A Novel CCA Attack for NTRU+ KEM *

Joohee Lee!, Minju Lee', Hansol Ryu?, and Jaehui Park®

! Sungshin Women’s University, Seoul, Republic of Korea
{jooheelee, 20211082}@sungshin.ac.kr
2 The affiliated institute of ETRI, Republic of Korea
hansolryu@nsr.re.kr
3 Seoul National University, Seoul, Republic of Korea
hiems1855@gmail.com

Abstract. The KpqC competition has begun in 2022, that aims to stan-
dardize Post-Quantum Cryptography (PQC) in the Republic of Korea.
Among the 16 submissions of the KpqC competition, the lattice-based
schemes exhibit the most promising and balanced features in perfor-
mance. In this paper, we propose an effective classical CCA attack to
recover the transmitted session key for NTRU+, one of the lattice-based
Key Encapsulation Mechanisms (KEM) proposed in the KpqC competi-
tion, for the first time. With the proposed attacks, we show that all the
suggested parameters of NTRU+ do not satisfy the claimed security. We
also suggest a way to modify the NTRU+ scheme to defend our attack.

Keywords: Post-Quantum Cryptography, KpqC Competition, Key Encapsu-
lation Mechanism, NTRU+

1 Introduction

Recently, there have been increasing research efforts from both industry and
academia on Post-Quantum Cryptography (PQC), following the initiation of a
standardization project by the National Institute of Standards and Technology
(NIST) aimed at developing new standards for public-key cryptosystems resilient
to quantum attacks [I5]. In this circumstance, the KpqC competition [2] has been
launched, which aims at standardization of PQC algorithms in the Republic of
Korea, since 2022. Among the various PQC schemes, the lattice-based schemes
using structured lattices [6] 111 [12] [7], 18], [} (10O, 4} [T6] exhibit the most promising
features in performance. Especially, the lattice-based KEMs enjoy not only fast
encryption, decryption speeds better than the former standards such as RSA
encryption, but also balanced sizes of public keys and ciphertexts which are
around 1 KB, respectively, for the security level corresponding to AES-128.
The NTRU encryption [6] was suggested as a first encryption scheme based on
the structured lattices, and has been analyzed without severe security degrada-
tion since proposed. In this regard, NTRU-type schemes have been also proposed

* The attack was first reported in the KpqC bulletin on June 14, 2023.

to the NIST PQC standardization project [18, [7, B]. Recently, Lyubashevsky and
Seiler [13], [I4] proposed an NTRU-based KEM that enables the number theoretic
transform (NTT) by introducing cyclotomic ring Zresy [X]/ (X768 — X384 4 1),
which results several times to several dozen times faster key generation, encap-
sulation, and decapsulation than the NTRU KEM submitted to NIST. Also,
Duman et al. [5] suggest a generic transformation with new message encoding
called generalized one-time pad (GOTP) to make the decryption failure rate in-
dependent from the message, and achieve more compact parameters than those
of [13, [14].

NTRU+ KEM [9] is one of the successors of this line of works with addi-
tional advantages and is one of the lattice-based KEMs selected as the 1st round
candidates of the KpqC competition [2]. NTRU+ takes the NTT-friendly rings
as the base rings to exploit NTT, and suggests a new generic transformation
with a new encoding method called Semi-generalized One Time Pad (SOTP).
They also propose a CCA transformation without re-encryption to integrate
their CPA-secure NTRU-type encryption into CCA-secure KEM.

In this paper, we suggest a novel CCA attack for NTRU+, which exploits
the features of SOTP. Since SOTP combines addition over Z and the bit-wise
XOR operation, we introduce an unreported ambiguity in between, by mali-
ciously modifying the ciphertext. Using such situations on the attacker’s side,
we show that an attacker can retrieve a transmitted session key encapsulated in
the challenge ciphertext in the CCA security game of CCA-NTRU+. This breaks
OW-CCA security of CCA-NTRU+, and hence the claimed IND-CCA security
does not hold regardless of parameter selection. We also suggest a way to mod-
ify the CCA-NTRU+ algorithm to defend our attack. In future works, our attack
algorithm for special encoding would provide useful insights for both theorists
and practitioners to design and implement NTRU-type schemes securely.

