 13 December

2004 implementing the principle of equal treatment between men and women in

the access to and supply of goods and services.

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32004L0113.

[15] Vincent Dumoulin and Francesco Visin. 2016. A guide to convolution arithmetic

for deep learning. arXiv preprint arXiv:1603.07285 (2016).
[16] Liam Eagen, Dario Fiore, and Ariel Gabizon. 2022. cq: Cached quotients for fast

lookups. Cryptology ePrint Archive, Report 2022/1763. https://eprint.iacr.org/

2022/1763.

[17] Federal Office for Information Security Germany (BSI). 2022. Auditing machine

learning algorithms - A white paper for public auditors. https://www.hhi.

fraunhofer.de/fileadmin/Departments/AI/TechnologiesAndSolutions/2022-05-

23-whitepaper-tuev-bsi-hhi-towards-auditable-ai-systems.pdf.

[18] Boyuan Feng, Lianke Qin, Zhenfei Zhang, Yufei Ding, and Shumo Chu. 2021.

ZEN: An Optimizing Compiler for Verifiable, Zero-Knowledge Neural Network

Inferences. Cryptology ePrint Archive, Report 2021/087. https://ia.cr/2021/087.

[19] Amos Fiat and Adi Shamir. 1987. How to Prove Yourself: Practical Solutions to

Identification and Signature Problems. In Advances in Cryptology – CRYPTO’86
(Lecture Notes in Computer Science, Vol. 263), Andrew M. Odlyzko (Ed.). Springer,

Heidelberg, 186–194. https://doi.org/10.1007/3-540-47721-7_12

[20] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. 2008. Delegating

computation: interactive proofs for muggles. In 40th Annual ACM Symposium on
Theory of Computing, Richard E. Ladner and Cynthia Dwork (Eds.). ACM Press,

113–122. https://doi.org/10.1145/1374376.1374396

[21] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. 1985. The Knowledge

Complexity of Interactive Proof-Systems (Extended Abstract). In 17th Annual
ACM Symposium on Theory of Computing. ACM Press, 291–304. https://doi.org/

10.1145/22145.22178

[22] Alexander Golovnev, Jonathan Lee, Srinath Setty, Justin Thaler, and Riad S.

Wahby. 2021. Brakedown: Linear-time and post-quantum SNARKs for R1CS.

Cryptology ePrint Archive, Report 2021/1043. https://ia.cr/2021/1043.

[23] Justin Holmgren and Ron Rothblum. 2018. Delegating Computations with

(Almost) Minimal Time and Space Overhead. In 59th Annual Symposium on
Foundations of Computer Science, Mikkel Thorup (Ed.). IEEE Computer Society

Press, 124–135. https://doi.org/10.1109/FOCS.2018.00021

[24] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In International conference
on machine learning. PMLR, 448–456.

[25] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang,

Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018. Quantization

and training of neural networks for efficient integer-arithmetic-only inference.

In Proceedings of the IEEE conference on computer vision and pattern recognition.
2704–2713.

[26] Daniel Kang, Tatsunori Hashimoto, Ion Stoica, and Yi Sun. 2022. ZK-

IMG: Attested Images via Zero-Knowledge Proofs to Fight Disinformation.

arXiv:2211.04775 [cs.CR]

[27] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. 2010. Constant-Size

Commitments to Polynomials and Their Applications. In Advances in Cryptology
– ASIACRYPT 2010 (Lecture Notes in Computer Science, Vol. 6477), Masayuki Abe

(Ed.). Springer, Heidelberg, 177–194. https://doi.org/10.1007/978-3-642-17373-

8_11

[28] Seunghwa Lee, Hankyung Ko, Jihye Kim, and Hyunok Oh. 2020. vCNN: Verifiable

Convolutional Neural Network. Cryptology ePrint Archive, Report 2020/584.

https://eprint.iacr.org/2020/584.

[29] Tianyi Liu, Xiang Xie, and Yupeng Zhang. 2021. zkCNN: Zero Knowledge Proofs

for Convolutional Neural Network Predictions and Accuracy. In ACM CCS 2021:
28th Conference on Computer and Communications Security, Giovanni Vigna
and Elaine Shi (Eds.). ACM Press, 2968–2985. https://doi.org/10.1145/3460120.

3485379

[30] Tianyi Liu, Xiang Xie, and Yupeng Zhang. 2021. zkCNN: Zero knowledge proofs

for convolutional neural network predictions and accuracy. In Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications Security.
2968–2985.

