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Abstract—In the past decade, blockchains have seen various
financial and technological innovations, with cryptocurrencies
reaching a market cap of over 1 trillion dollars. However,
scalability is one of the key issues hindering the deployment of
blockchains in many applications. To improve the throughput
of the transactions, zkRollups and zkEVM techniques using
the cryptographic primitive of zero-knowledge proofs (ZKPs)
have been proposed and many companies are adopting these
technologies in the layer-2 solutions. However, in these tech-
nologies, the proof generation of the ZKP is the bottleneck and
the companies have to deploy powerful machines with TBs of
memory to batch a large number of transactions in a ZKP.

In this work, we improve the scalability of these techniques
by proposing new schemes of fully distributed ZKPs. Our
schemes can improve the efficiency and the scalability of ZKPs
using multiple machines, while the communication among the
machines is minimal. With our schemes, the ZKP generation
can be distributed to multiple participants in a model similar
to the mining pools. Our protocols are based on Plonk, an
efficient zero-knowledge proof system with a universal trusted
setup. The first protocol is for data-parallel circuits. For
a computation of M sub-circuits of size T each, using M

machines, the prover time is O(T log T + M logM), while
the prover time of the original Plonk on a single machine
is O(MT log(MT )). Our protocol incurs only O(1) commu-
nication per machine, and the proof size and verifier time are
both O(1), the same as the original Plonk. Moreover, we show
that with minor modifications, our second protocol can support
general circuits with arbitrary connections while preserving the
same proving, verifying, and communication complexity. The
technique is general and may be of independent interest for
other applications of ZKP.

We implement Pianist (Plonk vIA uNlimited dISTribu-
tion), a fully distributed ZKP system using our protocols.
Pianist can generate the proof for 8192 transactions in 313

seconds on 64 machines. This improves the scalability of the
Plonk scheme by 64×. The communication per machine is only
2.1 KB, regardless of the number of machines and the size of
the circuit. The proof size is 2.2 KB and the verifier time is 3.5
ms. We further show that Pianist has similar improvements
for general circuits. On a randomly generated circuit with 225

gates, it only takes 5 s to generate the proof using 32 machines,
24.2× faster than Plonk on a single machine.

1. Introduction

Blockchain technology has paved the way for inno-
vative services such as decentralized finance, NFTs, and
GameFi. The cryptocurrency market has experienced signif-
icant growth, surpassing 1 trillion USD in value since Bit-
coin’s inception 13 years ago [4]. Techniques like zkRollups
and zkEVM have been proposed to boost blockchain effi-
ciency and bridge the transaction throughput gap between
digital and traditional scenarios. Implementing zkRollups
could potentially increase transaction throughput by over
100 times, as estimated by Vitalik Buterin [1]. Numer-
ous companies have incorporated these techniques into
their products, including zkSync [11], Starkware [10], Her-
mez [7], Aztec [2], Scroll [9], and others.

zkRollups and zkEVM rely on zero-knowledge proofs
(ZKPs), a cryptographic primitive that allows a prover
to convince a verifier the correctness of computations.
More specifically, they use Zero-Knowledge Succinct Non-
interactive Argument of Knowledge (ZK-SNARK) systems,
which ensures that the proof size is significantly smaller
than the size of computation and enables faster validation.
By utilizing ZKPs, a single server can validate multiple
transactions, compute state transitions, and generate a proof
that is posted on the blockchain. Instead of re-executing
all transactions, nodes can verify transactions and smart
contracts by checking the proof and updating their status.
This approach greatly increases the transaction throughput
of the blockchain.

However, the proof generation remains a significant
bottleneck for existing ZKP schemes when applied to large-
scale statements such as zkRollups and zkEVM. For in-
stance, our experiments show that the Plonk system [31], a
widely-used ZKP protocol in the industry, can only scale to a
circuit with 225 gates on a machine with 200 GB of memory.
As a result, companies like Starkware [10] and Scroll [9]
must deploy powerful clusters with terabytes of memory to
generate proofs for zkRollups and zkEVM. In this paper,
we tackle this issue by proposing fully distributed ZKP
schemes that enhance both efficiency and scalability through
distributed proof generation across multiple machines. Cru-
cially, our schemes require minimal communication among
machines, with each machine only exchanging a constant
number of values with the master machine. This approach
allows us to distribute ZKP generation in zkRollups and



zkEVM among multiple participants, in a similar model to
existing mining pools. More transactions can be batched into
a single ZKP within a fixed period, without necessitating
participants to stay online and communicate with each other
with high overhead. Participants can potentially share the
reward for generating the ZKP, akin to miners in current
proof-of-work blockchains. Furthermore, our scheme can be
generalized to create proofs for arbitrary general circuits,
leading us to the name “fully distributed ZKPs”.

Our distributed schemes are built upon Plonk [31].
Instead of using univariate polynomials to represent the
constraints of a computation, we devise a protocol based
on a bivariate constraint system. First, we claim that this
protocol can cater to data-parallel circuits, allowing each
machine to generate the witness for its corresponding sub-
circuit. Second, we further generalize it to compute proofs
for general circuits with aribitrary connections, assuming the
witness has already been distributed among the machines. In
both cases, our schemes demonstrate that the efficiency and
scalability can be improved by a factor of M using M ma-
chines, the proof size remains O(1), and the communication
complexity per machine is only O(1).

Our contributions. We have the following contributions:

• We propose two fully distributed ZKP protocols for data-
parallel circuits and general circuits, respectively. To con-
struct the schemes, we first propose a distributed poly-
nomial interactive oracle proof (polynomial IOP) and
then combine it with a polynomial commitment scheme
(PCS) that is distributively computable as well. The
polynomial IOP is a bivariate variant of Plonk’s [31]
constraint system. To “compile” both IOP schemes by
polynomial commitments, we use the bivariate variant of
the KZG [41] scheme and demonstrate that it is distribu-
tively computable. The use of the Lagrange polynomial
in our scheme is inspired by a sub-scheme in Caulk [49].
The techniques can be used to accelerate any ZKP proof
generations based on Plonk, and may be of independent
interest to other ZKP applications beyond zkRollups and
zkEVM.

• We further show that our protocols are robust in the
presence of malicious machines. We formalize the notion
as Robust Collaborative Proving Scheme (RCPS), for the
collaborative generation of proofs among sub-provers in
a malicious environment. In this setting, the master node
is able to verify partial proofs and messages received
from other machines before aggregating them to compute
the final proof. We show that our protocols are robust
under this definition with an additional step of verification.
This property is crucial for the applications of distributed
zkRollups and zkEVM to exclude malicious participants
without ruining the distributed proof generation.

• We implement the fully distributed ZKP system, Pianist,
for both data-parallel and general circuits. For the data-
parallel version, we report experimental results for the
blockchain application of zkRollups. Utilizing rollup cir-
cuits generated by the Circom compiler [3], we show that
Pianist can scale to 8192 transactions on 64 machines

Scheme Pi time Comm. |π| & V time Robust
DIZK [46] O(T log2 T ) O(N ) O(1) ✗

deVirgo [48] O(T log T ) O(N ) O(log2 N) ✗
Pianist O(T log T ) O(M ) O(1) ✓

TABLE 1: Comparisons of our schemes to existing dis-
tributed ZKP protocols given M distributed machines on the
circuit with M sub-circuits and total N gates, where each
sub-circuit has T = N

M gates. Pi time denotes the prover
time per machine, Comm. denotes the total communication
among machines, |π| denotes the proof size, and V time
denotes the verifier time.

with a prover time of 313 seconds. In comparison, the
original Plonk scheme can only scale to 32 transactions
with a prover time of 95 seconds on a single machine. The
communication between each machine and the master ma-
chine is only 2144 bytes, and the proof size is 2208 bytes.
We observe similar improvements for general circuits. On
a circuit of size 225, it only takes 5s to generate the proof
using 32 machines, which is 24.2× faster than Plonk on
a single machine, with 2336 Bytes communication and
2816 Bytes proof size.

Organization of the paper. We review the related work
in Section 1.1 and present the preliminaries in Section 2.
To explain our protocols, we first introduce our distributed
polynomial IOP schemes in Section 3 for data-parallel cir-
cuits and general circuits. Then in Section 4, we present
a bivariate variant of the polynomial commitment in [35],
[41] to compile our polynomial IOP schemes to SNARKs.
In Section 5, we formalize the notion of robust collaborative
proving scheme (RCPS) and show that our scheme is able to
detect malicious machines. We showcase the performance of
our system in Section 6, and present additional discussions
in Section 7.

1.1. Related works

Zero-knowledge proofs (ZKP) were first introduced by
Goldwasser, Micali, and Rackoff in their seminal paper [32].
Driven by real-world applications such as blockchains [16],
[36], [48], there has been a rapid development of efficient
zkSNARK systems in recent years [8], [13], [15], [17],
[24], [26], [31], [33], [42], [44], [45], [47], [50], [51], [53].
Despite such progress, it remains challenging to scale ZKP
protocols to large statements due to their high overhead on
the prover running time and memory usage.

Distributed ZKPs. To scale existing ZKP protocols to
large-scale circuits, distributed algorithms provide a promis-
ing direction. Wu et al. proposed the first distributed zero-
knowledge proof protocol called DIZK in [46]. DIZK scales
the pairing-based zkSNARK in [33] to handle circuits that
are 100 times larger on 128 machines compared to a single
machine. However, DIZK incurs a high communication cost
that is linear in the total size of the circuit among different
machines because the scheme runs a distributed number the-
oretic transformation (NTT) algorithm among the machines



using the Map-Reduce framework. Additionally, the recent
work of zkBridge [48] proposed deVirgo, a distributed ZKP
protocol based on the ZKP scheme in [51], to build bridges
between two blockchains using ZKPs. The protocol achieves
linear improvement on both the prover time and scalability
in the number of machines. However, deVirgo also incurs
a linear communication cost among the machines, and the
proof size grows with the number of machines. This seems
inevitable due to the use of the FRI protocol in [14] with
Merkle trees [40]. By contrast, our schemes offer optimal
linear scalability in prover time and minimal communication
among distributed machines simultaneously. We provide a
comparison in Table 1.

