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Abstract. Private heavy-hitters is a data-collection task where multiple clients possess private bit
strings, and data-collection servers aim to identify the most popular strings without learning anything
about the clients’ inputs. In this work, we introduce PLASMA: a private analytics framework in the
three-server setting that protects the privacy of honest clients and the correctness of the protocol against
a coalition of malicious clients and a malicious server.

Our core primitives are a verifiable incremental distributed point function (VIDPF) and a batched
consistency check, which are of independent interest. Our VIDPF introduces new methods to validate
client inputs based on hashing. Meanwhile, our batched consistency check uses Merkle trees to validate
multiple client sessions together in a batch. This drastically reduces server communication across multiple
client sessions, resulting in significantly less communication compared to related works. Finally, we
compare PLASMA with the recent works of Asharov et al. (CCS’22) and Poplar (S&P’21) and compare
in terms of monetary cost for different input sizes.

Keywords: Function secret sharing, histograms, heavy hitters, privacy enhancing technologies, secure
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1 Introduction

In today’s technology-driven world, companies are constantly collecting user data to perform analysis,
compute statistics, expose patterns in user behaviors, and apply them to improve their products [EPK14,
IKN+20, LPR+21, CJK+23, PAD+23]. Common analysis practices resort to histograms, where client data
are aggregated together in predefined and non-overlapping buckets. Each bucket may represent a quantitative
range (e.g., salary) or a categorical value (e.g., profession). The resulting histogram displays the frequencies
of each bucket based on multiple aggregated participant responses.

Private Histograms. When computing histograms, it is crucial to maintain client privacy, such as preventing
data collection servers from inferring additional information about the clients. Existing solutions for privacy-
preserving histograms solve this problem efficiently [CGB17, BGG+22, BBC+21], given a relatively small
number of buckets. Nevertheless, histograms are resource-intensive on the server side when the goal is to find
popular entries among the clients’ inputs. For instance, assume clients that hold GPS coordinates of their
location and servers aiming to discover crowded areas without compromising client privacy. The naive solution
of creating a histogram over all possible inputs results in sparsely populated sets, which wastes server-side
computational power due to sparse inputs. Conversely, in an optimal solution, the server computation should
scale with the most popular inputs, instead of all possible ones.

⋆ The first two authors have equal contribution and appear in alphabetical order.
1 Research mainly conducted at the University of Delaware and completed at Nillion.



Private Heavy-Hitters. This problem is addressed by the concept of “heavy hitters”. T -heavy hitters allow
computing the T most popular responses (for a given threshold T ) among clients’ inputs and have a broad
range of applications: from finding popular websites that users visit or malicious URLs that cause browsers to
crash [HKR12, BBC+21], to discovering commonly used passwords [NPR19], learning new words typed by users
and identifying frequently used emojis [FPE16], to name a few. Private heavy-hitters allow computing these
results while also preserving client privacy. Existing protocols (such as [NPR19, BBC+21, ACD+21, BK21])
only focus on the “popular” inputs and disregard other inputs that appear less than T times (i.e., they are
pruned by the protocol). This renders private heavy hitters a suitable candidate for finding the most common
client entries, such as computing crowded areas using client-provided GPS coordinates.

Table 1: Threat model comparisons, client input validation, and server-to-server communication.

Protocol

Correctness & Privacy
Against Malicious Corruption

Client
Input

Validation

Low
Server-to-Server
Communication

No. of
Servers

Clients Server Server & Clients

DPF [BGI15, BGI16, GI14] † 2+

Poplar (IDPF) [BBC+21] † 2

Bucketization (DP) [ACD+21] † 2-3

MPC-based [BK21] ‡ † 3

Sorting-based [AHI+22, JKK+22] 3

PLASMA (this work) 3

† These works only preserve privacy against a malicious server but not correctness.
‡ [BK21] is susceptible to data poisoning attacks by malicious clients or malicious servers. Privacy of honest clients is preserved.

Different Approaches. The literature considers the setting where two or more servers collect client inputs and
run the private heavy-hitters protocol. A notable approach based on differential privacy (DP) is [ACD+21] (we
discuss DP-based solutions in Section 1.2). While these protocols are computationally fast, they are limited
to DP-based privacy guarantees for the client. Likewise, MPC-based solutions [BK21] employ general-purpose
secure computation frameworks (e.g., MP-SPDZ [Kel20], SCALE-MAMBA [ACC+21], Sharemind [BLW08]),
so these methods fall short in terms of practicality. Thus, recent works introduced custom MPC-based
techniques for private heavy-hitters [AHI+22, JKK+22]. The underlying protocols perform secure sorting
of client inputs under MPC [AHI+22, JKK+22] and then aggregate the sorted data, guaranteeing that
private inputs remain hidden when a majority of the servers are honest. However, the communication of all
aforementioned solutions is linearly dependent on the number of clients, resulting in high server-to-server
communication costs.

Distributed point functions (DPFs) [BGI15] offer an alternative approach for private histograms. Informally,
DPFs allow a client to send succinct shares of a point function corresponding to their private inputs to two
or more servers. The servers then use these shares to locally evaluate the function over the entire input space
and add the resulting outputs to obtain additive shares of a histogram.

Poplar [BBC+21] builds upon the DPF approach by introducing incremental DPFs (IDPF), detailed
in Appendix A. It provides an IDPF-based solution for private heavy-hitters in the two-server setting, and
their server-to-server communication depends on the input string length in semi-honest security. For security
against malicious clients, the servers validate every client’s input so that malformed inputs are preemptively
discarded from the computation. This is referred to as client input validation and it prevents malicious
clients from causing an abort in the protocol. To do so, Poplar requires additional checks, which cause the
server-to-server communication to scale linearly with the total number of clients. As a result, their concrete
server-to-server communication is large. Sabre [VSH22] uses multi-verifier MPC-in-the-head that attests to the
well-formedness of DPFs but does not focus on heavy hitters. The concurrent work of Doplar also introduced
a “Verifiable IDPF (VIDPF)” similar to ours, which guarantees the same security properties. However, their
constructions, namely Doplar and Prio3, rely on multiple Fully-Linear Proofs (FLPs) [DPRS23] to verify that
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the client’s input is valid, resulting in significant communication overheads. Moreover, their approach does
not consider malicious servers.

Motivation. Since all aforementioned solutions incur server-to-server communication that scales linearly with
the number of clients (with large concrete communication costs), they are prohibitive for most real-world
applications that require millions of clients for data collection. The concrete server-to-server communication
should be low, even for a large number of clients. Likewise, neither Poplar nor the DP-based solutions
[ACD+21] tolerate additive attacks from a malicious server, which results in incorrect outputs when one
of the servers does not follow the protocol steps. More formally, they fail to provide both correctness and
privacy against the collusion of a malicious server and malicious clients. In this regard, we ask the following
motivating question:

Can we obtain a private heavy-hitters protocol with low concrete server-to-server communication that is
secure against malicious clients and a malicious server?

1.1 Our Contributions

We answer the aforementioned question with PLASMA, a framework for private statistics that provides
security against a malicious server and malicious clients. Our contributions are as follows:

Verifiable incremental DPF (VIDPF). First, we introduce our VIDPF primitive, which builds upon
incremental DPFs (IDPF) [BBC+21] and verifiable DPFs (VDPF) [dCP22]. VIDPF allows us to verify that
clients’ inputs are valid by relying on hashing while preserving the client’s input privacy. We also propose
a novel way to verify that IDPF keys are “one-hot” - i.e., they have a single non-zero evaluation path
(containing the same value along the path) by solely relying on hashing. This is of independent interest
and can be used to improve earlier results in [BBC+21, DRPS22, DPRS23]. Previous protocols solved this
problem using FLPs [BBC+19, DPRS23] or expensive sketching that involves information-theoretic MACs
[BBC+21, DRPS22, BBC+23]. More specifically, [DPRS23] uses FLPs in each level to verify that the client’s
input is one-hot, resulting in significant communication overhead as each FLP entails a large proof. Conversely,
our checks for one-hot vectors do not require field multiplications, only additions and hashes which allow us
to batch-verify multiple inputs together.

Batched Consistency Check. Next, we introduce a novel batched consistency check that allows us to
drastically reduce server-to-server communication. At a high level, we validate the inputs of ℓ clients using a
Merkle tree and identify the malformed ones using logarithmic (in the total number of clients denoted as ℓ)
communication. This optimization reduces the dependency of our server-to-server communication on the total
number of clients from O(ℓ) to O(ℓ′(log2 ℓ

ℓ′ )) number of hashes where there are ℓ′ malicious clients, yielding
a concrete improvement over the state-of-the-art (as reported in our experiments), even in the presence of
malicious clients. Here, ℓ′ is the number of corrupt clients who provide malformed inputs during the protocol
execution and it does not need to be a priori bounded. In case ℓ′ = 0, then our servers only exchange a pair
of hashes. Our communication cost remains low even when a constant fraction (e.g., 10%) of the clients are
malicious.

PLASMA framework. We combine these new primitives to construct PLASMA, a protocol for private
histograms and heavy hitters in the three-server setting that guarantees security against a malicious server
and malicious clients while maintaining low server-to-server communication. PLASMA relies only on efficient
hashing and cheap field additions rather than expensive general-purpose MPC or field multiplications. Due to
our novel VIDPF primitive, PLASMA outperforms Poplar with regard to runtime by a factor of 5− 10× over
WAN for T = 1% of the clients. In the same setting, our batched consistency check optimization enables us
to drastically outperform both Poplar and the sorting-based protocol of [AHI+22] in terms of server-to-server
communication by a factor of 35× and 45×, respectively. For these conditions, we further analyzed the
monetary cost of PLASMA, [AHI+22], and Poplar and report that PLASMA is more than 2.5× and 4×
cheaper respectively.

Applications. We evaluate PLASMA for two applications: a) detecting frequently visited URLs, and b)
identifying popular coordinates.
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Popular URLs. A prominent application (discussed both in [AHI+22] and [BBC+21]) is identifying which
URLs crash the clients’ browsers more frequently. Each client has a string of n bits that represents the last
URL that crashed their browser. In our evaluations (Section 6), we consider n = 256 bits, which is sufficient
for standard domain names, and compute the heavy hitter URLs that caused more than 1% of client browsers
to crash. We perform the task over WAN in approximately 5 minutes for 106 clients, while incurring less than
1 GB of server-to-server communication (less than $1 in total cost).

Popular GPS coordinates. We demonstrate a new application where PLASMA identifies popular geo-
graphic locations without sacrificing user privacy. This can be beneficial with traffic avoidance, restaurant
recommendations, as well as advertising (e.g., businesses may identify crowded shopping areas and target their
marketing efforts), while ensuring the GPS coordinates of the users remain private to the servers. Likewise,
ride-sharing services can enhance vehicle distribution in busy areas and proactively dispatch more drivers
during rush hour. This is possible by encoding GPS coordinates as 64-bit strings using plus codes [LLC19].
We compute the heavy hitter plus codes for a threshold T = 1% in under 2 minutes over WAN across 106

clients, while incurring very minimal server-to-server communication with $0.3 in total monetary costs.

Extensions. We also discuss how to extend PLASMA to obtain fairness against a malicious adversary that
corrupts one server and an arbitrary number of clients. PLASMA is the first work to consider different
thresholds for heavy hitters based on pre-agreed prefixes by the servers, allowing for more elaborate private
statistics, such as the GPS application, where different coordinates (e.g. highways and suburban roads) have
different congestion thresholds.

1.2 Related Work

We now discuss relevant works for private heavy hitters. They can be classified into four main groups: those
based on DPFs, those based on differential privacy (DP), those based on MPC sorting, and finally those
based on general-purpose MPC. A comparison of our protocol with related works can be found in Table 1.

DPF-based. Distributed point functions [BGI15] offer a straightforward solution for private histograms
but they fail for heavy hitters due to the blowup in key size, as the client would need to send new DPF
keys for each level, resulting in O(n) DPF keys for n levels. This was addressed by Poplar [BBC+21], which
uses two non-colluding servers and introduces the notion of IDPFs to allow efficient evaluation of strings
based on prefixes by reusing the same DPF key. Poplar’s threat model is robust against malicious clients but
remains susceptible to additive attacks by a malicious server. Therefore, as the servers reconstruct the output,
a malicious server can add arbitrary noise to the result without the honest server realizing it. The recent
works of [DPRS23, MPD+24] propose a framework for secure data aggregation and they improve the clients’
consistency checks in Poplar and Prio [CGB17]. However, their threat model does not address additive attacks
from a malicious server either. Adding such security using zero-knowledge [YSWW21, CSW22] is interesting
future work. In contrast, PLASMA provides security against both a malicious server and malicious clients by
adding one additional server. Also, Poplar still leaks some information about the heavy hitter prefixes to
the servers as they reconstruct the roots of the paths before they prune them. PLASMA performs a secure
comparison and either keeps the node with its subtree if T > count, or prunes the subtree.

DP-based. There is also a body of work based on local DP and randomized responses for heavy hitters
[QYY+16, BNSGT17, ZKM+20]. These techniques use a single server to collect data from clients. Therefore,
this method introduces a trade-off between utility and privacy, as it leaks some information about clients’
private data to the server. In contrast, other methods that provide stronger privacy guarantees require at
least two non-colluding servers. Notably, secure computation-based solutions can be modified to achieve DP
either by using local DP or by adding a smaller amount of noise in MPC and achieving higher data utility
while maintaining privacy.

Likewise, bucketization [ACD+21] computes approximate statistics on a permuted version of the clients’
data combined with dummy data that are sampled as differentially private noise. Bucketization ensures
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security against malicious clients, and similarly to Poplar, it can only guarantee privacy without correctness
in the presence of a malicious server. In contrast, PLASMA focuses on exact statistics and provides both
correctness and privacy against both malicious clients and one malicious server. Note that PLASMA is
compatible with DP as we describe in Appendix F.

Sorting-based. Recent works that rely on secure sorting algorithms construct private heavy-hitter protocols
[AHI+22, JKK+22] or private ad attribution measurement [CJK+23] based on the sorted data. They provide
security against malicious servers and clients in the three-server setting, where one of the servers can
be malicious. These protocols are computationally fast over LAN. However, they perform secure sorting
under MPC, and as a result, they incur heavy communication overheads and their performance degrades
significantly over realistic WAN networks. Notably, PLASMA achieves a 45× improvement in server-to-
server communication compared to [AHI+22] as shown in Fig. 13 for T = 1%. Moreover, our PLASMA
protocol allows different thresholds for heavy hitters based on pre-agreed prefixes (allowing for more elaborate
statistics), this is not possible for sorting-based heavy-hitter protocols.

General MPC-based. One could use generic MPC in the honest majority [FLNW17, CGH+18] or dishonest
majority setting [Kel20, WSK+23] to compute heavy hitters, but an efficient representation of the heavy-
hitters problem in terms of addition and multiplication gates is not known. In fact, the work by Böhler and
Kerschbaum [BK21] provides a generic MPC-based protocol for computing differentially private heavy hitters.
They use MPC frameworks like MP-SPDZ [Kel20] and SCALE-MAMBA [ACC+21] to achieve semi-honest
and malicious security, but their solution suffers from high communication and slow runtime.

3-Party Computation based. Multiple customized 3-party protocols [AHI+22, JKK+22] aim to solve
the problem of heavy-hitters. These works consider a third server to exploit the faster computation guar-
antees in the honest majority. Using a third server is a realistic setup and it is widely considered both in
the industry and academia as it ensures practical deployments with malicious security. Notable examples
include the Interoperable Private Attribution (IPA) proposal by Meta and Mozilla [CJK+23], JP Morgan’s
PrimeMatch [PAD+23], NTT’s heavy-hitters protocol [AHI+22], protocols for private advertisement measure-
ment [MMT+24], Duoram [VHG23], Sabre [VSH22], and others. The servers are meant to run across different
organizations; for example, they can be hosted by companies and non-profit organizations as mentioned in
Google-Apple’s Covid Exposure system [AG21]. Table 1 compares our work with state-of-the-art results.

2 Preliminaries

2.1 Threat Model

Our threat model assumes three non-colluding servers (S0,S1,S2) that run the histogram/heavy-hitters
protocol, as well as ℓ clients. The clients provide inputs to the servers and the servers do not have any private
input. We assume that an adversary A maliciously corrupts one of the servers and ℓ′ < ℓ clients.

Clients. Malicious clients may try to deviate from the protocol to disproportionally influence the result or
even corrupt the output of the protocol. PLASMA is robust against malicious clients and PLASMA servers
preemptively reject any malformed client input before incorporating it into the computation. PLASMA
preserves the privacy of honest clients when one of the servers is corrupt along with any number of clients.