We remark that the attack takes place not only because of specificational
faults but also theoretical incompleteness in the security proofs : For additional
notes, we elaborate on some flaws in the security proof of NTRU+, a part of
which introduces the proposed CCA attack. We briefly explain insights on the
flaws in the following and we recommend to see Section [3.4] for detailed discus-
sion. In their new CCA transformation without re-encryption, they show that
the exact match of recovered randomness (r € {—1,0,1}") implies that the
re-encrypted ciphertext equals the input ciphertext in their lemma (Lemma 5
in [9]). In the argument, they use a property called “rigidity” of SOTP that for
all u € {0,1}?" and all y € {—1,0,1}" encoded with respect to u, the encoding
of the decoded value with respect to the same u of y is again equal to y. We
point out that the rigidity used here is insufficient for the argument since one can
maliciously modify the encoded value y by adding constants to the ciphertext
so that y is no longer a legitimately encoded value.

Secondly, in the converse argument of the same lemma to show that the re-
encrypted ciphertext matches with the input ciphertext implies the recovered
randomness match, they assume that the input ciphertext given by an attacker
is valid, i.e., it is a legitimate encapsulation result of some message in the mes-

sage space and some randomness in the randomness space. This led them to
use the “injectivity” of the underlying public-key encryption (PKE) scheme to
claim that the recovered message and randomness match with those used in the
encapsulation. However, we point out that there is no guarantee that the input
ciphertext is a valid result of the encapsulation since an adversary can mali-
ciously form the ciphertext. Hence, they need to revise this part of the security
proof.

Third, as mentioned above, they use a property called “injectivity” of PKE
that Enc(pk, m;r) = Enc(pk, m’;r') implies m = m’ and r = r’ with overwhelm-
ing probability in security parameter to show the IND-CPA security and the
IND-CCA security. We found that their argument to show the injectivity of the
underlying NTRU-based PKE scheme is insufficient. To show the injectivity, it
should be argued that, a short lattice element in a given range of lengths does
not exist with overwhelming probability in a lattice formed by using the public
key of the NTRU PKE. However, they argue that finding such a short element
is infeasible because the NTRU problem is hard, which is not enough to discuss
the existence of such an element. We suggest that they need to modify the ar-
guments in the security proof with regard to the injectivity of the underlying
NTRU PKE scheme.

Paper Organization In Section [2] we explain the basic notation, necessary back-
grounds on key encapsulation mechanism, and the NTRU+ KEM in its CCA
version. In Section [3] we present the CCA attack algorithm on NTRU+ KEM
with concrete examples, and discuss how to defend such an attack. In Section []
we conclude the paper.

2 Preliminaries

NoOTATIONS. Throughout the paper, we denote the security parameter as A > 0.
We denote T as the set of ternary values —1, 0, and 1, i.e., T := {—1,0,1} C Z,
and 7" = {-1,0,1}". Also, we identify n-bit string with an n-dimensional
vector in {0,1}". We define n-bit string T as an n-dimensional vector of which
components are all 1’s, i.e., 1 := (1,1,---,1) € {0,1}™. For ¢ € {1,--- ,n} and
an n-dimensional vector b, we define 7;(b) as an i-th component of b. We denote
e; as an n-bit string of which the i-th component is 1 and the other components
are all 0’s. We denote R, = Z,[X]/(X" — X™/2 + 1) for n = 23/.

2.1 Key Encapsulation Mechanism

Definition 1. A key encapsulation mechanism (KEM) with a key space K con-
sists of three algorithms, key generation KeyGen, encapsulation Encaps, and de-
capsulation Decaps algorithms, defined as follows.

— KeyGen(1*): the key generation algorithm KeyGen is a probabilistic algorithm
that takes a security parameter A as an input, and outputs a pair of public
key and secret key (pk, sk).

— Encaps(pk): the encapsulation algorithm is a probabilistic algorithm that in-
puts a public key pk and retrieves a pair of a ciphertext ¢ and a key K € KC.