PCD and IVC Proof-Carrying Data (PCD [19], [28]) is a
cryptographic technique that breaks down computation into
a sequence of steps. In each step, the prover convinces the
verifier not only of the current step’s correctness but also
of all previous steps. It is an alternative solution for data-
parallel circuits when memory is limited. There are gener-
ally two ways to achieve PCD: one is from succinct verifi-
cation, and the other is from accumulation. In the succinct
verification approach, for each step, the prover generates
a proof for the current step computation and verification
for the proof generated from the previous step, as seen in
[18], [19], [27], etc. The accumulation approach postpones
and accumulates the verification of SNARK proofs (or some
expensive part of it) at each recursion step and proves it all at
once at the last step, as demonstrated in [6], [20], [25], [37],
[38], etc. Although there is no direct correspondence for
general circuits, some of these techniques, including but not
limited to [37], [38], claim to achieve Incremental Verifiable
Computation (IVC). IVC focuses on dividing long-running
computations into stages that can be verified incrementally.
For instance, Nova [38] supports proof generation when the
computation involves a nondeterministic function f and the
result of fn(z0). These techniques are widely employed in
various applications, however, we identify several drawbacks
when compared to our proposed solution. See details in
Section 7.

Distributed computation from proof aggregation Similar
to our approach, aPlonk [12] is a distributed solution based
on Plonk that requires prover nodes to share the same Fiat-
Shamir randomness, necessitating synchronization several
times during the proving process. In their scheme, they
propose a multi-polynomial commitment to combine parties’
polynomial commitments and attest to the batch opening us-
ing a generalized Inner-Product Argument (IPA) from [23].
Additionally, they delegate the verification of the constraint
system through all evaluations to the prover. We also include
the discussion for their protocol in Section 7.

2. Preliminaries

Our construction follows the framework proposed in
[21] and achieves SNARK by first compiling a public-
coin Polynomial IOP into a doubly-efficient public-coin
interactive argument of knowledge using a polynomial com-

mitment scheme. Subsequently, the non-interactive property
is achieved through the Fiat-Shamir transform. We present
the notations and corresponding definitions below

2.1. Notations

In our distributed setting, the size of the entire circuit
is N , and there are M machines (or users acting as sub-
provers) participating in this protocol. Consequently, each
party is responsible for generating a proof for a sub-circuit
of size T = N

M .
We use bivariate polynomials to help construct the con-

straint system in the scheme. In our constraint system,
for the i-th party, it holds its local witness vector a⃗i =
(ai,0, ai,1, . . . , ai,T−1). We can transform this witness vector
into a univariate polynomial ai(X) =

∑T−1
j=0 ai,jLj(X),

where Lj(X) is the Lagrange polynomial defined by the
T -th roots of unity, with the close-form Lj(X) =

ωj
X

T ·
XT−1

X−ωj
X

. Furthermore, we aggregate the witness polynomial
from all parties as a bivariate polynomial A(Y,X) =∑M−1

i=0 ai(X)Ri(Y ), where Ri(Y ) is also the Lagrange
polynomial defined by the M -th roots of unity, with the
close-form Ri(Y ) =

ωi
Y

M ·
Y M−1
Y−ωi

Y

Unless specifically stated, for polynomials, we use low-
ercase letters such as a, b, c to denote the univariate polyno-
mial storing local information, and uppercase letters A,B,C
to denote the bivariate polynomial aggregating information
throughout the entire circuit. In addition, we use lowercase
letters x, y to denote a specific assignment or evaluation
for the polynomial, and uppercase letters X,Y to denote
unassigned variables.

2.2. Interactive Argument

Definition 1 (Interactive Argument). We say that ARG =
(G,P,V) is an interactive argument of knowledge for a
relation R if it satisfies the following completeness and
knowledge properties.
• Completeness: For every adversary A

Pr

[
(x,w) ̸∈ R or pp← G(1λ)

⟨P(pp,x,w),V(pp,x)⟩ = 1 : (x,w)← A(pp)

]
= 1

• Witness-extended emulation: ARG has witness-extended
emulation with knowledge error κ if there exists an ex-
pected polynomial-time algorithm E such that for every
polynomial-size adversary A it holds that∣∣∣∣∣∣∣Pr

 pp← G(1λ)
A(aux, tr) = 1 : (x, aux)← A(pp)

tr← ⟨A(aux),V(pp,x)⟩


− Pr

 A(aux, tr) = 1 pp← G(1λ)
and if tr is accepting : (x, aux)← A(pp)

then (x,w) ∈ R (tr,w)← EA(aux)(pp,x)


∣∣∣∣∣∣∣ ≤ κ(λ)

Above E has oracle access to (the next-message functions
of) A(aux).



If the interactive argument of knowledge protocol ARG
is public-coin, is has been shown that by the Fiat-Shamir
transformation [30], we can derive a non-interactive argu-
ment of knowledge from ARG. If the scheme further satisfies
the following property:
• Succinctness. The proof size is |π| = poly(λ, log |C|) and

the verification time is poly(λ, |x|, log |C|),
then it is a Succinct Non-interactive Argument of Knowledge
(SNARK).

For the applications of zkRollups and zkEVM, we only
need a SNARK that is complete, sound, and succinct. Our
constructions can be made zero-knowledge via known trans-
formations with random masks and we omit the details in
this paper.

2.3. Polynomial Interactive Oracle Proof

Definition 2 (Public-coin Polynomial Interactive Oracle
Proof [21]). Let R be a binary relation and F be a finite
field. Let X = (X1, . . . , Xµ) be a vector of µ indetermi-
nates. A (µ, d) Polynomial IOP for R over F with soundness
error ϵ and knowledge error δ consists of two stateful PPT
algorithms, the prover P , and the verifier V , that satisfy the
following requirements:
• Protocol syntax. For each i-th round there is a prover

state stPi and a verifier state stVi . For any common
input x and R witness w, at round 0 the states are
stP0 = (x,w) and stV0 = x. In the i-th round (starting
at i = 1) the prover outputs a single proof oracle
P(stPi−1) → πi, which is a polynomial πi(X) ∈ F[X].
The verifier deterministically computes the query matrix
i ∈ Fµ×ℓ from its state and a string of public ran-
dom bits coinsi ← {0, 1}∗, i.e, V(stVi−1, coinsi) → Σi.
This query matrix is interpreted as a list of ℓ points
in Fµ denoted (σi,1, . . . , σi,ℓ). The oracle πi is queried
on all points in this list, producing the response vec-
tor (πi(σi,1), . . . , πℓ(σi,ℓ)) = ai ∈ F1×ℓ. The updated
prover state is stPi ← (stPi−1),Σi) and verifier state is
stVi ← (stVi−1,Σi, ai). Finally, V(stVt ) returns 1 or 0.
(Extensions: multiple and prior round oracles; various
arity. The syntax can be naturally extended such that
multiple oracles are sent in the i-th round; that the verifier
may query oracles sent in the i-th round or earlier; or that
some of the oracles are polynomials in fewer variables
than µ.)

Furthermore, a Polynomial IOP is stateless if for each
i ∈ [t],V(stVi−1, coinsi) = V(i, coinsi).

2.4. Polynomial Commitment Scheme (PCS)

Definition 3 (Polynomial commitment scheme (PCS)).
A Polynomial commitment scheme Γ is a tuple Γ =
(KeyGen,Commit,Open,Verify) of PPT algorithms where:
• KeyGen(1λ,F)→ pp generates public parameters pp;
• Commit(f, pp) → comf takes a secret polynomial f(X)

where X = (X0, . . . , Xµ−1) and outputs a public com-
mitment comf ;

• Open(comf ,x, pp) → (z, πf ) evaluates the polynomial
y = f(X) on a point x and generate a proof πf ;

• Verify(comf ,x, z, πf , pp) → b ∈ {1, 0} is a protocol
between the prover P and verifier V , verifying whether
f(x) is z through pp, comf and πf ;

which satisfies the following properties:
• Completeness. For any polynomial f ∈ F and x ∈ Fµ,

the following probability is 1.

Pr

 pp← KeyGen(1λ,F)
Verify(comf ,x, z, πh, pp) = 1 : comf ← Commit(f, pp)

(z, πf )← Open(f,x, pp)


• Knowledge soundness. For any PPT adversary P∗, there

exists a PPT extractor E with access to P∗’s messages
during the protocol, the following probability is negl(λ).

Pr


Verify(com∗,x∗, z∗, π∗, pp) = 1 pp← KeyGen(1λ,F)

∧com∗ = Commit(f∗, pp) : (z∗,x∗)← P∗(1λ, pp)

∧f∗(x∗) ̸= z∗ (com∗, π∗)← P∗(1λ, pp)

f∗ ← EP
∗(·)(1λ, pp)


It is worth noting that in [21], although they demon-

strate that if the polynomial commitment protocol satis-
fies witness-extended emulation, the compiled interactive
argument also inherits this knowledge property. However,
they also point out that it has been proven in [39] that
every knowledge sound protocol satisfies witness-extended
emulation as well.

3. Distributed Polynomial IOP Protocols

In this and the following sections, we demonstrate how
to construct our distributively computable SNARK for data-
parallel circuits (which accommodate various sub-circuits)
and arbitrary general circuits. In both settings, we distribute
the input and computation across M machines, each capable
of evaluating one sub-circuit Ci of size T = N

M locally. In
this section, we first present the constraint system, and then
design an IOP protocol proving the constraints. We prove
that our IOP protocol has knowledge soundness and can be
transformed into an interactive argument of knowledge after
compiling with a bivariate PCS. In the next section, we will
instantiate our protocol with bivariate KZG and provide a
detailed analysis of proving time, verification time, proof
size, and communication complexity.