Servers. Similarly, a malicious server may try to deviate from the protocol and attempt to learn private
user inputs; PLASMA always protects input privacy against one malicious server. Another possible attack
for a malicious server would be to over-influence or corrupt the protocol result. The semi-honest model
does not protect correctness against a malicious server, which is problematic in real-world applications,
like advertisement measurements [CJK+23] between two companies, where one company may benefit from
reporting inflated measurements by introducing undetectable errors. Malicious security ensures that such
behaviors are caught and parties are forced to behave honestly, fostering a transparent environment for
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computation. Poplar has this limitation while PLASMA protects correctness. Hence, PLASMA is robust
against a malicious server, since it protects both correctness and privacy. Note that in all DPF-based
approaches, the servers learn the heavy prefixes, which can be beneficial in some cases (e.g., for detection of a
heavy-hitting web domain that contains multiple non-heavy hitting URL errors) but can also be viewed as
leakage. However, PLASMA preserves the exact counts of the prefixes.

2.2 Notation

We denote the computational and statistical security parameters by κ and µ, respectively. Let PRG : {0, 1}κ →
{0, 1}2(κ+1) be a pseudorandom generator and Convert : {0, 1}κ → G be a map converting a κ-bit string to

a pseudorandom group element of additive group G (where |G| > ℓ). We use := for assignment,
r←− D for

sampling from distribution D, = for checking equality, and ∥ for concatenation. For histograms, wedefine
a public set X with m n-bit strings as X := {x1, x2, . . . , xm} where the ith string is denoted as xi for
i ∈ [m] and the jth bit in xi ∈ {0, 1}n is denoted as xi,j for j ∈ [n]. We denote the first L bits of xi as
xi,≤L := (xi,1, xi,2, . . . xi,L) for L ≤ n. Let Sb denote the bth server, for b ∈ {0, 1, 2}; we consider b+1 := (b+1)
mod 3 and b+ 2 := (b+ 2) mod 3. We assume ℓ clients, each denoted as Ci for i ∈ [ℓ]. For an n-bit string
a we represent its bit decomposition as a1, . . . , an ∈ {0, 1}. In histograms, each client Ci has an n-bit input
string αi ∈ X, for i ∈ [ℓ], while αi ∈ {0, 1}n in the case of heavy-hitters. We use αi,1, . . . αi,n ∈ {0, 1} to
denote the bit representation of the client’s input αi.

2.3 Distributed Point Functions (DPF)

Function secret sharing (FSS) [BGI15] enables splitting the output of a function f into additive shares,
where each share of the function is represented by a separate key. Each key allows the owner to efficiently
generate an additive share of the output f(x) on a given input x. DPFs are a special case of FSS where f
is a point function fα,β(x) := β if x = α, or 0 otherwise. A DPF consists of two algorithms: Gen and Eval.
The Gen algorithm takes as input the function fα,β and outputs two keys key0 and key1. The Eval algorithm
evaluates an input x such that Eval(0, key0, x) + Eval(1, key1, x) = β for x = α, and 0 for x ̸= α. Privacy
ensures (α, β) remains hidden from an adversary in possession of one of the keys (but not both). We discuss
DPF, IDPF [BBC+21] and VDPF [dCP22] in Appendix A for completeness.

3 Technical Overview

We recall the histogram and heavy-hitters protocol by Poplar [BBC+21] in Section 3.1. Then, we briefly
describe our histogram protocol in Section 3.2 as a stepping stone to our heavy-hitters protocol, which we
describe in Sections 3.3 and 3.4.

3.1 Histogram Protocol of Poplar

Poplar first considers the problem of computing private subset histograms. Each client holds an n-bit string
α and the servers S0 and S1 have a small set X := {x1, x2, . . . , xm} of m n-bit strings. Each client secret
shares their input α ∈ X using a DPF as (key0, key1) := DPF.Gen(1κ, α, 1,G). The client sends key0 to S0
and key1 to S1. Upon receiving the client key, each server Sb evaluates the DPF on all m strings of X as
yb := {DPF.Eval(b, keyb, xi)}xi∈X and computes a vector of output shares yb ∈ Fm, for some large enough
finite field F and m = |X|. The servers repeat this for multiple clients and aggregate the yb vectors in a counter
vector Yb. Finally, the servers exchange Y0 and Y1 to compute the output histogram as Y := Y0 + Y1. This
protocol requires the client to communicate one key to each server and the server-to-server communication is
independent of the number of clients since Y0 and Y1 are aggregated values. This protocol preserves client
privacy.

However, a malicious client can double vote by generating the DPF keys maliciously such that it contains
more than one non-zero point or the DPF output at α is greater than 1. To tackle this, Poplar introduces a
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malicious sketching protocol to ensure that the client inputs are well-formed. It also preserves the client’s
privacy against a malicious server. However, Poplar allows a malicious server to add an error to its shares of
the output without the honest server realizing it. For instance, say S0 is malicious and introduces additive
errors (e.g., δ ∈ Fm) in Y ′

0 := Y0 + δ. That way, the output Y of the histogram would be biased by δ as
Y := Y ′

0 + Y1 = Y0 + Y1 + δ. The honest server S1 cannot detect such an additive attack, leading to an error
in the correctness of the protocol. Moreover, Poplar’s server-to-server communication scales linearly with
O(ℓ) due to the malicious sketching protocol.

3.2 Our Basic Histogram Protocol

We address Poplar’s limitations by (1) introducing one additional server, (2) building upon the primitive
of verifiable DPF [dCP22] (Appendix A), and (3) introducing novel consistency checks in the three-party
setting. We claim the following benefits over Poplar:

(a) Robustness against a collusion of a malicious server and malicious clients,
(b) Lightweight consistency checks for malicious behavior (using only symmetric operations and field addi-

tions),
(c) Server-to-server communication depends logarithmically on the total number of clients.

Our work provides the first maliciously secure protocol whose server-to-server communication is logarithmic
in the total number of clients ℓ. Our servers communicate O(ℓ′(log2 ℓ

ℓ′ )) hashes for consistency checks, where
ℓ′ is the number of corrupt clients. Similar to Poplar, we ensure input validation against malicious clients
(i.e., honest servers preemptively detect inconsistent inputs and discard them). We present the ideas of our
histogram protocol, which are crucial for our heavy-hitters protocol in Section 3.4.

Robustness Against a Malicious Server. The histogram protocol of Poplar is not robust against a
malicious server. We consider a third server S2 to allow an honest majority to obtain security against one
malicious server with improved efficiency. Each client runs three DPF sessions, one between each pair of
servers, with independent randomness, but the same input α (i.e., the pairwise evaluation of the DPF keys
on point α outputs secret shares of one).

However, adding a third server significantly complicates things as we need to ensure consistency between
the three sessions. For instance, we need to check that a malicious client submitted the same input α to all
three sessions without revealing it. The client sends the DPF keys for the sessions to the servers and each
server obtains two keys. Upon obtaining the DPF keys, each server evaluates the DPF on all input points in
X. It is ensured that if the client behaved honestly then at least one of the three sessions will be evaluated
honestly since two of the servers are honest. After aggregating all the clients’ inputs, the output histogram
is reconstructed across the three sessions. If the output is the same between each pair of servers then the
servers behaved honestly and that is considered as the output. If the output is inconsistent across a pair of
servers then one of the servers behaves maliciously (by launching an additive attack) and the honest servers
abort, which provides robustness against the malicious server.

Reducing Server-to-Server Latency. We empirically observed that the server-to-server latency increases
if there is pairwise communication between the three servers for consistency checks. There are three server-to-
server sessions for each client, and the third server S2 is involved in two of the three sessions: specifically,
sessions S1 −S2 and S2 −S0. The client generates (key(0,1), key(1,0)) for session S0 −S1, (key(1,2), key(2,1)) for
session S1 − S2, and (key(0,2), key(2,0)) for session S2 − S0. S0 receives key(0,1) and key(0,2) from the client for
sessions S0 − S1 and S2 − S0, respectively. S1 receives key(1,0) for session S0 − S1 and key(1,2) for S1 − S2,
while S2 receives key(2,1) and key(2,0) for sessions S1 − S2 and S2 − S0, respectively.

In our optimization, instead of running two sessions in each server, we run all three sessions between S0
and S1 and use S2 as the attestation server. By doing that, we significantly reduce the latency due to the
synchronization overhead of the three servers. To enable that, our protocol instructs the client to send key(2,1)
to server S0 and key(2,0) to server S1 respectively. The key distribution process by the client is illustrated in
Fig. 1.
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key(0,1), key(0,2), key(2,1)

key(1,0), key(1,2), key(2,0)

key(2,1), key(2,0)

Ci S1

S0

S2

Fig. 1: Distribution of session keys by client Ci.

Our optimization allows S0 to replicate the computation of S2 in session S1 −S2 (because they both have
key(2,1)) and S2 acts as an attestator by just sending hashes to S1 for the same messages that S0 should send.
These hashes prevent S0 from acting maliciously. Similar protocol steps are run by S2 to attest the S2 − S0
session and prevent S1 (who is replicating S2) from acting maliciously. This optimization, shown in Fig. 2,
allows us to batch-verify all three sessions as a single session between S0 and S1 using hashes.

key(0,1) (S0 − S1) session key(1,0)

key(0,2) (S2 − S0) session key(2,0)

key(2,1) (S1 − S2) session key(1,2)

hashes for
(S2 − S0)

hashes for
(S1 − S2)

S0 S1

S2

Fig. 2: Session keys and attestation by S2.

Client Input Validation. The above protocol assumes that the client computes the DPF evaluation keys
honestly and sends them to the servers. A malicious client could construct malformed DPF keys such that the
client’s input gets counted more than once. To prevent this class of attacks, we propose a novel consistency
check that only relies on inexpensive symmetric operations, like hashing.

We first ensure that the DPF output is non-zero only at a single point. The work of [dCP22] introduces
the primitive of verifiable DPF (VDPF), which we summarize in Appendix A. This is a stronger notion of
DPF, where the servers obtain a correctness proof π upon evaluating a pair of DPF keys on a given input
point. The two servers obtain the same proof π if the client generates the DPF keys honestly (i.e., the DPF
output is non-zero only at a single point α). Multiple proofs corresponding to different evaluation points are
batch-verified. Next, we ensure that the DPF output value at the non-zero point is indeed 1. Our protocol
instructs the servers to sum up all the output shares (corresponding to each point in X) of the client and
reconstruct the output. If the reconstructed output is not well-formed (i.e., is not 1), then the client’s input
is discarded. If the output is 1 (i.e., the client behaved honestly), then the DPF output shares are aggregated
by the server in the histogram share.

Client Input Consistency Across Sessions. A malicious client can provide inconsistent inputs across the
three server sessions by providing DPF keys for different points α1, α2, and α3 in each session respectively.
The verifiability of the VDPF fails to detect this attack since each individual VDPF in each session is valid.

To address the challenge, we propose a novel consistency check that relies on a single hash verification.
Let us denote Y(0,1), Y(0,2), and Y(2,1) be the output of the VDPF evaluation by S0 on keys key(0,1),
key(0,2), and key(2,1) corresponding to sessions S0 − S1, S0 − S2, and S2 − S1, respectively. Similarly, let us
denote Y(1,0), Y(2,0), and Y(1,2) be the output of the VDPF evaluation by S1 on keys key(1,0), key(2,0), and
key(1,2) corresponding to sessions S0 − S1, S0 − S2, and S2 − S1, respectively. By definition, reconstructing
each pair of secret shared outputs (e.g., Y(0,1), Y(1,0)) results in a vector of zeros except a single location.
Note that the client has also sent key(2,1) to S0 and key(2,0) to S1 respectively. Server S0 sends hash
h := H(Y(0,1) −Y(0,2) ∥Y(0,2) −Y(2,1)) to S1, who verifies that h = H(Y(2,0) −Y(1,0) ∥Y(1,2) −Y(2,0)). The
verification of the hash h ensures that the client’s input is consistent between: (1) the sessions S0 − S1 and
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S0−S2, as well as (2) the sessions S0−S2 and S2−S1. By transitivity, all three sessions are consistent if the hash
verification succeeds. Observe that if the servers acted honestly,Y(0,1)+Y(1,0) = Y(0,2)+Y(2,0) = Y(1,2)+Y(2,1)

and thus, Y(0,1) −Y(0,2) = Y(2,0) −Y(1,0) and Y(0,2) −Y(2,1) = Y(1,2) −Y(2,0). Our novel check requires
additions (without any multiplications) and a cheap hash computation. The communication cost is one hash
of size κ bits. This leads to O(κℓ) server-server communication for ℓ clients, but it is optimized to logarithmic
communication by applying batched client verification, described in Section 5. We present the histogram
protocol in Appendix H.

3.3 Heavy-Hitters from T -Prefix Count

Poplar reduced the problem of computing heavy hitters to the problem of computing prefix count queries
for a prefix p ∈ {0, 1}∗ over client inputs. Then, they implemented prefix count queries by relying on IDPFs
(summarized in Appendix A). However, they leak the count of strings that contain the T heavy-hitting prefix
p due to the reliance on a prefix-count query oracle that outputs the count. To mitigate this leakage, we
introduce the notion of T -threshold prefix-count queries that return 1 if at least T of clients’ input strings
contain p, otherwise, it returns 0. We define it as:

Definition 1 (T -Prefix-count Query Oracle Ωα1,...,αℓ
(p, T )). Return 1 (on input prefix p ∈ {0, 1}∗) if

prefix p appears at least T times in the clients’ input strings α1, α2, . . ., αℓ ∈ {0, 1}∗ where client Ci has
input string αi for i ∈ [ℓ], otherwise, return 0.

T -Heavy hitters. The T -heavy hitters algorithm (for threshold T ) is provided with oracle Ωα1,...,αℓ
(p, T )

for computing T -prefix count for prefix p over the client input strings α1, . . . , αℓ. The initial prefix is the
empty string ϵ. At each level k, it considers the heavy-hitter prefixes p ∈ {0, 1}k of length k in set HHk, which
contains the list of k-bit strings that appear at least T times. The algorithm performs a breadth-first search
of the prefix tree. It includes k + 1 bit length strings p ∥ 0 in HHk+1 if p ∥ 0 occurs at least T times in the
input strings (α1, . . . , αℓ), otherwise it gets pruned along its subtree. This is performed by querying the oracle
Ωα1,...,αℓ

(p ∥ 0, T ). The same process is repeated for p ∥ 1. The algorithm repeats this for all k-bit strings in

HHk (which updates HHk+1 based on the search and pruning of set HHk). At the end of the breadth-first
search and pruning, the algorithm outputs the set of strings that are T -heavy hitters. Our formal algorithm
is presented in Fig. 3.

Parameters: Threshold T ∈ N and string length n ∈ N.
Inputs: The algorithm has no explicit input. It has access to t-prefix count query oracle Ωα1,...,αℓ(p, t) for securely
computing t-prefix-count queries over prefix p for strings α1, . . . , αℓ.

Outputs: The set of T -heavy-hitter strings in α1, α2, . . . , αℓ.

Algorithm:

– Init. HH≤n := {HH0,HH1, . . .HHn} := {{ϵ}, ∅, . . . , ∅}, where HH0 contains empty string ϵ and HH1, . . .HHn are
empty sets.

– For each prefix p ∈ HHk of length k-bits in set HHk (where k = 0, 1, 2, . . . n− 1) and b ∈ {0, 1}:
If Ωα1,...,αℓ(p ∥ b, T ) = 1, then HHk+1 := HHk+1 ∪ {p ∥ b}.

– Output T -heavy hitters HH≤n = {HH0,HH1, . . .HHn}.

Fig. 3: Algorithm for computing T -heavy hitters.

Cost Analysis. There are ℓ input strings in total. For any string of length k, there are at most ℓ/T candidate
heavy hitter strings. At each level k, the algorithm makes at most one oracle query per heavy hitter string.
Hence, the algorithm makes at most nℓ/T prefix-count oracle queries for n levels. If we set the threshold to
be a constant fraction of all input strings (e.g., T = 0.01ℓ), then the number of prefix-count queries are
independent of the number of input strings (e.g., nℓ/T = nℓ/0.01ℓ = 100n).
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3.4 T -Prefix Count Queries Oracle from VIDPF

We realize the T -Prefix Count Query Oracle Ω(·, T ) from Def. 1 by relying on a new verifiable incremental
DPF (VIDPF) primitive and using an ideal functionality FCMP (Fig. 8) for secure comparison.