— Decaps(sk, ¢): the decapsulation algorithm is a deterministic algorithm that
takes a secret key sk and a ciphertext ¢ as inputs and outputs a key K €
KU{L} where K =1 if ¢ is an invalid ciphertext.

Correctness. KEM is defined to be §-correct if
Pr[K # K'|K' + Decaps(sk, c), (¢, K) < Encaps(pk)] < 4,

where the probability is taken over (pk, sk) < KeyGen(1*) and the randomness
in Encaps algorithm.

Security. We define two notions OW-CCA (one-wayness under chosen cipher-
text attack) security and IND-CCA (indistinguishability under chosen ciphertext
attack) security of KEM, respectively.

Table 1: OW-CCA game for KEM

Game OW-CCA Ouec(c)

1: (pk, sk) < KeyGen(1*) 1: if ¢ = ¢*

2: (K*,c*) + Encaps(pk) 2: return L

3: K/ < A%C)(pk,c*) 3: else return

4: return [K' = K*| 4: K < Decaps(sk,c)

Definition 2 (OW-CCA Security of KEM). Let KEM = (KeyGen, Encaps, Decaps)
be a KEM scheme with a key space K. OW-CCA is defined via the OW-CCA
game in Table[]] and the advantage of adversary A is defined by

AdvQlaCA(A) == PrlOW-CCAfen = 1].

Definition 3 (IND-CCA Security of KEM). Let KEM = (KeyGen, Encaps, Decaps)
be a KEM scheme with a key space K. IND-CCA is defined via the IND-CCA
game in Table[q and the advantage of an adversary A is defined by

AdvpiRiCA(A) = | Pr[IND-CCAfgey = 1] — % '

We remark that if a KEM achieves IND-CCA security, i.e., the advantage
of IND-CCA security is negligible in security parameter A, then the OW-CCA
security also holds.

Table 2: IND-CCA game for KEM

Game IND-CCA Ogee(c)

1: (pk,sk) < KeyGen(1*) 1:if ¢ =c*

2: (Ky,c*) «+ Encaps(pk) 2: return L

3: K1+ K 3: else return

4: b« {0,1} 4: K < Decaps(sk,c)
5: b« ACQaecC) (pk, c*, Ky)

6: return [b =10’

2.2 NTRU+

In this section, we briefly explain the NTRU+ KEM [8| 2], of which security is
based on the hardness assumptions of the NTRU [6] and Learning with Errors
(LWE) [17, [12] problems.

In NTRU+, they suggest new message encoding and decoding algorithms
called SOTP and Inv, respectively. Designing new encoding and decoding algo-
rithms is a crucial part of NTRU+, since it allows messages to be sampled from
the bit string space without any constraints on distribution, and also guarantees
cryptographically negligible correctness errors in the worst case. We review the
definitions of

SOTP : {0,1}" x {0,1}2" — 7™ and
Inv: 77" x{0,1}2" - {0,1}",

as follows.

Definition of SOTP and Inv in [8] 2]

SOTP(z € {0,1}",u € {0,1}*")

1:uw = (u1,u2) € {0,1}™ x {0,1}"

2y=(r®u) —ug €T

3: return y
Inv(y € T" u € {0,1}?")

1w = (ug,u2) € {0,1}" x {0, 1}

2:x=(y+u2) Dug € {0,1}"

3: return z

NTRU+ also adopted an NTT-friendly ring over cyclotomic polynomial R, =
Z4/X]/(X™ — X"™/2 4 1) where q is a prime and n = 2°37 following the strategies
in [I3 5] to speed up the algorithms in its AVX2 optimizations. Hence, the AVX2
optimized implementation shows the quite fast running time results which are

from 14 to 43 kcycles for key generation, from 14 to 26 kcycles for encapsulation,
and from 12 to 24 kcycles for decapsulation.

We review the IND-CCA KEM CCA-NTRU+ in the NTRU+ proposal as
follows. Let K be a key space, ¥; be a centered binomial distribution over Z
obtained by subtracting two random bits from each other, and G : {0,1}* —
{0,1}?" and H : {0,1}* — {0,1}" x K are cryptographic hash functions.