Before diving into the details, we first explain our intu-
ition. We opt for the distributed system to avoid the substan-
tial overhead introduced by recursive proof (see Section 7
for a detailed discussion). PCD-and-IVC-based solutions
rely on recursive proofs because they handle each sub-circuit
in a separate proof waiting to be aggregated. Instead, we
treat all sub-circuits as a whole and exploit the succinctness
of SNARK, resulting in a small proof size and verification
time. However, DIZK [46] shows that directly applying
distribution techniques to the original univariate SNARK
system leads to linear communication costs due to the
significantly interleaving network required to run the NTT
algorithm. Taking both hazards into account, we propose a
solution leveraging bivariate polynomial constraints to both



”split” the NTT instances, avoiding substantial communi-
cation, and ”combine” the proof for each sub-circuit as a
whole, eliminating the need for expensive aggregation costs.
The details are as follows.

3.1. Arithmetic Constraint System for Each Party

Our constraint system inherits the original Plonk [31].
The original Plonk works for a fan-in-two arithmetic circuit,
where each gate takes at most two inputs. In Plonk, the
left input, the right input, and the output of each gate are
encoded by three univariate polynomials respectively. The
verifier can check the computation of each gate by a poly-
nomial equation, which we refer to as the gate constraint.
Additionally, the verifier also checks that the input and
output of the gates are connected correctly as defined by
the structure of the circuit, which we refer to as the copy
constraint.

3.1.1. Gate Constraint. For the i-th party, let ai,j , bi,j and
oi,j be the left input, right input, and output of gate j
of the sub-circuit Ci, for j = 0, . . . , T − 1. We define
a polynomials ai(X) =

∑T−1
j=0 ai,jLj(X) where Lj(X)

is the Lagrange polynomials defined by the T -th roots of
unity. The coefficient representation of ai(X) can be com-
puted using polynomial interpolation and the complexity is
O(T log T ) via the NTT algorithm. Similarly, we define
polynomials bi(X) and oi(X) using bi,j and oi,j . If gate
j is an addition gate, then ai,j + bi,j = oi,j , and thus
ai(ω

j
X)+bi(ω

j
X) = oi(ω

j
X); if gate j is a multiplication gate,

then ai,j · bi,j = oi,j , and thus ai(ω
j
X) · bi(ωj

X) = oi(ω
j
X).

Following the design of Plonk, we can write the relationship
of all gates as one polynomial in Equation 1.

gi(X) := qa,i(X)ai(X) + qb,i(X)bi(X) + qo,i(X)oi(X)

+ qab,i(X)ai(X)bi(X) + qc,i(X) = 0.
(1)

Here the polynomials qa,i(X), qb,i(X), qo,i(X),
qab,i(X), qc,i(X) are defined by the structure of Ci sat-
isfying
• Addition gate: qa,i(ω

j
X) = 1, qb,i(ω

j
X) = 1, qo,i(ω

j
X) =

−1, qab,i(ω
j
X) = 0, qc,i(ω

j
X) = 0.

• Multiplication gate: qa,i(ω
j
X) = 0, qb,i(ω

j
X) = 0,

qo,i(ω
j
X) = −1, qab,i(ω

j
X) = 1, qc,i(ω

j
X) = 0.

• Public input: qa,i(ω
j
X) = 0, qb,i(ω

j
X) = 0, qo,i(ω

j
X) =

−1, qab,i(ω
j
X) = 0, qc,i(ω

j
X) = ini,j if the j-th gate in Ci

is a public input gate with the value of ini,j .
In this way, the correct evaluation of the circuit is equivalent
to Equation 1 being 0 for all X ∈ ΩX , where ΩX denotes
the set

{
ω0
X , · · · , ωT−1

X

}
.

3.1.2. Copy Constraint. In addition to checking the gate
constraint, the verifier also needs to check that the con-
nections of wires are correct as defined by the circuit. In
particular, there are redundancies in the vectors ai,j , bi,j and
oi,j , since the output of one gate is the input of other gates

in the circuit. The method used in Plonk is derived from
a product argument, which can show that if a set of values
{fj}j∈J are identical, then the following two sets are equal:

{(fj , j)}j∈J = {(fj , σ(j))}j∈J

where σ defines a cycle connecting all indexes. The protocol
reduces the argument to 2 polynomial equations.

The details of the permutation argument are as follows:
∀X ∈ ΩX , ai(σi(X)) = a′i(X), where ai(X) and a′i(X)
are two univariate polynomials in F and σi is a public
permutation from ΩX to ΩX . Particularly, in the protocol
checking the consistency of ai(X), bi(X), oi(X) in the gate
constraint, given two random points η, γ ∈ F from the
verifier, the prover defines the running product polynomial
zi(X) on F defined as follows:

zi(ω
j
X) :=

∏j−1

k=0

fi(ω
k
X)

f ′
i(ω

k
X)

(2)

where for simplicity, the notation of fi(X) and f ′
i(X) are

used to indicate
fi(X) :=(ai(X) + ησa,i(X) + γ)(bi(X) + ησb,i(X) + γ)

(oi(X) + ησc,i(X) + γ),

f ′
i(X) :=(ai(X) + ηkaX + γ)(bi(X) + ηkbX + γ)

(oi(X) + ηkoX + γ),
(3)

where ka = 1, kb is any quadratic non-residue, and ko is a
quadratic non-residue not contained in kbΩX . The j-th cell
in ai, bi, oi is denoted by ωj

X , k1ω
j
X , k2ω

j
X , respectively,

and σa,i(ω
j
X) denotes the destination that the j-th cell in ai

is mapped to (σb,i and σc,i are defined similarly). The goal
of the permutation argument is to prove

∏T−1
k=0

fi(ω
k
X)

f ′
i(ω

k
X)

= 1,
leading to the following constraints:

pi,0(X) := L0(X)(zi(X)− 1) (4)
pi,1(X) := zi(X)fi(X)− zi(ωXX)f ′

i(X) (5)

which equals 0 when X ∈ ΩX .
Finally, since the constraints gi(X), pi,0(X) and pi,1(X)

all equal 0 when X ∈ ΩX , then given a random challenge
λ from the verifier, there must exist a quotient polynomial
hi(X) satisfying

gi(X) + λpi,0(X) + λ2pi,1(X) = VX(X)hi(X), (6)

where VX(X) = XT − 1.

Polynomial IOP protocol for Plonk. In the original Plonk,
the IOP process sends oracles to the verifier in three rounds.
Suppose the verifier knows the structure of the circuit
and has oracles of

{
q{a,b,o,ab,c}(X), σ{a,b,o}(X)

}
. In the

first round, the prover sends the polynomial oracles for
a(X), b(X), o(X). In the second round, after receiving ran-
dom challenge η, γ from the verifier, the prover constructs
the oracle z(X) for the verifier. In the remaining round, with
the randomness λ from the verifier, the prover computes
the quotient polynomial h(X) and sends its oracle to the
verifier. After having access to all the oracles, the verifier
queries them on a random point X = α and an extra point



X = ωX · α for z(X). With the evaluation, the verifier can
verify all the constraints.

3.2. Constraint System for Data-parallel Circuit

In this section, we show how to aggregate the polyno-
mials from all separated sub-circuits into a single bivariate
polynomial and keep the constraint structure. Inheriting the
general-purpose arithmetic constraints from Plonk, it is clear
that we not only have a constraint system proving data-
parallel circuits but also for a more general case: we allow
the sub-circuits to be different.

Naively, we could use the powers of another vari-
able Y to randomly combine the polynomials from dif-
ferent parties. For example A(Y,X) =

∑M−1
i=0 Y iai(X),

where ai(X) is held by the i-th party. However,
when using this formula in the polynomial equa-
tions, such as

(∑M−1
i=0 Y iai(X)

)(∑M−1
i=0 Y ibi(X)

)
−(∑M−1

i=0 Y ioi(X)
)

, the cross-terms of the form Y iai(X) ·
Y jbj(X) for i ̸= j in the expansion would be hard
to deal with. To avoid the cross-terms, instead, we com-
bine the polynomials using Lagrange polynomials Ri(Y ).
This idea is inspired by a sub-scheme in the recent work
Caulk [49]. In particular, for each univariate polynomial in
Equation 1, Equation 4, Equation 5 and Equation 6, i.e., si ∈
{qa,i, qb,i, qo,i, qab,i, qo,i, σa,i, σb,i, σo,i, ai, bi, oi, zi, hi}, we
define a bivariate polynomial as

S(Y,X) =
∑M−1

i=0
Ri(Y )si(X). (7)

Then we have an aggregated gate constraint:

G(Y,X) := Qa(Y,X)A(Y,X) +Qb(Y,X)B(Y,X) (8)
+Qab(Y,X)A(Y,X)B(Y,X)

+Qo(Y,X)O(Y,X) +Qc(Y,X)

P0(Y,X) := L0(X)(Z(Y,X)− 1) (9)

P1(Y,X) := Z(Y,X)
∏

S∈{A,B,O}

(S(Y,X) + ησa(Y,X) + γ)

(10)

− Z(Y, ωXX)
∏

S∈{A,B,O}

(S(Y,X) + ηksX + γ)

Then after the random linear combination as in Equation 6,
we have

G(Y,X) + λP0(Y,X) + λ2P1(Y,X)− VX(X)HX(Y,X)
(11)

which equals 0 for all Y ∈ ΩY . It is no hard to see that this is
equivalent to Equation 6 being true for all i ∈ [M ], because
by the definition of the Lagrange polynomial Ri(Y ), there
is only one non-zero term gi(X), pi,0(X) and pi,1(X) in
Equation 6 when Y = ωi

Y . Therefore, evaluating Equa-
tion 11 at Y = ωi

Y is exactly the same as Equation 6 for
Ci.