[31] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. 1992. Algebraic

Methods for Interactive Proof Systems. J. ACM 39, 4 (oct 1992), 859–868. https:

//doi.org/10.1145/146585.146605

[32] Assa Naveh and Eran Tromer. 2016. PhotoProof: Cryptographic Image

Authentication for Any Set of Permissible Transformations. In 2016 IEEE
Symposium on Security and Privacy. IEEE Computer Society Press, 255–271.

https://doi.org/10.1109/SP.2016.23

[33] Jim Posen and Assimakis A. Kattis. 2022. Caulk+: Table-independent lookup

arguments. Cryptology ePrint Archive, Report 2022/957. https://eprint.iacr.org/

2022/957.

[34] scipr-lab. 2017. libsnark: a C++ library for zkSNARK proofs. https://github.com/

scipr-lab/libsnark.

[35] Srinath Setty. 2020. Spartan: Efficient and General-Purpose zkSNARKs Without

Trusted Setup. InAdvances in Cryptology – CRYPTO 2020, Part III (Lecture Notes in
Computer Science, Vol. 12172), Daniele Micciancio and Thomas Ristenpart (Eds.).

Springer, Heidelberg, 704–737. https://doi.org/10.1007/978-3-030-56877-1_25

[36] Eduardo Soria-Vazquez. 2022. Doubly Efficient Interactive Proofs over Infinite and

Non-commutative Rings. In TCC 2022: 20th Theory of Cryptography Conference,
Part I (Lecture Notes in Computer Science). Springer, Heidelberg, 497–525. https:

//doi.org/10.1007/978-3-031-22318-1_18

[37] Justin Thaler. 2013. Time-Optimal Interactive Proofs for Circuit Evaluation. In

Advances in Cryptology – CRYPTO 2013, Part II (Lecture Notes in Computer Science,
Vol. 8043), Ran Canetti and Juan A. Garay (Eds.). Springer, Heidelberg, 71–89.

https://doi.org/10.1007/978-3-642-40084-1_5

[38] the Supreme Audit Institutions of Finland, Germany, the Netherlands, Norway

and the UK. 2020. Towards Auditable AI Systems - From Principles to Practice.

https://www.auditingalgorithms.net/.

[39] Stanford University. [n. d.]. CS231: Convolutional Neural Networks for Pattern

Recognition. https://cs231n.github.io/convolutional-networks/#convert.

[40] Victor Vu, Srinath T. V. Setty, Andrew J. Blumberg, and Michael Walfish. 2013.

A Hybrid Architecture for Interactive Verifiable Computation. In 2013 IEEE
Symposium on Security and Privacy. IEEE Computer Society Press, 223–237.

https://doi.org/10.1109/SP.2013.48

[41] Riad S. Wahby, Ye Ji, Andrew J. Blumberg, abhi shelat, Justin Thaler, Michael

Walfish, and Thomas Wies. 2017. Full Accounting for Verifiable Outsourcing.

In ACM CCS 2017: 24th Conference on Computer and Communications Security,
Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.).

ACM Press, 2071–2086. https://doi.org/10.1145/3133956.3133984

14

https://arxiv.org/abs/2011.05530
https://arxiv.org/abs/2011.05530
https://arkworks.rs
https://doi.org/10.1145/3319535.3339820
https://doi.org/10.1109/TIFS.2022.3162105
https://eprint.iacr.org/2019/762
https://eprint.iacr.org/2017/305
https://doi.org/10.1145/2090236.2090245
https://doi.org/10.1145/2090236.2090245
https://doi.org/10.14778/2047485.2047488
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32000L0043
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32004L0113
https://eprint.iacr.org/2022/1763
https://eprint.iacr.org/2022/1763
https://www.hhi.fraunhofer.de/fileadmin/Departments/AI/TechnologiesAndSolutions/2022-05-23-whitepaper-tuev-bsi-hhi-towards-auditable-ai-systems.pdf
https://www.hhi.fraunhofer.de/fileadmin/Departments/AI/TechnologiesAndSolutions/2022-05-23-whitepaper-tuev-bsi-hhi-towards-auditable-ai-systems.pdf
https://www.hhi.fraunhofer.de/fileadmin/Departments/AI/TechnologiesAndSolutions/2022-05-23-whitepaper-tuev-bsi-hhi-towards-auditable-ai-systems.pdf
https://ia.cr/2021/087
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1145/1374376.1374396
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/22145.22178
https://ia.cr/2021/1043
https://doi.org/10.1109/FOCS.2018.00021
https://arxiv.org/abs/2211.04775
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://eprint.iacr.org/2020/584
https://doi.org/10.1145/3460120.3485379
https://doi.org/10.1145/3460120.3485379
https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/146585.146605
https://doi.org/10.1109/SP.2016.23
https://eprint.iacr.org/2022/957
https://eprint.iacr.org/2022/957
https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-031-22318-1_18
https://doi.org/10.1007/978-3-031-22318-1_18
https://doi.org/10.1007/978-3-642-40084-1_5
https://www.auditingalgorithms.net/
https://cs231n.github.io/convolutional-networks/#convert
https://doi.org/10.1109/SP.2013.48
https://doi.org/10.1145/3133956.3133984

Modular Sumcheck Proofs with Applications to Machine Learning and Image Processing

[42] Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael Walfish.