— KeyGen(1*) — (pk, sk)
1) f',g 7
2) f=3f+1
3) If the inverses of f and g do not exist in Ry,
start over from the beginning.
4) (pk,sk) = (h=3g- f~' mod g, f)
— Encaps(pk) — (K, ¢)
1) m+ {0,1}"
2) (r,K)=H(m)
3) M =SOTP(m,G(r))
4)c=h-r+ M modg
— Decaps(sk,c) — Kor L
1) M = (c- f mod q) mod 3
2)r=(c—M)-h~! modq
3) m = Inv(M,G(r))
1) (", K) = H(m)
5) if r =7/, return K, and otherwise, return L.

3 CCA Attack for NTRU+

In this section, we demonstrate our attack idea for NTRU+ with an example,
and explain how to launch the attack for the NTRU+ implementation.

3.1 Overview

In the SOTP algorithm, an n-bit bit string m with another 2n-bit bit string
u = (u1,uz) are encoded into 7", say M := SOTP(m,u = (u1,us2)) = (m @
u1) — ug € T™. In contrast, the Inv algorithm inputs an n-dimensional ternary
vector M € T™ together with 2n-bit bit string u = (u1,u2) and computes a
binary string m’ := Inv(M,u = (u1,uz2)) = (M + u2) ® uy. We remark that the
correctness holds, i.e., Inv(SOTP(m, u), u) = m.

We observed that if an input for Inv is maliciously modified, i.e., the input
is not legitimately constructed using the SOTP algorithm, then Inv may have to
deal with non-binary n-dimensional vectors, rather than an n-bit bit strings as
intermediate value M + us. In their theoretical definition of Inv, they assumed
the output is a binary bit string for any ternary inputs (See Figure 12 from the
NTRU+ proposal [9]), and they did not consider the case that an intermediate
value or an output of Inv can be non-binary.

Moreover, in their official document of specification and implementation of
the Inv algorithm, they enforced the output of Inv to be a binary n-dimensional
vector by putting &0x1 at the end of the computation for each component. For
example, one can check this in Algorithm 5 (the Inv algorithm) in their speci-
fication document, and line 313, 337 (resp. 284) in poly.c file of ntruplus576
(resp. ntruplus768) of the reference implementation of NTRU+ implementa-
tion published at [2]. Since there is an ambiguity in the theoretical definition of
Inv when the intermediate value or output is non-binary, we follow the definition
in specification and implementation that computes

Inv(M,u = (u1,uz)) = (M +up) ®uy) & 1€ {0,1}". (1)

We use the above observations and definition of Inv in to show that
the ciphertext of CCA-NTRU+ is malleable. More precisely, we show that it is
possible to modify the challenge ciphertext of CCA-NTRU+ in its security game,
and then ask decapsulation oracle for a few times to achieve the secret key
corresponding to the challenge ciphertext. This breaks the OW-CCA security of
CCA-NTRU+4, and hence the claimed IND-CCA security does not hold.

3.2 Example

In this section, we show an example case in which, given a ciphertext ¢ of
CCA-NTRU+, an attacker successfully generates a modified ciphertext ¢’. Here,
we assume n = 4 for simplicity.

Counterexample of injectivity of the Inv algorithm. Suppose m = (1,0,1,1) and
u = (u1,uz) = (1,1,0,1,1,0,1,0). Let M := SOTP(m,u) € T™. We will show
that one can produce M’ # M in T" such that Inv(M’, u) =m = Inv(M, u).

In this case,

SOTP(m,u) = (m ® uy) — ug
=((1,0,1,1)® (1,1,0,1)) — (1,0,1,0)
=(0,1,1,0) — (1,0,1,0)
= (~1,1,0,0) = M.

For example, consider M’ := M + (2,0,0,0) = (1,1,0,0) € T™. Then,

Inv(M' u) = (M’ +ug) ®up) & T
= (((1,1,0,0) + (1,0,1,0)) @ (1,1,0,1)) & T
=((2,1,1,0)® (1,1,0,1)) & (1,1,1,1) (2)
=(3,0,1,1) & (1,1,1,1)
=(1,0,1,1) = m.

