Bake It Till You Make It

Heat-induced Power Leakage from Masked Neural Networks

Dev M. Mehta*!, Mohammad Hashemi*!, David S. Koblah?, Domenic Forte?
and Fatemeh Ganji!

! Worcester Polytechnic Institute, Worcester, USA,
dmmehta2@wpi.edu,mhashemi@upi.edu, fganjiQwpi.edu
2 University of Florida, Gainesville, USA, dkoblahOufl.edu,dforte@ece.ufl.edu

Abstract. Masking has become one of the most effective approaches for securing
hardware designs against side-channel attacks. Regardless of the effort put into
correctly implementing masking schemes on a field-programmable gate array (FPGA),
leakage can be unexpectedly observed. This is due to the fact that the assumption
underlying all masked designs, i.e., the leakages of different shares are independent
of each other, may no longer hold in practice. In this regard, extreme temperatures
have been shown to be an important factor in inducing leakage, even in correctly-
masked designs. This has previously been verified using an external heat generator
(i-e., a climate chamber). In this paper, we examine whether the leakage can be
induced using the circuit components themselves without making any changes to
the design. Specifically, we target masked neural networks (NNs) in FPGAs, one
of the main building blocks of which is block random access memory (BRAM).
In this respect, thanks to the inherent characteristics of NNs, our novel internal
heat generators leverage solely the memories devoted to storing the user’s input,
especially when frequently writing alternating patterns into BRAMSs. The possibility
of observing first-order leakage is evaluated by considering one of the most recent
and successful first-order secure masked NNs, namely ModuloNET. ModuloNET
is specifically designed for FPGAs, where BRAMs are used to store inputs and
intermediate computations. Our experimental results demonstrate that undesirable
first-order leakage can be observed and exploited by increasing the temperature when
an alternating input is applied to the masked NN. To give a better understanding of
the impact of extreme heat, we further perform a similar test on the design using an
external heat generator, where a similar conclusion can be drawn.

Keywords: Side-channel Analysis - Masking - Neural Networks - Heat Generation
- T-test - DPA - FPGA.

1 Introduction

Deep learning (DL) accelerators have become an integral part of Internet of things (IoT)
edge devices that support image classification, speech recognition, etc. [LeC19]. In this
regard, mobile and wearable devices require a low-cost neural network (NN) accelerator
to support DL inference in cameras, medical devices, ground maintenance systems, video
games, and so on. In these applications, an NN is handed to the users, whose preparation
requires a significant investment of money and time in order to train it against a (relatively)
huge training dataset and tune its hyperparameters and parameters. Hence, a malicious
user may attempt to extract the NN’s parameters and hyperparameters (two valuable
assets of the accelerator’s designer) [BBJP19].

* These authors contributed equally to this work.

mailto:dmmehta2@wpi.edu,mhashemi@wpi.edu,fganji@wpi.edu
mailto:dkoblah@ufl.edu, dforte@ece.ufl.edu

2 Bake It Till You Make It

Standard protections, e.g., blocking JTAG access, blocking binary readback, code
obfuscation, etc., could be taken into account against reverse-engineering and binary
analysis attacks [BBJP19]. However, these protections cannot prevent an attacker from
extracting the assets of NNs through side-channel analysis (SCA) [BBJP19, DCA20b,
XCCT20, YKOT20]. Masking schemes are among the most widely studied countermeasures
to protect cryptographic primitives against SCA and have been one of the first solutions
discussed in the context of protecting accelerators [DCA20b, DCA20a, DAP'22]. Masking
schemes have been proven to be secure against SCA, even with higher orders, although they
impose a high cost of overhead on the design, need careful construction and implementation,
and may suffer from high latency as well as the fresh randomness requirement. Interestingly,
recent masked NNs have overcome the challenge facing them with regard to the masking
overhead and have proven that their approach is resilient against SCA in the order of
million traces [DAPT22, DCA20b]. Nevertheless, despite the effort put into designing a
masked scheme —irrespective of the scheme’s underlying function— unexpected leakage can
be exhibited when realizing the masked design [DCEM18]. This failure has been mainly
attributed to the fact that leakages of different shares are no longer independent under some
specific conditions, e.g., high temperature, high clock frequency, etc [DFS19]. [DCEM18§]
has further extended and practically evaluating the theoretical results of in [DFS19]. The
work in [DCEM18] can be thought of as precise experimentation and leakage detection
within the lab environment to give a better understanding of what has been reported
before in a series of work [GOKT16, SGMT18, ZS18, RPD*18]. These studies have been
devoted to (1) the impact of power consumption of circuitry placed in one region of a
field programmable gate array (FPGA) on the fluctuations of the power supply voltage
at other, even unrelated /unconnected, regions of the FPGA [GOKT16, DCEM18]; and
(2) how this effect can be exploited to conduct SCA [SGMT18, ZS18, RPD'18]. While
the latter has been extensively researched, the former topic, particularly the conditions
resulting in an unexpected leakage, is yet to be sufficiently investigated.

Specifically, although the impact of high temperature on the dependency of the shares
has been considered in [DCEM18] by using a climate chamber, it is interesting to explore
how a masked design can be intentionally exposed to such extreme heat without using an
external generator, making even remote heat-induced SCA possible. When considering
active attacks, i.e., fault attacks, the devastating effect of high temperature has been
widely known and studied, see, e.g., [PBR17, MLS22, BBB*22, BH22]. On the other hand,
little attention has been paid to how increasing the temperature could lead to leakage,
and even in those relevant studies [GOKT16, DCEM18] as discussed above, an external
heat generator has been employed. This is despite the fact that internal heat generators
could also be applicable. Such generators have been analyzed and developed by Happe
et al. [HHAP12] and Agne et al. [AHH"14], who have demonstrated that utilizing and
frequently reading/writing from/to some circuit components such as block random access
memory (BRAM) and flip-flop (FF) pipelines cause a significant rise in circuit temperature.
Therefore, a natural question to ask would be whether such heat generators already exist
and can be exploited in masked designs to cause leakage. Our paper attempts to answer
this question by considering FPGA-based accelerators, which inevitably involve BRAMs in
their design as their main building blocks. Additionally, as explained before, masking has
been further introduced to these accelerators, making them a viable option for our study.

Contributions: Our contributions are summarized below.

o As our first step, we focus on the design of ModuloNET as presented in [DAP*22].
Although the design has not been made available, we follow the precisely described
design of modules involved in ModuloNET. Our design is further verified using one of
the state-of-the-art tools, namely VERICA [RBFSG22]. During the verification phase,
as a byproduct, we identify a vulnerability in the hardware implementation of Goubin’s
binary to arithmetic (B2A) conversion algorithm [Gou01] as used in ModuloNET, which

D.M. Mehta, M. Hashemi, D.S. Koblah, D. Forte, F. Ganji 3

has been overseen in the literature. We report that writing/reading sensitive variables
into/from memory can cause a power leakage, which we address by slightly changing the
design of ModuloNET.! We emphasize that this detected vulnerability complements the
set of issues with such conversion algorithms recently identified in [GPM22]. We emphasize
that [GPM22] has reported glitch-based issues for straightforward implementations of
Coron et al.-A2B [CGV14] in hardware; on the contrary, we report leakage in Goubin’s
A2B implemented in hardware [GouO1]. Using the t-test and differential power analysis
(DPA) [KJJ99] also help us to demonstrate that no first-order leakage exists in our
ModuloNET design after resolving the issue.

e Our second contribution is the design of the first internal heat generator, which relies on
neither additional circuitry nor an external heat generator, but solely the design —precisely
the memory used to store the inputs— and the inputs crafted by the user. Compared to the
ones proposed in [AHH" 14, HHAP12], our generators do not leverage BRAM pipelines but,
rather, rely on writing into the memory in a parallel manner. In doing so, no changes are
made in the design of FPGA-based masked accelerators under attack. To assess its efficacy,
we use the BRAMs used in ModuloNET to store the inputs. The extreme temperature
is observed by simply writing alternating “1” and “0” patterns into single-port BRAMs
(see Section 5.2 for more details). Under this condition, the power leakage of the design
is successfully changed, and at some points in time, the t-scores do not always remain
within the desired threshold. Furthermore, by performing DPA, we demonstrate that the
observed leakage can be successfully leveraged to extract the secret weights.

o Last but not least, We verify whether similar power leakage can be induced through
external heat generators. Our results demonstrate that, indeed, this is possible; however,
this would not rule out the fact that internal heat generators should be studied. Besides
making remote heat-induced SCA feasible (see Section 7 for a discussion), internal heat
generators can reduce the attack’s cost and complexity. This is because the adversary
solely needs to write into memory without modifying the design or preparing a specific
setup (no temperature chamber, for instance).

2 Related Work

2.1 Attacks against NNs

SCA and fault attacks.FPGAs are extensively used to implement DL accelerators and
are supported by cloud providers; however, a major security concern about them has
been side-channel analysis (SCA) and fault attacks [XAQ21] [BH22]. SCA against NNs
has been successful, and therefore, many protected NN designs have emerged [DAPT22,
DCA20a, DCA20b]. Some of the recent work relevant to SCA against NN include [XCC*20,
YMY*20, BBJP19, DCA20b, YKO*20, XAQ21, BJP22, SGMT18, ZS18, DKAA22] — just
to name a few. In this series of work, regardless of whether the attacker has physical
or remote access to the device, her goal is to extract the NN model and/or parameters,
being the NN’s assets [TG22]. This has been achieved through observing physical leakages
such as timing [BBJP19], power consumption [XCC*20], and electromagnetic emanation
(EM) [BBJP19]. Another category of SCA conducted against NNs is fault-induced SCA.
As an example, the authors of [LGFX21] have used SCA and power-wasting circuits in
conjunction with each other for their attack. The power-wasting circuit used is a look-up
table- (LUT)-based combinatorial loop to bypass combinatorial loop checkers used by cloud
providers that prevent similar attacks based on ring oscillators (ROs). The advantage

1We believe that this could have been observed and resolved by the authors of [DAPT22] since no
leakage has been reported in their paper, although they could not report the vulnerability since no
verification tool was applied in their study.

4 Bake It Till You Make It

of this approach is that there is no need to have prior information about the NN engine
under attack due to the SCA module included to schedule the attack.

SCA, as a passive attack, is not the only type of attack mounted against NNs. Voltage

and clock-based faults are widely used for fault injection. This type of tampering can
cause bit-flips [KGT22], timing faults [MS19] and can even reset the design [KHEB14]. It
can also lead to indirect or direct physical effects on the hardware like temperature change,
timing delays, etc. [KHEB14].
NN reverse engineering attacks. Researchers have developed an attack using the
ROs to steal NN parameters remotely [ZYCT21]. They take advantage of the shared
power resources in a cloud FPGA setup. ROs are used as sensors to measure the power
consumption of different NN operations carried out by the victim design. They train
a machine learning algorithm with the implementation of different kinds of NNs. This
model is used to infer the parameters of the victim circuit using the power traces. Similar
results were obtained by Tian et al. using a time-to-digital converter (TDC) based SCA
to reverse engineer the structure of NN remotely on the FPGA implementation of the
Versatile Tensor Accelerator [TMWT21]. They obtained parameters for a multi-tenant
implementation of ResNet-18 and MobileNet with different layer configurations. Similarly,
Moini et al. show the use of TDC in multi-tenant FPGA setup to extract image inputs for
a binary NN accelerator [MTH™21]. They have shown the results for multiple FPGAs,
including Ultrascale+ FPGA from Amazon AWS F1 cloud server.

2.2 Temperature-based Attacks

Heat as a covert channel. The temperature can create a covert channel between two
processes on a single machine or between two machines [BDK'09, BKMNO09]. In these
studies, the authors have also suggested methods to create such a covert channel between
circuits to attack an implementation of RSA by employing ring oscillators that generate
heat.

Heat-induced faults. Here, we briefly explain how temperature changes have been
leveraged by attackers targeting various designs. Faults can be injected by external
temperature manipulation, as shown by Hutter et al. [HS13]. They have shown fault
generation in RSA by heating the microcontroller outside its recommended temperature
tolerance. Another advantage of heating is that glitches can be easily induced when
the device is at a higher temperature [KHEB14]. This can increase the efficacy of the
faults. External temperature-based attacks have also been mounted to inject faults in
memory [GAO03, Sko09]. These attacks can be translated to accelerators as they use
hardware capabilities similar to FPGAs. As another example, Korak et al. showed a clock-
glitching fault attack with artificial temperature control on a micro-controller platform
using an external controller [KHEB14]. It results in changes in instructions, execution
order, and value changes.

When it comes to temperature-based attacks against NNs, [ATG"19] can serve as an
example. Writing into dual-port BRAM has been used to inject faults in NNs [ATG'19].
It has been shown that successive write-collisions lead to high voltage consumption and
an increase in temperature. Using this technique, faults were injected successfully into a
neural network implementation. The heating of the chip combined with voltage drop leads
to bit-flips and timing violations.

Side-channel leakage dependency on temperature. Hardware masking schemes’
side-channel leakages are affected by various factors such as the supply voltage, frequency,
and temperature [DCEM18]. To support this claim, Moradi et al. [DCEM18] investigated
the impact of such factors and demonstrated that even with a correct implementation of a
masking scheme, such implementations still exhibit unexpected leakage. They performed
a wide range of experiments, targeting FPGA, and reported under what circumstances
a correct implementation of masked hardware shows unexpected leakage. They studied

D.M. Mehta, M. Hashemi, D.S. Koblah, D. Forte, F. Ganji 5

the effect of six factors on side-channel leakage, including the number of shares, shunt
resistor, voltage supply, circuit size, design frequency, and temperature. They showed that
a well-designed hardware masking implementation exhibits leakage sooner than expected
under specific circumstances (i.e., at a certain frequency and temperature).

Summary.There have been multiple efforts to show the weaknesses of different implemen-
tations of NNs. On the other hand, temperature-based attacks have also been discussed
in various contexts, including the security of NNs, although fault attacks can be seen as
the main category in this matter. To the best of our knowledge, no study has considered
circuit components-based heat generation to induce leakage, let alone in the case of a
masked implementation of an NN.