Finally, to check Equation 11 vanishes on Y ∈ ΩY , we
compute HY (Y,X) such that

G(Y,X) + λP0(Y,X) + λ2P1(Y,X)− VX(X)HX(Y,X)

= VY (Y )HY (Y,X)
(12)

where VY (Y ) = Y M − 1. This concludes the bivariate
constraint system in our solution.

A sketch of the distributed IOP. In Protocol 1 (excluding
the orange characters), we introduce the polynomial IOP
protocol based on the constraint system above. From this
protocol, we observe that, aside from sending and assisting
the verifier with querying the polynomial oracles, the prover
only needs to distributively maintain each oracle. We will
later prove that this property is sufficient to construct a fully
distributed ZKP. We also observe that this property trivially
holds for all polynomials except HY (Y,X). To circumvent
this obstacle, the prover receives a random opening point
α from the verifier and only sends the univariate oracle
HY (Y, α). We claim that after this modification, the pro-
tocol remains knowledge-sound and can be distributively
computed. We provide the full proof in Section 3.4 after
explaining the system for general circuits.

Remark 1. For the witness generation, since all sub-circuits
are separated, each party can generate its witness locally.

Remark 2. Although we assume the sub-circuits are in-
dependent of each other, it is easy to observe that if we
introduce custom gates and rotation along with the variable
Y , then we can support some simple connections among
different sub-circuits. In addition, we can also introduce
local lookup arguments in our constraint system. Further
discussion on custom gates and lookup arguments are in
Section 7.

3.3. Constraint System for General Circuit

In this section, we show the great potential of our system
by generalizing it to generate proofs for arbitrary circuits.
Recall that in the original Plonk, it leverages σa(X), σb(X),
and σc(X) to navigate the next wire in the circuit with
equal value, and computes the running product polyno-
mial z(X) as a helper polynomial to prove the product of∏j−1

k=0
f(ωk

X)

f ′(ωk
X)

= 1. Similarly, we present how to indicate the
position to the next wire and how to construct the product
proof for the whole circuit.

Since we need to indicate which sub-circuit the next
wire locates, we define {(σY,s,i(X), σX,s,i(X))}s∈{a,b,o}
as: if for the i-th party, for the j-th entry in the polynomial
s is mapped to the i′-th party, j′-th entry in the poly-
nomial s′ polynomial, then

(
σY,s,i(ω

j
X), σX,s,i(ω

j
X)

)
=(

ωi′

Y , ks′ω
j′

X

)
. Therefore, we need to prove that

M−1∏
i=0

T−1∏
j=0

fi(ω
j
X)

f ′
i(ω

j
X)

= 1 (13)



where

fi(X) :=(ai(X) + ηY σY,a,i(X) + ηXσX,a,i(X) + γ)

(bi(X) + ηY σY,b,i(X) + ηXσX,b,i(X) + γ)

(oi(X) + ηY σY,o,i(X) + ηXσX,o,i(X) + γ)

f ′
i(X) :=(ai(X) + ηY Y + ηXX + γ)

(bi(X) + ηY Y + ηXk1X + γ)

(oi(X) + ηY Y + ηXk2X + γ)

Then we show how to construct the constraints for the
product argument. Similarly, each party keeps the running
product zi(X), however for the one after the last entry, z∗i =

zi(ω
T−1
X )

fi(ωT−1
X )

f ′
i(ω

T−1
X )

no longer equals 1. Therefore, comparing
with Equation 4 and Equation 5, we have the following
constraints instead:

pi,0(X) :=L0(X)(zi(X)− 1) (14)
pi,1(X) :=(1− LT−1(X)) (15)

· (zi(X)fi(X)− zi(ωXX)f ′
i(X))

After constructing zi, each party will send the product
of their slices z∗i to the master node, which then generates
another helper polynomial W (X) to denote the running
product through

(
z∗0 , . . . , z

∗
M−1

)
. Therefore, we have two

more constraints that for 0 ≤ i < M :

pi,2 := w0 − 1 which is 0 for all i (16)
pi,3(X) := LT−1(X) (17)

·
(
wizi(X)fi(X)− w(i+1)%Mf ′

i(X)
)

Therefore we compute hi(X) and HX(Y,X) through
the following equation instead:

hi(X) =
gi(X) + λpi,0 + λ2pi,1 + λ4pi,3

XT − 1

HX(Y,X) =

M−1∑
i=0

Ri(Y )hi(X)

(18)

Finally, by multiplying polynomials with Ri(Y ), the
permutation argument becomes

P0(Y,X) := L0(X)(Z(Y,X)− 1) (19)
P1(Y,X) := (1− LT−1(X)) (20)

· (Z(Y,X)F (Y,X)− Z(Y, ωXX)F ′(Y,X))

P2(Y ) := R0(Y )(W (Y )− 1) (21)
p3(Y,X) := LT−1(X) (22)

· (W (Y )Z(Y,X)F (Y,X)−W (ωY Y )F ′(Y,X))

where F (Y,X) and F ′(Y,X) are just notations to denote

F (Y,X) :=
∏

S∈{A,B,O}

(S(Y,X) + ηY σY,s(Y,X)

+ ηXσX,s(Y,X) + γ)

F ′(Y,X) :=
∏

S∈{A,B,O}

(S(Y,X) + ηY Y + ηXksX + γ)

By combining with the same gate constraint as for data-
parallel circuits, we finally have the equation to define
HY (Y,X), which concludes our constraint system for gen-
eral circuits.

G(Y,X) + λP0(Y,X) + λ2P1(Y,X) + λ3P2(Y )

+ λ4P3(Y,X) = VX(Y,X)HX(Y,X) + VY (Y )HY (Y,X)
(23)

3.4. Distributedly Computable Polynomial IOP
Protocol

We present our polynomial IOP protocol in Protocol 1.
The text in orange denotes the additional steps for general
circuits. We have the following theorem:

Theorem 1. Protocol 1 is a polynomial IOP protocol for
R with negligible knowledge error.

The proof is in Appendix A.

Theorem 2. Protocol 1 is a Polynomial IOP protocol that
can be compiled into a distributedly computable double effi-
cient non-interactive proof that has witness-extended emula-
tion, using a distributed computable PCS, with only a con-
stant increase in communication and O(N log T+M logM)
additional proving time compared to the PCS used.

Proof. We prove the theorem as follows:

Security. In [21], they provide a detailed proof demon-
strating that if the polynomial commitment scheme Γ has
witness-extended emulation, and if the t-round Polynomial
IOP for a relation R has negligible knowledge error, an
interactive argument for R with witness-extended emulation
exists.

We present a sketch of the proof: for an arbitrary ad-
versary prover PIP for the IP scheme, we can construct an
adversary prover PIOP. With DKZG that guarantees witness-
extended emulation, it enables P∗

IOP to simulate the tran-
script with P∗

IP to extract polynomials. After sending the
oracles to VIOP and receiving challenges, PIOP can rewind
the transcript with PIP to insert the same randomness from
VIOP. Consequently, due to the knowledge soundness of
PCS, the reduction succeeds with high probability. Then
from the knowledge soundness proven in Theorem 1, an
upper bound of the knowledge error for the IP protocol is
achieved.

We kindly refer to [21] for the complete proof.

Efficiency. To analyze the extra communication, for all
polynomials except HY (Y,X) and W (Y ), it is divided
into slices and stored by each party. Then with a PCS
which can generate commitments and proofs in this set-
ting, we can handle all oracle constructions and queries
to those polynomials. As for W (Y ), it is computed by
P0 from z∗i received from the i-th parties. Therefore, it
can be easily computed from the constant-size messages
exchanged between each node and the master node. While
the difficulty occurs when computing HY (Y,X), instead of
computing the full description, P0 only deals with it after



receiving the first opening coordinate X = α and computes
HY,α(Y ) = HY (Y, α). Therefore, for 0 ≤ i < M , Pi sends
si(α) for s ∈ {qa, qb, qo, qab, qc, a, b, c, z, hx} and recover
the corresponding polynomial S(Y, α), P0 can compute
G(Y, α), P{0,1,2,3}(Y, α) and compute HY,α(Y ) according
to Equation 23. Additionally considering the distribution of
random challenges, the compiled polynomial IOP protocol
only has a constant number of more communication than
PCS.

As for the proving time, it requires at most O(T log T )
time to compute zi(X), hi(X) for each party and
O(M logM) for P0 to compute W (Y ) and HY,α(Y ), the
extra proving time is up to O(T log T + M logM) for a
single machine and O(N log T +M logM) in total.

4. Fully Distributed SNARK

In Theorem 2, we show that with a distributed PCS,
we can build a fully distributed double-efficient interactive
argument of knowledge protocol from distributed polyno-
mial IOP. In this section, we instantiate Theorem 2 by a
distributed bivariate KZG.

4.1. Distributed KZG

In this section, we present a distributedly computable
PCS based on a bivariate variant the KZG scheme in [35],
[41]. In our distributed setting, the total size of the polyno-
mial is N , and there are M machines of P0, · · · ,PM−1 with
part of the polynomial on each machine of size T = N/M .
The goal of the fully distributed polynomial commitments is
to accelerate the prover time by B times while keeping the
communication complexity among the machine’s minimum.
Moreover, both the proof size and the verifier time should
remain the same as the original polynomial commitment
schemes. We present the distributed protocol in Protocol 2.

Theorem 3. Given polynomial f(Y,X) ∈ FM × F N
M ,

Protocol 2 is PCS satisfying completeness and knowledge
soundness. The total proving computation consists of O(N)
group operations, while O

(
N
M

)
group operations for each

node and O
(
N
M +M

)
group operations for the master

node. The total communication between Pi and P0 is O(1).
The commitment and proof size are both O(1) group ele-
ments. The verification cost is O(1) group operations.

Proof. We prove the theorm as follows:

For security. We kindly refer to [52] for a full proof of the
knowledge soundness for the multivariate KZG protocol.