Verifiable Incremental DPF (VIDPF). A DPF allows a client to succinctly share a vector of size 2n

with a single non-zero point. Meanwhile, an incremental DPF (introduced by Poplar and denoted as IDPF)
allows the client to succinctly secret share a path in the binary tree (used for representing 2n leaves in binary
format) and each node in the path can hold non-zero values. Our novel VIDPF primitive offers strong integrity
guarantees over IDPFs since the evaluation of the client keys also provides proofs (π1, . . . , πn) to the servers
ensuring that the VIDPF output is non-zero along a single path in the binary tree. It also allows incremental
evaluation of the VIDPF over an input x ∈ {0, 1}k, given state stk−1

b and proof πk−1
b , corresponding to VIDPF

evaluation of the first k− 1 bits of x. The incremental evaluation enables the party possessing keyb to process
one level and obtain the secret sharing of output f(x), a new state stkb , and a new proof πk

b corresponding
to the VIDPF evaluation of the path involving x. More formally, we capture the high-level ideas of VIDPF
using the following two algorithms:

– Gen(1κ, 1n, α, (β1, β2, . . . , βn),G)→ (key0, key1) : Given security parameter κ, input size n, input string
α ∈ {0, 1}n, and values β1, . . . , βn, the key generation algorithm outputs two VIDPF keys key0 and key1.

– EvalPref(b, keyb, x, st
k−1
b , πk−1

b )→ (stkb , yb, π
k
b ) : Given a VIDPF key keyb and an input string x ∈ {0, 1}k

of length k ≤ n bits, this algorithm outputs an internal state stk, secret-shared value yb ∈ G, and a proof
πk
b ∈ {0, 1}∗.

Correctness of the VIDPF ensures that for all input points α ∈ {0, 1}n, output values β1, . . . , βn ∈ G, VIDPF
keys generated as (key0, key1) ← Gen(α, β1, β2, . . . , βn,G) and all values x ∈ {0, 1}k, where k ≤ n, the
following holds for all k ≤ n:

πk
0 = πk

1 and y = (y0 + y1) =

{
βk, if x is a prefix of α,

0, otherwise,

where (stk0 , y0, π
k
0 ) :=EvalPref(0, key0, x, st

k−1
0 , πk−1

0 ) and (stk1 , y1, π
k
1 ) :=EvalPref(1, key1, x, st

k−1
1 , πk−1

1 ). For
security guarantees, we require two additional properties from the VIDPF primitive:

– Input Privacy. The security of VIDPF guarantees that an adversarial evaluator in possession of either
key0 or key1 (but not both), does not learn anything about the input α or the outputs β1, . . . , βn of the
client.

– Verifiability. This property states that if two proofs (e.g., πk
0 and πk

1 ) are the same, then there is at most
one path of length k in the binary tree whose evaluation with (key0, key1) outputs (β

1, β2, . . . , βk). More
formally, for any k ∈ [n] there exists a single k-bit string x̃ ∈ {0, 1}k such that if πk

0 = πk
1 , then the

following holds:

(stk0 , y0, π
k
0 ) := EvalPref(0, key0, z, st

k−1
0 , πk−1

0 )

(stk1 , y1, π
k
1 ) := EvalPref(1, key1, z, st

k−1
1 , πk−1

1 )

y0 + y1 =

{
βk, if z = x̃,

0, if z = {0, 1}k \ {x̃},

where stk−1
0 , πk−1

0 and stk−1
1 , πk−1

1 are obtained by recursively running the EvalPref algorithm on k−1 bits
of z. The evaluators initialize st00 := st01 := 0 and π0

0 := π0
1 := 0. It also implicitly captures the requirement

that x̃ ∈ {0, 1}k−1 is a prefix of x̃ ∈ {0, 1}k for k ∈ [n].

We provide a construction of VIDPF in Figs. 15 and 16 (Appendix B) based on length doubling PRG in the
random oracle model. Next, we outline our protocol for securely implementing T -prefix count queries using
VIDPF and the comparison functionality FCMP.
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Implementing T -Prefix Count Queries. Each client generates three pairs of VIDPF keys, one for each
pair of servers, with independent randomness but the same input point α and output values (1, . . . , 1). The
client sends the keys for the sessions to the respective servers (Fig. 1) as in our histogram protocol.

Basic Protocol. As depicted in Fig. 2, S1 replicates S2 in the S2−S0 session and S2 behaves as an attestator
for S1 by sending hashes of the messages that S1 should send. The hash prevents S1 from acting maliciously
corresponding to the S2 − S0 session. Similar protocol steps are run by S2 for the session S1 − S2, where
S2 sends hashes to S1. Hence, S0 and S1 run three sessions, and S2 runs two of those sessions in parallel.
Next, we describe the protocol to compute a T -prefix count query on a string p ∥ 0 ∈ {0, 1}k (note, the same
process can be repeated for p ∥ 1). S0 and S1 evaluate the VIDPF keys for the three sessions on p ∥ 0 and
obtain a secret share of the output yp∥0 and proof π. For an honest client, yp∥0 should be βk = 1. However, a
malicious client can construct malformed keys such that the client’s input gets counted more than once.

Client Input Validation. We introduce the following consistency checks to validate a client’s input. Checks
1-3 ensure that the VIDPF keys are “one-hot”, i.e., they have a single non-zero evaluation path (containing 1
in this case, along the path), and check 4 ensures that the client input is consistent across the sessions:

Check 1: The servers S0 and S1 first verify that the proofs π are the same for all three sessions. This ensures
that there is at most one path in the binary tree that is non-zero.

Check 2: For the root level (i.e., k = 0), the servers evaluate the VIDPF keys on the empty string ϵ and
verify it is 1.

Check 3: Finally, at the kth level, the servers need to verify that yp∥0 is either 0 or 1, without reconstructing
the output. We perform this check by observing that the output of the parent p should be the sum of the
outputs of p ∥ 0 and p ∥ 1. The servers evaluate the VIDPF keys on the parent string p and sibling (of
p ∥ 0) string p ∥ 1 to obtain secret shares of the output of yp and yp∥1 respectively. The servers reconstruct
yp−(yp∥0+yp∥1) and verify that it is 0. The first check ensures that at most one of yp∥0 or yp∥1 is non-zero.
Combining the two checks, we can conclude that either (yp∥0 = 0, yp∥1 = 1) or (yp∥0 = 1, yp∥1 = 0), since
at most one child can equal 1 when the parent holds a value of 1. Iterating this for all k levels ensures that
yp∥0 = 1 iff yp = 1 and yp∥1 = 0, else yp∥0 = 0. The servers also verify (using check 1) the corresponding
proofs π generated during the VIDPF evaluation along the path, to ensure there is at most one non-zero
path in the entire binary tree.

Check 4: The servers also need to ensure that the client input is consistent across the sessions. This is
ensured by computing the difference of the reconstructed outputs across the sessions and verifying that
they are equal to 0 by matching their hash values. For more details, we defer to Section 4.

Output Phase. Once the client’s VIDPF output yp∥0 is verified, the secret shares of yp∥0 are aggregated
into counter cntp∥0. The servers repeat the above steps for all the clients in parallel to obtain secret shares
of cntp∥0. The servers invoke the comparison functionality FCMP (Fig. 8) with the secret shares of cnt and
threshold T . FCMP reconstructs cnt and it outputs 1 if cnt ≥ T , otherwise, it outputs 0. This is returned by
the servers as the output of the T -prefix count oracle query response to the string p ∥ 0. Similar steps are run
for p ∥ 1. The comparison functionality FCMP is securely implemented using the state-of-the-art protocol of
Rabbit [MRVW21].

Robustness Against a Malicious Server. Note that the above validation check assumes that both servers
are honest. Otherwise, malicious behaviour is detected as described next. The third server ensures that if the
client behaves honestly then at least one of the three sessions will be evaluated correctly since two of the
servers are honest. After aggregating all the client’s inputs, cnt is reconstructed across the three sessions by
FCMP. If cnt is inconsistent across any pair of servers then FCMP returns ⊥ indicating that one of the servers
behaved maliciously by launching an additive attack. This causes the honest servers to abort, providing
robustness against the malicious server. We observe that our protocol satisfies fairness (which is a stronger
security notion than selective abort) if FCMP is implemented using a fair protocol. We discuss this in Sec. 7.

Batched Client Verification. In our final protocol, we verify multiple client inputs at each level in one
batch. We batch all the clients’ VIDPF evaluations using a Merkle tree that has ℓ leaves for ℓ clients. First,
the servers check the equality of ℓ leaves by asserting that the Merkle roots are the same. If the roots match
then the leaves are the same, while if they differ then the servers recursively repeat the same process for each
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of the two children of the parent node. Proceeding this way, the servers identify the malformed leaves on which
the two trees differ. This reduces the dependency of our server-to-server communication to O(ℓ′(log2 ℓ

ℓ′ )), for
ℓ′ malicious clients, instead of O(ℓ), while when ℓ′ = 0 our communication is down to O(1). Formal details
can be found in Section 5.

4 Private Heavy Hitters

We provide the ideal functionality FHH for heavy-hitters between three servers and ℓ clients in Fig. 4. Adversary
A maliciously corrupts any one of the servers and multiple clients. Note that this corruption can easily happen;
if A has maliciously corrupted a server, then A can spawn multiple malicious clients. Additionally, if A
controls a server, it can instruct FHH to discard an honest client’s input. It can also instruct the functionality
to abort at a particular level k + 1. In this case, A and the honest servers receive the set of all (that have
not been discarded by A) k-bit heavy-hitting prefixes as output, and the functionality instructs the honest
servers to abort. We remark that FHH never leaks an honest client’s inputs.

Parameters: Servers S0,S1,S2. ℓ clients Ci for i ∈ [ℓ]. S0,S1,S2 agree on:

– A bound ℓ on the number of client submissions.
– A bound T on the threshold for heavy hitters.

Inputs: Servers S0,S1,S2 do not have any input. Clients Ci: A point αi ∈ {0, 1}n for i ∈ [ℓ]. αi,j represents the
jth bit of αi.

Outputs: Init. HH≤n := {HH0,HH1, . . .HHn} := {{ϵ}, ∅, . . . , ∅}. For k ∈ [0, . . . , n− 1] and for each prefix p ∈ HHk,
update HHk+1 := HHk+1 ∪ (p ∥ b) if

∑ℓ
i=1

∣∣(αi,≤k+1 = (p ∥ b))
∣∣ ≥ T , for b ∈ {0, 1}.

FHH outputs the following:

– Servers S0,S1,S2: Set of T -heavy hitters HH≤n.
– Clients Ci: No output for i ∈ [ℓ].

Corruption: Adversary A maliciously corrupts one server and multiple clients together. A can perform the
following:
If A instructs the functionality to discard the jth client’s input, then FHH discards αj from the output
computation.
If A instructs the functionality to abort at level k + 1 by sending (⊥, k + 1), then FHH returns HH≤k to A and the
honest servers; additionally, FHH instructs the honest servers to abort by sending ⊥.

Fig. 4: The ideal FHH functionality for T -heavy hitters.

Our detailed protocol πHH that implements FHH appears in Figs. 5 and 6, while high-level ideas of our
protocol can be found in Sections 3.3 and 3.4. Our πHH protocol privately computes all the T -heavy-hitting
strings (and their heavy-hitting prefixes) given the input data of ℓ clients, while protecting the privacy
of the individual data points. πHH runs on three servers (S0,S1,S2) that utilize our verifiable incremental
DPF (VIDPF) protocol to privately aggregate the clients’ data points. Specifically, πHH runs three VIDPF
sessions, which guarantees security against a malicious server. Our protocol proceeds in three phases: a client
computation phase, a server computation phase, and an output phase.

Client Computation. During the client computation phase, each client C prepares three pairs of VIDPF
keys for their private data point α ∈ {0, 1}n, and output value (β1, . . . , βn) := (1, . . . , 1) along the path to α,
using independent randomness for each key generation. Employing three pairs of keys essentially allows us to
run three separate VIDPF sessions. S0 and S1 each have one key for each of the three sessions, while S2 acts
as a consistency checking server and shares one key with each of the other two servers. More specifically, the
client generates (key(0,1), key(0,2)) for S0, (key(1,0), key(1,2)) for S1, and (key(2,1), key(2,0)) for S2. The client
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Input: Each client Ci has an input point αi ∈ X for i ∈ [ℓ].
Output: The servers Sb (for b ∈ {0, 1, 2}) output the set of T -heavy hitters HH≤n := FHH(ℓ, T , {αi}i∈[ℓ]).
Primitive: VIDPF := (Gen,EvalPref,EvalNext) is a verifiable incremental DPF. H1,H2 : {0, 1}∗ → {0, 1}κ are

random oracles.

Client C Computation. (Repeated for ℓ clients, each of which has their own private input α)

1. Client C with input α prepares three pairs DPF keys with independent randomness u, v, w
r←− {0, 1}κ, as follows:

(key(0,1), key(1,0)) := Gen(1κ, 1n, α, (1, . . . , 1),G), (key(1,2), key(2,1)) := Gen(1κ, 1n, α, (1, . . . , 1),G),

(key(2,0), key(0,2)) := Gen(1κ, 1n, α, (1, . . . , 1),G)

2. The client sends (key(0,1), key(0,2), key(2,1)) to S0, (key(1,0), key(1,2), key(2,0)) to S1 and (key(2,1), key(2,0)) to S2.

Server Computation.

Each server Sb initializes HH≤n
b = {HH0

b ,HH
1
b , . . .HH

n
b } := {{ϵ}, ∅, . . . , ∅}. Repeat the following steps for length of k

bits, where k ∈ [0, . . . , n− 1]:

1. Initialization. For prefix p ∈ HHk
b , servers initialize the aggregation variables for prefixes γ ∈ {p ∥ 0, p ∥ 1} as

follows:
S0 sets cntγ(0,1) := cntγ(0,2) := cntγ(2,1) := 0,

S1 sets cntγ(1,2) := cntγ(1,0) := cntγ(2,0) := 0, S2 sets cntγ(2,0) := cntγ(2,1) := 0

2. VIDPF Evaluation. For prefix p ∈ HH≤k
b , Server Sb computes: (Repeated for ℓ clients)

(a) If (p = ∅): then S0 sets st∅(0,1) := π∅
(0,1) := st∅(0,2) := π∅

(0,2) := st∅(2,1) := π∅
(2,1) := ∅, S1 sets

st∅(1,2) := π∅
(1,2) := st∅(1,0) := π∅

(1,0) := st∅(2,0) := π∅
(2,0) := ∅. S2 sets st∅(2,0) := π∅

(2,0) := st∅(2,1) := π∅
(2,1) := ∅.

If (p ≠ ∅): then Sb retrieves the state from memory corresponding to the internal states of πVIDPF for prefix
p: S0 retrieves (stp(0,1), y

p
(0,1), π

p
(0,1)), (st

p
(0,2), y

p
(0,2), π

p
(0,2)) and (stp(2,1), y

p
(2,1), π

p
(2,1)). S1 retrieves (stp(1,2),

yp
(1,2), π

p
(1,2)), (st

p
(1,0), y

p
(1,0), π

p
(1,0)) and (stp(2,0), y

p
(2,0), π

p
(2,0)). S2 retrieves (stp(2,0), y

p
(2,0), π

p
(2,0)) and (stp(2,1),

yp
(2,1), π

p
(2,1)).

(b) Each server Sb evaluates the VIDPF on the prefixes γ ∈ {p ∥ 0, p ∥ 1} as follows and stores them in memory:

S0 sets (stγ(0,1), y
γ
(0,1), π

γ
(0,1)) := EvalPref(0, key(0,1), γ, st

p
(0,1), k, π

p
(0,1)),

(stγ(0,2), y
γ
(0,2), π

γ
(0,2)) := EvalPref(1, key(0,2), γ, st

p
(0,2), k, π

p
(0,2)) and stores them in memory.

S1 sets (stγ(1,2), y
γ
(1,2), π

γ
(1,2)) := EvalPref(0, key(1,2), γ, st

p
(1,2), k, π

p
(1,2)),

(stγ(1,0), y
γ
(1,0), π

γ
(1,0)) := EvalPref(1, key(1,0), γ, st

p
(1,0), k, π

p
(1,0)) and stores them in memory.

S2 and S1 set (stγ(2,0), y
γ
(2,0), π

γ
(2,0)) := EvalPref(0, key(2,0), γ, st

p
(2,0), k, π

p
(2,0)) and store them in memory.