3 Background

3.1 Brief Introduction to Masking Schemes

A masking scheme can be seen as a secret sharing one, where secret values are split into
shares, and operations are conducted on them in such a manner that a specific security
objective is achieved. In this regard, a masking scheme aims to offer security at a given
order d by making a set of assumptions on the leakage behavior of the target device.

Boolean masking.One of the most common forms of masking is Boolean masking, where
binary addition is adopted to share the sensitive variables. In doing so, a sensitive value
x € GF(2™) is divided to d + 1 shares (z1,-- - ,Z4+1) such that « = @fill x;. The security
requirement for this scheme is the uniformity of the shares, guaranteed by drawing shares
x1, -+ ,&q from a uniform random distribution and by choosing z441 = = & @;_; =5
(so-called correctness property). It is straightforward to see that linear and affine functions
can be securely evaluated when applying Boolean masking cf. [DCEM18]|. On the other
hand, non-linear functions need further attention. This becomes more evident if we take
masked multiplication as an example into account. In that case, when computing z = zxy,
a total of (d + 1)? terms contribute to the output, which should be reduced to (d + 1)
shares. For this purpose, various Boolean masking schemes have been proposed in the
literature, although we focus solely on Domain-Oriented Masking [GMK16] used in the
design of masked NNs [DAP122].

Domain-Oriented Masking (DOM).To reduce the number of shares contributing to
the multiplication output, DOM involves two steps. First, the cross-products are computed,
and randomness is added to specific ones; for instance, for the first-order security, we
obtain cf. [DCEM18]:

P1 =211
=x Dr
b2 1Y2 1 (1)
P3 = T2y1 © 1
P4 = T2Y2

After that, in the second phase, the terms p; in the Equation (1) are synchronized in a
register and introduced to a compression stage to reduce the (d + 1)? shares to (d + 1)
shares in the output z;, where z; = p1 @ p2 and z5 = p3 D ps. This reduction is obtained
at the cost of an extra clock cycle and the independence requirement imposed on the input
shares [GMK16, GMK17, GM17]. Nevertheless, the DOM multiplier (Figure 1) is one of
the commonly applied masking schemes whose security comes down to the independent
power consumption of the component functions.

6 Bake It Till You Make It

X7¥1 r X2)2

t I b Jt |

vy

‘]

Figure 1: Domain-oriented masking (DOM) Multiplier for first-order secure computation.
Here, the DOM-indep multiplier is illustrated, where the demand for fresh randomness
and the area overhead in terms of gate count is significantly smaller than the DOM-dep
multiplier; however, this is achieved by independently sharing the inputs.

Arithmetic masking, and conversion to Boolean maskingln practice, arithmetic
operations may be needed for different cryptographic (e.g., SPECK [BSS*13]) and non-
cryptographic primitives (e.g., NNs) [Cor17, DMRB18, DAP*22]. Under this scenario, it
can be advantageous to employ arithmetic masking. As a simple example, to compute
z = x 4+ y mod 2F, a first-order scheme with arithmetic sharing performs the following
operations. First, arithmetic shares A;, Ay, By, By are defined such that x = A; + As and
y = By + By. Afterward, the shares are added separately, by letting Cy < A; + By and
C5 + As + By with two arithmetic shares C7 and Cy that can be directly added to obtain
z=x+y= A+ Ay + By + By = C; + (3. Note that all additions and subtractions are
performed modulo 2* cf. [Cor17].

Under conditions where both Boolean and arithmetic masking schemes are needed, it
is possible to convert one to the other. Specifically, a B2A conversion accepts Boolean
shares and outputs arithmetic ones: Boolean shares of x that are x1,x9, - 2441 should
be converted to (d + 1) arithmetic shares a; such that © = a; + as + - - - 4+ aq1 mod 2*
without leaking any information about x. The first B2A algorithms have been intro-
duced by Goubin [Gou01], with first-order security only (for higher-order conversion, see,
e.g., [CGV14, Corl7, HT19]). The algorithm working the other way around and converting
arithmetic to Boolean (A2B) has also been provided in [Gou0l] and further improved
in terms of complexity in [CGTV15]. As discussed in [DAP*22], conversion algorithms
devised to be implemented in hardware have assumed the same field for inputs and out-
puts and attempted to reuse the randomness in the Boolean shares [MTMMO07, Gol07];
nevertheless, [DAP'22] had to take another approach, namely concatenating each Boolean
share (i.e., 1 bit) with k — 1 fresh random bits to obtain k-bit Boolean shares. After that,
the approach in [Gol07] has directly been applied as a B2A algorithm.

Leakage evaluation through t-testTest vector leakage assessment (TVLA) has been a
standard test methodology used in the literature to detect side-channel leakage [DAPT22,
DCA20a, DCA20b, DCEM18]. Relying on Welch’s t-test, the TVLA test checks the
similarity between two sets of traces captured from two populations of inputs. In partic-
ular, we use the non-specific t-test for fixed versus random leakage detection [BCDT13,
GGJR™11]. Holding two sets of traces, the t-test calculates the t-score as t = (u; —
u2)/+/(s3/n3) + (s3/n3), where y; and ps are the means, s; and sy are the standard
deviations, and n; and no are the total number of the captured traces for first and sec-
ond population, respectively. The null hypothesis is that the samples in the sets have
been drawn from populations with the same mean, i.e., the masking is effective. On the
other hand, the alternative hypothesis is that the samples have come from populations

D.M. Mehta, M. Hashemi, D.S. Koblah, D. Forte, F. Ganji 7

(/)

[E-E s

AL R LA TITTTTY L}ser’s
o e e input

Trusted Environment Untrusted Environment

€

Figure 2: The adversary model considered in this work is similar to prior studies on SCA
against NNs. In the trusted environment, first, the NN is trained on a given dataset.
Second, the trained NN is implemented on FPGA. Third, in an untrusted environment,
the device user acts maliciously and attempts to extract information about the NN’s
parameters and architecture by launching SCA.

with different means. To reject the null hypothesis at a particular significance level, a
threshold on the t-score can be defined. For instance, the threshold £4.5 corresponds to
99.999% confidence [BCD'13]. Similar to the prior masking approaches, to evaluate
the side-channel resiliency of our design, we choose the non-specific fixed vs. random
t-test [DCEM18, DAPT22].

3.2 VERICA

VERICA [RBFSG22] is a tool for the formal verification of hardware. Most verification
tools focus on either SCA or fault attacks (FA), but VERICA has incorporated verification
of a design under both attacks. It mainly uses the probing model introduced in [ISW03]
to check security as one of the methods, especially for a masked design. This allows
it to formally verify the circuits by taking in a netlist of a design and forming binary
decision diagrams (BDD) for them. The tool also uses many other models like glitch-robust
probing model [FGDP 18], active security [DN20], extended fault model [RBSG22], etc.
It is claimed to perform better than SILVER [KSM20] and FIVER [RBSS*21] as it not
only gives the verification for SCA and FA individually but can also verify combined
SCA /FA attacks. It also has the ability to verify composability properties like PINT [CS20],
SNI [BBD"16], FNI [DN20], CINI [RBFSG22], etc. This enables the tool to verify gadgets
and help reduce the development time for secure designs. It also uses a more advanced
BDD engine and has a modular interface for testing different module versions. The modular
interface is achieved using a JSON file to annotate the shares for the netlist instead of
editing the netlist. This way, new annotations do not need to be generated with the same
port for a module, even for different implementations. This allows for faster and more
efficient experimentation.

3.3 Adversary Model

First and foremost, we stress that our adversary model is the same as what has been
considered in [DAP*22] and various studies devoted to SCA against NNs. As illustrated in
Figure 2, the NN provider trains the model offline, and the adversary is the user performing
the inference. In this regard, valuable assets of NNs consist of their architectures and
the parameters critical to achieving reasonable accuracy [BBJP19]. The countermeasure
developed in [DAPT22] has not been concerned with the former and attempted to solely
protect the parameters in NNs (e.g., weights). Therefore, without loss of generality, our
adversary attempts to induce leakage by using the circuit components themselves. For this
purpose, she collects power/EM traces from the device that she possesses either via direct

8 Bake It Till You Make It

access or remotely, see, e.g., [SGMT18, ZS18, DKAA22]. The adversary follows a chosen-
plaintext-type attack model, where she sends her inputs to the device to be classified and
captures multiple traces, being further used to launch power/EM SCA [XCCT20, YMY *20,
BBJP19, DCA20b, YKO120, XAQ21, BJP22]. Notice that none of the voltage/EM fault
injection and template/profiled attacks has been in the scope of [DCA20a].

Moreover, the countermeasure proposed in [DCA20a] aims to ensure that the infor-
mation about parameters never leaks during any intermediate computation through a
first-order power /EM-based SCA. In other words, the proposed protection scheme masks all
intermediate computations. Furthermore, the t-probing model [[SW03] and robust-probing
model [FGDPT18] provide security guarantees for their proposed masking scheme. The
former model takes into account an adversary who observes the values of at most ¢ wires
in the masked circuit. The security is achieved if and only if the value on each of those ¢
wires can be simulated using solely randomness. To reflect the impact of physical faults
in hardware, such as glitches, transitions, and coupling, the probing model is enhanced
by considering glitch-extended probes [RBNT15] to obtain the robust-probing model. As
their name implies, the glitch-extended probes are relevant to the notion of glitches. The
probes leak the value of the probed wires as well as all the wires in the fan-in until the
last synchronization point.

4 FPGA-based Accelerators and ModuloNET

Before elaborating on our heat generation method, this section gives insight into aspects
of modern FPGA-based accelerators that are crucial to understanding why our heat
generation method can be applied to masked FPGA-based accelerators in practice. In the
second part of this section, an example of masked NNs implemented on FPGAs has been
given, namely ModuloNET [DAP"22]. We stress that this example is selected because
of its intrinsic characteristics, including being theoretically sound, impressive in terms of
side-channel resilience, and lightweight enough to be implemented on FPGAs.

4.1 FPGA-based Accelerators: Pros and Cons

As a result of decades of study and practice, implementation of NNs on FPGAs has
become pervasive in various research fields and commercial applications and achieved
satisfactory products [WGYT16]. Parallelism, modularity, and dynamic adaptation are
some of the main computational features of NNs, which can be met when implementing
them on FPGAs [MHSO08]. Although there are challenges to face, including scalability and
precision, compared with graphics processing unit (GPU) acceleration, FPGA accelerators
can achieve at least moderate performance with lower power consumption. The latter
is of great importance since the ever-growing data volume has led to exceedingly high
power consumption (and consequently, temperature) in data centers [USA22]. Nonetheless,
FPGASs have relatively limited computing resources, memory, and input/output (I/O)
bandwidths; hence, a great deal of attention needs to be paid to developing complex
and massive FPGA-based accelerators. In this respect, multiple approaches have been
devised to optimize the design of FPGA-based accelerators in terms of throughput and
latency. Here, throughput means that more data can be analyzed in a given amount of
time, whereas the latency should be within the range specified by a service objective.

Challenge 1: Throughput. To optimize the design of NNs by considering the through-
put as a metric, the data should be accessed every clock cycle and fed into the network.
Batching (i.e., processing a batch of multiple input samples together) is a technique
taken as a step towards this, although it increases processing latency and implemen-
tation complexity. Therefore, in practice, using large batch sizes is not practical; see,
e.g., [NSST16]. In response to this, processing a stream of input data on FPGA accelerators

D.M. Mehta, M. Hashemi, D.S. Koblah, D. Forte, F. Ganji 9

is required, in particular for streaming applications, including image/video processing
applications, real-time vision algorithms, and network packets encryption algorithms
that are all FPGA-friendly data-intensive applications [RBK19, RHCM ™16, RHL*18].
In traditional applications of FPGA accelerators, e.g., for computation-intensive tasks,
access of the user to the memory shared between her and the FPGA has been restricted
by, e.g., employing a hierarchy of dynamic random access memory (DRAM)/BRAMs in
OpenCL platforms [SGS10]. This has, obviously, dramatically impacted the throughput
streaming application; hence, methods have been developed to allow FPGA BRAMs to
transfer data point to point every clock cycle [RHLT18]. Clearly, when the user has direct
access to the FPGA (no memory hierarchy like the one in OpenCL), achieving such a
high throughput is even more straightforward, see, e.g., [ZSZ"717, CSJC10]. Therefore,
accelerators attempt to store inputs inside the chips into memory resources before any
calculation takes place [SFM17, GYSC17, ZLS*15]. As an example, Shen et al. [SFM17]
have used 1108 BRAMs to implement SqueezeNet on Xilinx Virtex-7 FPGA, which leads to
38% BRAM utilization. In another approach, Li et al.[LFJ"16] have utilized 1913 BRAMs
(65.07% of available Xilinx VC709 BRAMsS) for their AlexNET hardware accelerator.
Zhang et al. [ZLST15] have utilized 1024 BRAMs out of 2060 available BRAMS (50%
BRAM utilization) in the Xilinx Virtex-7 FPGAs to implement their CNN accelerator on
the FPGA. This is indeed helpful to reduce latency as well.

Challenge 2: Latency. Latency can refer to the inference latency, namely the time
taken to process one unit of data given that only one unit of data is processed at a
time; however, another aspect of data processing is more critical from the perspective of
our study: the memory access latency. What has been suggested in the literature is to
generally balance the computation throughput and memory bandwidth [SSEM18, ZP17].
In doing so, using external memories to store weights, especially for convolutional neural
networks (CNNs), cannot be recommended due to how the throughput of such a design
is limited by the external memory bandwidth [MVZ*21, CLLT14, LFJT16, CLL™ 14,
DFC*15]. Additionally, frequent access to the off-chip memory also introduces high energy
consumption and, consequently, higher temperature [Hor14]. Although one might think
that careful operation scheduling can significantly reduce external memory access, the
widely accepted remedy, data buffering, imposes another difficulty: the limited buffer size.
In fact, data buffering has often been paired with using external memories, aiming to
tackle the issue of limited on-chip memory.