We note that 3&1 = 11(3) & 01(3) = 1 in the first component of the fourth
line of the above equation array, since & denotes the bit-wise AND operation.

Remark 1. Our counterexample shows that, for M’ € 7™ and u € {0,1}?",
Inv(M’,u) = m does not imply SOTP(m,u) = M’ since SOTP(m,u) = M # M’
which is the contrast of the claim of the NTRU+ submission (See Section 6.1.,
Message-Hiding and Rigidity Properties of SOTP in [2]).

Generating a Modified Ciphertext. We will use the above counterexample to
show an example to generate a modified ciphertext for a given ciphertext of
CCA-NTRU+. Suppose that ¢ = h -1 + M is a ciphertext of CCA-NTRU+,
where h is a public key, and the encapsulation sets m = (1,0,1,1) € {0,1}",
(r,K) < H(m), G(r) = u = (1,1,0,1,1,0,1,0), and M = SOTP(m,G(r)) to
generate c.

Consider ¢ := ¢+ (2,0,0,0). We remark that ¢ = h-r 4+ M’, since M’ =
M +(2,0,0,0). When we decapsulate ¢/, the following holds.

1. Since M’ = (1,1,0,0) € T,
(¢ f mod q) mod 3 = M’.

2. Since ¢ — M’ = (¢ + (2,0,0,0)) — (M + (2,0,0,0)) = ¢ — M, the same

r=('-~M")-h~! = (c—M)-h~! value as in the encapsulation is recovered.

Inv(M’, G(r)) produces m = Inv(M,G(r)) as shown in (2).

4. Hence, for (', K) < H(m), ' = r holds since m and r are the same values
as in the encapsulation.

@

Hence, the decapsulation successfully outputs K which is the secret key encapsu-
lated in the ciphertext ¢, despite we decapsulated ¢’. This can be generalized and
exploited as a crucial part of our attack to recover the secret key corresponding
to the challenge ciphertext for CCA-NTRU+ described in the next section.

3.3 Attack Algorithm

In this section, we explain our attack algorithm to recover the secret key corre-
sponding to the challenge ciphertext of CCA-NTRU+ in the CCA security game.
Suppose that the challenge ciphertext ¢* in the CCA security game satisfies

¢ =h-r"+M" modq,

where h is a public key, (r*, K*) < H(m*) € {0,1}" for m* € {0,1}", and
(uf,u3) + G(r*).

We first consider the case that the first component of M* € T™ is —1, i.e.,
m1(M*) = —1. Since the challenge ciphertext ¢* is honestly generated by the
challenger and we assumed 71 (M*) = —1, it should be the case that the (n+1)-
th component of G(r*) € {0,1}?" is 1, i.e., m(u}) = mpy1(G(r*)) = 1, since
otherwise m (M* +uj) = —1 ¢ {0,1}.

Then, we define ¢/ := ¢* + 2 - e; and send it to the decapsulation oracle of
CCA-NTRU+. The decapsulation oracle first gets

M’ = (¢ - f mod q) mod 3=M*"+2-eq, 3)

since M* 4+ 2-e; € T™. It then recovers the same r* used in the encapsulation
since

(d =M)-ht=((c"+2-e)— (M*+2-¢1)) -h?
=(c"=M*)-h~t=r"
Then, the decapsulation oracle computes
Inv(M’,G(r*)) = (M +u3) ®uj) & T

(
(M*+2-e; +ul)®ul) &1
(M* +u)dul) &1

which equals to Inv(M*, G(r*)) by definition. By rigidity of SOTP, Inv(M*, G(r*)) =
m*, hence Inv(M', G(r*)) = m*.

We note that, under the assumption m (M™*) = —1, the first component of
M’ + u¥ becomes 2, and it is canceled out to be zero by &1 operation at the
end so that it is equal to the first component of M* + u} again. This implies
the decapsulation oracle successfully recover the initial randomness m* for the
challenge ciphertext, and hence it produces the values (', K’) < H(m*) in
which 7/ = r* and K/ = K*, the correct decapsulation result of the challenge
ciphertext. To sum up, the decapsulation oracle does not abort and successfully
returns K* which is a decapsulation result of the challenge ciphertext c*.