S2 and S0 set (stγ(2,1), y
γ
(2,1), π

γ
(2,1)) := EvalPref(1, key(2,1), γ, st

p
(2,1), k, π

p
(2,1)) and store them in memory.

(c) If k = 1 : Servers compute the proof that the VIDPF evaluation at the root layer sums up to 1:

S0 sets h∅
(0,1) := H1(∅, 1− y0

(0,1) − y1
(0,1)) and h∅

(0,2) := H1(∅, y0
(0,2) + y1

(0,2), ),

S1 sets h∅
(1,2) := H1(∅, 1− y0

(1,2) − y1
(1,2)) and h∅

(1,0) := H1(∅, y0
(1,0) + y1

(1,0)),

S2 and S1 set h∅
(2,0) := H1(∅, 1− y0

(2,0) − y1
(2,0)), S2 and S0 set h∅

(2,1) := H1(∅, y0
(2,1) − y1

(2,1)).

Fig. 5: Private T -Heavy Hitters Protocol πHH (continues in Fig. 6).
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Server Computation (Continued from Fig. 5) Repeat the following steps for length of k bits, where k ∈ [n]:

2. VIDPF Evaluation (Cont.). For prefix p ∈ HH≤k
b , Server Sb computes: (Repeated for ℓ clients)

(d) If k ̸= 1 : Servers compute proof that (VIDPF output on prefix p) = (VIDPF output on prefix p ∥ 0) +
(VIDPF output on prefix p ∥ 1):

S0 sets hp
(0,1)

:= H1(p, y
p
(0,1) − y

p∥0
(0,1) − y

p∥1
(0,1)) and hp

(0,2)
:= H1(p,−(yp

(0,2) − y
p∥0
(0,2) − y

p∥1
(0,2)))

S1 sets hp
(1,2)

:= H1(p, y
p
(1,2) − y

p∥0
(1,2) − y

p∥1
(1,2)) and hp

(1,0)
:= H1(p,−(yp

(1,0) − y
p∥0
(1,0) − y

p∥1
(1,0)))

S2 and S1 set hp
(2,0)

:= H1(p, y
p
(2,0)−y

p∥0
(2,0)−y

p∥1
(2,0)), S2 and S0 set hp

(2,1)
:= H1(p,−(yp

(2,1)−y
p∥0
(2,1)−y

p∥1
(2,1))).

(e) S0 and S1 ensure that the client input is consistent across the three sessions by computing the following
hashes.

S0 computes ĥp∥0 = H1(y
p∥0
(0,1) − y

p∥0
(0,2), y

p∥0
(0,2) − y

p∥0
(2,1)) and ĥp∥1 = H1(y

p∥1
(0,1) − y

p∥1
(0,2), y

p∥1
(0,2) − y

p∥1
(2,1)).

S1 computes hp∥0 := H1(y
p∥0
(2,0) − y

p∥0
(1,0), y

p∥0
(1,2) − y

p∥0
(2,0))) and hp∥1 := H1(y

p∥1
(2,0) − y

p∥1
(1,0), y

p∥1
(1,2) − y

p∥1
(2,0)))

(f) Client State Accumulation: The servers accumulate their local state for each client session as follows:

S0 sets Rk
(0,1) := H2

(∣∣∣∣
p∈HHk

(
p, hp

(0,1), π
p∥0
(0,1), π

p∥1
(0,1)

))
and Rk

(0,2) := H2

(∣∣∣∣
p∈HHk

(
p, hp

(0,2), π
p∥0
(0,2), π

p∥1
(0,2)

))
S1 sets Rk

(1,2) := H2

(∣∣∣∣
p∈HHk

(
p, hp

(1,2), π
p∥0
(1,2), π

p∥1
(1,2)

))
and Rk

(1,0) := H2

(∣∣∣∣
p∈HHk

(
p, hp

(1,0), π
p∥0
(1,0), π

p∥1
(1,0)

))
S2,S1 set Rk

(2,0) := H2

(∣∣∣∣
p∈HHk

(
p, hp

(2,0), π
p∥0
(2,0), π

p∥1
(2,0)

))
,

and S2,S0 set Rk
(2,1) := H2

(∣∣∣∣
p∈HHk

(
p, hp

(2,1), π
p∥0
(2,1), π

p∥1
(2,1)

))
3. Batch-Verification. The servers batch-verify the client inputs for all three sessions and across the three

sessions by invoking πcheck (Fig. 9):

(a) S0 sets ui :=
{
(Rk

(0,1), R
k
(0,2), R

k
(2,1), ĥ

p∥0, ĥp∥1) values for client i ∈ [ℓ]
}
. S1 sets

vi :=
{
(Rk

(1,0), R
k
(2,0), R

k
(1,2), h

p∥0, hp∥1) values for client i ∈ [ℓ]
}
. S0 sets u := {ui}i∈[ℓ] and S1 sets

v := {vi}i∈[ℓ]. S0 and S1 batch-verify all the client inputs by computing the bit ver and list L (comprising
of invalid client inputs) by running πcheck with inputs u and v respectively: (ver, L) := πcheck(u,v) :

ver := 0 if ∃ a client whose (Rk
(0,1) ̸= Rk

(1,0)) ∨ (Rk
(0,2) ̸= Rk

(2,0)) ∨ (Rk
(2,1) ̸= Rk

(1,2)) ∨ (ĥp∥0 ̸=
hp∥0) ∨ (ĥp∥1 ̸= hp∥1), and List L := {list of invalid clients’ since they failed to pass the above check}. If
ver = 1, then all the clients’ inputs are valid.

(b) S2 possesses Rk
(2,0), R

k
(2,1) values for each client. S2 verifies that S2’s version of Rk

(2,1) matches with S0’s
version of Rk

(2,1). S2 also attests that S2’s version of Rk
(2,0) matches with S0’s version of Rk

(0,2) by

computing (ver′, L′) := πcheck({Rk
(2,1), R

k
(2,0)}ℓ clients of S2, {Rk

(2,1), R
k
(0,2)}ℓ clients of S0).

(c) S2 verifies that S2’s version of Rk
(2,0) matches with S1’s version of Rk

(2,0). S2 also attests that S2’s version
of Rk

(2,1) matches with S1’s version of Rk
(1,2) by computing

(ver′′, L′′) := πcheck({Rk
(2,0), R

k
(2,1)}ℓ clients of S2, {Rk

(2,0), R
k
(1,2)}ℓ clients of S0).

After batch verification, the servers identify the list of bad clients as L := L ∪ L′ ∪ L′′. The servers ignore the
inputs of all clients in L.

Fig. 6: Private T -Heavy Hitters Protocol πHH (continues in Fig. 7).
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Server Computation (Continued from Fig. 6) Repeat the following steps for length of k bits, where k ∈ [n]:

4. Aggregation. Aggregate the VIDPF outputs for prefixes γ ∈ {p ∥ 0, p ∥ 1} as follows: (Repeated for all
validated clients in [ℓ] \ L)

S0 sets cntγ(0,1) := cntγ(0,1) + yγ
(0,1), cnt

γ
(0,2)

:= cntγ(0,2) + yγ
(0,2), and cntγ(2,1) := cntγ(2,1) + yγ

(2,1)

S1 sets cntγ(1,2) := cntγ(1,2) + yγ
(1,2), cnt

γ
(1,0)

:= cntγ(1,0) + yγ
(1,0), and cntγ(2,0) := cntγ(2,0) + yγ

(2,0)

S2 sets cntγ(2,0) := cntγ(2,0) + yγ
(2,0) and cntγ(2,1) := cntγ(2,1) + yγ

(2,1)

The servers have aggregated the VIDPF evaluations (over all the ℓ clients) for all candidate (k + 1)-bit strings.
5. Pruning. For every (k + 1)-bit string γ, the servers invoke FCMP functionality (Fig. 8) with the additive shares

of the node frequency.
S0 invokes FCMP(cnt

γ
(0,1), 0, cnt

γ
(0,2), cnt

γ
(2,1), cnt

γ
(0,2), T ),

S1 invokes FCMP(cnt
γ
(1,0), cnt

γ
(1,2), 0, cnt

γ
(1,2), cnt

γ
(2,0), T ),

S2 invokes FCMP(0, cnt
γ
(2,1), cnt

γ
(2,0), 0, 0, T )

The servers abort if FCMP aborts. If FCMP outputs 1 set HHk+1 := HHk+1 ∪ γ. Otherwise, the servers ignore γ
since it is non-heavy hitter.
Servers have successfully computed the HHk+1 set. Servers repeat “Server Computation” steps (starting from
Step 2b) on k + 1 bit prefixes.

Output Phase. The servers output HH≤n as the set of T -heavy hitter strings.

Fig. 7: Private T -Heavy Hitters Protocol πHH (continuing from Fig. 6).

sends (key(0,1), key(0,2), key(2,1)) to S0, (key(1,0), key(1,2), key(2,0)) to S1, and (key(2,1), key(2,0)) to S2 as shown
in Fig. 1.

Server Computation. Each server initializes a set of sets for heavy-hitters as HH≤n := {HH0,HH1, . . .
,HHn} := {{ϵ}, ∅, . . . , ∅}, where HH0 is a set with the empty string ϵ, HH1, . . . ,HHn are empty sets and HHk

corresponds to the kth level. The servers start accepting VIDPF keys from the clients. As in our histogram
protocol, S2 acts as an attesting server for the sessions involving keys key(2,0) and key(2,1) by sending hashes
(depicted in Fig. 2). Next, for k ∈ [n] the servers perform the following:

(a) Initialization. For each k-bit heavy-hitting prefix p ∈ HHk, the servers initialize to 0 a cntp∥0 (resp.
cntp∥1) variable for each session to count the frequency of prefix p ∥ 0 (resp. p ∥ 1). Each server aggregates
for each of the three sessions their additive shares of each frequency in their local cnt variables and uses
them for pruning.

(b) VIDPF Evaluation. Next, the servers retrieve from memory the states for VIDPF evaluation in all
three sessions corresponding to prefix p ∈ {0, 1}k for each client. These states are used to incrementally
evaluate the VIDPF on prefix strings γ ∈ {p ∥ 0, p ∥ 1} for every client in all three sessions. For each
client, the servers obtain new evaluation states (corresponding to prefix γ), VIDPF output for prefix
string γ, and proof strings. The states are stored in memory for future VIDPF evaluations on γ ∥ 0 and
γ ∥ 1 in the (k + 1)th level. More formally, the servers compute a secret shared vector yγ(b1,b2) and a

hash πγ
(b1,b2)

that is used for consistency checking by relying on the verifiability property of the VIDPF.

Next, the servers validate the client’s input. If k = 1, then the servers reconstruct y0 + y1 for each client
to verify that y0 + y1 = 1 (i.e., the non-zero root value is 1). If k ̸= 1, then the servers reconstruct
yp − (yp∥0 + yp∥1) and verify that it is 0, asserting that the parent value is propagated to the children
correctly. Note that in either of the above cases, nothing is leaked about the client’s input, apart from
the fact that it is a valid submission (i.e., 1 at the root layer and correct propagation). This ensures
that the subtrees involving p ∥ 0 and p ∥ 1 are valid. The servers also need to ensure that the client has
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provided consistent input across the three sessions. This is ensured by computing the difference of the
reconstructed outputs across the sessions and verifying that they equal 0 by matching their hash values
with the other servers’ hash in Step 2e of Fig. 5.

(c) Batch-Verification. The servers need to check: (1) that the hashes they possess for a client are equal,
and (2) that yp = (yp∥0 + yp∥1). Both these checks are reduced to checking the equality of a string
(corresponding to each client) held by servers. Let u (resp. v) be the list of ℓ (one for each client) strings
held by the first (resp. second) server. Then, the servers perform a batch verification of u and v strings
by invoking the subprotocol πcheck(u,v) in Fig. 9. If the two lists u and v are equal then πcheck returns
ver = 1, else it returns ver = 0 and a list L containing the indices of elements where the lists differ. This
is performed for all three sessions. S2 also attests to the sessions that it is involved in. This is performed
using batch-verification, yielding output lists L′ and L′′. Finally, the servers identify the list of bad clients
as L = L ∪ L′ ∪ L′′ and their VIDPF output is ignored. The servers consider the rest of the clients as
“validated” and they are moved to the aggregation phase.

(d) Aggregation. Once a client’s VIDPF output yγ is validated for γ ∈ {p ∥ 0, p ∥ 1}, it is aggregated into
cntγ := cntγ + yγ . This is locally performed by each server (for all three sessions) using the secret shares
of yγ since it only involves addition. The servers perform this over every validated client output, and at
the end of this phase, the servers possess a secret share of the frequency of p ∥ 0 and p ∥ 1 as cntp∥0 and
cntp∥1.

Inputs: Party P0 has input (a0, b0, c0, d0, e0, T0), Party P1 has input (a1, b1, c1, d1, e1, T1), and Party P2 has input
(a2, b2, c2, d2, e2, T2).
Outputs: Compute a := a0 + a1, b := b1 + b2, c := c0 + c2, d := d0 + d1, e := e1 + e2, and proceed as follows:
(a) If not T0 = T1 = T2, then FCMP aborts. Else, set T := T0.
(b) If a = b = c = d = e and a < T then output 0.
(c) If a = b = c = d = e and a ≥ T then output 1.
(d) Else, FCMP aborts (i.e. a, b, c, d, or e strings are not equal).
Corruption: Adversary A maliciously corrupts one server. If A instructs the functionality to abort, the
functionality instructs the honest servers to abort.

Fig. 8: The ideal FCMP functionality for comparison.

(e) Pruning. The servers proceed to pruning and invoke FCMP (Fig. 8) on the secret shares of cntγ (for
γ ∈ {p ∥ 0, p ∥ 1}) for all sessions and threshold T . Based on the output of FCMP the following occurs:
– FCMP returns 1 if cntγ ≥ T (i.e., γ is a heavy-hitter string). In this case, the prefix γ is added to the

list of k + 1-bit heavy-hitter set (i.e., HHk+1 := HHk+1 ∪ γ).

– FCMP returns 0 if cntγ < T (i.e., γ is a non heavy-hitter string). In this case, the prefix γ is ignored.

– If FCMP returns ⊥, then one of the servers behaved maliciously and the honest servers abort. This
occurs if the malicious server has provided an incorrect threshold as input (condition 1 in FCMP) or
it provided incorrect client output shares as input (condition 4 in FCMP).

This computation is performed in parallel for all (k + 1)-bit prefixes in consideration, and after the
pruning phase, HHk+1 contains the list of (k+1)-bit heavy hitter strings. Next, the above computation is
repeated for (k+1)-bit strings to compute (k+2)-bit heavy hitters, until we reach k = n− 1. As already
mentioned, FCMP is securely implemented using the state-of-the-art protocol of Rabbit [MRVW21].

Output Phase. At the end, the servers output HH≤n = {HH0, HH1, . . . ,HHn} as the set of T -heavy hitter
strings. This completes the description of πHH (Figs. 5, 6).

Theorem 1. Assuming VIDPF is a verifiable incremental DPF and H1,H2 are random oracles, FCMP is a
secure comparison functionality (Fig. 8), and H (in πcheck) is collision-resistant, then πHH (Figs. 5 and 6)
implements FHH in the (random oracle, FCMP)-model against malicious corruption of one server and ℓ′ ≤ ℓ
clients.
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Proof Sketch. Security of our protocol is captured in Theorem 1 and proven in Appendix C. Below we
provide a security sketch. The adversary is allowed to corrupt ℓ′ ≤ ℓ clients and one of the servers. The other
two servers are honest. A malicious client attempts to inject an error and is detected in the following ways:

Client VIDPF keys are malformed. A malicious client can provide malformed VIDPF keys that are
non-zero in more than one path in the tree. This gets detected in the session involving the honest servers due
to the verifiable property of the VIDPF at each level when the servers verify the VIDPF proofs. If the checks
pass, then it is ensured that the VIDPF keys provided by the client are valid.

Client VIDPF input is malformed. Next, a malicious client can try to double-vote on an input point, say

p∥0 ∈ {0, 1}k+1 by constructing the VIDPF on (p∥0, β̃k), i.e., f(p∥0) = β̃k, where β̃k > 1, instead of (p∥0, 1).
This is detected by the honest servers since they perform a local subtree verification by reconstructing the
value yp − (yp∥0 − yp∥1) and verifying that it equals 0 for all k > 0. For k = 0, the servers verify that yϵ = 1.