For efficiency. For the proving complexity, to commit the
polynomial f(Y,X), each prover node Pi need to compute
comfi , which costs O

(
N
M

)
group operations, and the master

prover products them up in O(M) group operations. To open
the polynomial on a point (β, α), each node needs to eval-
uate fi(α) and compute π

(i)
0 , from which the master node

derives f(Y, α), and π0, with the same number of group op-
erations as computing the commitment. Finally P0 computes

π1 in O(M) group operations. For the communication, Pi

only sends comfi , fi(α) and π
(i)
0 to P0, and receives random

challenge α from P0, thus the communication complexity
is constant. It is easy to observe that the proof size and
verification time are both constant.

4.2. Using DKZG to Compile Protocol 1

We show our full instantiation in Protocol 3. From this
protocol, we have the following theorem for general circuits,
which implies the security and efficiency of the data-parallel
setting.

Theorem 4. Given a general circuit C with N gates, Proto-
col 3 is a double-efficient public-coin interactive argument
of knowledge protocol with witness-extended emulation for
the relation of C(x;w) = 1 when splitting C into M
parts (C0, . . . , CM−1) each with T = N

M gates. The total
proving computation consists of O(N log T + M logM)
field operations and O(N) group operations, with each
Pi computes O(T log T ) field operations and O(T ) group
operations, while P0 computes O(T log T +M logM) field
operations plus O(M + T ) group operations. The com-
munication is O(1) per machine. The final proof size is
O(1). The verification cost is O(1) given the access to the
commitments of the public polynomials defined by the circuit
in the preprocessing model.

Proof. We prove the theorem as follows:

For security. Following the security proof in Theorem 2,
by combining the knowledge soundness of DKZG in The-
orem 4.1 and polynomial IOP in Theorem 1, we prove
that Protocol 3 is a double efficient public-coin interactive
argument of knowledge protocol with negligible knowledge
error.

For efficiency. The complexity for the efficiency is directly
implied by Theorem 2 and Theorem 4.1.

Since Protocol 3 operates in the public-coin setting, it
can be transformed into a SNARK protocol using the Fiat-
Shamir transform.

5. Robust Collaborative Proving System for
Data-parallel Circuits

In the previous sections, we propose a distributed ZKP
protocol that divides the proving computation across mul-
tiple machines and generates a constant-size proof, with
constant communication and minimal overhead in terms of
proving and verification time. In this section, we introduce
the definition of the Robust Collaborative Proving System
(RCPS) scheme for data-parallel circuits and then propose
a scheme in Protocol 3, demonstrating the potential of our
protocol in a malicious environment where each prover node
might sabotage the entire proof by intentionally generating
a bad proof.



Protocol 1 (Polynomial IOP for Data-parallel and General Circuits). Suppose the circuit structure is known by P and
V , therefore, V knows the following oracles:
• {Qa(Y,X), Qb(Y,X), Qo(Y,X), Qab(Y,X), Qc(Y,X)}.
• {σY,a(Y,X), σY,b(Y,X), σY,o(Y,X), σX,a(Y,X), σX,b(Y,X), σX,o(Y,X)}.
When generating proof for a new instance, P and V go through the following rounds:

1) P sends the oracles of {A(Y,X), B(Y,X), C(Y,X)} to V .
2) After receiving ηY , ηX , γ from V , P sends the oracle of Z(Y,X) and W (Y ) to V .
3) After receiving λ from V , P computes HX(Y,X) =

∑M−1
i=0 Ri(Y ) · gi(X)+λpi,0(X)+λ2pi,1(X)+λ4pi,3(X)

XT−1
and sends the

oracle to V .
4) After receiving α from V , P computes HY,α(Y ) = G(Y,α)+λP0(Y,α)+λ2P1(Y,α)+λ3P2(Y )+λ4P3(Y,α)−(αT−1)HX(Y,α)

Y M−1
and

sends the oracle to V .
5) V queries all oracles on X = α, Y = β and assign the evaluations to the corresponding polynomials in Equation 12

or Equation 23. If this equation holds, then V output 1, otherwise 0.

Protocol 2 (Distributed Bivariate Polynomial Commitment). Suppose P has M machines of P0, · · · ,PM−1 and suppose P0

is the master node. Given the bivariate polynomial f(Y,X) =
∑M−1

i=0

∑T−1
j=0 fi,jRi(Y )Lj(X), each machine holds fi(X) =∑T−1

j=0 fi,jLj(X) The protocol proceeds as follows.

• DKZG.KeyGen(1λ,M, T ) : Generate pp =

(
g, gτX , gτY , (Ui,j)0≤i<M,

0≤j<T
=
(
gRi(τY )Lj(τX )

)
0≤i<M,
0≤j<T

)
, with trapdoor τY and τX .

Let P,V hold pp.
• DKZG.Commit(f, pp) : In the commitment phase, each Pi computes the commitment comfi =

∏T−1
j=0 U

fi,j
i,j and sends it to P0,

where fi,j is the j-th entry in the evaluation representation of fi(X). After receiving commitments from others, P0 computes
comf =

∏M−1
i=0 comfi .

• DKZG.Open(f, β, α, pp) :

1) Each Pi computes fi(α) and q
(i)
0 (X) = fi(X)−fi(α)

X−α
. Pi computes π

(i)
0 = gRi(τY )q

(i)
0 (τX ) using the public parameters and sends

fi(α), π
(i)
0 to P0.

2) After receiving
{(

fi(α), π
(i)
0

)}
0≤i<M

, P0 computes π0 =
∏M−1

i=0 π
(i)
0 , and also recover f(Y, α) =

∑M−1
i=0 Ri(Y )fi(α).

3) P0 computes f(β, α) and q1(Y ) = f(Y,α)−f(β,α)
Y −β

. P0 computes π1 = gq1(τY ) and sends z = f(β, α) and πf = (π0, π1) to V .

• DKZG.Verify(comf , β, α, z, πf , pp): V parses πf = (π0, π1), and checks if e (comf/g
z, g)

?
= e

(
π0, g

τX−α
)
e
(
π1, g

τY −β
)
. It

outputs 1 if the check passes, and 0 otherwise.

Definition 4 (Robust Collaborative Proving System for
Data-parallel Circuits). For a circuit C, a Robust Collabo-
rative Proving System (RCPS) with M participants has the
following algorithms:
• Setup

(
1λ

)
→ pp: Generate the public parameters pp.

• SplitCircuit (C,M) → C = (C0, . . . , CM−1): From the
circuit C, define M sub-circuits covering its computation.

• MasterKeyGen (C,M, pp) → (mpk, vk): Generate the
master proving key mpk and verifying key vk.

• KeyGeni (Ci,mpk)→ pki: From the master key mpk and
Ci, generate the proving key for the i-th node.

• SplitInstance (C,x) → ((x0,w0), . . . , (xM−1,wM−1)):
From C and x, define the public input and witness pairs.

• CoProvei (xi,wi, pki): Pi interacts with P0 and V , to
prove the correctness of the computation for Ci.

• TestAndMerge (x,mpk) → {1, 0}M : P0 interacts with
Pi for 0 ≤ i < M , outputs a vector b, with bi ∈ {1, 0}
denoting whether to accept the messages from Pi. P0 also
interacts with V to receive challenges and respond with
merged messages.

• Verify (x, vk)→ {1, 0}: V interacts with the set of P and
outputs whether to accept the interactive proof or not.

We define the transcript between Pi and P0 as

tri ← ⟨CoProvei (xi,wi, pki) ,TestAndMerge (x,mpk)⟩

and the transcript between P and V as

tr← ⟨TestAndMerge (x,mpk) ,Verify (x, vk)⟩ .

It satisfies the following properties: completeness, witness-
extended emulation, partial completeness, and partial
witness-extended emulation as follows:
• Partial completeness. Given pp and the circuit partition

for C, for each 0 ≤ i < M , if Ci(xi;wi) = 1, mpk and
pki are generated by MasterKeyGen and KeyGeni, then
the following probability is 1:

Pr [⟨CoProvei (xi,wi, pki) ,TestAndMerge (x,mpk)⟩ = 1] .

• Completeness. Given pp, the circuit partition C, if for any
(x,w), Ci(xi,wi) = 1, 0 ≤ i < M where (xi,wi) is
generated from SplitInstance, and (mpk, vk) is generated
from MasterKeyGen, then the following probability is 1:

Pr [⟨TestAndMerge (x,mpk) ,Verify (x, vk)⟩ = 1] .

• Partial witness-extended emulation. With a valid pp, a
circuit partition C for C, with |C| = M , and mpk ←



Protocol 3 (Distributedly Computable Double-efficient Public-coin Interactive Argument of Knowledge). P is a
prover with M machines of P0, · · · ,PM−1, with master node P0. Given a fan-in two arithmetic circuit C of size N with
M sub-circuits, each of size T = N/M . P wants to convince V that Ci

(
x
(i);w(i)

)
= 1 for all i ∈ [M ], where x(i) is the

public input and w(i) is the witness of Ci. Each Pi holds the sub-circuit Ci.
• Key generation and preprocessing procedure: Let (pk = {pki}0≤i<M , vk). Run DKZG.KeyGen(1λ,M, T ) and generate
g, gτX , gτY , U = (Ui)0≤i<M =

(
gRi(τY )Lj(τX)

)
0≤i<M
0≤j<T

, and derive V =
(
gRi(τY )

)
0≤i<M

. Compute commitments comS

for each of the following polynomial set Spp:

Spp =
{
Qa(Y,X), Qb(Y,X), Qo(Y,X), Qab(Y,X), Qc(Y,X), σY,a(Y,X), σY,b(Y,X), σY,o(Y,X),σX,a(Y,X), σX,b(Y,X), σX,o(Y,X)

}
Let si(X) be defined by S(Y,X) =

∑M−1
i=0 Ri(Y )si(X), we define pk0 =

((
V,U0, {s0(X)}S∈Spp

))
, pki =(

Ui, {si(X)}S∈Spp

)
, vk =

(
gτX , gτY , {comS}S∈Spp

)
• Proving procedure:

1) Each Pi evaluates Ci and defines polynomials ai(X), bi(X), oi(X). P invokes the distributed algorithm Commit in
Protocol 2 to obtain comA, comB , comO as commitments of A(Y,X), B(Y,X), O(Y,X) and sends them to V .