2018. Doubly-Efficient zkSNARKs Without Trusted Setup. In 2018 IEEE
Symposium on Security and Privacy. IEEE Computer Society Press, 926–943.

https://doi.org/10.1109/SP.2018.00060

[43] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and

Dawn Song. 2019. Libra: Succinct Zero-Knowledge Proofs with Optimal Prover

Computation. In Advances in Cryptology – CRYPTO 2019, Part III (Lecture Notes in
Computer Science, Vol. 11694), Alexandra Boldyreva and Daniele Micciancio (Eds.).

Springer, Heidelberg, 733–764. https://doi.org/10.1007/978-3-030-26954-8_24

[44] Tiancheng Xie, Yupeng Zhang, and Dawn Song. 2022. Orion: Zero Knowledge

Proof with Linear Prover Time. In Advances in Cryptology – CRYPTO 2022, Part IV
(Lecture Notes in Computer Science, Vol. 13510), Yevgeniy Dodis and Thomas

Shrimpton (Eds.). Springer, Heidelberg, 299–328. https://doi.org/10.1007/978-3-

031-15985-5_11

[45] Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich, Mary Maller, Anca

Nitulescu, and Mark Simkin. 2022. Caulk: Lookup Arguments in Sublinear

Time. In ACM CCS 2022: 29th Conference on Computer and Communications
Security, Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi (Eds.). ACM

Press, 3121–3134. https://doi.org/10.1145/3548606.3560646

[46] Arantxa Zapico, Ariel Gabizon, Dmitry Khovratovich, Mary Maller, and Carla

Ràfols. 2022. Baloo: Nearly Optimal Lookup Arguments. Cryptology ePrint

Archive, Report 2022/1565. https://eprint.iacr.org/2022/1565.

[47] zcash. 2022. halo2. https://zcash.github.io/halo2/.

[48] Jiaheng Zhang, Zhiyong Fang, Yupeng Zhang, and Dawn Song. 2020. Zero

Knowledge Proofs for Decision Tree Predictions and Accuracy. In ACM CCS
2020: 27th Conference on Computer and Communications Security, Jay Ligatti,

Xinming Ou, Jonathan Katz, and Giovanni Vigna (Eds.). ACM Press, 2039–2053.

https://doi.org/10.1145/3372297.3417278

[49] Jiaheng Zhang, Tianyi Liu, Weijie Wang, Yinuo Zhang, Dawn Song, Xiang

Xie, and Yupeng Zhang. 2021. Doubly Efficient Interactive Proofs for General

Arithmetic Circuits with Linear Prover Time. In ACM CCS 2021: 28th Conference
on Computer and Communications Security, Giovanni Vigna and Elaine Shi (Eds.).
ACM Press, 159–177. https://doi.org/10.1145/3460120.3484767

[50] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. 2020.

Transparent Polynomial Delegation and Its Applications to Zero Knowledge

Proof. In 2020 IEEE Symposium on Security and Privacy. IEEE Computer Society

Press, 859–876. https://doi.org/10.1109/SP40000.2020.00052

[51] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and

Charalampos Papamanthou. 2017. vSQL: Verifying Arbitrary SQL Queries over

Dynamic Outsourced Databases. In 2017 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, 863–880. https://doi.org/10.1109/SP.2017.43

[52] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and

Charalampos Papamanthou. 2018. vRAM: Faster Verifiable RAM with Program-

Independent Preprocessing. In 2018 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, 908–925. https://doi.org/10.1109/SP.2018.00013

A CRYPTOGRAPHIC PRIMITIVES
Definition A.1 (Commitments). A commitment scheme Com is a

tuple of algorithms (Setup,Com,Vf) such that

Setup(1𝜆) → ck takes the security parameter and outputs the

commitment key ck.
Com(ck, 𝑥) → (com, 𝑜) on input the commitment key ck and a

value 𝑥 , outputs a commitment com and an opening 𝑜 .

Vf (ck, com, 𝑥, 𝑜) → 𝑏 on input a commitment com, a value 𝑥 and

an opening 𝑜 , it outputs 1 (accept) or 0 (reject).