VIDPF input is inconsistent across sessions. Finally, a malicious client can try to provide different VIDPF
keys in different sessions. For example, it constructs VIDPF keys for (α1, 1) for session S0 − S1, (α2, 1) for
session S1 − S2, and (α3, 1) for session S2 − S0, where α1, α2, α3 ∈ {0, 1}n and might be different. To ensure
the input is consistent across sessions, the servers match the difference of the reconstructed output of S0 −S1
and S2 − S0 session, and the difference of the reconstructed output of S2 − S0 and S1 − S2 session, to verify
that they are all 0. By transitivity, it is ensured that the VIDPF evaluation is the same across the sessions

if and only if the checks pass, ensuring that α1 = α2 = α3. This is performed by computing ĥp∥0 and ĥp∥1

hashes.

A malicious server can collude with malicious clients. Observe that the honest clients’ inputs are always
hidden from the adversary due to input privacy of VIDPF. Next, a malicious server could incorporate an
erroneous VIDPF evaluation (from a malformed client input key) or inject additive errors into the output.
We show how this is tackled in the protocol based on the server corruption:

S0 is corrupt. In this case, the session between S1 − S2 is honest. S0 runs this session with S1 since it
obtained key(2,1) from the client. However, S2 behaves as an attestator by sending hashes of the messages
that S0 is supposed to send. This forces S0 to act honestly in the S1 − S2, otherwise, it leads to an abort.
Another way a malicious S0 can behave badly is by colluding with a malicious client. The client can
provide malformed inputs in S0 − S1/S2 − S0 session or inconsistent inputs across the three sessions. In

such a case, a malicious S0 could compute an incorrect hash ĥp∥0 := H1(y
p∥0
(0,1)

′
− y

p∥0
(0,2)

′
, y

p∥0
(0,2)

′
− y

p∥0
(2,1)) and

ĥp∥1 := H1(y
p∥1
(0,1)

′
− y

p∥1
(0,2)

′
, y

p∥1
(0,2)

′
− y

p∥1
(2,1)) where y

p∥0
(0,1)

′
, y

p∥0
(0,2)

′
, y

p∥1
(0,1)

′
, y

p∥1
(0,2)

′
are incorrect. This allows S0 to

introduce an additive error into the frequency for p ∥ 0 and p ∥ 1 (for the S0 − S1 and S2 − S0 sessions) by
incorporating the client’s malformed input. However, this gets detected when the output count is secretly
reconstructed by FCMP for all three sessions. The reconstructed count will not match and the ideal functionality
would return a ⊥ message detecting that one of the servers behaved maliciously, leading to an abort in the
πHH. The case where S1 is corrupt is symmetrical.

S2 is corrupt. In this case, the session between S0 − S1 is honest. If S2 behaves as a malicious attestator
by sending incorrect hashes for the S1 − S2 or S2 − S0 sessions then the honest servers abort. A malicious S2
can also collude with a malicious client, and the latter can provide malformed inputs in the three sessions.
If this happens in the S0 − S1 session then it gets detected due to verifiability of the VIDPF and the local
subtree verification, since both S0 and S1 are honest. If the client provides malformed (e.g., double voting)
VIDPF keys key′(2,0) and key′(2,1) to S1 and S0 for the sessions involving S2, it again gets detected since S0
computes the hashes ĥp∥0 and ĥp∥1 honestly and S1 verifies them honestly.

Round Complexity. Next, we analyze the round complexity of our heavy-hitters protocol. The Server
computation is performed for n levels (k ∈ [0, . . . , n− 1]), where each level involves “VIDPF Evaluation”,
“Batch Verification”, “Aggregation”, and “Pruning” phases. The VIDPF evaluation and aggregation steps
are performed locally by each server. Each batch-verification step requires ⌈log2 ℓ⌉+ 1 rounds in the worst
case (when there are malformed client inputs at each level) and a single round in the best case (when all
the clients are honest). However, all verification steps for level k are performed in parallel and are batched.
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We further elaborate on this in Section 5. In the pruning phase, the servers run a protocol that implements
FCMP for each prefix, which is performed in parallel for all prefixes at the same level. Instantiating FCMP

with Rabbit [MRVW21] involves log2 |G| rounds, where the frequency count is performed over G. Summing
up, the best case round complexity of PLASMA is n · (1 + log2 |G|) and the worst case round complexity is
n · (⌈log2 ℓ⌉+ 1 + log2 |G|). For benchmarking, we implement group G using a 64-bit ring to exploit native
CPU ring optimizations.

Inputs: Party P0 has ℓ input strings u = {ui}i∈[ℓ]. Party P1 has ℓ input strings v = {vi}i∈[ℓ].

Outputs: πcheck outputs (ver, L) as follows:

– If u = v then ver := 1 and L := ∅,
– If u ̸= v then ver := 0 and L := {i}ui ̸=vi for i∈[ℓ].

ver = 1 denotes that the Merkle roots of u and v are equal. L is a list of indices where u and v differ.

Parameters: H : {0, 1}κ → {0, 1}κ is a collision-resistant hash. K = ⌈log2 ℓ⌉ denotes number of levels in the Merkle
tree for ℓ leaves.

Algorithm:
Root Computation: Party P0 (resp. P1) locally computes the Merkle R0 (resp. R1) on u (resp. v). For b ∈ {0, 1},
party Pb performs:

– If b = 0 then set NK
0 := {NK

0,i}i∈[ℓ] := {H(K, i, ui)}i∈ℓ as the list of leaf nodes in the Merkle tree containing u.
– If b = 1 then set NK

1 := {NK
1,i}i∈[ℓ] := {H(K, i, vi)}i∈ℓ as the list of leaf nodes in the Merkle tree containing v.

– Initialize ℓ′ := ℓ as the number of nodes in level K.
– For level k ∈ {K− 1,K− 2, . . . , 1} :
• Set ℓ′ := ⌈ ℓ

′

2
⌉ as the number of nodes in level k.

• For i ∈ [ℓ′] : Compute list of nodes at level k by hashing the nodes at level k + 1 as
Nk

b := Nk
b ∪H(k,Nk+1

b,2i ,N
k+1
b,2i+1).

– Set Merkle Rb := N1
b .

Root Verification: Parties P0 and P1 exchange R0 and R1. If R0 = R1 then set ver := 1, L := ∅, and output (ver, L).
Else, set ver := 0 and continue.

Unequal Leaf Identification: For b ∈ {0, 1}, party Pb sets N
1
b := Rb as the unequal node at level 1. For level

k ∈ {2, . . . ,K}: For each unequal node n ∈ N
k−1
b at level k − 1, parties identify unequal nodes at level k:

– Party Pb fetches left and right child of n as childLb and childRb .
– Parties exchange childL0, child

L
1, child

R
0 , and childR1 , and perform the following for b ∈ {0, 1}:

N
k
b := N

k
b ∪ childLb if childL0 ̸= childL1

N
k
b := N

k
b ∪ childRb if childR0 ̸= childR1

Pb possesses N
K
b as list of unequal leaf nodes. Pb sets L as the list of indices of N

K
b w.r.t. initial leaf nodes NK

b as

L := L ∪ {i : NK
b,i = NK

b,i}. Party Pb outputs (ver, L).

Fig. 9: πcheck for equality verification of ℓ strings between two parties and identification of unequal strings.

5 Batched Consistency Check

We now present our batched consistency check πcheck that enables two parties, P0 and P1, to verify the
equality of lists u and v containing ℓ strings using Merkle trees. If the two lists are equal then πcheck returns
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ver = 1, else it returns ver = 0 and a list L containing the indices of elements where the lists differ. Correctness
follows from the collision resistance property of the hash function H.

As summarized in Fig. 9, πcheck requires K+ 1 rounds of communication, where K = ⌈log2 ℓ⌉. The total
communicated hashes are roughly 4ℓ′(log2

ℓ
ℓ′ + 2), where u and v differ on ℓ′ elements. It can be further

optimized to 2ℓ′(log2
ℓ
ℓ′ + 2), where only one of the parties sends its hashes instead of both. We provide a

detailed analysis of the protocol in Appendix D. In case ℓ′ = 0, then our communication is a pair of hashes.

6 Experimental Evaluations

We implement our heavy-hitters protocol πHH in Rust and use the tarpc framework by Google for asynchronous
Remote Procedure Calls (RPC).4 PLASMA is fully parallelized: all sessions in each server run in parallel and
we employ parallel iterators to process multiple client requests concurrently. (We apply the same parallelization
for benchmarking Poplar.) We instantiate the PRG for VIDPF using the AES-NI hardware instructions for
AES encryption with a seed of κ = 128 bits. We used rings in PLASMA (instead of fields) since our checks
rely on the security of VIDPF (i.e., XOR-collision resistant property that is provided by the random oracle).
Conversely, the security of Poplar relies on a statistical check for the client’s input validation. This check
relies on the underlying group size and needs 62 bits for the statistical failure probability to be 2−60 for
intermediate levels; for the leaves, we use the default size of a finite field of 2κ = 256 bits as mentioned in
Poplar.

Experiment Details. Our experiments vary the number of clients between ℓ = 103 and ℓ = 106 with two
different bit-string sizes, n = 64 and n = 256 bits. We configured the threshold T to be 1% of the clients’
strings, and we report the client and server costs, while empirically comparing with Poplar. Then, we compute
the total monetary costs (due to runtime and communication) incurred by PLASMA servers, and we compare
it with [AHI+22] (since the code of [AHI+22] is not open-source) based on the monetary cost.

Experimental Setup. We performed both LAN and WAN5 experiments on AWS EC2 machines (c5.9xlarge)
each with 36 vCPUs at 3.60 GHz. PLASMA is compiled using Rust 1.74, and client-side experiments are
carried out using a standard laptop with an Intel i7-8650U CPU (1.90 GHz).

Performance Evaluation. In our experiments, our goal is to answer the following questions:

– How efficient is PLASMA for each client and server?
– How does PLASMA compare with similar works (such as Poplar) that leverage DPFs?
– How does PLASMA compare with the related works that provide similar security guarantees, such as

[AHI+22]?

Client costs. The PLASMA client generates three pairs of DPF keys. Meanwhile, the Poplar client generates
two pairs of DPF keys but also computes a malicious sketching operation. As a result, both PLASMA and
Poplar clients are extremely fast, running in the order of 20− 24 microseconds on 256-bit inputs. A detailed
comparison of client runtime can be found in Fig. 10 (a).

In terms of client communication, PLASMA transmits eight DPF keys, whereas Poplar transmits four
DPF keys plus the correlated randomness for the sketching operation. As shown in Fig. 10 (b), we observed
that the clients in both protocols incur the same communication overhead, roughly around 55 KB for 256
bits.

Server costs. In this experiment, we run PLASMA with randomly distributed malicious clients and compare
it with Poplar. We set the malicious clients ℓ′ to be a 0, 0.01, 0.1, and 0.3 fraction of the total clients ℓ. We
observe that running with ℓ′ = 0.01ℓ has slightly faster performance than 0.1ℓ, while 0.3ℓ exhibits slightly
worse performance than 0.1ℓ. Still, these differences are marginal compared to the total runtime,6 so we opt
for reporting the 0 and 0.1ℓ to make the figures more clear.

4 Our code is available at https://github.com/TrustworthyComputing/plasma.
5 We used one server in Oregon, one in Ohio, and one in N. Virginia. For Poplar, we used one in Oregon and the
other one in N. Virginia.

6 Performance is impacted by expanding the Merkle tree which happens if there is at least one malicious client.
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Fig. 10: Comparisons of client costs for PLASMA and Poplar (KB is Kilobytes and µs is microseconds).

LAN Server Runtime. PLASMA outperforms Poplar in terms of server runtime by 2.7× (64 bits) and
5× (256 bits) for ℓ = 106 clients and T = 1% of the clients. This improvement is largely attributed to our
efficient VIDPF-based client input validation. Although the presence of malicious clients has an impact on
PLASMA’s performance, it still remains significantly faster than Poplar as presented in Fig. 11. Meanwhile,
Poplar servers validate clients’ inputs using an expensive malicious secure sketching protocol.
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Fig. 11: Server runtime over LAN.

WAN Server Runtime. We benchmark PLASMA and Poplar over WAN for n = 64 and 256 bits and
report our findings in Fig. 12. While the total latency is increased for both frameworks, we observe that the
server WAN runtime for PLASMA increased by roughly 5-10% compared to server LAN runtime, whereas for
Poplar the runtime increases by roughly 50%. We observe almost 5− 10× improvement in terms of server
WAN runtime for PLASMA compared to Poplar since PLASMA incurs significantly less communication for
T = 1%.

Server-to-Server Communication. We compare the total communication costs incurred by all servers for an
increasing number of clients, T = 1%, and n = 256 in Fig. 13. Poplar servers incur 35 GB of communication,
whereas, PLASMA servers communicate less than 1 GB of data when considering ℓ′ = 0 and 0.1ℓ corrupt
clients, hence yielding a 35× improvement over Poplar. The implementation of [AHI+22] is not open-source so
we estimate the communication cost of [AHI+22] in Appendix G. The protocol of [AHI+22] communicates 45
GB of data to compute heavy-hitters over 106 client submitted 256-bit inputs. This yields a 45× improvement
of PLASMA over [AHI+22].

Server Monetary Cost. To obtain fair comparisons between Poplar, [AHI+22], and PLASMA, we perform
cumulative monetary cost analysis for a varying number of clients, assuming $0.05/GB and $1.53/hour. To
estimate monetary costs, we run PLASMA and Poplar in a similar setup as [AHI+22] and compare it with
the runtime provided in [AHI+22, Table 7.3] (which only considers 100k-400k clients over LAN). Note that
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Fig. 12: Server runtime over WAN.

103 104 105 106

Number of clients (ℓ)

10−3

10−2

10−1

100

101

102

To
ta

l C
om

. (
GB

)

PLASMA ℓ 0 = 0
PLASMA ℓ 0 = 0.1ℓ
Poplar
Sorting-based

(a) Bit-string size n = 64

103 104 105 106

Number of clients (ℓ)

10−2

10−1

100

101

102

To
ta

l C
om

. (
GB

)

PLASMA ℓ 0 = 0
PLASMA ℓ 0 = 0.1ℓ
Poplar
Sorting-based

(b) Bit-string size n = 256

Fig. 13: Comparisons with Poplar [BBC+21] and the sorting-based approach of [AHI+22] in terms of total
server-to-server communication (in GB).

Poplar runs two servers while PLASMA runs three. The monetary cost incurred by Poplar is two times the
cost incurred by a single Poplar server, while for PLASMA it’s three times a single PLASMA server.

We present our findings in Fig. 14 for T = 1% of the clients. Computing the T most popular strings
among 1 million clients with n = 256 bit strings, costs $4.7 with Poplar, while PLASMA incurs $0.6-$0.9
costs for 0 to 0.1ℓ malicious clients. Meanwhile, [AHI+22] costs at least $2.2 to perform the same task, so
PLASMA yields a 2.5− 3.5× improvement over [AHI+22] despite having a 15× runtime slowdown. This is
largely due to the communication incurred by [AHI+22] for performing secure sorting under MPC. When
considering input strings of smaller size, like n = 64, PLASMA is 4× cheaper than Poplar and 2× cheaper
than [AHI+22]. Lastly, Vogue [JKK+22] is not open source and it benchmarks 100k-400k clients over LAN. It
claims a 6× improvement over Poplar, whereas [AHI+22] claims an improvement of over 100×; therefore we
focused on comparing with [AHI+22].

Applications. We discuss two realistic applications:

Popular URLs. Each URL is represented as a 256-bit string and 10000 most popular URLs are computed
among 1 million client-submitted URLs, assuming T = 1%. Server runtimes of PLASMA and Poplar are
reported in Figs. 11 (b) and 12 (b), while the client communication costs in Figs. 10 (a) and (b) for n = 256.
This benchmark is completed in under 5 minutes with less than 1 GB of data of communication for PLASMA,
while Poplar servers incur more than 5× additional runtime costs and communicate 35 GB.

Popular GPS coordinates. We employ plus codes [LLC19] to efficiently encode the client GPS coordinates
using 64 bits. This approach uses a grid system aligned on top of the world map, assigning specific codes
to each area. Areas with similar codes are located in proximity to each other and a code that is a prefix
of another encompasses the area of the latter. For instance, code 87 represents the North East US region,
while code 87G8 represents a part of New York City. PLASMA uses plus codes to compute the most popular
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Fig. 14: Comparisons with Poplar and the sorting-based approach of [AHI+22] in terms of total monetary
cost (in USD).

locations (submitted by more than T = 1% of the clients) among a set of client-provided inputs using 64-bit
strings in roughly 2 minutes for 106 clients, as shown in Fig. 12 (a). Client cost is shown in Fig. 10.