We remark that 71 (M*) = —1 does not always hold. More precisely, if legiti-
mately generated, (m1(M*), m1(u3), 71 (M* +u3)) should be one of the four cases
corresponding to the rows in Table [3] and the probability that each case hap-
pens is 1/4. In Case II, III, and IV, the relation does not hold after modulo
3 operation since M* +2-e; ¢ T", so that it produces r := (¢/ — M') - h=1 # r*
and m = Inv(M’,G(r)) # m*. Hence, in these three cases, the decapsulation
fails with overwhelming probability.

This implies that the decapsulation oracle is expected to produce a decap-
sulation result which equals to the decapsulation of the challenge ciphertext in
Case I in Table [3] and abort otherwise. Also, the same holds for the i-th compo-
nent in general, for ¢ = 1,--- ,n. Hence, the attacker can proceed with the same
strategy for the i-th component of the challenge ciphertext by sending ¢* +2 - ¢;
to the decapsulation oracle increasing ¢ = 1, ---n, until she gets the decapsula-
tion result of the challenge ciphertext. The attack succeeds in the fourth trial in
average. We present the pseudocode for our attack algorithm in Algorithm

Theorem 1. For CCA-NTRU+4, an attacker described in Algorithm [1| termi-
nates in polynomial time in X\, and wins the OW-CCA game with an overwhelm-
ing probability.

Proof. First, Algorithm [1| terminates in time O(n), hence in polynomial time in
A. If an attacker loses, then it splits into two cases :

i) the decapsulation oracle Oy, aborts for all i € {1,--- ,n}.

ii) the decapsulation oracle Oy, outputs a wrong output K’ # K* for some
ie{l,---,n}.

Table 3: Possible cases of (m;(M*), m;(u3), m;(M* +u3)) fori=1,--- |n
i (M™) i (u) | i (M* 4 u5)
I -1 1 0
I1 1 0 1
I o 1 1
v 0 0 0
Algorithm 1 Pseudocode for our attack algorithm
Require: a challenge ciphertext c¢* € R,
Ensure: a secret key K € {0,1}**
forie{l,---,n} do
¢ + ¢* +2-¢e; (Note that ¢’ # ¢*)
Send ¢’ to the decapsulation oracle O 4,
if Oge. outputs K’ then
Output K’ as a decapsulation for ¢*
break;
end if
end for
The first case occurs only if Case I never happens for all i = 1,--- , n. Hence,

the probability of the first case is upper-bounded by (1—1/4)™ which is negligible
in A

The latter happens with probability 1/2", assuming the hash functions are
the random oracles, and hence the probability it happens is negligible in A.

To sum up, we showed that i) and ii) happen with negligible probability
in A so that the adversary finds the correct secret key corresponding to the
challenge ciphertext and wins the OW-CCA game in polynomial time for all but
a negligible probability in .

Remark 2. As noted, the CCA-NTRU+ KEM algorithm does not achieve IND-
CCA security, since it is not OW-CCA secure as shown in Theorem

3.4 Discussion

In this section, we provide some insights on why the attack in Section [3| can take
place, and how one can prevent it when designing KEMs based on the NTRU
assumption. Also, we summarize some flaws in the security proof of NTRU+.
The attack exploits that the intermediate value of the computation of Inv can
be non-binary which is not considered in the theoretical definition throughout
the NTRU+ published version of the paper [9]. However, we emphasize that the
vulnerability comes not only from the implementation aspects but also from the
theoretical definition itself since the theoretical definition does not deal with the

10

non-binary intermediate values in Inv. The ambiguity of the theoretical definition
for the non-binary intermediate values led us to follow the description of Inv in
the specification and implementation in [2] as well.