Correctness. ∀𝜆 ∈ N and any honestly generated commitment key

ck← Setup(1𝜆) and any input 𝑥 , if (com, 𝑜) ← Com(ck, 𝑥), then
Vf (ck, com, 𝑥, 𝑜) = 1.

Computational Binding. For every PPT adversary A, the

following probability is negligible

Pr


𝑥 ≠ 𝑥

∧Vf (ck, com, 𝑥, 𝑜) = 1

∧Vf (ck, com, 𝑥 ′, 𝑜 ′) = 1

:
ck← Setup(1𝜆)

(com, 𝑥, 𝑜, 𝑥 ′, 𝑜 ′) ← A(ck)


Statistical Hiding. For ck← Setup(1𝜆) and every pair of inputs

𝑥, 𝑥 ′, the following distributions are statistically close:

{com : (com, 𝑜) ← Com(ck, 𝑥)} ≈
{com′ : (com′, 𝑜 ′) ← Com(ck, 𝑥 ′)}.

The scheme is perfectly hiding if both distributions are identical.

Definition A.2 (Arguments of Knowledge). An argument of

knowledge AoK for an NP relation R is a tuple of algorithms

(Setup, Prove,Vf) such that:

Setup(1𝜆,R) → crs outputs a common reference string crs.
Prove(crs, 𝑥,𝑤) → 𝜋 on input crs, a statement 𝑥 and a witness𝑤

such that (𝑥,𝑤) ∈ R, it returns a proof 𝜋 .
Vf (crs, 𝑥, 𝜋) → 𝑏 given crs, a statement 𝑥 and a proof 𝜋 , it outputs

1 (accept) or 0 (reject).

Completeness. AoK is complete if for any 𝜆 ∈ N and (𝑥,𝑤) ∈
R it holds Pr[Vf(crs, 𝑥, Prove(crs, 𝑥,𝑤)) = 1] = 1 where crs ←
Setup(1𝜆,R).
Knowledge-soundness. For any PT adversary A there exists an

extractor Ext (taking the same input of A including the random

tape 𝜌) such that

Pr


Vf (crs, 𝑥, 𝜋) = 1

∧
(𝑥,𝑤) ∉ R

:

crs← Setup(1𝜆,R)
(𝑥, 𝜋) ← A(crs; 𝜌)
𝑤 ← Ext(crs; 𝜌)

 = negl(𝜆)

Zero-knowledge. AoK is computationally (resp. statistical,

perfect) zero-knowledge if there exists a simulator

Sim = (Sim0, Sim1) such that: (i) Sim0 (1𝜆,R) → (crs, td)
generates a crs that is computationally (resp. statistically, perfectly)

indistinguishable from that generated by Setup; (ii) for any

(𝑥,𝑤) ∈ R, and (crs, td) ← Sim0 (1𝜆,R), Sim1 (td, 𝑥) generates
proofs that are computationally (resp. statistically, perfectly)

indistinguishable from those generated by Prove(crs, 𝑥,𝑤).
Commit-and-Prove AoK. A commit-and-prove argument of

knowledge for a relation R and a commitment scheme Com is an

argument of knowledge for the NP relation RCom such that

((𝑥, com); (𝑢, 𝑜,𝑤)) ∈ RCom iff (𝑥, (𝑢,𝑤)) ∈ R and

Com.Vf (ck, com, 𝑢, 𝑜) = 1.

B CNN LAYERS
Activation. Activation functions are nonlinear functions applied

between layers. The most common activation layer is ReLU,

standing for Rectified Linear Unit, which applies the function

ReLU(𝑥) = max{0, 𝑥} to every value at a layer. Other activation

functions, such as sigmoids or hyperbolic tangents, are also

frequent.

Pooling. A𝑚 ×𝑚 pooling layer takes an 𝑛 × 𝑛 input matrix 𝑋 ,

partitions it naturally into sub-matrices of size𝑚 ×𝑚, and applies

a function over all values in the sub-matrix which yields a single

value (i.e., a function pool : F𝑚×𝑚 → F). The output has size

(𝑛/𝑚) × (𝑛/𝑚). The most common pooling functions are average

and max pooling, which average (resp. calculates the maximum

of) the values of the sub-matrix. Conversely, a𝑚 ×𝑚 depooling

layer takes an 𝑛 × 𝑛 input matrix 𝑋 and duplicates its values into a

𝑛𝑚 × 𝑛𝑚 output.

Fully connected. Fully connected layers (also known as dense

layers) are common in many types of neural networks. Let 𝑋 (𝑘) be
the input array on multiple channels arranged as a vector. Then,

𝑋 (𝑘+1) [𝑗] = ∑
𝑖𝑊
(𝑘) [𝑖, 𝑗] · 𝑋 (𝑘) [𝑖] + 𝒃 (𝑘) [𝑗], where 𝒃 is the bias

vector. Note that𝑊 and 𝒃 are trainable parameters.