7 Further Extensions

We discuss two interesting extensions of PLASMA and compare them with the state-of-the-art protocol of
[AHI+22]:

Fairness: The notion of fairness ensures that if an adversary receives an output then the honest parties
also receive the correct output. If the adversary aborts then the honest parties also abort. In our case, we
observe that the count is secret shared between the servers and based on the output of FCMP in the pruning
phase, the servers compute the heavy-hitting prefix set. As a result, PLASMA is fair if the pruning phase
is fair. This happens if FCMP functionality is implemented using a three-party subprotocol [CCPS19] that
guarantees fairness against one malicious party. Hence, PLASMA can satisfy a stronger notion of security as
compared to Poplar or [AHI+22], which only satisfies security with selective abort.

Heavy-Hitters over Multiple Thresholds: PLASMA enables computing heavy-hitters over multiple thresholds
(T1, T2, . . .) based on some pre-agreed strings by the servers. This enables new applications like traffic avoidance,
since different roads may have different traffic densities (e.g., highways are busier than smaller suburban
roads). The servers consider that during evaluation and use higher values of T for highways with more vehicles
and lower values for smaller roads. Conversely, it is unclear how to extend [AHI+22] to support this feature.
Protocol details are in Appendix E.

8 Concluding Remarks

In this work, we present PLASMA: a framework to privately identify the most popular strings – or heavy
hitters – among a set of client inputs without revealing the client data points. Previous works for private
heavy hitters, such as Poplar, consider security against malicious clients and were prone to additive attacks
by a malicious server, compromising the correctness of the protocol. To address this challenge, PLASMA
introduces a novel hash-based primitive, called verifiable incremental distributed point functions, which allows
the servers to validate client inputs using inexpensive operations. Additionally, we introduce a new batched
consistency check that uses Merkle trees to validate multiple client sessions in a batch. This drastically
reduces the concrete server-to-server communication, incurred during the heavy-hitters computation.
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Appendix

A Variants of Distributed Point Functions

Incremental and Verifiable DPF (IDPF and VDPF). The IDPF [BBC+21] and VDPF [dCP22] build
on standard DPFs to secret share the weights of a tree w.r.t. a single non-zero path. IDPFs perform this task
with linear cost in the number of bits n for strings that share common prefixes [BBC+21], whereas using
standard DPFs this cost would grow to O(n2). IDPFs rely on expensive malicious secure sketching checks to
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ensure that an IDPF key is not malformed. Meanwhile, the work of [dCP22] considers efficient hashing-based
verifiable properties to ensure that a DPF (not IDPF) key is well-formed. Moreover, [dCP22] enables a
batched verification procedure with communication proportional to the security parameter. However, VDPFs
work only for DPF and not IDPF. We present the VDPF algorithms below:

– VDPF.Gen(1κ, fα,β) → (key0, key1). Given the security parameter 1κ and a function f , output keys
key0, key1.

– VDPF.BatchEval(b, keyb,X) → (Yb, πb) : For b ∈ {0, 1}, batch verifiable evaluation takes a set X :=
{x1, x2, . . . , xm}, where each xi ∈ {0, 1}n. Outputs Yb := {yb,1, yb,2, . . . , yb,m}.

Correctness ensures that Y0 +Y1 = fα,β(X). Privacy ensures that an adversary in possession of one of the
keys (but not both) does not obtain any information about the function f . The verifiability property of
VDPF ensures that the proofs π0 and π1 are the same if and only if they have been generated from valid
keys key0 and key1 of a point function.

B Verifiable Incremental DPF

We present the VIDPF construction, denoted as πVIDPF, in Figs. 15 and 16. Our VIDPF construction is
obtained by adding verifiability (steps 15-17 from Fig. 15) on top of the IDPF construction of Poplar. We
have underlined the lines that focus on verifiability in these two figures. The Convert takes the corrected

seed s̃
(i)
b for level i, runs PRG′′ and outputs κ bit seed s

(i)
b for level i and value W

(i)
b . This occurs at the

intermediate levels and is performed by executing the “else” part of Convert. W
(i)
b comes from G since it

generates the output Wcw based on intermediate βi. At the leaves, the “if” part of Convert is executed where

only W
(i)
b is generated. The security of our protocol is summarized in Theorem 2.

Theorem 2. Assuming (PRG,PRG′,PRG′′) are pseudorandom generators, PRG is κ-collision resistant and
(H1,H2) are random oracles then πVIDPF = (Gen, EvalPref) in Figs. 15 and 16 is a VIDPF.

We define κ-collision resistant PRG as follows:

Definition 2 (κ-Collision Resistant PRG). We say that a PRG : {0, 1}κ → {0, 1}2κ+2 is κ-collision
resistant if a PPT adversary cannot output s0 and s1 such that

(A0 ∥ T0 ∥B0 ∥ T ′
0) := PRG(s0),

(A1 ∥ T1 ∥B1 ∥ T ′
1) := PRG(s1),

and B0 = B1,

where A0, A1, B0, B1 ∈ {0, 1}κ and T0, T
′
0, T1, T

′
1 ∈ {0, 1}.

We recall the notion of XOR-collision resistance from [dCP22] below for our security proof.

Definition 3 (XOR-Collision Resistance [dCP22]). We say a function family F is XOR-collision
resistant if no PPT adversary given a randomly sampled f ∈ F can find four values x0, x1, x2, x3 ∈ {0, 1}κ
such that (x0, x1) ̸= (x2, x3), (x0, x1) ̸= (x3, x2), and f(x0)⊕f(x1) = f(x2)⊕f(x3) ̸= 0, except with negligible
probability in security parameter κ.

It can be implemented by assuming the function f is a random oracle. Next, we proceed to the proof of
Thm. 2.

Proof. Input privacy of our VIDPF follows from the input privacy of the underlying IDPF protocol from
Poplar, which in turn relies on the pseudorandomness of PRG. Adding cs(i) in steps 16-17 (Fig. 15) does not

affect the input privacy of the client in the random oracle model since cs(i) = π̃
(i)
0 ⊕ π̃

(i)
1 is an XOR of two

random oracle outputs. Each server will know the preimage of either π̃
(i)
0 or the preimage of π̃

(i)
1 by evaluating

the given VIDPF key. The server breaks input privacy if it computes both preimages. However, to compute
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the other preimage it needs to invert the random oracle on π̃
(i)
1−b′ (assuming it obtained the preimage of π̃

(i)
b′

by evaluating the VIDPF key).

A malicious client breaks the verifiability property if there are two non-zero paths, say u and v in the
evaluation tree such that the client still passes the verification check performed by the servers on cs(i) for
i ∈ [n]. We prove this via two steps:

– At most one non-zero value at each level i: We prove this via contradiction. Assume a client generates
VIDPF keys that evaluate to two non-zero values at level i. It means the servers obtain si0(u), s

i
1(u), s

i
0(v)

and si1(v) from Step 11 of EvalNext (Fig. 16) by evaluating on u and v such that the following holds:

si0(u) ̸= si1(u) and si0(v) ̸= si1(v)

cs(i) = π̃
(i)
0 (u)⊕ π̃

(i)
1 (u) = π̃

(i)
0 (v)⊕ π̃

(i)
1 (v),

where π̃
(i)
b (u) := H1(u, s

i
0(u)) and π̃

(i)
b (v) := H1(v, s

i
0(v)) for b ∈ {0, 1}. However, this is not possible in

the random oracle model since it breaks the XOR-collision-resistance property of the random oracle H1.
The adversary cannot find such a set of si0(u), s

i
1(u), s

i
0(v) and si1(v) values. Lemma 3 of [dCP22] captures

the formal details of the reduction. In addition, the servers also check multiple proofs by iteratively
hashing them together using H2 in step 12 of the EvalNext algorithm. So, we also rely on the collision
resistance property of H2 to argue that it suffices to check the equality of the hash values computed using
H2 to ensure that the preimages are equal.

– Non-zero value at level i+1 is a child of non-zero value at level i: We prove this via contradiction. Assume
a client generates VIDPF keys that evaluate to a non-zero value at level i on prefix u ∈ {0, 1}i and a
non-zero value at level i + 1 on prefix v ∈ {0, 1}i+1 such that the non-zero node at level i is not the
parent of the non-zero value at level i+ 1, i.e., u ≠ v≤i. This means that si0(v) = s11(v) and si0(u) ̸= s11(u)
since there can be at most one pair of non-zero s values at each level. Next, consider the inputs to the
EvalNext algorithms for evaluation on input prefix v in Fig. 16. We consider the following two cases:

• sti is same for both servers: In this case both si0(v) = s11(v) and ti0(v) = t11(v). Here the input of
the server to EvalNext is the same except for the value b. Hence, the evaluation algorithm of the

servers on prefix v will be identical except in step 10 where server b obtains y
(i+1)
b values such that

y
(i+1)
0 + y

(i+1)
1 = 0. So, the output cannot be non-zero in this case.

• sti is different for both servers: In this case, si0(v) = s11(v) but t
i
0(v) ̸= ti1(v). For this to happen there

exists si−1
0 (v),

ti−1
0 (v), si−1

1 (v), ti−1
1 (v) such that (si0(v), t

i
0(v)) and (si1(v), t

1
1(v)) are obtained by computing PRG on

si−1
0 (v) and si−1

1 (v) respectively and applying Step 4 of EvalNext based on ti−1
0 (v) and ti−1

1 (v) values.

- If v≤i−1 = u≤i−1: then si−1
0 (v) = si−1

0 (u) and si−1
1 (v) = si−1

1 (u). But we know that si0(u) ̸= si1(u).
We also know that sib(u) and sib(v) is generated from the same state sti−1

b by server b where only
ui ̸= vi, which is xi in EvalNext. In this case, steps 1-5 are the same for the evaluation of ui and
vi. Assume ui = 0 and v1 = 1 without loss of generality. This means that sL0 ̸= sL1 and sR0 = sR1 ,
where sLb and sRb are computed by server b by evaluating the PRG on si−1

b and then XORing
the output with t(i−1) · scw. This breaks the collision resistance of PRG since si−1

0 ̸= si−1
1 but

(A0 ∥ T0 ∥B ∥ T ′
0) := PRG(si−1

0 ) and (A0 ∥ T0 ∥B ∥ T ′
0) := PRG(si−1

0 ) where A0, A1, B,B ∈ {0, 1}κ
and T0, T

′
0, T1, T

′
1 ∈ {0, 1}.

- If v≤i−1 ̸= u≤i−1: then si−1
0 (v) = si−1

1 (v) and ti−1
0 (v) ̸= ti−1

1 (v) and we apply our argument
recursively for i− 2 and so on until we get the previous case where uℓ = vℓ for ℓ ∈ [i− 1].

We note that we do not need collision resistance from the PRG since we do not require that the non-zero
values lie on the same path. We only need that each level contains a single non-zero node and for that the
XOR-collision resistance property suffices. This property is implemented by assuming that (H1,H2) are
random oracles.
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Notation: We denote the private n-bit string α and its bit decomposition as α1, . . . , αn ∈ {0, 1}n.
Primitives: PRG : {0, 1}κ → {0, 1}2κ+2 is a pseudorandom generator. H1 : {0, 1}∗ × {0, 1}κ → {0, 1}2κ and

H2 : {0, 1}2κ → {0, 1}2κ are random oracles.

Gen(1κ, 1n, α, (β1, β2, . . . βn),G): ▷ Generate DPF keys.

1: Sample s
(0)
b

r←− {0, 1}κ for b ∈ {0, 1} ▷ Secret seeds.

2: Let t
(0)
0 := 0 and t

(0)
1 := 1

3: for i := 1 to n do ▷ For each bit of α.

4: sLb ∥ tLb ∥ sRb ∥ tRb := PRG(s
(i−1)
b ) for b ∈ {0, 1} ▷ Parse the output of PRG as a sequence of (κ ∥ 1 ∥ κ ∥ 1) bits.

5: if αi = 0 then Diff := L, Same := R ▷ Set right children to be equal.

6: else Diff := R, Same := L ▷ Set left children to be equal.

7: scw := sSame
0 ⊕ sSame

1

8: tLcw := tL0 ⊕ tL1 ⊕ αi ⊕ 1 ▷ Left control bits not equal if αi = 0.

9: tRcw := tR0 ⊕ tR1 ⊕ αi ▷ Right control bits not equal if αi = 1.

10: s̃
(i)
b := sDiff

b ⊕ t
(i−1)
b · scw for b ∈ {0, 1} ▷ Correction.

11: t
(i)
b := tDiff

b ⊕ t
(i−1)
b · tDiff

cw for b ∈ {0, 1} ▷ Correction.

12: s
(i)
b ∥W

(i)
b := Convert(s̃

(i)
b ) for b ∈ {0, 1}

13: W
(i)
cw := (−1)t

(i)
1 · [βi −W

(i)
0 +W

(i)
1 ] ▷ Output correction.

14: cw(i) := scw ∥ tLcw ∥ tRcw ∥W
(i)
cw ▷ Correction word for level i.

15: π̃
(i)
b = H1(α≤i ∥ s(i)b )

16: cs(i) = π̃
(i)
0 ⊕ π̃

(i)
1 .

17: keyb := (s
(0)
b ∥ cw

(1) ∥ . . . ∥ cw(n) ∥ cs(1) ∥ . . . ∥ cs(n)) for b ∈ {0, 1} ▷ Key for party b.

18: return keyb for b ∈ {0, 1}

ConvertG(s):

1: Let u← |G|.
2: if u = 2m for an integer m then:

3: Return the group element represented by PRG′(s) mod u,

4: where PRG′ : {0, 1}κ → {0, 1}m.

5: else:

6: Let n = ⌈log2 u⌉+ κ.

7: Return the group element represented by PRG′′(s) mod u,

8: where PRG′′ : {0, 1}κ → {0, 1}n.

Fig. 15: Protocol πVIDPF for Verifiable Incremental DPF (continues in Fig. 16).
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EvalNext(b, i, st(i−1), cw(i), cs(i), x≤i, π): ▷ Evaluate xi.

1: Parse st(i−1) as (si−1 ∥ ti−1).

2: scw ∥ tLcw ∥ tRcw ∥W
(i)
cw := cwi ▷ Parse correction word.

3: s̃L ∥ t̃L ∥ s̃R ∥ t̃R := PRG(s(i−1)) ▷ Parse the output of PRG as a sequence of (κ ∥ 1 ∥ κ ∥ 1) bits.
4: τ (i) := (s̃L ∥ t̃L ∥ s̃R ∥ t̃R)⊕ (t(i−1) · [scw ∥ tLcw ∥ scw ∥ tRcw])
5: sL ∥ tL ∥ sR ∥ tR := τ (i) ▷ Parse τ (i).

6: if xi = 0 then s̃(i) := sL, t(i) := tL ▷ Keep left path.

7: else s̃(i) := sR, t(i) := tR ▷ Keep right path.

8: s(i) ∥W (i) := Convert(s̃(i)) ▷ New seed and output for level i.

9: st(i) := s(i) ∥ t(i) ▷ Save the state.

10: y(i) := (−1)b · [W (i) + t(i) ·Wcw] ▷ Compute output at level i.

11: π̃(i) = H1(x
≤i ∥ s(i)).

12: π = π ⊕H2(π ⊕ (π̃(i) ⊕ t(i) · cs(i))).
13: return (st(i), y(i), π)

EvalPref(b, key, x ∈ {0, 1}n, st(d−1), d, π): ▷ Evaluate one public bitstring x on all its bits xi for i ∈ [n].

1: Parse key as s(0) ∥ cw(1) ∥ . . . ∥ cw(n) ∥ cs(1) ∥ . . . ∥ cs(n). ▷ Parse key for party b.

2: if d ̸= 1 then parse st(d−1) as (s(d−1) ∥ t(d−1)),

3: else t(0) := b, st(0) := s(0) ∥ t(0).
4: for i := d to n do ▷ For each bit of x.

5: (st(i), y(i), π) := EvalNext(b, i, st(i−1), cwi, csi, x≤i, π).

6: return (st(n), y(n), π)

Fig. 16: Protocol πVIDPF for Verifiable Incremental DPF (continuing from Fig. 15).

C Heavy-Hitters Protocol πHH Proof

In this section, we formally prove Theorem 1. Security of our protocol relies on the correctness of πcheck. πcheck

is a protocol where two honest parties commit to their inputs using Merkle-tree-based commitments and
then they decommit based on whether the root commitments match or not. Correctness of πcheck follows
straightforwardly from the binding property of the Merkle-tree commitment, which in turn follows from the
collision-resistance property of the hash function used in πcheck.