2) After receiving random points ηY , ηX and γ from V , each Pi computes zi(X) , and sends the last entry zi,T−1 to
the P0, from which P0 computes W (Y ) =

∑M−1
i=0 wiRi(Y ). Then, P invokes the Commit algorithm in Protocol 2 to

obtain comZ , comW and sends them to V .
3) After receiving λ from V , P0 shares it to Pi. Each Pi computes hi(X) according to Equation 6 or Equation 18.

Then, P invokes algorithm Commit in Protocol 2 to obtain comHX
=

{
comHX,0

, comHX,1
, comHX,2

, comHX,3

}
as

commitments of HX(Y,X) =
∑M−1

i=0 Ri(Y )hi(X), and sends them to V . The form of comHX
due to the fact that

HX(Y,X) has degree 3T − 2 or 4T − 2 with respect to X .
4) After receiving the random point α from V , P0 sends α to each Pi. We define Swit = {A,B,O,Z} Then P process

the following computation:
– for each polynomial S ∈ Spp ∪ Swit, run Step 1 & 2 in DKZG.Open function, computing S(Y, α) and the first

entry of πS as πS [0].
– Furthermore, P0 also recovers Z(Y, ωX · α) and π′

Z [0] when running DKZG.Open for opening Z(Y,X) on X =
ωX · α.

– With all {S(Y, α)}S∈Swit∪Spp
and Z(Y, ωXα), P computes HY,α(Y ) according to Equation 12 or Equation 23

and the univariate commitment comHY
=

{
comHY,0

, comHY,1
, comHY,2

, comHY,3

}
as commitments of HY,α(Y ) =∑M−1

i=0 hy,α,iRi(Y ), and sends them to V . The degree of HY,α(Y ) has degree 3T − 2 or 4T − 2 with respect to Y .
– Finally, P sends {πS [0]}S∈Swit∪Spp

∪ {π′
Z [0], comhY

} to V .
5) After receiving β from V , P executes Step 3 in the Open algorithm in Protocol 2 to compute the evaluations on

S(β, α) and πS [1] for S ∈ Swit ∪ Spp and Z(β, ωXα), HX(β, α). P also computes HY (β), πHY
and W (β), πW . In

the end, P sends all the evaluations and proofs to V .
• Verification procedure: V verifies the following steps:

1) V verifies the evaluation and proof S(β, α), πS for S ∈ Swit ∪Spp ∪{Z(Y, ωXX), HX(Y,X)}, together with HY (β),
W (β) with corresponding proofs by invoking the Verify algorithm in Protocol 2.

2) With the evaluations, V outputs 1 if V successfully verifies the gate constraint and copy constraints through Equation 8,
Equation 9, Equation 10, Equation 12 or Equation 19, Equation 20, Equation 21, Equation 22, and Equation 23.

MasterKeyGen (C,M, pp), an RCPS has partial witness-
extended emulation if that: for each 0 ≤ i < M , and any
PPT adversary P̃i, there exists a PPT extractor Ei with
access to P̃i’s messages during the protocol such that
(xi, auxi) ← P̃i(mpk), (wi, tri) ← E P̃i(auxi)

i (xi,mpk),
and∣∣∣Pr [P̃i(auxi; tri) = 1 ∧ TestAndMerge accepts tri

⇒ Ci(xi,wi) = 1]− Pr
[
P̃i(auxi; tri) = 1

]∣∣∣ ≤ negl(λ)

• Witness-extended emulation. With a valid pp, a cir-
cuit partition C for C, with |C| = M , and vk ←

MasterKeyGen (C,M, pp), an RCPS has witness-extended
emulation if for any b, any PPT adversary P̃ , there
exists a PPT extractor E with access to P̃’s messages
during the protocol such that for (x, aux) ← P̃(vk,b),
(w, tr)← E P̃(aux)(x, vk,b), and (xi,wi) computed from
SplitInstance, there is:∣∣∣Pr [P̃(aux; tr) = 1 ∧ Verify accepts tr⇒ Ci(xi,wi) = 1 if bi = 1

]
− Pr

[
P̃(aux; tr) = 1

]∣∣∣ ≤ negl(λ)

We further show that with additional verification and
sub-commitments recombination using an inner product ar-



gument [22], our protocol for data-parallel circuits is an
RCPS. The full protocol is presented in Appendix B. We
have the following theorem:

Theorem 5. For a data-parallel circuit C consisting of M
independent sub-circuits, the protocol in Appendix B is an
RCPS with completeness, witness-extended emulation, par-
tial completeness, and partial witness-extended emulation.

Please refer to the protocol and the proof sketch in
Appendix B.

6. Experiments

We have implemented the fully distributed ZKP system,
Pianist1 and we present the implementation details and
evaluation results in this section.

Software and hardware. Our implementation is based on
the Gnark [5] library written in Golang. Our scheme is
implemented using 3700+ lines of code in Go. The bilinear
map is instantiated using a BN254 curve. It provides around
100 bits of security and the pairing instruction is sup-
ported in Solidity, the programming language of Ethereum
smart contracts. The experiments were executed on AWS
m6i.16xlarge machines with 64 vCPUs and 256 GiB mem-
ory. We used the multi-threading enabled by the Gnark
library. We opened 2–64 machines over the two regions of
California and Oregon.

Design of the experiments. The goal of the experiments is
to evaluate and demonstrate the following three advantages
of Pianist:
1) Linear scalability: we measure the running time and

memory usage and demonstrate that Pianist has linear
scalability in the number of machines. The running time
decreases linearly as the machine number grows. The
maximum size of the circuit supported by the system
grows linearly in the number of machines.

2) Minimum communication and synchronization: we
measure the communication between the machines to
demonstrate that Pianist only incurs O(1) communica-
tion per machine in O(1) round.

3) Constant proof size and verifier time: we report the
proof size and the verifier time and show that they remain
small in practice.

These three properties are critical for blockchain applica-
tions where with our new system, users can contribute to
ZKP generations in these applications in a model similar to
mining pools.

6.1. Evaluations of Pianist for zkRollups

We first present the performance of Pianist on data-
parallel circuits in the application of zkRollups. We use
the rollup circuit by Polygon Hermez [7]. The circuit is
compiled using Circom [3] and the output format is the rank-
1-constraint-system (R1CS). As Pianist and the original

1. https://github.com/dreamATD/pianist-gnark
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Figure 1: Prover time of Pianist for zkRollups transaction veri-
fication.

Plonk do not support R1CS directly, we further compile
the R1CS to Gnark’s Plonk constraint. The number of
R1CS constraints is about 86k per transaction and the final
Plonk circuit we use in our experiments is about 660k per
transaction. This transformation introduces a big overhead
compared to manually designed circuits. In practice, the
size of the Plonk circuit can be reduced significantly with
special gates and lookup arguments. For example, Scroll [9]
designed more than 2000 custom gates for the zkEVM
circuit. Unfortunately, we could not find any open-source
code of the Plonk circuit for zkRollups (even with custom
gates). However, the big overhead of the transformation does
not defeat the purpose of our experiments. No matter how
many transactions can be supported on a single machine,
we show that Pianist can scale it to M times more using
M machines with small communication.

Prover time. We run our distributed proof generation on
2-64 machines and Figure 1 shows the result. The x-axis is
the number of transactions to batch in the zkRollups and the
y-axis is the prover time. We report the prover time of each
Pi in our scheme and the running time of the original Plonk
scheme on a single machine as a baseline. We introduced
additional optimizations to Plonk on a single machine to
improve the memory usage, and the performance shown in
all of our experiments are based on the optimized version.
We run each case to the maximum number of transactions
until the machines run out of memory. As shown in the
figure, with 64 machines, Pianist can prove up to 8192
transactions in 313s, while the original Plonk can only scale
to 32 transactions with a prover time of 95s. The number
of transactions and thus the maximum circuit size scales
linearly in the number of machines. Moreover, given a fixed
number of transactions, the prover time is accelerated by
the number of machines. For example, it only takes 17.5s
to prove 32 transactions using 4 machines, 5.4× faster than
on a single machine. In addition, the additional time on
P0 to generate the final proof is only 2-16ms in all of our
experiments, which is extremely fast compared to the prover
time of each machine.

https://github.com/dreamATD/pianist-gnark


Constant communication, proof size, and verifier time.
In our experiments, each machine only sends 1984 bytes
of messages for data-parallel circuits (or 2080 for general
circuits) in 4 rounds to the master node and receives 160
bytes for data-parallel (or 256 for general) circuits from the
master node, regardless of the total number of machines.
Because of this, the bandwidth and the network delay of the
machines do not affect the results at all. This feature enables
large-scale zkRollups with the help of users globally in a
model similar to a mining pool, as the nodes do not have
to stay online and deal with massive communication with
other nodes in a Map-Reduce framework as in [46]. The
proof size is 27 G1 (or 34 for general circuits) and 15 (or
20 for general circuits) F elements (2208 bytes or 2816 for
general circuits) and the verifier time is 3.5ms in all cases
regardless of the number of transactions. Compared to the
original Plonk, we use bivariate polynomials, which increase
the proof size by 18 (or 25 for general circuits) G1, 7 (or
12 for general circuits) F elements, and the verifier time by
two pairings.

6.2. Evaluations on General Circuits

In this section, we further demonstrate that Pianist
supports the distributed proof generation of general circuits
with arbitrary connections. We vary the total size of the
circuit from 221 to 225, and randomly sample the type and
the connection of each gate. The circuit is evaluated and
the witness is distributed evenly to multiple machines. In
practice, the memory usage of the circuit evaluation is not
the bottleneck and the evaluation of the entire circuit can be
executed on each machine individually.