Table 4: Alternative Design Inv’ for decoding to defend the attack described in
Section @

Inv'(y € T", u € {0,1}%")
1:u= (ul,ug) S {07 1}” X {0,1}"
2: check if y + us is binary, and abort otherwise.
3:x=(y+u) duy € {0,1}"
4: return x

We remark that to defend the attack, the simplest way is to check if each
component of the intermediate value M + uy of Inv is binary and reject other-
wise as in Table 4l The rejection can also be implicitly held by generating and
outputting a random session key instead. This way may create other vulnerabil-
ities against physical attacks, such as simple power analysis, due to the process
of checking whether the intermediate value is binary or not. Hence, it would
have to be designed carefully concerning secure implementation, and the change
should be addressed in the theoretical definition and the security proofs as well
as in the implementation.

For the security proof in NTRU+ [9], we point out the flaws in the last
paragraph of the proof of Lemma 5 over which our attack can take place. In
Lemma 5, one crucial part of their claim is that v’ = r” implies the re-encrypted
ciphertext equals the input ciphertext (¢ := h-r + M). They use the rigidity of
SOTP to prove their claim, which is, for all u € {0,1}?" and M € T" encoded
with respect to u, it holds that

SOTP(Inv(M, u),u) = M. (4)

However, in the CCA security game, M € T™ can be maliciously formed by
adding or subtracting malicious values to ¢ = h-r+ M so that M is not always a
result of the legitimate encoding procedure. Hence, there is no guarantee (4)) to be
held since the rigidity is defined only for the legitimately encoded value M with
respect to u. Therefore, the security proof of CCA-NTRU+ is incomplete. They
need to show that, for an arbitrary M € T", holds. It can be guaranteed in
the modified Inv’ algorithm, since the Inv’ algorithm aborts for (m;(y), m;(uz2)) =
(—=1,0),(1,1) and it is easily checked that holds for all other possible tuples
of (Wi(y)vﬂi(’ua)) €T x {07 1}'

Also, in the converse argument of the same lemma, they assume that the in-
put ciphertext ¢ in the decapsulation is a valid ciphertext, i.e., ¢ = Enc(pk, m;r)
for some m,r € 7", so that the injectivity of the underlying PKE implies the

11

decrypted message m’ and recovered randomness r’/ match with m and r used
in the encapsulation, respectively. However, there is no guarantee in the CCA
security game that the ciphertext is valid, since the ciphertext can be formed
in a malleable way. Hence, we recommend removing the assumption that the
ciphertext is valid and revising the converse argument accordingly.

Also, we note that they use the injectivity of the underlying PKE scheme as
an assumption in the security proof of Theorem 2, Theorem 3, and Lemma 5
in [9], however, contrary to their claims, it cannot be implied by the hardness
assumption of the NTRU problem. For y > 0, the p-injectivity of the PKE is
that, for two pairs (m,r) and (m/,r’) such that Enc(pk, m;r) = Enc(pk, m’;r’),
m =m’' and r = r’ hold with probability 1 — u. To show the p-injectivity of the
underlying NTRU PKE scheme, for a lattice

L:={(v,w) € RgXxRyg:h-v+w=0inR,},

it should be argued that (r —r',m —m’) € Ry x R, does not exist in £ for
r,r’,m,m’ < T with probability 1 — u. They only argue that it is infeasible to
find such a short vector for the given lattice since the NTRU problem is hard,
which is insufficient to show that such a short vector does not exist (with high
probability). For example, consider the lattice

El:{(vaw)EquRq:g"U‘FwZOiDRq}’

f

for f,g € T. Finding a short element in £’ breaks the NTRU assumption, but
there ezist many (r,m), (r', m’) satisfying (r—r',m—m/) = (f- X%, —g-X*) € T2.
We suggest that they need to clarify it or modify the arguments in the security
proof with regard to the injectivity of the underlying PKE scheme.

4 Conclusion

In this paper, we suggest a CCA attack for NTRU+, using the features of the
encoding method SOTP. We explain our observation and the attack idea with an
example and present an attack algorithm to recover a key corresponding to the
challenge ciphertext of CCA-NTRU+. We suggest a countermeasure to modify
CCA-NTRU+ KEM to make it secure against our attack.

Acknowledgments

This work is the result of a commissioned research project supported by the
affiliated institute of ETRI [2023-080]. This work was partly supported by the
Sungshin Women’s University Research Grant of 2023 (Grant No. H20230056).
We thank Suhri Kim and Kyung Chul Jeong for the fruitful discussion and
comments.