The challenges discussed above are generic in that designers of FPGA accelerators
must tackle them irrespective of the security issues, such as resiliency to SCA. In fact,
designing an FPGA accelerator with optimized throughput and latency is a hard-to-attain
objective, let alone how this could be securely handled in the case of a masked NN.
ModuloNET [DAPT22] is one of those proposals attempting to tackle all these aspects,
including side-channel resiliency, together. At least for the networks showcased in their
paper, no external memory has been used to store the weights so as not to cause harm
to the throughput. Moreover, although masking imposes some additional cycles and
consequently increases the latency, it is argued that the percentage of this increase is
insignificant, thanks to the already high latency of the sequential design. At the time of
writing this paper, the design of ModuloNET has not yet been made publicly available;
therefore, we have had to follow the instructions and methodology given in [DAP122] to
implement it. This, however, even helps improve the design of ModuloNET?.

4.2 ModuloNET: An Example of Masked NNs

The implementation uses masking for provable security against first-order attacks in the
t-probing and glitch-extended probing models. Their binary NN, i.e., with binary weights

2Qur traces and tools will be available upon acceptance of the paper.

10 Bake It Till You Make It

LFSR > Masked
» Output Output
LFSR
. LFSR
l Bllas 1
Share . Masked é
Inputs —— —p » =P Y == —
P éé Creation > Multiplier > Activation =>é
Input I Layer
BRAM NN LFSR) BRAM y
=——> Shares Weight = Multiply Weight
— Normal & B2A

Figure 3: Design of ModuloNET cf. [DAP'22]. Inputs are directly stored in the BRAM,
which are then used to create shares for the computation whereas layer BRAM is placed
to store values per layer for computation. The orange-colored design shows changes that
we made to the original design.

and activation function (AF) [CHST16], includes five layers, one input layer, three hidden
layers, and one output layer. All the layers are fully connected, making the design a
multi-layer perceptron (MLP). The input layer consists of 784 neurons, each hidden layer
has 1024 neurons, and the output layer has 10 neurons, which is compatible with the size
of images in the MNIST data set. The design incorporates calculations in both binary and
arithmetic-sharing schemes. Therefore, the design uses masking of both types and applies
conversions between them. The masking scheme used in [DAP*22] is domain-oriented
masking, where 2-input DOM-indep AND gates (refer to Section 3.1) are used in various
places in the design.

Each neuron of the layer is shown in Figure 3. The design includes two BRAM-based
memories, which store values used in computations for every neuron. In this way, the
design sequentially calculates the values of the neurons one after another. Every neuron
calculation includes Summation, Masked Activation, and B2A converter. The input layer
neurons will additionally use the input BRAM, the Multiplier (shown in Figure 3), and
the output layer neurons will use the Masked Output layer. Each of these modules has
been discussed briefly below. Complete details regarding the operations and theoretical
security proof can be found in [DAPT22].

Input share creation. Pixels are 8-bit inputs for the NN. As the design is a masked
implementation, the inputs must be converted into shares. The shares are created using
a linear-feedback shift register (LFSR) by subtracting the random value from the pixel
value. So, one share is the random value, and the other share is the subtraction of those.
These shares are arithmetic shares because they are integer values. These shares can be
generated on the fly and used for each neuron calculation.

Input weight multiplication. First, we have the weight multiplication for the input
layer. The weights here are binary weights. The multiplication with the weight results in
either the same value or the complement value. This functionality is implemented as a
multiplexer (MUX). Also, to keep the shares independent, the shares are calculated using
a parallel implementation of the same modules.

Summation. After multiplication, shares are aggregated by the summation module. In
every cycle, a new pair of shares is read from BRAM to be summed. This summation occurs
for all the inputs for the current neuron, and then the bias is added. The summation module
is also connected to the B2A module for the hidden layer and output layer computations
and receives the input from the previous layer.

Masked activation. The summation results for the neuron are given as input to the
activation layer. The activation layer is a non-linear function; therefore, it needs to be
implemented using DOM gates. For this particular NN, we only need the carry-out of
the summation for the result of the AF (more details about the AF used here can be

D.M. Mehta, M. Hashemi, D.S. Koblah, D. Forte, F. Ganji 11

,ﬁlﬂ/ J’Illj/ yzl2/ ~VI/l/ ylll2/ VZI// -"IIII -VZI"I m

argy

Figure 4: Boolean to arithmetic converter module in [DAP*22]. The B2A module comprises
the concatenate module and Golic’s B2A converter [Gol07].

found in [DAP'22]). This is accomplished by using a Kogge-Stone adder. The adder
computes both the input shares and outputs the shares of carry-out. These output shares
are Boolean shares and are stored in the layer BRAM. Layer BRAM is filled with the
output of the AF for all the neurons in a layer before calculating the next layer.

B2A. Now, for the next layer, the input is the output from the previous layer, i.e., the
values stored in the layer BRAM. For multiplication on these layers, XNOR-POPCOUNT
is performed, which includes the B2A module. The B2A module converts the Boolean
shares generated by the AF to arithmetic shares for summation. To convert the 1-bit
Boolean share to 15-bit arithmetic shares, concatenation is performed before using the
conversion algorithm as shown in Figure 4. Here, 1-bit Boolean share, z' and 2* are
concatenated with 14-bit random number, r to form 15-bit numbers, 3 and y?. These are
converted to 15-bit arithmetic shares, a' and a? using Golic’s protected design [Gol07].
After the conversion of shares, they are left shifted and fed to the summation module.
This process is repeated for all the layers.

Masked output layer. For the output layer, the change is that instead of the masked
activation module, the summation outputs are processed by the masked output layer.
Similar to the masked activation layer, the output layer AF is a non-linear function. Thus,
it also needs masking to keep the output shares independent. Three modules and a register
file achieve this. Next, we will discuss all of these modules.

First comes the A2B Converter, which converts the Arithmetic summation shares to
Boolean shares. This conversion is essential as the masked output layer performs the
binary calculation. The values are stored in the register file. Before processing the output
layer, we need values for all the output layer neurons. It is the reason for the register file
after the A2B converter. Once all the values are ready, the output layer process starts
with the threshold module.

For the NN, the threshold module is used to check if the scores are below a certain
threshold (details on how the threshold is decided can be found in [DAP*22]). If it crosses
the threshold, the output is 0. This is implemented with AND gates replaced by DOM
gates to make it masked. The output is given to the masked comparator module using
DOM gates to protect the module. The comparator module checks which class has the
highest confidence score, so we compare it with the current global and local max results.
The higher confidence score-based values are selected, and indexes for the same are also
saved into local/global max registers. Masked MUX is used to select these values, which
use DOM gates for masking. This flow is used to select a class in the output layer.

12 Bake It Till You Make It

5 Temperature-induced Leakage from NNs

This section first explains why temperature variation can lead to inducing leakage in a
design. Next, methods for generating heat within the NN designs are discussed.

5.1 Thermal Impact on FPGA Operational Dynamics

Delay attributes in FPGA elements.A comprehensive analysis of FPGAs’ delay
sources and their consequent effects on system functionality is imperative for developing
robust systems [Kall3, GWWT12]. The architecture of FPGAs includes various elements
like LUTs, FFs, and interconnects, each introducing unique propagation delays. The
propagation delays in LUTs are predominantly attributed to the duration of logic function
execution [ATF16], subject to variability based on the LUT’s dimensions and structural
complexity [ATF16]. On the other hand, FFs are responsible for managing sequential logic.
The propagation delay in FFs is mainly determined by the clock-to-output delay, referring
to the time that an FF takes to change its output after the clock edge [OH11].

Interconnections within an FPGA are critical in linking FPGA components. The delays
in these interconnects depend on several parameters, including the length of wires, the
degree of routing congestion, and their capacitance [NHCB02]. Additionally, variation
in the manufacturing process in FPGA production can result in differing propagation
delays, even among identical model units [SC06]. This study specifically delves into how
temperature variations influence the delay of two key FPGA components, namely LUTs,
and FFs, which are massively utilized in ModuloNET’s modules.

Interplay between temperature and delays in LUTs and FFs. FPGAs employ
digital complementary metal-oxide semiconductor (CMOS) technology, making the impact
of temperature fluctuations on circuit performance a significant aspect to be considered.
Temperature changes can have profound effects on the characteristics and behavior of
CMOS circuits, a subject extensively covered in various studies [Kal13, HAM 86, WFKP98,
MBS*24]. As an example, Kalra et al. [Kall3] have explained the temperature-sensitive
parameters of MOSFETs. These parameters include carrier mobility, threshold voltage,
saturation velocity, and the resistance at the parasitic drain/source, all of which can
modulate the circuit’s speed and power usage. In a similar vein, Gag et al. [GWWT12] have
evaluated the effect of carrier mobility and threshold voltage on the timing characteristics
of circuits. Equation 2 indicates how the threshold voltage of CMOS devices decreases by
increasing the temperature 7', depending on Vi, (threshold Voltage at temperature Tp)
and T} (initial temperature) [Tsi87, GWWT12, FA01].

Vit = Vt() + ayy - (T — To) (2)

Here the factor ay; varies between 2 to 4mV /K (see Equation 2), where its exact value
depends on the doping level of the actual semiconductor. This results in higher drain
currents at higher temperatures; consequently, the circuit is getting faster.

The carrier mobility, p also varies by changing the temperature as formulated in
Equation 3 [GWWT12, FA01, LS94].

= po <£>% (3)

Here «, is a constant, and jp denotes the carrier mobility at the initial temperature. «,,
depends on doping and varies from -1.5 to -2.5 in literature [GWWT12]. The higher the
temperature, the lower the drain current is; hence, the device should be slower. Among the
two conflicting factors -the carrier mobility and the threshold voltage- the latter dominates
if the supply voltage is close to the threshold voltage. In such a scenario, the design will be

D.M. Mehta, M. Hashemi, D.S. Koblah, D. Forte, F. Ganji 13

8- B

""" n"n"n"

i

Figure 5: The adversary relies on the fact that at high temperatures, the power consumption
associated with different shares is no longer independent of each other. In this regard, the
adversary takes advantage of the memory allocated to store the inputs and, by writing
alternating ‘0’ and ‘1’ patterns, attempts to increase the operating temperature of the
FPGA and detect first-order leakage.

faster; otherwise, the temperature increase makes the design slower. Regardless of whether
it is faster or slower, the gates’ delay varies with temperature.

Now, the question is whether the variation of gates’ delay can affect the effectiveness
of masking. This has been explored in the literature for a long time. As a prime
example, [MPGO5] has explained that varying propagation delay of the gates leads to
glitches in the circuit and, thus, a significant impact on the circuit’s power consumption.
Therefore, the variation of gates’ delay due to an increase in temperature clearly changes
the circuit’s power consumption pattern. Following the argument in [DCEM18], consider
the first-order Boolean masking, where secret value x is represented by two shares x; and
29 with their corresponding exclusive power consumption P; (1) and Ps(z2), respectively.
When the sub-circuits operating on each of the shares work in parallel, thanks to the
variation of the delays, these sub-circuits influence each other’s power consumption.
Even though the assumption of their independent power consumption may hold at room
temperature (i.e., the condition under which the circuit is designed and tested against
SCA), this assumption may be violated at higher temperatures.

5.2 Inducing Leakage through Internal Heat Generators

Given the above discussion, it is tempting to increase the temperature of the circuit to
induce leakage. This can be achieved using a climate chamber to operate the device at
higher temperatures as practiced in [DCEM18]. Nevertheless, an internal heat generator
(HG) has various advantages, namely its use in remote attacks and its cost-effectiveness.
Seen from another perspective, even if the internal HG is enabled unintentionally (i.e., the
operation of the device causes high temperature), it is interesting to study how effect the
masking will remain under such conditions. As argued below, such conditions are highly
probable for NNs, which heavily utilize BRAMs (see Section 4.1)- let alone the masked
NNs with even higher utilization thanks to storing shares.

The core idea underlying the heat-induced leakage is to generate heat inside the
FPGA by flipping the input image (i.e., writing alternating ‘0’ and ‘1’ input patterns
into memory) frequently to toggle the corresponding BRAMSs, thereby increasing dynamic
power consumption and, subsequently, chip temperature. This simple but effective concept
is realized by an adversary who solely feeds the inputs to the design in each and every
clock cycle, see Figure 5. This type of adversary is entirely agnostic about the design of the
NN, but leverages the internal HG to make the leakage from the masked NNs detectable.
The foundation of this has been laid by Happe et al. [HHAP12] and Agne et al. [AHHT14],
who have indicated that one of the primary sources of heat in FPGAs is a significant
number of BRAMs and FF pipelines. In addition, they showed that reading/writing from
BRAMs and FFs also generate extreme heat. To understand the effect of such HGs on
masked NNs, we consider ModuloNET [DAP22].

Similar to many other accelerators [CLLT14, DFCT15, DCA20a, DCA20b, DCA20a],
input images and masked AF outputs in ModuloNET have been stored in BRAMs; therefore,
ModuloNET meets the needs of the adversary for generating heat on FPGAs. As mentioned

14 Bake It Till You Make It

in Section 3.3, the adversary cannot control the input/output of the masked AF when the
FPGA is operating. However, the adversary can continuously feed flipping images into
the FPGA, as shown in Figure 5, which are stored in BRAMs. To make the most of the
HG, it is necessary to change multiple bits every cycle. This can be achieved by writing
alternating ‘1’ and ‘0’ patterns into BRAMs; hence, the adversary crafts image pixels with
such a pattern to obtain so-called flipping images. We emphasize that, in contrast to HGs
in [HHAP12, AHH"14], we do not write into memory in a pipeline fashion, but in parallel,
in compliance with the design of NNs.