15

https://doi.org/10.1109/SP.2018.00060
https://doi.org/10.1007/978-3-030-26954-8_24
https://doi.org/10.1007/978-3-031-15985-5_11
https://doi.org/10.1007/978-3-031-15985-5_11
https://doi.org/10.1145/3548606.3560646
https://eprint.iacr.org/2022/1565
https://zcash.github.io/halo2/
https://doi.org/10.1145/3372297.3417278
https://doi.org/10.1145/3460120.3484767
https://doi.org/10.1109/SP40000.2020.00052
https://doi.org/10.1109/SP.2017.43
https://doi.org/10.1109/SP.2018.00013

D. Balbás, D. Fiore, M. González Vasco, D. Robissout, C. Soriente

Batch normalization. Normalization layers apply the map

𝑥 ↦→ 𝛾
𝑥−𝜇√
𝜎+𝜖 to every value in the layer, where 𝛾, 𝛽 are trainable

parameters, 𝜖 is configurable, and 𝜇 and 𝜎 are the so-called moving

mean and variance, which vary on training but are fixed during

prediction [24]. From the perspective of verifiable computation,

one can look at batch normalization as a linear function,

𝑥 ↦→ 𝑎𝑥 + 𝑏 where 𝑎 = 𝛾/
√
𝜎 + 𝜖 and 𝑏 = 𝛽 − 𝛾𝜇/

√
𝜎 + 𝜖 .

C DEFERRED PROOFS
C.1 Proof of Proposition 3.4

Proof. For simplicity, we consider the single-input and

single-fingerprint case; the general case follows easily.

Completeness follows from the correctness of the VE and the

fingerprint. For soundness, let A be an adversarial prover that

makes the verifier accept for (𝑓 , 𝑥,𝑦∗) ∉ LF where 𝑓 (𝑥) = 𝑦 ≠ 𝑦∗.
We want to show that then one can use A to break either the

soundness of the fingerprint or the soundness of the verifiable

evaluation scheme.

We consider two events. 𝐸1 is the event that V accepts and 𝑐𝑦 =

𝑐∗𝑦 , where 𝑐𝑦 = H(𝑦, 𝑟𝑦) and 𝑐∗𝑦 = H(𝑦∗, 𝑟𝑦), and 𝐸2 is the event that

V accepts and 𝑐𝑦 ≠ 𝑐∗𝑦 . 𝐸1 and 𝐸2 are complimentary and clearly

Pr[A wins] = Pr[𝐸1] + Pr[𝐸2] .
If 𝐸1 occurs, then we have a collision on the output fingerprint

where 𝑟𝑦 ←$DY . By fingerprint soundness, Pr[𝐸1] ≤ Pr[𝑐𝑦 =

𝑐∗𝑦] = negl(𝜆).
If 𝐸2 occurs, it is easy to construct an adversary B that breaks

VE soundness. On input 𝑟𝑦 ←$DY , B runs the interactive proof in

Figure 1 using A as a prover and on randomness 𝑟𝑦 . Note that 𝑟𝑦
is sampled from the same distribution in the interactive proof and

in the VE security game. Then, B outputs the fingerprint 𝑐∗𝑥 output

by A after the interaction. Since the verifier accepts, we have that

𝑏 = 1 and that 𝑐𝑥 = H(𝑥, 𝑟𝑥). Hence,
Pr[𝐸2] = Pr[V→ 1 ∧ 𝑐𝑦 ≠ 𝑐∗𝑦]

= Pr[𝑏 = 1 ∧ H(𝑓 (𝑥), 𝑟𝑦) ≠ 𝑐∗𝑦 | 𝑐𝑥 = H(𝑥, 𝑟𝑥)]
= Pr[B wins VE game] = negl(𝜆).

□

C.2 Proof of Proposition 3.5
Proof. Let A be a successful adversary against VE. On input

𝒓𝑦 ←$DF ,A outputs ({𝑐∗
𝑦𝑖 , 𝑗
} 𝑗 , (𝒙, 𝒙̃), 𝑓) such that, for𝒚 = 𝑓 (𝒙, 𝒙̃),

then 𝑐∗
𝑦𝑖 , 𝑗

≠ H(𝑦𝑖 , 𝑟𝑦,𝑗) for some 𝑗 . We use the index 𝑗 to index the

collection of fingerprints independently from the index 𝑖 of the input

they refer to. Then, the verifier VE .V accepts in the interaction on

input ({𝑐∗
𝑦𝑖 , 𝑗
} 𝑗 , 𝒓𝑦, 𝑓).