Next, we prove the security of our protocol in the real-ideal world paradigm of Canetti [Can00]. Let A
denote the real-world adversary corrupting one of the servers and ℓ′ clients maliciously in the real-world
execution of the protocol. Let realA,πHH

denote A’s view after participating in the real-world execution. Let
simulator Sim be the ideal-world adversary, which given access to the algorithm of A and functionality FHH,
produces the ideal world adversarial view as idealSim,FHH

.
We prove that our protocol πHH securely implements FHH functionality by providing an ideal world PPT

simulator Sim for all PPT adversaries A, and show that the real and ideal world view are indistinguishable,

i.e., realA,πHH

c
≈ idealSim,FHH

. We use a sequence of hybrids (i.e., HYB0 - HYB4) to prove indistinguishability.

Proof. We first consider the case where A corrupts server S2 along with ℓ′ clients. Then, we consider the
case where A corrupts either S0 or S1 along with ℓ′ clients.
S2 is corrupt. We provide the formal simulator in Fig. 17, 18 and argue indistinguishability as follows.

HYB0 : The real world execution of the protocol.
HYB1 : Same as HYB0, except Sim aborts if a malicious client i has provided inconsistent ui and vi inputs

to S0 and S1 and yet passed the batched consistency check πcheck. The two hybrids are indistinguishable
due to the correctness of πcheck.
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Simulator Sim for maliciously corrupt ℓ′ number of clients and server S2
Corruption: Server S2 and ℓ′ number of clients are maliciously corrupt. The rest ℓ− ℓ′ clients and servers (S0,S1)

are simulated by simulator Sim.
Primitive: VIDPF := (Gen,EvalPref,EvalNext) is a verifiable incremental DPF. H1,H2 : {0, 1}∗ → {0, 1}κ are

random oracles.

Client C Computation. (Repeated for ℓ clients)

1. If the client is honest: Sim simulates the client by preparing three pairs of DPF keys with input 1 and output
values (1, . . . , 1).

(key(0,1), key(1,0)) := Gen(1κ, 1n, 1, (1, . . . , 1),G), (key(1,2), key(2,1)) := Gen(1κ, 1n, 1, (1, . . . , 1),G),

(key(2,0), key(0,2)) := Gen(1κ, 1n, 1, (1, . . . , 1),G)

Sim sends (key(0,1), key(0,2), key(2,1)) to S0, (key(1,0), key(1,2), key(2,0)) to S1 and (key(2,1), key(2,0)) to S2 on
behalf of the client.

2. If the client is corrupt: Client sends (key(0,1), key(0,2), key(2,1)) to S0, (key(1,0), key(1,2), key(2,0)) to S1 and
(key(2,1), key(2,0)) to S2.

Server Computation. (Simulator Sim initializes a list Lext = {} and Linp = {}, and simulates S0 and S1)
For each corrupt client i, the simulator performs the following for input extraction: (Repeated for ℓ′ corrupt
clients)

1. Sim extracts the corrupt client’s input (α′
i, β

′
i,1, . . . , β

′
i,n) from the three pairs of DPF keys - key(0,1) and

key(1,0), key(0,2) and key(2,0), and key(2,1) and key(1,2), provided by client i. If the extracted values differ, then
Sim takes the necessary steps below.

2. If the corrupt client has not provided a valid input at level j, i.e., 1) ∃j ∈ [n] s.t. β′
j ̸= 1 (for the smallest j), or

2) the extracted inputs α′
i (from the three sessions) in the previous step differ in the jth bit, i.e., α′

i,j , then Sim
truncates the extracted input of client i to the first j bits of αi as αi := αi,≤j−1. Sim sets
Lj−1
ext = Lj−1

ext ∪ {i, j − 1} and updates Lext = Lext ∪ Lj−1
ext to denote that the ith client’s input is valid only till

level j − 1.
3. Sim stores the extracted input (after necessary truncation) αi for client i in a list Linp as Linp := Linp ∪ {i, αi}.

After running the above extraction process for all corrupt clients, Sim invokes FHH with the input list Linp to obtain
the output set of T -heavy hitting prefixes as HH≤n. The functionality FHH waits for further instructions from the
ideal world adversary Sim.

Repeat the following steps for length of k bits, where k ∈ [0, . . . , n− 1]:

1. Initialization. For prefix p ∈ HHk, Sim initialize server S0’s and S1’s aggregation variables for prefixes
γ ∈ {p ∥ 0, p ∥ 1} as follows:

Simulated S0 sets cntγ(0,1) := cntγ(0,2) := cntγ(2,1) := 0, Simulated S1 sets cntγ(1,2) := cntγ(1,0) := cntγ(2,0) := 0.

2. VIDPF Evaluation. For prefix p ∈ HH≤k, Sim simulates S0 and S1 by running the original protocol steps.
(Repeated for ℓ clients)

Fig. 17: Simulation Algorithm against malicious corruption of server S2 and ℓ′ clients (Continues in Fig. 18).
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3. Batch-Verification.
(a) Sim simulates S0 and S1 by computing u and v following the original steps of the protocol and Sim adds

the ith client to the list L of discarded clients if ui ̸= vi. If client i is not detected as bad by running the
original protocol steps of πcheck on u and v then Sim aborts.

(b) Sim runs the honest protocol steps to simulate the interaction between S2 − S0 and S2 − S1 to obtain the
update list L.

(c) Sim aborts if ∃ client i s.t. 1) its input is k-bits heavy-hitting (i.e., αi ∈ HHk), 2) αi ∥ 0 or αi ∥ 1 is not
valid, i.e., {i, k} ∈ Lk

ext, 3) client i evaded the consistency check, i.e., i /∈ L.
If Sim did not abort then for all corrupt parties in list L at level k, Sim invokes FHH to discard the parties from
the output computation of k + 1-bit heavy-hitting prefixes. Sim obtains an updated HH≤n set from FHH.

4. Aggregation. Sim simulates this step for prefixes γ ∈ {p ∥ 0, p ∥ 1} as follows: (Repeated for all validated
clients in [ℓ] \ L)

Simulated S0 sets cntγ(0,1) := cntγ(0,2) := cntγ(2,1) := 0, Simulated S1 sets cntγ(1,2) := cntγ(1,0) := cntγ(2,0) := 0.

5. Pruning. For every (k + 1)-bit string γ, Sim simulates the pruning step as follows:
– If γ ∈ HHk+1 then Sim invokes the simulator of FCMP with output 1 s.t. FCMP returns 1 as output to the

servers, s.t. γ is included in the list of heavy-hitting strings.
– If γ /∈ HHk+1 then Sim invokes the simulator of FCMP with output 0 s.t. FCMP returns 0 as output to the

servers, s.t. γ gets pruned.

If the simulator of FCMP aborts, then Sim instructs FHH to abort at level (⊥, k + 1) and Sim aborts this
simulated execution.

Sim has successfully simulated the HHk+1 set. Sim repeats “Server Computation” steps (starting from Step 2b)
on k + 1 bit prefixes.

Output Phase. Sim outputs HH≤n as the set of T -heavy hitter strings on behalf of simulated S0 and S1, and
instructs FHH to send output to the honest servers S0 and S1.

Fig. 18: Simulation Algorithm against malicious corruption of server S2 and ℓ′ clients.
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HYB2 : Same as HYB1, except the Sim extracts the corrupt client’s inputs using the three pairs of DPF
keys. Then Sim runs Step 3c of simulated Batch-Verification, i.e., Sim aborts if 1) the client’s input αi is
k-bits heavy-hitting, 2) αi ∥ 0 or α1 ∥ 1 is invalid, and 3) client evaded the Batch-Verification check for
the sessions run between honest servers. The two hybrids are indistinguishable due to the verifiability
property of VIDPF in the random oracle model. This occurs when the client successfully evades the input
extraction process of VIDPF by providing malformed VIDPF keys and yet passes the batch verification
checks.

HYB3 : Same as HYB2, except Sim invokes FHH with the extracted inputs to obtain the HH≤n set and
simulates FCMP based on whether a prefix γ is in HH≤n or not. The two hybrids are indistinguishable
against a corrupt server S2 in the FCMP-model.

HYB4 : Same as HYB3, except Sim simulates the DPF key generation for the honest clients with input
(α, (β1, . . . , βn)) = (1, (1, . . . , 1)) and sets the counters to 0s in the aggregation step. Indistinguishable
due to VIDPF input privacy. The 0-valued counters in the aggregation step are identically distributed to
the actual aggregation counters since HYB3 and HYB4 are in the FCMP-model. This is the ideal world
execution of the protocol, completing our simulation.

Either S0 or S1 is corrupt. Next, we consider the case where either S0 or S1 is corrupt along with ℓ′

clients. We provide the simulator in Fig. 19, 20 and argue indistinguishability as follows. (This case is similar
to the case where S1 is corrupt along with ℓ′ clients.)

HYB0 : The real world execution of the protocol.
HYB1 : Same as HYB0, except Sim aborts if a malicious client i provided values (Rk

(2,0), R
k
(2,1)) to S2 and

values (Rk
(2,0), R

k
(1,2)) to S1 such that they are not equal, and yet client i passed the batched consistency

check πcheck. The two hybrids are indistinguishable due to the correctness of πcheck.
HYB2 : Same as HYB1, except Sim extracts the corrupt client’s inputs following the extraction algorithm

using the pair of DPF keys. Then Sim runs Step 3d of simulated Batch-Verification, i.e., Sim aborts if
1) the client’s input αi is k-bits heavy-hitting, 2) αi ∥ 0 or α1 ∥ 1 is invalid, and 3) client evaded the
Batch-Verification check for the sessions run between honest servers. The two hybrids are indistinguishable
due to the verifiability property of VIDPF in the random oracle model. This occurs when a malicious
client successfully evades the input extraction process of VIDPF by providing malformed VIDPF keys
and yet passes the batch verification checks performed on the VIDPF proofs.

HYB3 : Same as HYB2, except Sim invokes FHH with the extracted inputs to obtain HH≤n set and simulates
the FCMP functionality based on whether a prefix γ is in HH≤n or not. The two hybrids are indistinguishable
against a corrupt server S0 in the FCMP-model.

HYB4 : Same as HYB3, except Sim simulates the key generation for the honest clients with (α, (β1, . . . , βn)) =
(1, (1, . . . , 1)) as input and sets the counters to 0s in the aggregation step. Indistinguishable due to VIDPF
input privacy. The 0-valued counters in the aggregation step are identically distributed to the actual
aggregation counters since HYB3 and HYB4 are in the FCMP-model. This is the ideal world execution of
the protocol, completing our simulation algorithm.

D Analysis of Batched Consistency check

We recall the batched consistency check in Fig. 9. P0 and P1 hash their leaves and verify the equality of their
Merkle tree roots R0 and R1. If the roots are equal then all the leaves are equal. Otherwise, the parties verify
the equality of the left and the right children of the root node. If the left (resp. right) children are equal
across the parties then the left (resp. right) subtrees are equal. If the left (resp. right) children are different,
then the parties apply the above algorithm to the left (resp. right) subtree. Proceeding iteratively down the

tree, the parties identify the malformed leaves as N
K

0 and N
K

1 where the two trees differ. Then they match
them with their initial lists of input sets u and v to identify the indices where they differ and then store
those indices in L.
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Simulator Sim for maliciously corrupt ℓ′ number of clients and server S0
Corruption: ℓ′ number of clients and server S0 are maliciously corrupt. The rest ℓ− ℓ′ clients and servers (S1,S2)

are simulated by simulator Sim. Without loss of generality, we will assume that S0 is corrupt; the case where S1
is corrupt is symmetric.

Primitive: VIDPF := (Gen,EvalPref,EvalNext) is a verifiable incremental DPF. H1,H2 : {0, 1}∗ → {0, 1}κ are
random oracles.

Client C Computation. (Repeated for ℓ clients)

1. If the client is honest: Sim simulates the client by preparing three pairs of DPF keys with input 1 and output
values (1, . . . , 1).

(key(0,1), key(1,0)) := Gen(1κ, 1n, 1, (1, . . . , 1),G), (key(1,2), key(2,1)) := Gen(1κ, 1n, 1, (1, . . . , 1),G),

(key(2,0), key(0,2)) := Gen(1κ, 1n, 1, (1, . . . , 1),G)

Sim sends (key(0,1), key(0,2), key(2,1)) to S0, (key(1,0), key(1,2), key(2,0)) to S1 and (key(2,1), key(2,0)) to S2 on
behalf of the client.

2. If the client is corrupt: Client sends (key(0,1), key(0,2), key(2,1)) to S0, (key(1,0), key(1,2), key(2,0)) to S1 and
(key(2,1), key(2,0)) to S2.

Server Computation. (Simulator Sim initializes a list Lext = {} and Linp = {}, and simulates S1 and S2)
For each corrupt client i, the simulator performs the following for input extraction: (Repeated for ℓ′ corrupt
clients)

1. Sim extracts the corrupt client’s input (α′
i, β

′
i,1, . . . , β

′
i,n) from the pair of DPF keys - key(1,2) and key(2,1),

provided by client i.
2. If the corrupt client has not provided a valid input at level j, i.e., ∃j ∈ [n] s.t. β′

j ≠ 1 (for the smallest j), then
Sim truncates the extracted input of client i to the first j bits of αi as αi := αi,≤j−1. Sim sets
Lj−1
ext = Lj−1

ext ∪ {i, j − 1} and updates Lext = Lext ∪ Lj−1
ext to denote that the ith client’s input is valid only till

level j − 1.
3. Sim stores the extracted input (after necessary truncation) αi for client i in a list Linp as Linp := Linp ∪ {i, αi}.

After running the above extraction process for all corrupt clients, Sim invokes FHH with the input list Linp to obtain
the output set of T -heavy hitting prefixes as HH≤n. The functionality FHH waits for further instructions from the
ideal world adversary Sim.

Repeat the following steps for length of k bits, where k ∈ [0, . . . , n− 1]:

1. Initialization. For prefix p ∈ HHk, Sim initialize server S1’s and S2’s aggregation variables for prefixes
γ ∈ {p ∥ 0, p ∥ 1} as follows:

Simulated S1 sets cntγ(1,2) := cntγ(1,0) := cntγ(2,0) := 0, Simulated S2 sets cntγ(2,0) := cntγ(2,1) := 0.

2. VIDPF Evaluation. For prefix p ∈ HH≤k, Sim simulates S1 and S2 by running the original protocol steps.
(Repeated for ℓ clients)

Fig. 19: Simulation Algorithm against malicious corruption of server S0 and ℓ′ clients (Continues in Fig. 20).
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3. Batch-Verification.
(a) Sim simulates the interaction between corrupt server S0 and honest server S1 by following the protocol

steps to update list L.
(b) Sim simulates the interaction between corrupt server S0 and honest server S2 by following the protocol

steps to update list L.
(c) For each client i: Sim verifies that S2’s version of (Rk

(2,0), R
k
(2,1)) matches with S1’s version of

(Rk
(2,0), R

k
(1,2)). If they don’t match then Sim adds ith client to the list L of discarded clients. If client i is

not detected as bad by running the original protocol steps of πcheck between S1 and S2 then Sim aborts.
(d) Sim aborts if ∃ client i s.t. 1) its input is k-bits heavy-hitting (i.e., αi ∈ HHk), 2) αi ∥ 0 or αi ∥ 1 is not

valid, i.e., {i, k} ∈ Lk
ext, 3) client i evaded the consistency check, i.e., i /∈ L.

If Sim did not abort then for all corrupt parties in list L at level k, Sim invokes FHH to discard the parties from
the output computation of k + 1-bit heavy-hitting prefixes. Sim obtains an updated HH≤n set from FHH.

4. Aggregation. Sim simulates this step for prefixes γ ∈ {p ∥ 0, p ∥ 1} as follows: (Repeated for all validated
clients in [ℓ] \ L)

Simulated S1 sets cntγ(1,2) := cntγ(1,0) := cntγ(2,0) := 0, Simulated S2 sets cntγ(2,0) := cntγ(2,1) := 0.

5. Pruning. For every (k + 1)-bit string γ, Sim simulates the pruning step as follows:
– If γ ∈ HHk+1 then Sim invokes the simulator of FCMP with output 1 s.t. FCMP returns 1 as output to the

servers, s.t. γ is included in the list of heavy-hitting strings.
– If γ /∈ HHk+1 then Sim invokes the simulator of FCMP with output 0 s.t. FCMP returns 0 as output to the

servers, s.t. γ gets pruned.