Prover time. In Figure 2, the x-axis is the number of
machines and the y-axis is the prover time of each machine
Pi. As shown in the Figure, the running time is decreasing
with the number of machines. In particular, for a random
circuit of size 225, it takes 121 s to generate the proof using
Plonk on a single machine (with our optimizations), while
it takes 76.9 s on 2 machines in Pianist, 1.57× faster than
Plonk. It is further reduced to 5 s using 32 machines, which
is 24.2× faster than Plonk.

In addition, Table 2 shows the additional time on P0 to
merge proofs and messages from Pis. As shown in the table,
this step only takes several milliseconds in all instances.

Overhead vs. Plonk To show that the overhead of proving
time between Pianist and Plonk, we illustrate the case
with the same circuit size as 221 per instance in Figure 4.
From this result, we show that the overhead of Pianist is
negligible.

Memory usage. Figure 3 shows the memory usage of the
machines. As shown in the figure, in Pianist, the mem-
ory usage on each machine decreases with the number of
machines. For example, for a circuit of size 224, it takes
70.7 GB of memory to run the original protocol on a single
machine, while it only takes 31.7 GB on each machine to run
Pianist using two machines. It is further improved to 1.92
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GB using 32 machines, which is 36.8× smaller than Plonk.
The improvement is critical for zkRollups and zkEVM as
the memory consumption of existing ZKP systems is large.
Pianist is able to increase the scalability of these schemes
linearly in the number of machines, thus batching more
transactions in one ZKP with the help of the fully distributed
proof generations.

Communication, proof size, and verifier time. Similar to
the case of data-parallel circuits, they all remain O(1) for
general circuits. In particular, the communication is 2336
bytes per machine, the proof size is 2816 bytes and the
verifier time is 3 ms.

7. Discussions

Comparison with PCD and IVC As highlighted in Sec-
tion 1.1, Proof-Carrying Data (PCD) [19], [28] generates a
proof at each step for newly received transactions. To ensure
the correctness of previous proofs, there are two approaches:

Circuit Size 8 Nodes 16 Nodes 32 Nodes
221 2.764 ms 3.576ms 4.629ms
222 2.975 ms 3.666ms 4.800ms
223 3.073 ms 3.687ms 5.009ms
224 3.120 ms 3.692ms 5.705ms

TABLE 2: Extra time to merge proofs on P0.
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Figure 4: Comparison between the prover time of a single node
in Pianist and Plonk for sub-circuit with the same size

either aggregating a recursive proof for the previous succinct
verification circuits in the current proof [18], [19], [27],
or merging each proof into an accumulator and verifying
them all at once [6], [20], [25], [37], [38]. By using either
the aggregated verification circuit or the accumulator, the
prover does not need to store the entire circuit, making these
methods suitable alternatives when memory is limited.

Nonetheless, these techniques share some common
drawbacks. First, they all utilize recursive proofs, which
depend on the assumption that the random oracle (RO) used
in the Fiat-Shamir transform can be efficiently instantiated.
Second, their proofs are generated sequentially, potentially
imposing an upper bound on TPS. Third, either the succinct
verification aggregation or the accumulator demands extra
effort from the prover, which will at least increase linearly
as the number of steps grows, resulting in reduced practical
performance. Our work, on the other hand, avoids these
issues since we do not employ recursive proofs.

We also mentioned Incremental Verifiable Computation
(IVC) for incrementally verifying stages of long-run com-
putation, such as Nova [38] and SuperNova [37]. While
Nova and SuperNova are suitable for real-world applications
like zkRollups and zkEVM, they expose the output of each
stage, which cannot guarantee a zero-knowledge property
throughout the entire process. We argue that our work not
only supports general circuits, offering a more powerful
computation model but can also achieve zero-knowledge
properties using common techniques.

Comparison with aPlonk [12] In Section 1.1, we men-
tioned an alternative solution, aPlonk, which is based on
Plonk and generalized IPA under the same settings (dis-
tributed, shared Fiat-Shamir randomness) as our approach.
However, due to the use of IPA, their final verification
cost is logarithmic with respect to the number of parties.
Additionally, they only propose a solution for data-parallel
circuits and their solution involves recursive proofs. By
contrast, our proof does not require recursive circuits, our
verification cost is independent of the number of parties, and
our approach is more flexible when generalizing to circuits
with connections and general circuits. Consequently, our
solution delivers better performance, both theoretically and
practically.

Custom gates. A key advantage of the Plonk scheme lies

in its support for custom gates. Users can define their own
gate constraints, differing from Equation 1, by altering term
forms and introducing rotations. Custom gates may increase
the degree and total number of terms in Equation 1, but
typically reduce the overall gate count in the circuit, leading
to significant improvements in prover time in practice. As
mentioned earlier, Scroll [9] designed over 2000 custom
gates to enhance Plonk’s performance in their zkEVM im-
plementation. Our new schemes are fully compatible with
custom gates by following the outline introduced in Sec-
tion 3.

Additionally, as mentioned in Section 3, rotations can
be introduced for the variable Y , and simple, regular con-
nections among different sub-circuits can be established
based on the data-parallel setting. For instance, in a zkEVM
context, if we treat a block of instructions as a sub-
circuit, we can define the constraint Spc(X)fpc(Y,X) +
∆ = Spc(X)fpc(ωY Y,X) to represent the program counter
change between the previous and current blocks, where
Spc(X) serves as a selector to indicate the row recording
the program counter.

Lookup arguments. Lookup arguments play a crucial role
in the implementation of zkRollups and zkEVM, as they
help construct proofs for RAM and chiplet computations.
Since these lookup arguments are compiled into polynomial
equations, we assert that they are compatible with our
system. We can identify two primary use cases for lookup
arguments:

1) Lookup arguments with local tables. In this scenario,
each sub-circuit possesses its own lookup arguments,
independent of other sub-circuits. This setup is well-
suited for situations where each machine runs a pro-
gram with its local memory, for example.

2) Lookup arguments with global tables. This con-
figuration allows applications to define global lookup
tables, such as range tables or chiplet computing. We
argue that, by leveraging the latest lookup argument
research [29], [34] based on logarithmic derivatives,
this can be easily implemented. These protocols elim-
inate the need for cumbersome permutations of input
and table vectors, requiring only the counting of oc-
currences and the execution of a sumcheck protocol.
Furthermore, by employing rotation on the variable
Y , global tables can be distributed across different
machines, thus reducing the workload for the master.
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Appendix A.
Proof of Theorem 1

Theorem 1. Protocol 1 is a Polynomial IOP protocol with
negligible knowledge error.

Proof. For simplicity, we only prove the theorem in the
general-circuit setting. We assume the adversary P∗ has
unbounded power. At the beginning, both P∗ and V hold
the following precomputed polynomial set Spp:

1) {Qa(Y,X), Qb(Y,X), Qo(Y,X), Qab(Y,X), Qc(Y,X)}
2) {σY,a(Y,X), σY,b(Y,X), σY,o(Y,X)

σX,a(Y,X), σX,b(Y,X), σX,o(Y,X)}
With arbitrary invalid witness a∗,b∗,o∗ ∈ FM×T generated
by P∗, the possibility that V outputs 1 is negiligible.

1) For each f ∈ {a∗,b∗,o∗}, P∗ define the polyno-
mial F (Y,X) =

∑M−1
i=0

∑T−1
j=0 fi,jLj(X)Ri(Y ) =∑M−1

i=0 fi,jLj(X), Z∗(Y,X) and W ∗(Y ) are derived
from the witnesses.

2) In the round after V sends β to P∗, which is the
last round, V queries all oracles in Spp and Swit =
{A∗(Y,X), B∗(Y,X), O∗(Y,X), Z∗(Y,X),W ∗(Y )}
with random challenge α and β and verifies the
Equation 23. Since V has received all oracles
before sending β to P , by the Schwartz–Zippel
Lemma [43], [54], it implies that there exists Q0(Y ) :=

Gα(Y ) +
∑3

i=0 λ
i+1Pi,α(Y ) −

(
αT − 1

)
HX(Y, α)

where

Gα(Y ) := Qa(Y, α)A
∗(Y, α) +Qb(Y, α)B

∗(Y, α)

+Qab(Y, α)A
∗(Y, α)B∗(Y, α)

+Qo(Y, α)O
∗(Y, α) +Qc(Y, α)

P0,α(Y ) := L0(α)(Z
∗(Y, α)− 1)

P1,α(Y ) := (1− LT−1(α))

·
(
Z∗(Y, α)Fα(Y )− Z∗

α,nxt(Y )F ′
α(Y )

)
P2,α(Y ) := R0(Y )(W ∗(Y )− 1)

P3,α(Y ) := LT−1(α) (W
∗(Y )Z∗(Y, α)Fα(Y )

− W ∗(ωY Y )F ′
α(Y ))

Fα(Y ) :=
∏

S∈{A∗,B∗,O∗}

(S(Y, α) + ηY σY,s(Y, α)

+ ηXσX,s(Y, α) + γ)

F ′
α(Y ) :=

∏
S∈

{A∗,B∗,O∗}

(S(Y, α) + ηY Y + ηXksα+ γ)

(24)
such that

Q0(Y ) =
(
Y M − 1

)
HY,α(Y ) (25)

which means, for 0 ≤ i < M , Q(ωi
Y ) = 0. From

the form of F ∈ {A∗, B∗, O∗, Z∗, HX}, F (Y,X) =∑M−1
i=0 fi(X)Ri(Y ) and W ∗(Y ) =

∑M−1
i=0 w∗

iRi(Y ),
we know that for 0 ≤ i < M after assigning the
value a∗i (α), b

∗
i (α), o

∗
i (α), z

∗
i (α), z

∗
i (ωXα) and wi to

the corresponding polynomials of Y in Equation 24,
we will derive q0,i = Q0(ω

i
Y ) = 0.