We will show that in this caseA must break soundness of either

VE1 or VE2. First, let 𝒛 = 𝑓1 (𝒙) (following the notation in Figure

2) and 𝒚 = 𝑓2 (𝒛, 𝒙̃). Then, we can distinguish between two events

based on the behaviour of the adversary. Let 𝐸1 be the event that

𝑐∗
𝑧𝑖 , 𝑗
′ ≠ H(𝑧𝑖 , 𝑟𝑧,𝑗 ′) for some 𝑗 ′, and let 𝐸2 be the event that 𝑐

∗
𝑧𝑖 , 𝑗

=

H(𝑧𝑖 , 𝑟𝑧,𝑗) for every 𝑗 . Note that it is possible to determine which

event occurs since the protocol is public-coin and so all honest

fingerprints can be recomputed in polynomial time.

If 𝐸1 occurs, then A breaks soundness of VE1 as the output

fingerprint 𝑐∗
𝑧𝑖 , 𝑗
′ does not match its honest counterpart, while the

input fingerprints are honest by assumption. If 𝐸2 occurs, then

every 𝑐∗
𝑧𝑖 , 𝑗

is honest. As these are the input fingerprints to VE2, it
follows that A must break soundness of VE2. □

D FROM VE TO ARGUMENT OF KNOWLEDGE
VE schemes can be easily leveraged to construct cryptographic

arguments (of knowledge) for verifiable computation by using

cryptographic primitives. The building blocks that we require for

this construction are

• a commitment scheme Com B (Setup,Com,Open,Vf),
• an argument of knowledge AoKH B (Setup, Prove,Vf) for

the relation RH = {c𝑥 , com𝑥 , 𝑟𝑥 ; 𝒙, 𝑜𝑥) :

Com.Vf(ck, com𝑥 , 𝒙, 𝑜𝑥) = 1 ∧ c𝑥 = H(𝒙, 𝑟𝑥)}, where
ck← Com.Setup(1𝜆),

• an AoKCom for the "proof of knowledge" relation "I know

the 𝒙 committed in com𝑥 " given byRPoK = {(com𝑥 ; 𝒙, 𝑜𝑥) :

Com.Vf(ck, com𝑥 , 𝒙, 𝑜𝑥)}.
• and a VE scheme for a family of functions F .

In this section, we show how to use a VE to build an interactive

argument of knowledge Π B (Setup, P,V) for the relation
RΠ = {(𝑓 , com𝑥 ,𝒚; 𝒙, 𝑜𝑥) : 𝑓 ∈ F ∧ 𝑓 (𝒙) = 𝒚

∧ Com.Vf (ck, com𝑥 , 𝒙, 𝑜𝑥)}
where 𝑜𝑥 is the opening for the committed 𝒙 .

We describe our construction, which is a generalization of the

construction in [51], in Figure 9.

Proposition D.1. Π B (Setup, P,V) is an interactive argument
of knowledge for the relation RΠ .

Proof. We have to show that for any PPT proverA there exists

an extractor Ext that, given access toA’s input and random tape as

well as the entire transcript 𝑡𝑟 of an interaction ⟨A,Π.V⟩(crs, crs′)
(which includes A’s choice of the statement (𝑓 , com𝑥 ,𝒚∗)), can
extract a witness𝑤 = (𝒙, 𝑜𝑥) such that

Pr[⟨A,Π.V⟩ → 1 ∧ ((𝑓 , com𝑥 ,𝒚
∗), (𝒙, 𝑜𝑥)) ∉ RΠ] = negl(𝜆)

We proceed as follows.

First, for any adversary A we can build the following two

adversaries A1 and A2. A1 is an adversary against AoKCom that,

on input crs′ and auxiliary input consisting of crs and a random

tape 𝜌A , simply runs A(crs, crs′; 𝜌A) until it outputs the first

message 𝜋1, and then returns 𝜋1.A2 is an adversary against AoKH
that, on input crs and auxiliary input consisting of crs′, random
tape 𝜌A , and a transcript 𝑡𝑟V of random public coins for an

execution of VE .V, runs A(crs, crs′; 𝜌A) until the end so as to

obtain 𝜋2, and then it outputs 𝜋2.

Second, by applying the knowledge-soundness of AoKCom and

AoKH we obtain that there exist corresponding extractors

Ext1, Ext2 that return (𝒙 ′, 𝑜 ′𝑥) and (𝒙 ′′, 𝑜 ′′𝑥) respectively. Therefore,
we construct the extractor Ext as the algorithm that, on input

(crs, crs′, 𝜌A , 𝑡𝑟V), runs (𝒙 ′, 𝑜 ′𝑥) ← Ext1 (crs′; (crs, 𝜌A)), and
(𝒙 ′′, 𝑜 ′′𝑥) ← Ext2 (crs; (crs′, 𝜌A , 𝑡𝑟V)), and returns (𝒙 ′, 𝑜 ′𝑥).