If the simulator of FCMP aborts, then Sim instructs FHH to abort at level (⊥, k + 1) and Sim aborts this
simulated execution.

Sim has successfully simulated the HHk+1 set. Sim repeats “Server Computation” steps (starting from Step 2b)
on k + 1 bit prefixes.

Output Phase. Sim outputs HH≤n as the set of T -heavy hitter strings on behalf of simulated S1 and S2, and
instructs FHH to send output to the honest servers S0 and S1.

Fig. 20: Simulation Algorithm against malicious corruption of server S0 and ℓ′ clients.

πcheck requires K+ 1 rounds of communication, where K = ⌈log2 ℓ⌉. Next, we demonstrate that if ℓ′ out of
ℓ leaves differ, then the total communication is O(ℓ′(log2 ℓ

ℓ′ )) hashes. The Root Computation is local and
Root Verification communicates two hashes. During Leaf Identification, the parties communicate 4 hashes for
each unequal node. At the root layer, only the roots are different. At the next layer, both children can differ.
More generally, at layer k ∈ [K], there can be at most min(2k, ℓ′) unequal nodes.

The total communicated hashes are as follows:

2 + 4× (min(20, ℓ′) + . . .+min(2⌈log2 ℓ⌉, ℓ′))

= 2 + 4× (1 + 2 + . . . 2⌈log2 ℓ′⌉ + ℓ′ + ℓ′ + . . .+ ℓ′)

≤ 2 + 4× (2ℓ′ + ℓ′ × (⌈log2 ℓ⌉ − ⌈log2 ℓ′⌉))
≈ 8ℓ′ + 4ℓ′(log2 ℓ− log2 ℓ

′) = 4ℓ′(log2
ℓ
ℓ′ + 2).

We observe that the current version of πcheck communicates roughly 4ℓ′(log2
ℓ
ℓ′ + 2) hashes. This can be

further optimized to 2ℓ′(log2
ℓ
ℓ′ + 2) where only one server communicates at each level.

E Heavy Hitters with different Thresholds

Our protocol allows us to consider different heavy hitter thresholds Ti based on some pre-agreed strings
xi ∈ X by the servers. This can be beneficial for traffic avoidance since different roads may have different
traffic densities. For example, highways are busier than smaller suburban roads. The servers can take that
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Different Threshold Heavy Hitters from T -prefix count queries

Parameters: Threshold Ti ∈ N, for string xi ∈ X where |X| = m, and string length n ∈ N.
Inputs: The algorithm has no explicit input. It has access to t-prefix count query oracle Ωα1,...,αℓ(p, t) for securely
computing t-prefix-count queries over prefix p for strings α1, . . . , αℓ.

Outputs: The set of heavy-hitter strings in α1, α2, . . . , αℓ.

Algorithm:

– Initialize HH≤n = {HH0,HH1, . . .HHn} := {{ϵ}, ∅, . . . , ∅}, where HH0 contains empty string ϵ and HH1, . . .HHn

are empty sets.
– Set T := min(T1, T2, . . . Tm).
– For each prefix p ∈ HHk of length k-bits in set HHk (where k = 0, 1, 2, . . . n− 2):

If Ωα1,...,αℓ(p ∥ 0, T ) = 1, then HHk+1 := HHk+1 ∪ {p ∥ 0}.
If Ωα1,...,αℓ(p ∥ 1, T ) = 1, then HHk+1 := HHk+1 ∪ {p ∥ 1}.

– For each prefix p ∈ HHn−1, perform the following:
If ∃xi ∈ X such that (p ∥ 0) = xi and Ωα1,...,αℓ(p ∥ 0, Ti) = 1, then HHn := HHn ∪ (p ∥ 0).
If ∃xi ∈ X such that (p ∥ 1) = xi and Ωα1,...,αℓ(p ∥ 1, Ti) = 1, then HHn := HHn ∪ (p ∥ 1).

– Output T -heavy hitters HH≤n := {HH0,HH1, . . .HHn}.

Fig. 21: Algorithm for computing heavy hitters with different thresholds from T -prefix count queries.

into consideration during evaluation, and use higher T s for highways (since there are more vehicles), and
lower thresholds for smaller roads.

We present our algorithm to compute heavy-hitters with different thresholds Ti for string xi ∈ X from
T -prefix oracle query in Fig. 21. The prefix oracle query with different thresholds can be computed using a
simple modification to protocol πHH, where the pruning at the leaf layer is performed based on the threshold
Ti for a given string xi ∈ X instead of a fixed threshold T .

F Supporting Differential Privacy

It is straightforward to complement PLASMA with ϵ-differential privacy techniques and ensure that the
presence or absence of a single client does not reveal anything about their data [DMNS06]. In this case,
running two instances of PLASMA, one with ℓ− 1 clients and another just by adding client C, should protect
the private data of the new client from anyone observing the outputs of the two protocols. Additionally,
honest clients should not be able to be identified when a malicious server attempts to ignore honest client
data to infer their inputs based on the protocol output. Therefore, PLASMA is directly compatible with the
well-studied techniques from [DKM+06, EDG14] and can adopt a similar approach as Poplar to bound the
amount of information that an adversary A can deduce from PLASMA’s output. Like Poplar, we need to
ensure that the outputs of these prefix-count oracle queries are differentially private, which can be achieved
by introducing noise on the oracle’s output with parameter 1/ϵ from a Laplace distribution.

G Communication Cost of Asharov et al. [AHI+22]

We analyze the total server-to-server communication cost for the sorting-based protocol of Asharov et
al. [AHI+22] (considering that its implementation is not open-source). We start from the optimized semi-honest
communication cost from Appendix A.3 of [AHI+22], shown below: mn( 73 +

32
9 ||R||)+ 3m||R||+2m||R′|| bits.

We ignore the R′ term since it is a payload. For malicious security, the protocol requires two times the
semi-honest protocol, and additionally, the ring needs to be a field of size 2κ size for 2−κ failure probability.
This leads us to the optimized malicious sorting protocol communication cost of: 2mn( 73 + 32

9 κ) + 3mκ.
The heavy hitters protocol requires the following for each item out of the total m items:
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– Compute two secure comparisons over n bits. Assuming the state-of-the-art secure comparison protocol
of Rabbit [MRVW21, Fig. 6], we get ≥ 4mn log n from LTBits and BitAdder as well as mn to open the
values.

– One secure multiplication over two secret shared n-bit variables: For m values it would be at least mn
bits.

– Secure shuffling over and n-bit secret shared value, where the semi-honest shuffling takes 2m field element
communication.

Asharov et al. [AHI+22] considers the compiler of Chida et al. [CGH+18] that converts a semi-honest
protocol to a malicious protocol. However, this results in increased communication cost (i.e., 2× the semi-
honest cost): 2(4mn log n+mn+ 2mn) = 8mn · log n+ 6mn. The per-server communication cost for their
maliciously secure heavy-hitters protocol is at least:

2mn(
7

3
+

32

9
· κ) + 3mκ+ 8mn log n+ 6mn bits.

Setting the security parameter κ to 60 bits, the number of items m to 106, and the number of bits of each
item n to 256 bits we get that the communication cost should be at least:

2 · 106 · 256(7
3
+

32

9
60) + 3 · 106 · 60 + (8 · 106 · 256 · log 256 + 6 · 106 · 256) = 14.96 giga bytes

Therefore, the total server-server communication cost is at least 14.96 · 3 ≈ 45 gigabytes for computing the
heavy hitters over 256-bit keys between three servers for 106 clients.

H Private Histogram Protocol

We present our histogram protocol πHIST in Fig. 22, 23 for the sake of completeness. The histogram protocol
is a building block for our heavy-hitters protocol and is not our final protocol. It suffers from the limitation
that the client’s input should lie in the subset X that the servers evaluate, i.e., αi ∈ X for i ∈ [ℓ]. This leaks
whether the client’s input lies in X or not based on whether the evaluated DPF output in the consistency
check is 0 or not. This issue can be addressed by using techniques from Section 3.4, mainly replacing the
VDPF with a VIDPF, and using the four consistency checks discussed in Section 3.4.
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Private Histogram πHIST

We denote a vector Y ∈ Fm component-wise as Y := {y1, y2, . . . , ym}, where yj ∈ F for j ∈ [m].

– Input: Each client Ci has an input point αi ∈ X for i ∈ [ℓ] and m := |X|.
– Output: S0, S1, S2 output a histogram of the ℓ clients’ data. If the servers abort then it denotes a malicious

server involvement.

– Primitive: VDPF := (Gen,BatchEval) is a verifiable distributed point function. H : {0, 1}∗ → {0, 1}κ is a random
oracle.

Client C Computation. (Repeated for ℓ clients, each of which has their own private input α)

1. Client C with input α prepares three pairs of DPF keys with independent randomness u, v, w
r←− {0, 1}κ, as

follows:
(key(0,1), key(1,0)) := Gen(1κ, α, 1,G), (key(1,2), key(2,1)) := Gen(1κ, α, 1,G),

(key(2,0), key(0,2)) := Gen(1κ, α, 1,G)

2. The client sends (key(0,1), key(0,2), key(2,1)) to S0, (key(1,0), key(1,2), key(2,0)) to S1 and (key(2,1), key(2,0)) to S2.

Server Computation.
If this is the first client, each server Sb initializes HIST(b,b+1) and HIST(b+1,b) for b ∈ {0, 1, 2} as follows:

S0 initializes HIST(0,1) := 0m,HIST(0,2) := 0m, and HIST(2,1) := 0m

S1 initializes HIST(1,2) := 0m,HIST(1,0) := 0m, and HIST(2,0) := 0m,

S2 initializes HIST(2,0) := 0m and HIST(2,1) := 0m

1. VDPF Evaluation: Each server Sb computes Y(b,b+1) and Y(b,b+2) for b ∈ {0, 1, 2} as follows: (Repeated
for ℓ clients)

S0 computes Y(0,1), π(0,1) := VDPF.BatchEval(0, key(0,1),X)

and Y(0,2), π(0,2) := VDPF.BatchEval(1, key(0,2),X)

S1 computes Y(1,2), π(1,2) := VDPF.BatchEval(0, key(1,2),X)

and Y(1,0), π(1,0) := VDPF.BatchEval(1, key(1,0),X)

S0 and S2 compute Y(2,1), π(2,1) := VDPF.BatchEval(1, key(2,1),X)

S1 and S2 compute Y(2,0), π(2,0) := VDPF.BatchEval(0, key(2,0),X)

Each server Sb computes τ(b,b+1) and τ(b,b+2) for b ∈ {0, 1, 2} as follows:

S0 parses Y(0,1) = {y(0,1),1, y(0,1),2, . . . , y(0,1),m} and computes τ(0,1) :=
∑m

j=1 y(0,1),j

S0 parses Y(0,2) = {y(0,2),1, y(0,2),2, . . . , y(0,2),m} and computes τ(0,2) :=
∑m

j=1 y(0,2),j

S1 parses Y(1,2) = {y(1,2),1, y(1,2),2, . . . , y(1,2),m} and computes τ(1,2) :=
∑m

j=1 y(1,2),j

S1 parses Y(1,0) = {y(1,0),1, y(1,0),2, . . . , y(1,0),m} and computes τ(1,0) :=
∑m

j=1 y(1,0),j

S1 and S2 parse Y(2,0) = {y(2,0),1, y(2,0),2, . . . , y(2,0),m} and compute τ(2,0) :=
∑m

j=1 y(2,0),j

S0 and S2 parse Y(2,1) = {y(2,1),1, y(2,1),2, . . . , y(2,1),m} and compute τ(2,1) :=
∑m

j=1 y(2,1),j

S0 computes h0 := H(Y(0,1)−Y(0,2) ∥Y(0,2)−Y(2,1)) and S1 computes h1 := H(Y(2,0)−Y(1,0) ∥Y(1,2)−Y(2,0)).

Fig. 22: Private Histogram Protocol πHIST (continues in Fig. 23).
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Private Histogram πHIST

We denote a vector Y ∈ Fm component-wise as Y := {y1, y2, . . . , ym}, where yj ∈ F for j ∈ [m].

Server Computation (Cont.).

2. Batch-Verification. The servers batch-verify the client inputs for all three sessions and across the three
sessions by invoking πcheck (Fig. 9):
(a) S0 sets ui :=

{
(π(0,1), π(0,2), π(2,1), τ(0,1), τ(0,2), τ(2,1), h0) values for client i ∈ [ℓ]

}
. S1 sets vi :={

(π(1,0), π(2,0), π(1,2), 1 − τ(1,0), 1 − τ(2,0), 1 − τ(1,2), h1) values for client i ∈ [ℓ]
}
. S0 sets u := {ui}i∈[ℓ]

and S1 sets v := {vi}i∈[ℓ]. S0 and S1 batch-verify all the client inputs by computing the bit ver and list L
(comprising of invalid client inputs) by running πcheck with inputs u and v respectively: (ver, L) := πcheck(u,v) :

ver := 0 if there exists a client such that : (π(0,1) ̸= π(1,0)) ∨ (π(0,2) ̸= π(2,0)) ∨ (π(2,1) ̸= π(1,2))∨

(τ(0,1) + τ(1,0) ̸= 1) ∨ (τ(0,2) + τ(2,0) ̸= 1) ∨ (τ(2,1) + τ(1,2) ̸= 1) ∨ (h0 ̸= h1)

and L := {list of invalid clients’ that failed to pass the above checks}. If ver = 1, then all the clients’ inputs
are valid.

(b) S2 possesses π(2,0), π(2,1), τ(2,0), τ(2,1) values for each client. S2 verifies that S2’s version of π(2,1), τ(2,1)
matches with S0’s version of π(2,1), τ(2,1). S2 also attests that S2’s version of Rk

(2,0) matches with S0’s
version of π(0,2), τ(0,2) by computing (ver′, L′) as follows:

(ver′, L′) := πcheck({π(2,1), τ(2,1), π(2,0), τ(2,0)}ℓ clients of S2, {π(2,1), τ(2,1), π(0,2), τ(0,2)}ℓ clients of S0).

(c) S2 verifies that S2’s version of π(2,0), τ(2,0) matches with S1’s version of π(2,0), τ(2,0). S2 also attests that
S2’s version of π(2,1), τ(2,1) matches with S1’s version of π(1,2), τ(1,2) by computing (ver′′, L′′) as follows:

(ver′′, L′′) := πcheck({π(2,0), τ(2,0), π(2,1), τ(2,1)}ℓ clients of S2, {π(2,0), τ(2,0), π(1,2), τ(1,2)}ℓ clients of S0).

After batch verification, the servers identify the list of bad clients as L := L ∪ L′ ∪ L′′. The servers ignore the
inputs of all clients in L.
The servers locally perform the following computation:
The servers aggregate all correct client inputs into the histogram as follows: (Repeated for all validated
clients in [ℓ] \ L)

S0 updates HIST(0,1) := HIST(0,1) +Y(0,1),HIST(0,2) := HIST(0,2) +Y(0,2) and HIST(2,1) := HIST(2,1) +Y(2,1)

S1 updates HIST(1,2) := HIST(1,2) +Y(1,2),HIST(1,0) := HIST(1,0) +Y(1,0) and HIST(2,0) := HIST(2,0) +Y(2,0)

S2 updates HIST(2,0) := HIST(2,0) +Y(2,0) and HIST(2,1) := HIST(2,1) +Y(2,1)

Output Phase.

1. Each two servers Sb and Sb+1 exchange H(HIST(b,b+1), r(b,b+1)) and H(HIST(b+1,b), r(b+1,b)) for random r(b,b+1),

r(b+1,b)
r←− {0, 1}κ.

2. S0 sends (HIST(0,1),HIST(0,2),HIST(2,1), r(0,1), r(0,2)) to S1. S1 sends (HIST(1,2),HIST(1,0),HIST(2,0), r(1,2), r(1,0))
to S0. S2 broadcasts (r(2,0), r(2,1)).

3. S0 and S1 verify the above hashes. If any of the hashes fail then the servers abort. Else, they perform the
following:

S0 and S1 compute HIST0 := HIST(0,1) + HIST(1,0),HIST1 := HIST(1,2) + HIST(2,1), and

HIST2 := HIST(2,0) + HIST(0,2)

4. S0 and S1 abort if HIST0 ̸= HIST1 or HIST1 ̸= HIST2. Else, they output HIST where HIST = HIST0 = HIST1 =
HIST2.

Fig. 23: Private Histogram Protocol πHIST (continuing from Fig. 22).
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