Now the question is why exploiting such an internal HG would impact the masked
design. In fact, the heat generated inside the FPGA results from high power consumption,
which directly affects how (in)dependent the power consumption of the shares (and the
functions being operated on them) are on each other. This has been explored in [DCEM18],
where it is shown that “the power consumption of a function operating on a share influences
the amount of power consumption of other functions simultaneously operating on other
shares” De Cnudde et al. [DCEM18] have empirically examined this (in fact, in “an
artificial lab environment”) that such a phenomenon is observable within the temperature
range between 50 °C and 70 °C. These are the ranges selected in [DCEM18] to express the
extreme effect of temperature on first-order leakage. While they could enjoy the freedom of
selecting these by employing the climate chamber, we attempt to determine if the internal
HG executed by solely feeding the alternating inputs could influence the first-order leakage
from the design. In the same vein as [DCEM18], we aim to pinpoint the existence of
leakage in correctly implemented masked NN.

We examine whether, utilizing the BRAMs for storing NN inputs, the heat can be
generated by flipping the value of inputs (e.g., image pixels) frequently.

Comparison with the most relevant heat generation methods.First and foremost,
we stress that De Cnudde et al. [DCEM18] have investigated the impact of extreme
temperature on masking in general. To this end, a climate chamber has been used to
operate the device at higher temperatures. While the concept has been well understood, no
practical heat generation has been proposed to increase the temperature internally to make
the masked implementation leak. On the other hand, the heat generation in [ATG™19]
has leveraged a large number of simultaneous write-collisions to cause voltage drop and,
consequently, a significant temperature rise. Here, write-collision refers to the scenario
where both ports of BRAMs in dual-port BRAMs are writing different data to the same
memory address. It has been observed that FPGAs (i.e., including series crafted by Xilinx,
Intel, Microsemi, etc.) contain dual-port random-access memory (RAMs) with concurrent
writing possibility, which can be turned into a serious vulnerability if opposite logic values
are written to an address to create a transient short circuit. While our heat generation
relies on writing flipping pixels into BRAMs, as opposed to [ATGT19], single-port BRAMs
are utilized in our case. The implication of this is that our heat generation is not restricted
to designs with dual-port BRAMs. More importantly, [ATG¥19] has aimed to inject faults
into NNs, whereas our study demonstrates the possibility of inducing side-channel leakage
in masked NNs.

6 Experimental Results

6.1 Measurement Setup

To evaluate how effective our heat generator (HG) is and understand its impact on first-
order leakage, ModuloNET is implemented on Artix-7 FPGA, embodied within the CW305
board. We have also used Vivado 2021 [Xil21], whose IP catalog is applied to generate
BRAMs. To maintain the independence of shares and the security of the design, we had
to tune some of the synthesis and implementation parameters. We disabled the LUT

D.M. Mehta, M. Hashemi, D.S. Koblah, D. Forte, F. Ganji 15

AXI
1000000 thermal sensors
i e)) y /X

— :.Il-l. -ll.- ------

Xilinx Vivado 2021

Figure 6: Experimental setup used to perform the thermal test.

Table 1: Hardware resource allocation in our implementation of ModuloNET used to

perform experiments on BRAM-based HG.
Resource | Used [Utilization (%) [Available

LUT 15807 24.93 63400
FF 7782 6.13 126800
BRAM | 131 97.03 135

sharing and the optimization option as well as enabled keep_equivalent_registers in
combination with using the DONT_TOUCH attribute. This setting forces Vivado to place the
shares in different locations, as specified in the design, and not optimize them. We have
used an external low-noise DC power supply, BK Precision 9130, to ensure a stable and
consistent power supply at different temperatures. CW305 target board is connected to
the power supply using banana pins to give 1V to the board, i.e., the default voltage for
the FPGA sitting on the CW305 board.

Power traces have been captured using CW Husky and Lite using synchronous capturing

feature. To accelerate the capturing process, we have also used the segmentation feature
of the CW husky board. It allows us to capture 8 traces with a single communication
from the computer. The traces are collected with no shunt resistor on the CW305 target
board and low-noise amplifier of the CW305 board. Moreover, the mini-circuits SLP-30+
low-pass filter is attached to the SMA cable connecting the CW305 and CW Husky. The
design frequency is set to 10 MHz which is the same as the capturing frequency, i.e.,
synchronous capturing. This helps alleviate timing issues in the trace collection, such as
clock jitter-based noise during capturing.
External heat generation. Testequity model 107 temperature chamber is used to
control the temperature of the target. The chamber can maintain a temperature between
—42°C to 130 °C with a tolerance of +0.5°C. The chamber is used to conduct experiments
to show the impact of external heat generation on the design.

In all experiments, regardless of whether we used our proposed internal BRAM-based
HG or the temperature chamber, we have monitored the output of the PRNG and have
not observed any irregularity in its behavior.

6.2 Our implementation of ModuloNET

Our ModuloNET is implemented with regard to the description provided in [DAP*22]
and includes the modules explained in Section 4.2. As mentioned in [DAP*22], the share
creation during the t-test calculation would lead to leakage due to input correlation. To
avoid this, they calculated the inputs and corresponding shares before the t-test calculation.
We have employed a similar approach where we calculate the shares on the device and
store them in the input BRAM before starting the t-test. Dubey et al. [DAP22] have
implemented a multi-layer Perceptron (MLP) with 784 input nodes, 3 hidden layers with
1024 nodes, and 10 output layer nodes to argue about the scalability of their approach;
however, to accelerate the trace collection process, the number of nodes in the hidden
layers is reduced to 64. It is also justified that the leakage assessment is generalizable
to the larger NN thanks to the repetitive nature of NN computations and the sequential

16 Bake It Till You Make It

T-scores

200 400 600 800 1000
Time (us)

Figure 7: T-test results for the entire design, including all modules, explained in Section 4.2
for 100K traces captured from the original design (as depicted in Figure 8 in [DAP*22]).

design (i.e., computing one node at a time). Similarly, we take a reasonable size of the
NN into account to reduce the number of clock cycles and, consequently, the time taken
to collect a trace, as well as the size of the data stored for a single trace. Our network
has 100 input nodes, 64 nodes in the hidden layer, and 10 nodes in the output layer. This
reduced design takes 10,400 clock cycles per trace and around 100kB of data per trace. We
stress that if more input nodes were considered, the operating temperature would be even
higher than observed in our experiments; hence, our results give an optimistic estimate of
what can happen in practice.

Since we have considered 100 input nodes, we need 100 pairs of shares of all the inputs.
We have allocated 2 BRAM, one for each share, with a size of 78,400 (corresponding to 784
pixels in MNIST images and each with 100 input nodes), with a 15-bit width. The 15-bit
width is the result of padding the 8-bit pixels to 15, as performed in the original design
in [DAP*22]. While 2 BRAMs (FIFO36) are consumed by layer BRAM (see Figure 3),
69 BRAMs (FIFO36) are used to store only 100 pixels per image to accelerate the trace
collection process further.

Moreover, calculating the t-scores requires capturing traces from a set of fixed and a
set of random inputs, which prohibits us from having the luxury of flipping input images
entirely during the t-test process. Hence, we have considered a set of 120 FIFO18 BRAMs
(half the size of FIFO36 BRAMS) in the design and flipped them simultaneously with the
t-test process. Writing into memory occurs every cycle, and thus, the address counter
stays constant at zero. We stress that adding these BRAMs help us mimic the effect of
the flipping input images without interfering with the trace-capturing process. Note that
the total number of bytes in flipping and t-test inputs is much less than the number of
input bytes that can be flipped by the adversary in a real-world scenario, where the actual
input size of the MNIST image is 784 pixels. Furthermore, since the t-test inputs are not
changed once the t-test is started, the change in the operating temperature reflects the
situation where the adversary does not take full advantage of the HG. The complete list of
resources used by the design when performing the experiments is provided in Table 1. In
terms of the number of LUTs and FFs, although we tried to follow the original design as
closely as possible, we have higher resource utilization compared to ModuloNET [DAP22]
(5635 LUTs and 5009 FF). Nonetheless, since we compare the operating temperature and
the leakage solely by considering our design under different conditions, this does not cause
any issues.

Verifying the design using VERICA. As seen in Figure 7, the t-test results for the
original design as described in [DAPT22] showed leakage. To figure out the cause of
the leakage, we used a design verification tool, namely VERICA [RBFSG22]. For this
purpose, first, we need to generate a gate-level netlist for the individual modules using the
Synopsys design compiler [Syn20]. The tool command language (TCL) script has to follow

D.M. Mehta, M. Hashemi, D.S. Koblah, D. Forte, F. Ganji 17

constraints for the VERICA tool. Next, we need to define the security annotations for
the input and output, such as shares, refresh bits, and control signals. This information
has to be defined in a JSON file, which can be used to test different versions of the same
module, which is a significant improvement over SILVER [KSM20]. We tested different
modules using VERICA and found that the B2A module failed the test. In fact, the B2A
module passed the d-probing test but failed the glitch-extended probing test. There was
one probing point inside the B2A module, where the leakage of the Boolean shares was
detected. By looking at the netlist, we found the cause of the problem at the point where
Boolean shares were written/read into/from BRAM. The point is that the prerequisite for
Goubin’s B2A algorithm is the field being the same for inputs and outputs. Therefore,
if the Boolean shares have less than k bits (see Section 3.1), fresh random values can be
used to pad them (concatenating with the random values as done in [DAP+22]). If this
padding is performed after reading the values from BRAM, the glitch-extended probing
test fails. We could resolve the problem by performing padding before writing the Boolean
shares into the layer BRAM, as highlighted in orange in Figure 3. The t-test results for
2M traces collected from the enhanced design are depicted in Figure 9(a-bottom). We
stress that this is the amount of measurements for designs with long execution times as
used in [DAPT22].

6.3 Die Temperature Measurement

The CW305 target board is a customized board for effective side-channel evaluation
purposes; unfortunately, it lacks the system monitoring sensors. Hence, we have used
the PYNQ-Z1 board with Artix-7 FPGA (package number FTG256) to perform thermal
tests. Figure 6 illustrates our temperature evaluation experimental setup. We have used
the XADC thermal sensors and read the 16-bit temperature channel analog to digital
converter (ADC) via Xilinx Vivado 2021 local server. To communicate with the XADC
module, we used the PYNQ-Z1 AXI streaming port, which has a refreshing period of 1s.
To establish communication between the personal computer (PC) and the XADC and
store the sensor data, Happe et al. [HHAP12] used the MicroBlaze processor embedded
alongside the design. However, as the MicroBlaze processor generates heat on FPGA,
we have used the Xilinx Vivado TCL to store XADC temperature sensor data with the
bandwidth of 1s to prevent heat generation from other sources rather than the design.

To evaluate the impact of our internal HG, we have done experiments in two cases,
namely giving (a) a normal (not flipping) image and (b) one with alternating “0” and “1”
patterns (flipping image). Note that the former corresponds to the heat generated when
processing the t-test inputs stored in the memory. In both cases, the XADC sensor collects
3,600 temperature samples over 3,600s. Then, we let the board cool down for 60 minutes
(m), even more than the suggested cool-down time recommended in [HHAP12, AHHt14],
and provided ModuloNET with flipping images. Figure 8 shows the heat generation results
in these two experiments.

It is observable in Figure 8 that giving the normal images to ModuloNET with BRAM
input storage generates heat up to a maximum of 42.1°C. While with the flipping images,
read /write from/to HG BRAMs, its operating temperature reaches the maximum of 72.9 °C
in an even shorter period.

Using Xilinx Power Estimator (XPE) tool to validate the emulation results.

The XPE tool [Adv24] can be used for estimating power consumption and die temperature
in Xilinx SoCs and FPGAs. It stands out for its ability to assess die temperature by
considering the FPGA bitstream and ambient temperature. This feature is particularly
valuable for designers to understand thermal performance under various conditions. To
verify the results of our emulation, we also used this feature of XPE. In doing so, when
setting the ambient temperature to the room temperature (25°C), the XPE simulates the
die temperature to be equal to 40.2 °C, confirming the similarity of CW305 ChipWhisperer

18 Bake It Till You Make It

-1
(=]

=]
(=]

—— BRAM-based HG

—— Our design

Temperature (°C)
£ w
[=} (=]

%]
o

1000 2000 3000
Time (s)

Figure 8: Temperature testing results for our implementation of ModuloNET when giving
a normal (not flipping) image and flipping inputs are written into BRAMs (BRAM-based
HG). Note that the HG is indeed part of the design, specifically, the BRAMs.

board operational die temperature and PYNQ-Z1 XADC sensor according to Figure 8.
Furthermore, if the die temperature reaches 70 °C, equal to the die temperature after using
our HG (see Figure 8), the ambient temperature should be set to 61.5°C.

An important point to mention is that we have decreased the number of the input pixels
of the ModuloNET to be implemented on Artix-7 FPGA with a limited BRAM support,
as explained in 6.2. However, the temperature will increase even more if an FPGA has
sufficient BRAM to support a larger input size, e.g., 784 pixels. As an example, a defense-
grade VIRTEX-7Q FPGA has 1,500 BRAM, sufficient to implement the ModuloNET with
the larger inputs requiring around 1048 BRAMs. In this case, the results indicated that
even at room temperature, 25°C, the die temperature can increase up to 64.2°C.

6.4 Temperature Influence on Delay of FPGA Components

This study concentrates on understanding how temperature variation can induce leakage.
As discussed in Section 5.1, variation of delays can cause glitches with an impact on
the power consumption of shares. Here, we validate experimentally how increasing the
temperature affects the propagation delay of FFs and LUTs in FPGAs. For this purpose,
on the Artix-7 FPGA of the CW305 board, we have implemented (1) a single FF connected
to a variable bit source and (2) a series of 10 inverters, each mapped individually to a
distinct LUT. The output pins of the FPGA operate within a voltage range of 0V to 3V.
We selected 2.5V as our logical “1”, noting that pin output values surpassing this threshold
exhibited instability, oscillating around 3V. A threshold above 2.5V was avoided due to
the prevalence of false peaks at voltages nearing 3. We have used WavePro 254HD 2.5
GHz High Definition Oscilloscope [TL23] with 20 GS/s resolution to capture the changes
in output pin values in both cases.