Third, we argue that the probability that the verifier accepts and

the witness returned by Ext is wrong is negligible. To this end, let

us define the following events:

16

Modular Sumcheck Proofs with Applications to Machine Learning and Image Processing

Π.Setup(1𝜆, ck):

22 crs← AoKH .Setup(1𝜆, (ck,RH))
23 crs′ ← AoKCom .Setup(1𝜆, (ck,RCom))
24 return (crs, crs′).

Π.P((crs, crs′), (𝑓 , com𝑥 ,𝒚; 𝒙, 𝑜𝑥)):

25 𝜋1 ← AoKCom .Prove(crs′, (com𝑥 ; 𝒙, 𝑜𝑥))
26 Send 𝜋1 to V
27 Get 𝑟𝑦 ←$DF from V
28 𝑐𝒚 ← H(𝒚, 𝑟𝑦)
29 Run (𝑐𝒙 , 𝑟𝑥) ← VE .P(𝒙, 𝑓 , 𝑐𝒚 , 𝑟𝑦) interactively with V.
30 𝜋2 ← AoKH .Prove(crs, (𝑐𝒙 , com𝑥 , 𝑟𝑥 ; 𝒙, 𝑜𝑥))
31 Send 𝜋2 to V

Π.V((crs, crs′), (𝑓 , com𝑥 ,𝒚)):

32 Get 𝜋1 from P
33 Send 𝑟𝑦 ←$DF to P and compute 𝑐𝒚 ← H(𝒚, 𝑟𝑦)
34 𝑟𝑥 ←$DX
35 Run 𝑏0 ← VE .V(𝑟𝑥 , 𝑓 , 𝑐𝒚 , 𝑟𝑦) interactively with P.
36 Get 𝜋2 from P
37 𝑏1 ← AoKCom .Vf (crs′, com𝑥 , 𝜋1)
38 𝑏2 ← AoKH .Vf (crs, (𝑐𝒙 , com𝑥 , 𝑟𝑥), 𝜋2)
39 return 𝑏0 ∧ 𝑏1 ∧ 𝑏2

Figure 9: Construction of an interactive argument of
knowledge Π for the relation RΠ from a commitment scheme
Com such that ck← Com.Setup(1𝜆), arguments of knowledge
AoKCom for RPoK and AoKH for RH, and a VE scheme for F .

• For 𝑖 = 1, 2, let bad𝑖 be the event that Ext𝑖 outputs an invalid
witness for 𝜋𝑖 and corresponding commitment c𝑥 .
• Let coll be the event that both (𝒙 ′, 𝑜 ′𝑥) and (𝒙 ′′, 𝑜 ′′𝑥) are

valid openings of c𝑥 , but 𝒙 ′ ≠ 𝒙 ′′.
• Let bad𝑦 be the event that 𝒚∗ ≠ 𝑓 (𝒙 ′).

Let us define some shorthands for relevant events in the execution

of Ext. Let Ev B acc ∧ badExt where acc denotes the event that the
AoK verifier accepts, “⟨A,Π.V⟩ → 1”, badExt is the event

“((𝑓 , com𝑥 ,𝒚∗), (𝒙 ′, 𝑜 ′𝑥)) ∉ RΠ”, and bad B bad1 ∧ bad2. Note that

badExt B (𝑓 (𝒙 ′) ≠ 𝒚∗) ∨ Com.Vf (ck, com𝑥 , 𝒙 ′, 𝑜 ′𝑥) = 0.

Then it holds

Pr[Ev] ≤
2∑︁

𝑖=1

Pr[Ev ∧ bad𝑖] + Pr[Ev ∧ bad]

≤ negl(𝜆) + Pr[Ev ∧ bad ∧ coll] + Pr[Ev ∧ bad ∧ coll]
≤ negl(𝜆) + Pr[Ev ∧ bad ∧ coll]

where the first inequality follows by applying a union bound, the

second one by the knowledge soundness of AoKCom and AoKH,
and the third one follows by the computational binding of the

commitment scheme. Next, we show that Pr[Ev ∧ bad ∧ coll] is
negligible under the statistical soundness of the fingerprinting

scheme and of the VE scheme. To this end, we partition over the

event 𝑐𝒚 = H(𝒚, 𝑟𝑦) = H(𝑓 (𝒙 ′), 𝑟𝑦), i.e.,

Pr[Ev ∧ bad ∧ coll] ≤ Pr[H(𝒚, 𝑟𝑦) = H(𝑓 (𝒙 ′), 𝑟𝑦)]
+ Pr[Ev ∧ bad ∧ coll ∧ 𝑐𝒚 ≠ H(𝑓 (𝒙 ′), 𝑟𝑦)]

Since 𝒙 ′ is extracted before the random choice of 𝑟𝑦 we obtain that

Pr[H(𝒚, 𝑟𝑦) = H(𝑓 (𝒙 ′), 𝑟𝑦)] = negl(𝜆) by the soundness of the

fingerprinting scheme.