In the following rounds, we go through the proof for
0 ≤ i < M .

3) In the round after V sends α to P . Since V∗ has
oracles for all polynomials, before sending α to P∗,
which is equivalent to have oracles of si(X) ∈
(a∗i (X), b∗i (X), c∗i (X), z∗i (X), hX,i(X)) since si(r) =
S(ωi

Y , r). In addition, V has the oracle W (Y ) from
which he can query wi = W (ωi

Y ). Again from
the Schwartz–Zippel Lemma, there exists qi(X) :=
gi(X) + λpi,0(X) + λ2pi,1(X) + λ4pi,3(X), where

gi(X) := qa,i(X)a∗i (X) + qb,i(X)b∗i (X) + qc,i(X)

+ qab,i(X)a∗i (X)b∗i (X) + qo,i(X)o∗i (X)

p0,i(X) := L0(X)(z∗i (X)− 1)

p1,i(X) := (1− LT−1(X))

· (z∗i (X)fi(X)− z∗i (ωXX)f ′
i(X))

p3,i(X) := LT−1(X) (wiz
∗
i (X)fi(X)− wi+1f

′
i(X))

fi(X) :=
∏

s∈{a∗,b∗,o∗}

(si(X) + ηY ω
i
Y

+ ηXσX,s,i(X) + γ)

f ′
i(X) :=

∏
s∈

{a∗,b∗,o∗}

(si(X) + ηY ω
i
Y + ηXksX + γ)

(26)



such that

qi(X) =
(
XT − 1

)
hX,i(X) (27)

which means, for 0 ≤ i < M , Q(ωi
Y ) = 0. From

the form of f ∈ {a∗, b∗, o∗, z∗, hX}, fi(Y,X) =∑T−1
j=0 fi,jLj(X), we know that for 0 ≤ j < T

after assigning the value a∗i,j , b
∗
i,j , o

∗
i,j , z

∗
i,j , z

∗
i,j+1 to the

corresponding polynomials of X in Equation 26, we
will derive qi,j = qi(ω

j
X) = 0.

4) In the round after V sends γ to
P∗, since V∗ has received oracles(
a∗i (X), b∗i (X), c∗i (X), z∗i (X), w∗

i , w
∗
i+1

)
before

sending λ to P , from Schwartz–Zippel
Lemma, it implies for each 0 ≤ j < T ,
gi(ω

j
X) = p0,i(ω

j
X) = p1,i(ω

j
X) = p2,i(ω

j
X) = 0.

After combine the claims for 0 ≤ i < M , it implies
(a∗,b∗, c∗) ∈ (FM×T ,FM×T ,FM×T ) is a valid witness for
gate constraints. From the constraints related to Z and W ,
suppose (σY,i,j , σX,i,j) correctly describe the permutation
cycles similar to the permutation cycles in Plonk, we prove
the argument that(ai,j , σY,a,i,j , σX,a,i,j)

(bi,j , σY,b,i,j , σX,b,i,j)
(oi,j , σY,o,i,j , σX,o,i,j)

 =


(ai,j , ω

i
Y , kaω

j
X)

(bi,j , ω
i
Y , kbω

j
X)

(oi,j , ω
i
Y , koω

j
X)


Therefore, (a∗,b∗, c∗) ∈ (FM×T ,FM×T ,FM×T ) also sat-
isfies the copy constraints which is equivalent to the copy
constraints in original Plonk. The possibility P∗ successfully
cheats V is bounded by 5M+5T+O(1)

|F| .

Appendix B.
Proof of Theorem 5

Theorem 5. For a data-parallel circuit C consisting of M
independent sub-circuits, there exists an RCPS scheme with
completeness, witness-extended emulation, partial correct-
ness, and partial witness-extended emulation.

We prove this theorem by first utilizing Protocol 3 in a
data-parallel setting to implement RCPS and subsequently
demonstrating that the instantiation possesses the witness-
extended emulation property.

Implementation. To achieve the robustness, we redefine the
circuit C by replacing the Equation 12 with the following
equation:

b(Y )·
(
G(Y,X) + λP0(Y,X) + λ2P1(Y,X)

− VX(X)HX(Y,X)) = VY (Y )HY (Y,X)
(28)

where b(Y ) =
∑M−1

i=0 biRi(Y ), with bi denoting whether
Pi generates the correct sub-proof or not. We implement
the functionalities in Definition 4 as follows:
• Setup

(
1λ

)
→ pp: run DKZG.KeyGen(1λ,Mmax, Tmax)

and generate all bases needed for creating and verifying
polynomial commitments.

• SplitCircuit (C,M)→ C = (C0, . . . , CM−1): split C into
M independent sub-circuits, denoted as C0, . . . , CM−1.

Define the circuit CIPA computing the inner product be-
tween G and F, where G ∈ GM and F ∈ FM .

• MasterKeyGen (C,M, pp) → (mpk, vk): call
DKZG.Commit(S, pp) to compute {(comS , comsi)}s∈Spp

.
We choose a SNARK protocol to prove CIPA,
with key pair (pkIPA, vkIPA). A candidate SNARK
is the inner product argument in [22]. We define

mpk =

(
(comsi) s∈Spp

0≤i<M
,pp

, pkIPA

)
. Run key generation

and preprocessing procedure from Protocol 3 to
compute vk and include vkIPA in it.

• KeyGeni (Ci,mpk)→ pki: generate pki for Pi following
the key generation and preprocessing procedure in
Protocol 3.

• SplitInstance (C,x) → ((x0,w0), . . . , (xM−1,wM−1)):
each prover Pi holds the instance-witness pair (xi,wi)
in Ci.

• CoProvei (xi,wi, pki) → (π
(i)
0 , bi): follow Protocol 3

from Step 1 to Step 4.
• TestAndMerge (x,mpk)→ b ∈ {1, 0}:

1) Execute from Step 1 to Step 3 in the proving pro-
cedure in Protocol 3 between P0 and other nodes.
However in each step, instead of computing comS

directly for S ∈ Swit and HX generated in the current
step, P0 defines Gs = (comsi)0≤i<M and commits
each of them with pkIPA and send to V .

2) Execute Step 4 in the proving procedure in Pro-
tocol 3. Then P0 needs to check whether the other
nodes have sent malicious proof. Since P0 has re-
ceived the commitments (comsi)0≤i<M for each s ∈
Swit ∪ {hX,0, hX,1, hX,2} when distributively commit-
ting polynomials, and the corresponding evaluations
{si(α)} and opening proof

{
π
(i)
0,s

}
when distributively

opening the polynomials with α, P0 can verify Equa-
tion 1, Equation 14, Equation 15, Equation 16, Equa-
tion 17 with evaluations and the following paring check:

e(comsi/g
si(α), g)

?
= e(π

(i)
0,s, g

τX−α)

P0 sets the vector b with bi = 1 if the check above is
passed and bi = 0 otherwise. Then P0 sends b to V .

3) Define S̄ =
∑M−1

i=0 bisi(X)Ri(Y ) for S ∈ Swit ∪
{HX}. P0 computes comS̄ = ⟨Gs,b⟩ for each s ∈
Swit ∪ {HX}, generates proofs according to CIPA and
sends them to V .

4) Execute Step 5 with redefined Swit =
{
Ā, B̄, Ō, Z̄

}
and H̄X .

• Verify (x, vk) → {1, 0}: After Step 4, V verifies the cor-
rectness of CIPA applied on each Gs for s ∈ Swit∪{HX}.
Then V runs the verification procedure in Protocol 3 with
redefined Swit ∪ {HX}.

Proof sketch. Completeness is inherited from Protocol 3 as
proven in Theorem 4 and the completeness of the SNARK
protocol for IPA. Partial correctness is straightforward.
Consequently, we only need to prove the partial witness-
extended emulation and the witness-extended emulation.



Lemma 1. The protocol given above has the property of
partial witness-extended emulation.

Proof. We note that the underlying polynomial IOP is de-
rived from the constraints in Equation 1, Equation 4, and
Equation 5, compiled with a variant of KZG protocol. As a
result, we follow the same framework used in the proof for
Theorem 2.

The knowledge error in the IOP. By replacing V with P0,
we claim that the second part of the proof in Appendix A,
which argues for 0 ≤ i < M , provides evidence of the
knowledge error in this implementation.

The knowledge soundness of PCS. We observe that the
PCS scheme between Pi and P0 is a variant of the KZG
protocol, with pp =

(
gRi(τY )Lj(τX)

)
0 ≤ j < T instead

of
(
gLi(τX)

)
for the standard KZG protocol with pp in

the Lagrange basis. To prove the knowledge soundness
of the KZG variant, we proceed as follows: assuming
pp =

(
gLj(τX)

)
0 ≤ j < T , the adversary A for the KZG

protocol generates z∗,x∗, com∗, π∗. Then, A creates pp′ =(
gRi(τY )LJ (τX)

)
for the KZG variant using a randomly

sampled τY . If an extractor EA′(·)(1λ, pp′) can successfully
compute f∗ such that f∗(x∗) = z∗, we can construct
EA(·)(1λ, pp) by invoking E ′ and returning f∗. Therefore,
we proved that the KZG variant also has knowledge sound-
ness.

Lemma 2. The protocol given above has the property of
witness-extended emulation.

Proof sketch. From the knowledge soundness of the
SNARK protocol for IPA, we can extract (comsi) for
s ∈ Swit ∪ {HX}. With the completeness of the SNARK
protocol, we guarantee that comS̄ = ⟨Gs,b⟩ with the
sub-circuit indicator b. Then by going through the similar
process as in the the proof of Theorem 5, we can derive the
knowledge soundness for the whole protocol.

By combining the completeness and the proof of
Lemma 1 and Lemma 2, we can prove Theorem 5.
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