The delay in the FF was analyzed by measuring the clock-to-Q delay [OH11]. This
involves monitoring the disparity in timings between two outputs: one from the clock source
of the FF and the other from the FF’s output. To reduce the influence of interconnect
delay between the clock source and the FF input, the FF was placed near a clock source.

For analyzing the LUT delay, we have crafted a sequence of 10 inverters, initiating
the chain with a connection to the clock source. The reason behind choosing 10 LUTs
instead of one is that the delay of one LUT is close to the error of our measurement setup,
WavePro 254HD 2.5 GHz High Definition Oscilloscope [TL23], and it might not be possible
to measure the delay accurately. The delay is measured by focusing on the time difference
between the output of the clock and that of the chain’s final inverter. We ensured the
proximity of the first inverter in the chain to the clock source and arranged the LUT chain
to minimize spatial separation.

Table 2 details the delay measurements for a single FF and a chain of 10 LUTs at room
temperature (25°C) and 61.5°C (see Section 6.3). The delay values in Table 2 represent

D.M. Mehta, M. Hashemi, D.S. Koblah, D. Forte, F. Ganji 19

Table 2: Component delays at different ambient temperatures.

o Delay (ps)
Temperature (°C) rqr o1 FETChai of T0 LUTS
5 793 85
615 783 77

the time difference between the moment the clock source output pin and the FF’s Q-pin
(column 2) or the final LUT in the chain’s output pin (column 3) exceed 2.5V, measured in
picoseconds (ps). To mitigate noise in the measurements, the values reported are averages
from 1000 repeated experiments, employing a noise reduction approach akin to [SLLT08].

An interesting observation from Table 2 is that the propagation delays for both the FF
and the LUT chain do not linearly correlate with temperature increments. Notably, the
FF’s propagation delay decreases by 8ps when the ambient temperature rises from 25 °C
to 61.5°C. A similar trend is observed in the LUT chain, with a reduction of 10ps in delay
over the same temperature range. As the device is faster, one conclusion is that the effect
of the threshold voltage is dominant. Irrespective of whether the effect of the threshold
voltage or the carrier mobility is dominant, variation of delay as shown in Table 2 plays a
role in inducing the leakage at higher temperatures.

6.5 Leakage Detection

After verifying the impact of giving flipping images on the operating temperature of the
FPGA embodying ModuloNET, we investigate how the resulting temperature rise can
affect the first-order leakage. The goal of experiments done in this regard is to understand
whether a first-order secure design, i.e., our design of ModuloNET, exhibits first-order
leakage if flipping images are fed into it and, thus, increases the operating temperature?.
For this purpose, we compare the t-scores calculated for traces collected from the design
when providing normal (not flipping) and flipping images to BRAM-based input storage.
In these experiments, before collecting traces, we first wrote the “0” and “1” alternating
patterns into the memory to reach a high die temperature. More precisely, after about
20min. (1,200s), the temperature becomes almost stable and reaches its maximum value
(see Figure 8). Note that an adversary interested in detecting the leakage needs neither
this information nor access to the sensor/monitoring system, as she can simply give the
flipping images for hours to ensure the die temperature is high.

Furthermore, we should highlight that we start with several tens of thousands of traces
to see how many traces of the first-order leakage are detectable after capturing. In this
regard, we collected 2M traces from the device in our experiments. Note that throughout
this section, the number of traces refers to the total number of fixed and random traces,
i.e., collecting 2M traces means that 1M fixed and 1M random traces are collected. The
effect of activating the HG, i.e., giving a flipping image to ModuloNET, can be seen in
Figure 9. As can be seen in Figure 9(b), under the scenario where flipping inputs are fed
into ModuloNET, the t-scores calculated for 2M traces are much increased compared to
Figure 9(a), where normal inputs (not flipping inputs) are considered. Notice that no
first-order leakage has been seen for ModuloNET when evaluating 2M traces as depicted
in Figure 9(a). Further, Figure 9(b) illustrates a sample trace and the average of 1,000
traces showing how the power characteristics of the design are affected by the extreme
heat. Moreover, as marked in Figure 9(b) (see the bottom row), the t-scores do not always
fall within the desired threshold, implying the rejection of the null-hypothesis with the
confidence of 99.999%.

3For results obtained by using an external heat generator, see Section 6.7.

20 Bake It Till You Make It

40

30

20

Voltage (mV)

0 .l o
200 400 600 800 1000 200 400 600 800 1000
Time (us) Time (us)

100 40

Voltage (mV)

0
200 400 600 800 1000 200 400 600 800 1000
Time (us) Time (ps)
9 9
45
8
S
S 0
?
H
-4.5
-9 -9
200 400 600 800 1000 200 400 600 800 1000
Time (ps) Time (us)

(a) (b)

Figure 9: Results for ModuloNET with (a) no HG, and (b) with HG enabled. Sub-figures
present (top) sample trace, (Middle) average of 1000 randomly chosen traces, and (bottom)
t-test results for 2M traces.

6.6 Leveraging the Leakage

After detecting the leakage, the natural question is whether the adversary can leverage
the leakage. To answer this question, we apply differential power analysis (DPA). DPA
stands as a prominent side-channel attack wherein attackers exploit the power consumption
patterns of a device to extract its secret [KJJ99]. To find out if the leakage induced
through our HG can be exploited in an attack, we launched four cases of DPA attacks
against ModuloNET. First, we investigate whether a first-order DPA can break the security
of ModuloNET in the absence of PRNG without enabling the HG. This serves as a baseline
to examine if the first-order DPA against ModuloNET would be effective, i.e., if masking
is effectively implemented. After ensuring that, we shift our focus to how HG can induce
leakage that can be exploited by DPA. To understand if enough number of traces is used
in DPA, we also launched a second-order DPA against ModuloNET. The distinguisher

D.M. Mehta, M. Hashemi, D.S. Koblah, D. Forte, F. Ganji 21

used in all cases is Pearson correlation with a confidence level of 99.99% as suggested
in [MOPO0S8]. We have obtained the intermediate value from ModuloNET stored in layer
BRAMSs and registers between bias addition and masked output for the hidden layer and
output layer, respectively; see Figure 3. These attack vectors for launching DPA are chosen
according to the points where the t-score exceeds the threshold, namely around 500us for
the hidden layer and 750us for the output layer in Figure 9.

DPA with PRNG off. By turning off the PRNG, all the masked values are unmasked,
i.e., making a first-order attack successful. This is verified in Figure 10(a) and Figure 11(a).
At the bottom of these sub-figures, the results for DPA with 500K traces against hidden
layer and output layers are depicted. It is observable in Figure 10(a-bottom) that the
DPA correlation exceeds the threshold around 540us, whereas for the output layer, the
correlation exceeds the threshold around 830us as shown in Figure 11(a-bottom). This
point is where ModuloNET starts multiplying the secret weights with the image in the
hidden layer. This correlation peak confirms the vulnerability of the unprotected design,
unmasked ModoloNET [DAP*22]. Figure 10(a-top) and Figure 11(a-top) show the results
for evaluating the correlation coefficient for the chosen window marked by dotted line
rectangles, where the number of traces increases for a trace range of 100 to 500K. It is
observable that if the adversary focuses on a window around the correlation peak, it is
possible to successfully launch a DPA with 230K and 70K traces against the hidden and
output layers, respectively.

First-order DPA with PRING on and HG off. Next, we evaluate how effectively
the masking is employed by using the same attack vectors from the case of PRNG off,
but this time, the PRNG is turned on. Still, the HG is off in this case. Figure 10(b-
bottom) and Figure 11(b-bottom) show the results for 500K traces against ModuloNET
hidden and output layer, respectively. In contrast to the case where the PRNG is off, the
correlation has never exceeded the threshold. This validates the resiliency of the protected
ModuloNET against first-order DPA attacks for up to 500K traces for both hidden and
output layers. Moreover, Figure 10(b-top) and Figure 11(b-top) confirm that even if the
adversary focuses on the same window used in first-order DPA with PRNG being off, the
protected ModuloNET still shows resiliency to the first-order DPA.

Second-order DPA with PRNG on and HG off. To understand whether we have
used a sufficient number of traces to perform a first-order DPA when the PRNG is turned
on and the HG is off, we launch a second-order DPA. We use the same attack vectors as in
the first-order DPA and follow the method in [OMHTO06, Mes00]. Figure 10(c-bottom) and
Figure 11(c-bottom) show the results for second-order DPA with 500K traces against the
hidden and output layers, respectively. In addition, focusing on the window in which the
correlation exceeds the threshold, it can be observed in Figure 10(c-top) and Figure 11(c-
top), an adversary can successfully launch a second-order DPA with 200K against the
hidden and the output layers. This confirms that 500K traces are sufficient for a first-order
attack when the HG is off (see Figure 10(b) and Figure 11(b)). Moreover, when conducting
a second-order DPA with 500K traces, the time points, near which the second-order
leakage happens, are 540us and 830us for hidden and output layers, respectively. These
time points are close to the leakage points in Figure 10(a) and Figure 11(a), respectively
(see the bottom figures). This confirms the point of interest on which an adversary can
launch a DPA against the hidden and output layer of ModuloNET.

First- and second-order DPA with PRNG on and HG on. After performing the
first- and second-order DPA against the design without enabling the HG, we study how
our proposed HG can facilitate these attacks. We start with the first-order DPA, whose
result for the hidden layer is illustrated in Figure 10(d). The bottom figure shows the
results for DPA with 1M traces. It is noteworthy that DPA with 1M traces failed under
the scenario, where the HG was not enabled.

22

Bake It Till You Make It

0.025 0.025
S
=]
.2
8 \
e
E 0 0
Q
= //
2
s
[
~
-0.025 ~ -0.025 < ' ' ' 7
160, - 200 300 400 ,~500 106 _ 200 300 400 ,~500
~ 7’ S 7’
Number of Megsurements (% 103) Number of Measurements (X 103)
. S = ‘/ 7’ ~o o= I/ 7’
a 1 1 : I
- ! L 1
= 001 i 0.01 't
.8 il I
= T
2
o 0
Q
=1 1 1
2 1 L
— 1
g -0.01 o 0.01f -
A~ o : 1
200 400 600 800 1000 200 400 600 800 1000
Time (us) Time (us)
(a) (b)
0.025 0.025
S
=
.S
e |
2 M
5 0F 0
U //—
=
2
s
Q
~
-0.025 ~— 0,025 5 _
1‘00\ 200 300 400 ,~500 =200 400 600 800 1000
Number of Measurements (>/< 103) Number of Measurements (X f03)
o 7’ ~So 7’
\I’ - I/ \r - I/
/& 1 1 1 1
= o0l K 0.01 |
.2 il 1o
= [
B 1 1
5 0 0 WWMWWM iMWW
U 1 1
a | 1
2 1 I 1 1
1 1
g oo . -0.01 Do
| I 1 1
- U7
200 400 660 800 1000 200 400 600 800 1000
Time (us) Time (us)

(c) (d)

Figure 10: Results for DPA against ModuloNET’s hidden layer in different cases. In
all sub-figures, the results in the bottom image show the correlation vs. time, whereas
the top image indicates how many traces are required to launch the attack in a time
window around the peak in the bottom image (see dotted line rectangles). (a) first-order
DPA for 500K with HG: off and PRNG: off; (b) first-order DPA for 500K with HG: off
and PRNG: on; (c) second-order DPA for 500K where HG: off and PRNG: on; and (d),
first-order DPA for 1M traces when HG: on and PRNG: on.

D.M. Mehta, M. Hashemi, D.S. Koblah, D. Forte, F. Ganji 23

_ 0.025
3 001

=1

-2 0.005 \
<

°

5 o O WA T AT Mo
O

5 -0.005 //
wn

s

& -0.01

< -0.025 ==
100~ . 200 300 400 500 100~ ~ _ 200 300 400 5{)0

Number of Méasurements (x 103,') Number of l\/\le§a§ufeme£1ts (x10%) .
\\‘v—\' Te-o -4
— 1 1 ! ! ! ! 1 1
2 | ! 1 !
o 0.01 I : 0.01F 1 :
R ! P!
= Lo
e
@]
= i 18
=} 1 I 1 !
<] 1 1
g -001 I 001t Lo
~ 1 ! 1 !
1 1 ' ' ' ' 1 il |
200 400 600 800 1000 200 400 600 800 1000
Time (us) Time (us)
(a) (b)
0.025 0.025
S
=
]
§
3 o P 0
Q
2
S
(o)
-9
-0.025. -0.025 -
100~ — _200 300 400 SPO 106 - 200 300 400 590
Number of Me‘amerqents (x 103,) Number of Méasu{ergeglts (X 103) .
=~ ~= ! =~ —e =
2 L o
~ 0.01 b 0.01F P
= [I
2 fAr !
= |
I
5 0
Q |
=1 1 1 1
2 L i
S b !
S -0.01 ' g -001) !
A ! 1
1 L L L L |
200 400 600 800 1000 200 400 600 800 1000
Time (us) Time (pus)
(c) (d)

Figure 11: Results for DPA against ModuloNET’s output layer in different cases. In
all sub-figures, the results in the bottom image show the correlation vs. time, whereas
the top image indicates how many traces are required to launch the attack in a time
window around the peak in the bottom image (see dotted line rectangles). (a) first-order
DPA for 500K with HG: off and PRNG: off; (b) first-order DPA for 500K with HG: off
and PRNG: on; (c) second-order DPA for 500K where HG: off and PRNG: on; and (d),
first-order DPA for 500K traces when HG: on and PRNG: on.

24 Bake It Till You Make It

0.01 0.01f

| L NPT

T f T f]
-0.01 |

Pearson Correlation (p)
&
=)
— o
(=)

200 400 600 800 1000 200 400 600 800 1000
Time (us) Time (us)
(a) (b)

Figure 12: The second-order DPA for 500K traces against the (a) hidden and (b) output
layer of ModuloNET with HG on.

x107 ' ' ' ' x10°

W

| I | I
-%LI{W\MWM“MMN“ m J o MM WWMWMMWWNVAM

I
Il|

'
wn

Pearson Correlation (p)
(e]

200 400 600 800 1000 200 400 600 800 1000
Time (us) Time (us)
(a) (b)

Figure 13: The first-order DPA against ModuloNET with HG on at (a) hidden for 1M
traces and (b) output layer for 500K traces (gray lines for the wrong weight guesses and
black line for the correct weight guess.)