12

References

(1]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Seiler, G., Stehlé, D.: Crystals-kyber: a cca-secure module-lattice-
based kem. In: 2018 IEEE European Symposium on Security and Privacy (Eu-
roS&P). pp. 353-367. IEEE (2018)

Center, K.R.: Kpqc competition round 1, available from: https://www.kpqc.or.

kr/competition.html| [last accessed June 2023]

Chen, C., Danba, O., Hoffstein, J., Hiilsing, A., Rijneveld, J., Schanck, J.M.,
Schwabe, P., Whyte, W., Zhang, Z.: Algorithm specifications and supporting doc-
umentation. Brown University and Onboard security company, Wilmington USA
2019

I()ucas),, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé,
D.: Crystals-dilithium: A lattice-based digital signature scheme. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems pp. 238-268 (2018)
Duman, J., Hévelmanns, K., Kiltz, E., Lyubashevsky, V., Seiler, G., Unruh, D.: A
thorough treatment of highly-efficient ntru instantiations. In: TACR International
Conference on Public-Key Cryptography. pp. 65-94. Springer (2023)

Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryp-
tosystem. In: International algorithmic number theory symposium. pp. 267-288.
Springer (1998)

Hiilsing, A., Rijneveld, J., Schanck, J.M., Schwabe, P.: NTRU-HRSS-KEM. NIST
submissions (2017)

Kim, J., Park, J.H.: Ntru+: Compact construction of ntru using simple encoding
method. Cryptology ePrint Archive (2022)

Kim, J., Park, J.H.: Ntru++: Compact construction of ntru using simple encoding
method. IEEE Transactions on Information Forensics and Security 18, 4760-4774
(2023). https://doi.org/10.1109/TIFS.2023.3299172

Lee, J., Kim, D., Lee, H., Lee, Y., Cheon, J.H.: Rlizard: Post-quantum key en-
capsulation mechanism for iot devices. IEEE Access 7, 2080-2091 (2018)
Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption.
In: Topics in Cryptology—CT-RSA 2011: The Cryptographers’ Track at the RSA
Conference 2011, San Francisco, CA, USA, February 14-18, 2011. Proceedings.
pp. 319-339. Springer (2011)

Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with
errors over rings. Journal of the ACM (JACM) 60(6), 1-35 (2013)
Lyubashevsky, V., Seiler, G.: Nttru: truly fast ntru using ntt. Cryptology ePrint
Archive (2019)

Lyubashevsky, V., Seiler, G.: Nttru: Truly fast ntru using ntt. JACR Trans-
actions on Cryptographic Hardware and Embedded Systems 2019(3), 180—201
(May 2019). https://doi.org/10.13154 /tches.v2019.i3.180-201, https://tches.
iacr.org/index.php/TCHES/article/view/8293

NIST: Post-quantum cryptography, available from: https://csrc.nist.gov/
projects/post-quantum-cryptography| [last accessed June 2023]

Prest, T., Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: Falcon. Post-Quantum Cryptog-
raphy Project of NIST (2020)

Regev, O.: The learning with errors problem. Invited survey in CCC 7(30), 11
2010

(Zhang);, Z., Chen, C., Hoffstein, J., Whyte, W., Schanck, J.M., Hulsing, A., Rijn-
eveld, J., Schwabe, P., Danba, O.: NTRUEncrypt. Tech. Rep. (2019)

13

https://www.kpqc.or.kr/competition.html
https://www.kpqc.or.kr/competition.html
https://doi.org/10.1109/TIFS.2023.3299172
https://doi.org/10.13154/tches.v2019.i3.180-201
https://tches.iacr.org/index.php/TCHES/article/view/8293
https://tches.iacr.org/index.php/TCHES/article/view/8293
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography

	A Novel CCA Attack for NTRU+ KEM
	Introduction
	Preliminaries
	Key Encapsulation Mechanism
	NTRU+

	CCA Attack for NTRU+
	Overview
	Example
	Attack Algorithm
	Discussion

	Conclusion