Since acc includes the event 𝑏0 = 1 and by simplifying the events

in ‘Ev ∧ bad ∧ coll’, we have
Pr[Ev ∧ bad ∧ coll ∧ 𝑐𝒚 ≠ H(𝑓 (𝒙 ′), 𝑟𝑦)]

≤ Pr

[
𝑏0 ∧ 𝑐𝒚 ≠ H(𝑓 (𝒙 ′), 𝑟𝑦) | 𝑐𝒙 = H(𝒙 ′, 𝑟𝑥) ∧ 𝑓 (𝒙 ′) ≠ 𝒚′

]
= 𝜖

Consider an adversaryA and its corresponding Ext shown above
such that the above 𝜖 is non-negligible. Then we can build a VE

adversary B that breaks soundness with probability 𝜖 as follows.

Recall that B(𝑟𝑦) breaks VE soundness if, before the interaction, it

outputs a fingerprint 𝑐𝒚 such that 𝑐𝒚 ≠ H(𝑓 (𝒙 ′), 𝑟𝑦).
(1) B(𝑟𝑦), on input a random challenge 𝑟𝑦 , honestly generates

crs, crs′ and a suitable random tape 𝜌A , runs

A(crs, crs′; 𝜌A) until line 26 to obtain (𝑓 , com𝑥 ,𝒚) and
the proof 𝜋1.

(2) Runs the extractors (𝒙 ′, 𝑜 ′𝑥) ← Ext1 (crs′; (crs, 𝜌A)).
(3) Compute 𝑐𝒚 = H(𝒚, 𝑟𝑦) and outputs (𝑐𝒚 , 𝒙 ′, 𝑓).
(4) B sends 𝑟𝑦 to A and then interacts with VE .V in its

soundness game on common input (𝑐𝒚 , 𝑟𝑦, 𝑓), by

forwarding all the messages from VE .V to A. Namely, B
runs (𝑐𝒙 , 𝑟𝑥 ;𝑏0) ← ⟨A,VE .V⟩ and then executes the last

step of A to obtain 𝜋2. Let 𝑡𝑟V be the transcript of V’s
coins in this interaction (including 𝑟𝑦 and VE .V’s coins).

(5) Runs the extractor (𝒙 ′′, 𝑜 ′′𝑥) ← Ext2 (crs; (crs′, 𝜌A , 𝑡𝑟V)).
(6) Aborts if either any of the events {bad1, bad2, coll} occurs.

Otherwise, returns (𝑐𝒙 , 𝑟𝑥)
As one can see, if A and Ext are such that the above event occurs

with probability 𝜖 , then B wins in the VE soundness experiment

with the same probability 𝜖 .

□

The protocol Π described above is a public-coin interactive

protocol that can be easily compiled into a non-interactive

argument. As usual in the literature, security is argued in the

random oracle model, via the Fiat-Shamir heuristic [19]. The

compilation into a ZK-AoK was discussed in Section D. We omit

the full details in this paper.

17

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Additional Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Cryptographic Primitives
	2.3 Proof Systems

	3 Composition Framework for Interactive Proofs
	3.1 Verifiable Evaluation Schemes on Fingerprinted Data
	3.2 Composition of VEs
	3.3 From VEs to Arguments of Knowledge

	4 Verifiable Evaluation for Multilinear Polynomials
	4.1 VE for GKR layers
	4.2 VE for Many-to-One Reductions
	4.3 Efficient Matrix Multiplication

	5 Verifiable Evaluation for Machine Learning
	5.1 Preliminaries
	5.2 Our VE for Convolution
	5.3 Neural Network Layers
	5.4 Neural Networks
	5.5 Proof Batching
	5.6 Verifiable Recurrent Neural Networks
	5.7 Image Processing

	6 Evaluation
	6.1 Theoretical comparison
	6.2 Experimental evaluation
	6.3 Discussion

	Acknowledgments
	References
	A Cryptographic Primitives
	B CNN layers
	C Deferred Proofs
	C.1 Proof of Proposition 3.4
	C.2 Proof of Proposition 3.5

	D From VE to Argument of Knowledge