This validates the effectiveness of our HG in breaking the masking protection of
ModuloNET. Furthermore, focusing on the window in which the correlation exceeds the
threshold in Figure 10(d-bottom), an adversary can successfully launch a DPA with 830K
traces. The same holds for second-order DPA with HG on, where the leakage from both
the hidden and output layers becomes more noticeable after comparing the results in
Figure 12 with Figures 10(c-bottom) and 11(c-bottom).

We repeated this analysis for the output layer, whose result for 500K traces is shown
in Figure 11(d-bottom). In contrast to the case where the HG was disabled (Figure 11(b-
bottom)), the attack is successful after enabling the HG. Compared to the attack against
the hidden layer (Figure 10(d-bottom)), DPA succeeds with a fewer number of traces. In
line with this, as it is shown in Figure 11(d-top), if the adversary focuses on a window
around the correlation peak, it is possible to launch a first-order DPA with approximately
200K traces successfully. In a nutshell, based on these results, we can claim that our HG
enables a successful first-order DPA against ModuloNET.

First-order DPA against ModuloNET with HG on for the correct and wrong
weight guesses. After enabling the HG, we also launched the first-order DPA against
ModuloNET for four weight guesses at the output and hidden layers (i.e., the same attack
vectors as in the above paragraphs). Figure 13(a)-(b) show the results, where the correct
and wrong weight guesses are highlighted in black and gray, respectively. According to
Figure 13, the threshold is passed around 500us and 875us for the correct weight guess at

D.M. Mehta, M. Hashemi, D.S. Koblah, D. Forte, F. Ganji 25

the hidden and output layers, respectively. This is aligned with the results presented in
Figures 10 and 11 (c-bottom). For all wrong weight guesses at both hidden and output
layers, it is observable that the correlation remains under the threshold for the entire
time window. This again confirms that the first-order DPA is successfully mounted after
enabling the HG.

6.7 Inducing Leakage through External HG

This section aims to study the impact of temperature on the first-order side-channel
resiliency of ModuloNET when the leakage is induced using an external heat generator,
i.e., the thermal chamber.

Setting the ambient temperature. As mentioned earlier, the CW305 target board
does not support the XADC sensors to monitor the die temperature while it is operating;
therefore, we have used XPE to find out the proper ambient temperature in the thermal
chamber to match the die temperature as in the scenario where the internal HG is enabled;
see Figure 8. For this, we gave the XPE tool the ModuloNET bitstream file implemented
on Artix-7 FPGA. In doing so, for the die temperature 70 °C, the XPE simulates that the
ambient temperature is 61.5°C.

Detecting and leveraging the leakage. For these experiments, we use the design
with HG off. The experiments are conducted at 61.5°C, as discussed above. Figure 14(a)-
(b) depict the maximum t-score over 6M traces. Similar to what has been presented
in [DCEM18], these figures demonstrate how increasing the temperature can facilitate
leakage by comparing the number of traces where the threshold is passed. Note that
random peaks in the maximum t-score, as shown in Figure 14(a), should not be confused
with the leakage that can be exploited. Figures 14(c)-(d) show the results for the first-order
DPA with 500K traces against Modulonet hidden and output layer, respectively. In
Figure 14(c-bottom) and (d-bottom), the correlation exceeds the threshold around 540us
and 875us for the hidden and output layers, respectively. Moreover, as it is shown in
Figures 14(c-top) and (d-top), the correlation exceeds the threshold at 70K and 110K
traces for the hidden and output layers, respectively. Compared to the results obtained by
employing the BRAM-based HG, the number of traces required to launch the first-order
DPA at the hidden and output layers is reduced. Additionally, the correlation is more
pronounced when the temperature chamber is used. Yet, using internal HGs could be a
valid option to reduce the cost and complexity of the attack.

An observation made in our analysis is that among the two attack vectors used in
our experiments (as defined in Section 6.6), the leakage from the output layer was more
noticeable when the internal HG was enabled. Interestingly, when an external temperature
chamber was used, both attack vectors demonstrated comparable effectiveness. This might
be related to the fact that an external temperature chamber can heat up the die more
uniformly, in contrast to a (relatively) more local impact of an internal HG. Investigating
this can be suggested for future research directions.

7 Discussion

Can we stop generating heat? Reducing the operating temperature of NNs goes
hand in hand with designing energy-efficient NNs. In addition to methods devised to
predict the energy consumption of a NN and enhance the structure of that accord-
ingly [LWL*'20, CJSM17], another line of research has been pursued to allocate mem-
ory more carefully to reduce the power consumption in general rather than solely in
NNs [GBST19, TBNG06, TBNT07, KRN'18]. Garcia et al. [GBST19] have particularly
focused on memory-constrained FPGAs in the context of image processing.

26 Bake It Till You Make It

‘ Al A AN,
F& JJ\VM A v 4.5

t v‘ uﬁwv Wl i

f

Maximum T-scores
N
W

——Room Temperature Room Temperature

—61.5°C —61.5°C
2 2
2 4 6 2 4 6
Number of Measurements (x 106) Number of Measurements (X 106)
(a) (b)
0.025 0.025
S \
- M
2
=
e
8 0r 0F
O
= 1_///
@] " Vil \
: ﬁ/—
O |
~ J
-0.025 = p -0.025 S=— : :
oo 1 2 .73 -1 2 3
Number o\fMeasuremems’(x]06) Number of M&Euremqngs (x 106) |
<. ey -0 :
a I
= 0017 0.01f !
=
] I
g (
3 (
=
g 0 0 !
@] i
g |
[72) I
S -0.01¢ -0.01} !
~ . l
200 400 600 800 1000 200 400 600 800 1000
Time (us) Time (pus)

(©) (d)

Figure 14: (a) and (b) the maximum t-score vs. the number of traces. Using the
temperature chamber, traces are collected, and the t-score is computed as before. Here,
for the sake of demonstration, the maximum t-score obtained for (a) the hidden layer and
(b) the output layer is depicted. Note that 61.5°C ambient temperature is equivalent to
70°C die temperature (see Section 6.3). It is also verified that the random peaks in (a)
cannot be exploited to launch an attack (see the t-score vs. time sub-figure in (a)). (c)
and (d) results for first-order DPA for 500K traces against the ModuloNET’s hidden and
output layers, with the internal HG off and the PRNG on. In both sub-figures, the results
in the bottom image show the correlation vs. time, whereas the top image indicates how
many traces are required to launch the attack in a time window around the peak in the
bottom image (see dotted line rectangles).

They have proposed a partitioning method backed by theoretical analysis of its effects
on resource usage and power consumption. In this way, instead of allocating either some
blocks of BRAM with a considerable size or slicing data to smaller groups before memory
allocation on a trial-and-error basis, their proposed procedure helps the designer select the

D.M. Mehta, M. Hashemi, D.S. Koblah, D. Forte, F. Ganji 27

Table 3: Hardware resource allocation in our implementation of ModuloNET used to
perform experiments on FF-based HG.

Resource | Used | Utilization (%) | Available
LUT 24072 37.96 63400
FE 24102 19 126800
BRAM 71 52.59 135

proper memory configuration and optimize on-chip memory usage. Consequently, their
approach can decrease the operating temperature. Nevertheless, the effect of Garcia’s
partitioning method [GBST19] should be studied more carefully when applied against
masked implementation. At the moment, it is unknown how it would counter the risk of
unexpected leakage or make heat-induced leakage disappear.

Can off-chip memory provisioning be helpful? It is valid that one could store the
inputs off-chip and then schedule how the NN should be provided with the inputs efficiently
to account for the heat-induced leakage. This could prevent the adversary from generating
heat on-chip and protect the design. Yet, this approach causes the bandwidth bottleneck
and reduces the efficiency of the accelerator (see Section 4). In some cases, even if the
problem with bandwidth would be resolved, off-chip resources for buffering the inputs
might not be available due to device constraints. This introduces a trade-off between
security and resource requirements. It might be a designer’s choice as to whether to go for
higher throughput by using on-chip memory and sacrificing security (refer to Section 5) or
sacrificing performance for security.

What other heat generators are possible? Besides writing alternating patterns
into BRAMSs, several other circuit components could generate heat, including the LUT
pipeline, shift right logical (SRL) pipeline, FF pipeline, LUT-FF pipeline, digital signal
processor (DSP) pipeline, BRAM pipeline, LUT oscillator, and SRL-FF pipeline [HHAP12].
Among all these, based on the results presented in [HHAP12, AHH*14], the BRAM and
LUT-FF pipeline could generate the most heat on FPGAs. The first option is similar
to our heat generator (ours is not in a pipeline form), where having access to the design
input is sufficient to increase the temperature. However, if BRAMs only store intermediate
computations (e.g., in BoMoNet [DCA20a], AF BRAMS), generating heat is not under
the control of the adversary, although changes in the values stored in those BRAMSs might
increase the temperature.

FFs. One interesting research direction is whether writing the inputs into FFs also
increases the temperature. An observation is that FFs, instead of BRAMs, can be used to
store the inputs. Therefore, we examine whether, in both cases of utilizing FFs for storing
NN inputs, the heat can be generated by flipping the value of inputs (e.g., image pixels)
frequently. Similar to the emulation results presented in Section 6.3, Figure 15 shows the
operation temperature of ModuloNET without any HG (black line) and with FF-based
HG (black line). Table 3r presents the list of resources used by the design when performing
the experiments with FF-based HG. When feeding the flipping images to the design, i.e.,
writing /reading to/from FFs, the die temperature reaches the maximum of 83.9 °C, which
is equivalent to the ambient temperature 73.6 °C. At this ambient temperature, we repeat
the test on the delay of FPGA components as demonstrated in Section 6.4, where we
observe the FF’s delay is increased to 807ps and the delay of the LUT chain raises to
109ps. These changes in the delay can account for generating heat.

In a nutshell, writing/reading to/from a significant number of BRAMs/FFs could
generate sufficient heat that leads to detectable leakage; we suggest that designs with these
components could be assessed to avoid unexpected leakage.

Moreover, other circuit components could cause high temperatures and are generally
used in NNs, although, to the best of our knowledge, they have not been used in masked
ones. In this regard, DSPs have been used in the NN design, which is a good source

28 Bake It Till You Make It

e i e
Ll B | -| T

(=]
(=]
-4

=1
[=]

—— FF-based HG
—— HG OFF

Temperature (°C)
n [=3}
[=] =

s
[=]

%)
(=]

1000 2000 3000
Time (s)

Figure 15: Temperature testing of ModuloNET when giving a normal (not flipping) image
and flipping inputs that are written into FFs (FF-based HG).

of heat generation as they operate in a combinational manner under a high clock fre-
quency [HHAP12, AHH"14]. Hence, we highlight the possibility of heat-induced leakage
if such a structure is used in masked NNs. As a recommendation, we refer to the results
by Happe et al. [HHAP12] indicating that minimizing the interconnection between these
components inside the core through pipelining can generate heat on an FPGA.

Leakage verification of B2A and A2B conversion algorithms. As discussed before,
we have observed leakage if the B2A module is employed with respect to instructions
given in [DAP'22] and as depicted in their Figure 8. For this purpose, we used VER-
ICA [RBFSG22], which discovered the leakage caused by writing/reading the single-bit
Boolean shares into/from BRAMs. The issue with verifying the leakage from verified
A2B/B2A conversion algorithms has recently been addressed in [GPM22]. More specifically,
their findings indicate glitch-based issues for hardware A2B as presented in [CGV14] and
transition-based leakage in Goubin’s schemes in software [Gou01]. They have, in particular,
pointed out several registers overwrite leaks in Goubin’s A2B/B2A algorithm implemented
in software. Our results complement theirs by demonstrating that Goubin’s B2A algorithm
should be carefully implemented in hardware, in particular, when dealing with single-bit
Boolean shares. We believe that this might have been addressed in Dubey’s design as well,
irrespective of the design shown in their Figure 8 [DAPT22]), although we could not verify
it since their code was unavailable.

Limitations of proposed attack. Regardless of mounting the attack remotely or
via direct access to the device, common aspects of the attack include crafting inputs
with alternating patterns and collecting and processing the traces. While the former
is straightforward to do, the latter two processes might be challenging in a remote
attack. Collecting traces, in particular, requires sensors that remain calibrated despite
the significant temperature changes. As a prime example, it has been demonstrated that
FPGA time-to-digital converter (TDC) sensors would not fit this purpose [GBPS23], but
delay-line-based sensors [UJS*22] and routing delay sensors [SGS23] could be exploited in
our attack.

Other activities on the chip might affect the signal-to-noise ratio (SNR) of collected
traces. Similar to other side-channel attacks, this should be resolved by post-processing the
traces before mounting the attack. Additionally and in general, in both remote attacks and
ones with physical access, increasing the device’s temperature causes changes in the physical
properties of its components, such as timing, as described earlier. These changes would
indirectly lead to an increase in the thermal noise level in the power traces. This inherent
effect of temperature can be reduced using filters, as shown by Moos et al. [MMR19].
They also demonstrated the effectiveness of utilizing simple moving average filters for
post-processing trace data. Moreover, physical filters have proven to be efficacious. For
instance, a low-pass filter has been strategically integrated with an SLP-30+ probe. We

D.M. Mehta, M. Hashemi, D.S. Koblah, D. Forte, F. Ganji 29

emphasize that this work aims to demonstrate the possibility of inducing leakage at the
first stage. Hence, future investigations could explore various post-filtering techniques
in conjunction with SNR analysis, facilitating a comprehensive understanding of their
combined effects.

8 Conclusion

Many approaches have been proposed using FPGAs to support a large number of calcula-
tions in NN accelerators and achieve the maximum benefit of parallel calculations. In order
to protect such accelerators, among various proposed techniques, masking has received
a great deal of attention in the recent work [DCA20a, DCA20b, DAP*22]. Our paper
introduces a methodology for inducing first-order leakage in FPGA-based accelerators that
offer first-order side-channel resilience through masking. Starting from the observation
made in [DCEM18], our technique attempts to make the power consumption of different
shares dependent on each other by increasing the temperature. For this purpose, in contrast
to [DCEM18], we apply novel internal heat generators composed of the NN’s components,
making our heat generators cheap and an inseparable part of the design. To verify the
effectiveness of our method experimentally, we consider ModuloNET [DAP*22] as one of
the most recent examples of masked NNs. We observe that by writing alternating patterns
into BRAMs, ModuloNET shows unexpected first-order leakage. We emphasize that our
paper aims to highlight the possibility of unexpected leakage in correctly implemented
masked NNs by means of t-test leakage assessment and DPA. We further note that the
modules in our design are tested via VERICA [RBFSG22], where a new vulnerability in
the hardware implementation of Goubin’s B2A algorithm is identified and resolved in our
design. Finally, we discuss possible countermeasure and their associated challenges. As
for future directions, security-aware memory allocation for masked NNs is suggested. We
also attempted to explain why increasing the temperature can result in leakage. Further
investigation of the theory behind this phenomenon can be within the scope of future
work. Moreover, it is essential to reiterate that our primary goal was to underscore the
potential for inducing first-order leakage in first-order protected NNs with high utilization
of BRAMs. The idea of inducing leakage by increasing the temperatures in other masked
schemes has been left for future exploration.

9 Acknowledgments

This work has been supported partially by Semiconductor Research Corporation (SRC)
under Task IDs 2991.001 and 2992.001 and NSF under award number 2138420. David S.
Koblah is supported by the Department of Defense through the Science, Mathematics, and
Research for Transformation (SMART) Scholarship-for-Service Program.

References

[Adv24] Advanced Micro Devices (AMD), Inc. Xilinx power estimator (xpe). [Onlinelhttps://
www.xilinx.com/products/technology/power/xpe.html [Accessed: Mar.29, 2024],
2024.

[AHH"14] Andreas Agne, Hendrik Hangmann, Markus Happe, Marco Platzner, and Christian
Plessl. Seven recipes for setting your fpga on fire-a cookbook on heat generators.
Microprocessors and Microsystems, 38(8):911-919, 2014.

[ATF16] Md Mahbub Alam, Mark Tehranipoor, and Domenic Forte. Recycled fpga detection
using exhaustive lut path delay characterization. In 2016 IEEE Intrl. test Conf.
(ITC), pages 1-10. IEEE, 2016.

https://www.xilinx.com/products/technology/power/xpe.html
https://www.xilinx.com/products/technology/power/xpe.html

30

Bake It Till You Make It

[ATG19]

[BBB*22]

[BBD*16]

[BBJP19)

[BCD'13]

[BDK09]

[BH22]

[BJP22]

[BKMNOY]

[BSS*13]

[CGTV15]

[CGV14]

[CHS*16]

[CISM17]

[CLLT14]

[Corl7]

Md Mahbub Alam, Shahin Tajik, Fatemeh Ganji, Mark Tehranipoor, and Domenic
Forte. Ram-jam: Remote temperature and voltage fault attack on fpgas using mem-
ory collisions. In 2019 Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC), pages 48-55, 2019.

Anubhab Baksi, Shivam Bhasin, Jakub Breier, Dirmanto Jap, and Dhiman Saha. A
survey on fault attacks on symmetric key cryptosystems. ACM Computing Surveys,
55(4):1-34, 2022.

Gilles Barthe, Sonia Belaid, Francois Dupressoir, Pierre-Alain Fouque, Benjamin
Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-interference and
type-directed higher-order masking. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 116—129, 2016.

Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. CSI NN: Reverse
engineering of neural network architectures through electromagnetic side channel.
In 28th USENIX Security Symp. (USENIX Security 19), pages 515-532, 2019.

George Becker, Jim Cooper, Elke DeMulder, Gilbert Goodwill, Joshua Jaffe, Gary
Kenworthy, Timofei Kouzminov, Andrew Leiserson, Mark Marson, Pankaj Rohatgi,
et al. Test vector leakage assessment (tvla) methodology in practice. In International
Cryptographic Module Conference, volume 1001, page 13. sn, 2013.

Julien Brouchier, Nora Dabbous, Tom Kean, Carol Marsh, and David Naccache.
Thermocommunication. Cryptology ePrint Archive, 2009.

Jakub Breier and Xiaolu Hou. How practical are fault injection attacks, really?
IEEE Access, 10:113122-113130, 2022.

Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. On (in) security of edge-based
machine learning against electromagnetic side-channels. In 2022 IEEE International
Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI),
pages 262-267. IEEE, 2022.

Julien Brouchier, Tom Kean, Carol Marsh, and David Naccache. Temperature
attacks. IEEE Security & Privacy, 7(2):79-82, 2009.

Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,
and Louis Wingers. The simon and speck families of lightweight block ciphers.
cryptology eprint archive, 2013.

Jean-Sébastien Coron, Johann Grofischddl, Mehdi Tibouchi, and Praveen Kumar
Vadnala. Conversion from arithmetic to boolean masking with logarithmic complexity.
In International Workshop on Fast Software Encryption, pages 130—149. Springer,
2015.

Jean-Sébastien Coron, Johann Grof3schiadl, and Praveen Kumar Vadnala. Secure
conversion between boolean and arithmetic masking of any order. In Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems, pages 188—205.
Springer, 2014.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. Binarized neural networks: Training deep neural networks with weights and
activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

Ermao Cai, Da-Cheng Juan, Dimitrios Stamoulis, and Diana Marculescu. Neu-
ralpower: Predict and deploy energy-efficient convolutional neural networks. In
Asian Conference on Machine Learning, pages 622-637. PMLR, 2017.

Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Ligiang He, Jia Wang, Ling Li,
Tianshi Chen, Zhiwei Xu, Ninghui Sun, et al. Dadiannao: A machine-learning
supercomputer. In 2014 47th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 609-622. IEEE, 2014.

Jean-Sébastien Coron. High-order conversion from boolean to arithmetic masking.
In International Conference on Cryptographic Hardware and Embedded Systems,
pages 93—-114. Springer, 2017.

D.M. Mehta, M. Hashemi, D.S. Koblah, D. Forte, F. Ganji 31

[CS20]

[CSIC10]

[DAP22]

[DCA20a)

[DCA20D]

[DCEM18]

[DFC*15]

[DFS19]

[DKAA22]

[DMRB18]

[DN20]

[FAO1]

[FGDP'18]

[GAO3]

[GBPS23]

Gaétan Cassiers and Francois-Xavier Standaert. Trivially and efficiently compos-
ing masked gadgets with probe isolating non-interference. IEEE Transactions on
Information Forensics and Security, 15:2542-2555, 2020.

Srimat Chakradhar, Murugan Sankaradas, Venkata Jakkula, and Srihari Cadambi.
A dynamically configurable coprocessor for convolutional neural networks. In
Proceedings of the 37th annual international symposium on Computer architecture,
pages 247-257, 2010.

Anuj Dubey, Afzal Ahmad, Muhammad Adeel Pasha, Rosario Cammarota, and
Aydin Aysu. Modulonet: Neural networks meet modular arithmetic for efficient
hardware masking. JACR Trans. on Cryptographic Hardware and Embedded Systems,
pages 506556, 2022.

Anuj Dubey, Rosario Cammarota, and Aydin Aysu. Bomanet: Boolean masking
of an entire neural network. In 2020 IEEE/ACM Intrl. Conf. On Computer Aided
Design (ICCAD), pages 1-9. IEEE, 2020.

Anuj Dubey, Rosario Cammarota, and Aydin Aysu. Maskednet: The first hardware
inference engine aiming power side-channel protection. In 2020 IEEE Intrl. Symp.
on Hardware Oriented Security and Trust (HOST), pages 197-208. IEEE, 2020.

Thomas De Cnudde, Maik Ender, and Amir Moradi. Hardware masking, revisited.
TACR Trans. on Cryptographic Hardware and Embedded Systems, pages 123-148,
2018.

Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo, Xiaobing
Feng, Yunji Chen, and Olivier Temam. Shidiannao: Shifting vision processing closer
to the sensor. In Proceedings of the 42nd Annual International Symposium on
Computer Architecture, pages 92—104, 2015.

Alexandre Duc, Sebastian Faust, and Frangois-Xavier Standaert. Making masking
security proofs concrete (or how to evaluate the security of any leaking device),
extended version. Journal of Cryptology, 32(4):1263-1297, 2019.

Anuj Dubey, Emre Karabulut, Amro Awad, and Aydin Aysu. High-fidelity model
extraction attacks via remote power monitors. In 2022 IEEFE jth International
Conference on Artificial Intelligence Circuits and Systems (AICAS), pages 328-331.
IEEE, 2022.

Lauren De Meyer, Oscar Reparaz, and Begiil Bilgin. Multiplicative masking for
aes in hardware. TACR Transactions on Cryptographic Hardware and Embedded
Systems, pages 431-468, 2018.

Siemen Dhooghe and Svetla Nikova. My gadget just cares for me-how nina can prove
security against combined attacks. In Cryptographers’ Track at the RSA Conference,
pages 35-55. Springer, 2020.

IM Filanovsky and Ahmed Allam. Mutual compensation of mobility and threshold
voltage temperature effects with applications in cmos circuits. IEEE Transactions
on Circuits and Systems I: Fundamental Theory and Applications, 48(7):876-884,
2001.

Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga, and
Francgois-Xavier Standaert. Composable masking schemes in the presence of physical
defaults & the robust probing model. IJACR Transactions on Cryptographic Hardware
and Embedded Systems, pages 89-120, 2018.

S. Govindavajhala and A.W. Appel. Using memory errors to attack a virtual machine.
In 2003 Symposium on Security and Privacy, 2003., pages 154-165, 2003.

Ognjen Glamocanin, Hajira Bazaz, Mathias Payer, and Mirjana Stojilovi¢. Temper-
ature impact on remote power side-channel attacks on shared fpgas. In 2023 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages 1-6. IEEE,
2023.

32

Bake It Till You Make It

[GBST19]

[GGJRT11]

[GM17]

[GMK16]

[GMK17]

[GOKT16]

[Gol0T]

[Gou01]

[GPM22]

[GWWT12]

[GYSC17]

[HAM™86]

[HHAP12]

[Hor14]

[HS13]
[HT19]

[ISW03]

[Kall3]

Paulo Garcia, Deepayan Bhowmik, Robert Stewart, Greg Michaelson, and Andrew
Wallace. Optimized memory allocation and power minimization for fpga-based image
processing. Journal of Imaging, 5(1):7, 2019.

Benjamin Jun Gilbert Goodwill, Josh Jaffe, Pankaj Rohatgi, et al. A testing
methodology for side-channel resistance validation. In NIST non-invasive attack
testing workshop, volume 7, pages 115-136, 2011.

Hannes Grofl and Stefan Mangard. Reconciling d + 1 masking in hardware and
software. In International Conference on Cryptographic Hardware and Embedded
Systems, pages 115-136. Springer, 2017.

Hannes Gross, Stefan Mangard, and Thomas Korak. Domain-oriented masking:
Compact masked hardware implementations with arbitrary protection order. In
Proceedings of the 2016 ACM Workshop on Theory of Implementation Security, TIS
’16, page 3, New York, NY, USA, 2016. Association for Computing Machinery.

Hannes Grof; Stefan Mangard, and Thomas Korak. An efficient side-channel
protected aes implementation with arbitrary protection order. In Cryptographers’
Track at the RSA Conference, pages 95-112. Springer, 2017.

Dennis RE Gnad, Fabian Oboril, Saman Kiamehr, and Mehdi B Tahoori. Analysis
of transient voltage fluctuations in fpgas. In 2016 International Conference on
Field-Programmable Technology (FPT), pages 12-19. IEEE, 2016.

Jovan Dj Golic. Techniques for random masking in hardware. IEEE Transactions
on Circuits and Systems I: Regular Papers, 54(2):291-300, 2007.

Louis Goubin. A sound method for switching between boolean and arithmetic
masking. In International Workshop on Cryptographic Hardware and Embedded
Systems, pages 3—15. Springer, 2001.

Barbara Gigerl, Robert Primas, and Stefan Mangard. Formal verification of arith-
metic masking in hardware and software. Cryptology ePrint Archive, 2022.

Martin Gag, Tim Wegner, Ansgar Waschki, and Dirk Timmermann. Temperature
and on-chip crosstalk measurement using ring oscillators in fpga. In 2012 IEEE
15th Intrl. Symposium on Design and Diagnostics of Electronic Circuits € Systems
(DDECS), pages 201-204. IEEE, 2012.

Yijin Guan, Zhihang Yuan, Guangyu Sun, and Jason Cong. FPGA-based accelerator
for long short-term memory recurrent neural networks. In 2017 22nd Asia and South
Pacific Design Automation Conference (ASP-DAC), pages 629-634. IEEE, 2017.

Hoji Hanamura, Masaaki Aoki, Toshiaki Masuhara, Osamu Minato, Yoshio Sakai,
and Testsuya Hayashida. Operation of bulk cmos devices at very low temperatures.
IEEE journal of solid-state circuits, 21(3):484-490, 1986.

Markus Happe, Hendrik Hangmann, Andreas Agne, and Christian Plessl. Eight ways
to put your fpga on fire—a systematic study of heat generators. In 2012 International
Conference on Reconfigurable Computing and FPGAs, pages 1-6. IEEE, 2012.

Mark Horowitz. Computing’s energy problem (and what we can do about it). In
2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), pages 10-14. IEEE, 2014.

Michael Hutter and Jérn-Marc Schmidt. The temperature side-channel and heating
fault attacks. volume 8419, 11 2013.

Michael Hutter and Michael Tunstall. Constant-time higher-order boolean-to-
arithmetic masking. Journal of Cryptographic Engineering, 9(2):173-184, 2019.

Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware
against probing attacks. In Annual International Cryptology Conference, pages
463-481. Springer, 2003.

Shruti Kalra. Effect of temperature dependence on performance of digital cmos
circuit technologies. In 2013 Intrl. Conf. on Signal Processing and Communication
(ICSC), pages 392-395. IEEE, 2013.

D.M. Mehta, M. Hashemi, D.S. Koblah, D. Forte, F. Ganji 33

[KGT22]

[KHEB14]

[KJJ99]

[KRNT18]

[KSM20]

[LeC19)]

[LFJ*16]

[LGFX21]

[LS94]

[LWL*20]

[MBS™24]

[Mes00]

[MHSO08]

[MLS22]

[MMR19]

[MOPOS]

[MPGO5]

[MS19]

Jonas Krautter, Dennis R. E. Gnad, and Mehdi B. Tahoori. Remote fault attacks in
multitenant cloud fpgas. IEEE Design € Test, 39(4):33-40, 2022.

Thomas Korak, Michael Hutter, Baris Ege, and Lejla Batina. Clock glitch attacks
in the presence of heating. In 2014 Workshop on Fault Diagnosis and Tolerance in
Cryptography, pages 104-114, 2014.

Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Annual
international cryptology conference, pages 388-397. Springer, 1999.

Inderpreet Kaur, Lakshay Rohilla, Alisha Nagpal, Bishwajeet Pandey, and Sanchit
Sharma. Different configuration of low-power memory design using capacitance
scaling on 28-nm field-programmable gate array. In System and Architecture, pages
151-161. Springer, 2018.

David Knichel, Pascal Sasdrich, and Amir Moradi. Silver—statistical independence
and leakage verification. In International Conference on the Theory and Application
of Cryptology and Information Security, pages 787-816. Springer, 2020.

Yann LeCun. 1.1 deep learning hardware: Past, present, and future. In 2019 IEEE
Intrl. Solid-State Circuits Conf.-(ISSCC), pages 12-19. IEEE, 2019.

Huimin Li, Xitian Fan, Li Jiao, Wei Cao, Xuegong Zhou, and Lingli Wang. A high
performance fpga-based accelerator for large-scale convolutional neural networks. In
2016 26th International Conference on Field Programmable Logic and Applications
(FPL), pages 1-9. IEEE, 2016.

Yukui Luo, Cheng Gongye, Yunsi Fei, and Xiaolin Xu. Deepstrike: Remotely-guided
fault injection attacks on dnn accelerator in cloud-fpga. In 2021 58th ACM/IEEE
Design Automation Conference (DAC), pages 295-300, 2021.

Kenneth R Laker and Willy MC Sansen. Design of analog integrated circuits and
systems, volume 1. McGraw-Hill New York, 1994.

Shengwen Liang, Ying Wang, Cheng Liu, Lei He, LI Huawei, Dawen Xu, and Xiaowei
Li. Engn: A high-throughput and energy-efficient accelerator for large graph neural
networks. IEEE Transactions on Computers, 70(9):1511-1525, 2020.

Zitouni Messai, Abdelhalim Brahimi, Okba Saidani, Nacerdine Bourouba, and
Abderrahim Yousfi. Investigation of temperature and channel dimension effects on
cmos circuit performance. East European Journal of Physics, (1):417-425, 2024.

Thomas S Messerges. Using second-order power analysis to attack dpa resistant
software. In International Workshop on Cryptographic Hardware and Embedded
Systems, pages 238-251. Springer, 2000.

A Muthuramalingam, S Himavathi, and E Srinivasan. Neural network implemen-
tation using fpga: issues and application. International Journal of Electrical and
Computer Engineering, 2(12):2802-2808, 2008.

Dina G Mahmoud, Vincent Lenders, and Mirjana Stojilovié¢. Electrical-level attacks
on cpus, fpgas, and gpus: Survey and implications in the heterogeneous era. ACM
Computing Surveys (CSUR), 55(3):1-40, 2022.

Thorben Moos, Amir Moradi, and Bastian Richter. Static power side-channel
analysis—an investigation of measurement factors. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 28(2):376-389, 2019.

Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks:
Revealing the secrets of smart cards, volume 31. Springer Science & Business Media,
2008.

Stefan Mangard, Thomas Popp, and Berndt M Gammel. Side-channel leakage of
masked cmos gates. In Cryptographers’ Track at the RSA Conference, pages 351-365.
Springer, 2005.

Dina Mahmoud and Mirjana Stojilovi¢. Timing violation induced faults in multi-
tenant fpgas. In 2019 Design, Automation & Test in Europe Conference € Exhibition
(DATE), pages 1745-1750, 2019.

34

Bake It Till You Make It

[MTH"21]

[MTMMO7]

MVZ*t21]

[NHCB02]

[NSS*16]

[OH11]

[OMHTO6]

[PBR17]

[RBFSG22]

[RBK19]

[RBN*15]

[RBSG22]

[RBSS™21]

[RHCM T 16]

[RHL*18]

Shayan Moini, Shanquan Tian, Daniel Holcomb, Jakub Szefer, and Russell Tessier.
Remote Power Side-Channel Attacks on BNN Accelerators in FPGAs. Proceedings
-Design, Automation and Test in Europe, DATE, 2021-February(2):1639-1644, 2021.

Robert McEvoy, Michael Tunstall, Colin C Murphy, and William P Marnane. Differ-
ential power analysis of hmac based on sha-2, and countermeasures. In International
Workshop on Information Security Applications, pages 317-332. Springer, 2007.

Jian Meng, Shreyas Kolala Venkataramanaiah, Chuteng Zhou, Patrick Hansen, Paul
Whatmough, and Jae-sun Seo. FixyFPGA: Efficient fpga accelerator for deep neural
networks with high element-wise sparsity and without external memory access. In
2021 31st International Conference on Field-Programmable Logic and Applications
(FPL), pages 9-16. IEEE, 2021.

Anshuman Nayak, Malay Haldar, Alok Choudhary, and Prithviraj Banerjee. Accurate
area and delay estimators for fpgas. In Proc. 2002 Design, Automation and Test in
FEurope Conf. and Exhibition, pages 862-869. IEEE, 2002.

Eriko Nurvitadhi, David Sheffield, Jaewoong Sim, Asit Mishra, Ganesh Venkatesh,
and Debbie Marr. Accelerating binarized neural networks: Comparison of fpga, cpu,
gpu, and asic. In 2016 International Conference on Field-Programmable Technology
(FPT), pages 77-84. IEEE, 2016.

Takaaki Okumura and Masanori Hashimoto. Setup time, hold time and clock-to-
q delay computation under dynamic supply noise. IEICE TRANSACTIONS on
Fundamentals of Electronics, Communications and Computer Sciences, 94(10):1948—
1953, 2011.

Elisabeth Oswald, Stefan Mangard, Christoph Herbst, and Stefan Tillich. Practical
second-order dpa attacks for masked smart card implementations of block ciphers.
In Cryptographers’ Track at the RSA Conference, pages 192—207. Springer, 2006.

Roberta Piscitelli, Shivam Bhasin, and Francesco Regazzoni. Fault attacks, injection
techniques and tools for simulation. In Hardware security and trust, pages 27-47.
Springer, 2017.

Jan Richter-Brockmann, Jakob Feldtkeller, Pascal Sasdrich, and Tim Giineysu.
VERICA - verification of combined attacks: Automated formal verification of
security against simultaneous information leakage and tampering. Cryptology ePrint
Archive, Paper 2022/484, 2022.

Siavash Rezaei, Eli Bozorgzadeh, and Kanghee Kim. Ultrashare: Fpga-based
dynamic accelerator sharing and allocation. In 2019 International Conference on
ReConFigurable Computing and FPGAs (ReConFig), pages 1-5. IEEE, 2019.

Oscar Reparaz, Begiil Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid Ver-
bauwhede. Consolidating masking schemes. In Annual Cryptology Conference, pages
764—783. Springer, 2015.

Jan Richter-Brockmann, Pascal Sasdrich, and Tim Guneysu. Revisiting fault
adversary models—hardware faults in theory and practice. IEEE Transactions on
Computers, 2022.

Jan Richter-Brockmann, Aein Rezaei Shahmirzadi, Pascal Sasdrich, Amir Moradi,
and Tim Giineysu. Fiver-robust verification of countermeasures against fault
injections. TACR Transactions on Cryptographic Hardware and Embedded Systems,
pages 447-473, 2021.

Siavash Rezaei, Cesar-Alejandro Hernandez-Calderon, Saeed Mirzamohammadi, Eli
Bozorgzadeh, Alexander Veidenbaum, Alex Nicolau, and Michael J Prather. Data-
rate-aware fpga-based acceleration framework for streaming applications. In 2016
International Conference on ReConFigurable Computing and FPGAs (ReConFlig),
pages 1-6. IEEE, 2016.

Zhenyuan Ruan, Tong He, Bojie Li, Peipei Zhou, and Jason Cong. St-accel: A
high-level programming platform for streaming applications on fpga. In 2018 IEEE
26th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM), pages 9-16. IEEE, 2018.

D.M. Mehta, M. Hashemi, D.S. Koblah, D. Forte, F. Ganji 35

[RPDT18]

[SC06]

[SFM17]

[SGMT18]

[SGS10]

[SGS23]

[Sko09]

[SLL*08]

[SSEM1§]

[Syn20]

[TBNT07]

[TBNGO6]

[TG22]

[TL23]

[TMW*21]

[Tsi87]

Chethan Ramesh, Shivukumar B Patil, Siva Nishok Dhanuskodi, George Provelengios,
Sébastien Pillement, Daniel Holcomb, and Russell Tessier. Fpga side channel attacks
without physical access. In 2018 IEEFE 26th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pages 45-52. IEEE,
2018.

Pete Sedcole and Peter YK Cheung. Within-die delay variability in 90nm fpgas
and beyond. In 2006 IEEE Intrl. Conf. on Field Programmable Technology, pages
97-104. IEEE, 2006.

Yongming Shen, Michael Ferdman, and Peter Milder. Maximizing cnn acceler-
ator efficiency through resource partitioning. In 2017 ACM/IEEE Jjth Annual
International Symposium on Computer Architecture (ISCA), pages 535-547. IEEE,
2017.

Falk Schellenberg, Dennis RE Gnad, Amir Moradi, and Mehdi B Tahoori. An inside
job: Remote power analysis attacks on fpgas. In 2018 Design, Automation € Test
in Europe Conf. & Ezhibition (DATE), pages 1111-1116. IEEE, 2018.

John E Stone, David Gohara, and Guochun Shi. Opencl: A parallel programming
standard for heterogeneous computing systems. Computing in science & engineering,
12(3):66, 2010.

David Spielmann, Ognjen Glamocanin, and Mirjana Stojilovié. Rds: Fpga routing
delay sensors for effective remote power analysis attacks. TACR Transactions on
Cryptographic Hardware and Embedded Systems, 2023(2):543-567, 2023.

Sergei Skorobogatov. Local heating attacks on flash memory devices. In 2009 IEEE
International Workshop on Hardware-Oriented Security and Trust, pages 1-6, 2009.

Rudolf Schlangen, Rainer Leihkauf, Ted Lundquist, Peter Egger, Uwe Kerst, and
Christian Boit. Trimming of ic timing and delay by backside fib processing-
comparison of conventional and strained technologies. In 2008 IEEE Intrl. Electron
Devices Meeting, pages 1-4. IEEE, 2008.

Ahmad Shawahna, Sadiq M Sait, and Aiman El-Maleh. Fpga-based accelerators
of deep learning networks for learning and classification: A review. ieee Access,
7:7823-7859, 2018.

Synopsys. v2020.09-sp4. [Online]lhttps://www.synopsys.com/
implementation-and-signoff/rtl-synthesis-test/dc-ultra.html [Accessed:
Jan.11, 2023], 2020.

Russell Tessier, Vaughn Betz, David Neto, Aaron Egier, and Thiagaraja Gopal-
samy. Power-efficient ram mapping algorithms for fpga embedded memory blocks.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
26(2):278-290, 2007.

Russell Tessier, Vaughn Betz, David Neto, and Thiagaraja Gopalsamy. Power-
aware ram mapping for fpga embedded memory blocks. In Proceedings of the 2006
ACM/SIGDA 14th international symposium on Field programmable gate arrays,
pages 189-198, 2006.

Shahin Tajik and Fatemeh Ganji. Artificial neural networks and fault injection
attacks. In Security and Artificial Intelligence, pages 72-84. Springer, 2022.

Inc. Teledyne LeCroy. Wavepro 254hd 2.5 ghz high definition os-
cilloscope. [Online]lhttps://www.teledynelecroy.com/oscilloscope/
wavepro-hd-oscilloscope/wavepro-254hd [Accessed: Sep.14, 2023], 2023.

Shanquan Tian, Shayan Moini, Adam Wolnikowski, Daniel Holcomb, Russell Tessier,
and Jakub Szefer. Remote Power Attacks on the Versatile Tensor Accelerator
in Multi-Tenant FPGAs. Proceedings - 29th IEEE International Symposium on
Field-Programmable Custom Computing Machines, FCCM 2021, pages 242-246,
2021.

Yannis Tsividis. Operation and modeling of the MOS transistor. McGraw-Hill, Inc.,
USA, 1987.

[Online] https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
[Online] https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
[Online] https://www.teledynelecroy.com/oscilloscope/wavepro-hd-oscilloscope/wavepro-254hd
[Online] https://www.teledynelecroy.com/oscilloscope/wavepro-hd-oscilloscope/wavepro-254hd

36

Bake It Till You Make It

[UJST22]

[USA22]

[WFKP9g]

[WGYT16]

[XAQ21]

[XCCT20)

[Xil21]

[YKO120]

[YMY*+20]

[ZLS*15]

[ZP17]

[ZS18]

[ZSZ*17]

[ZYCT21]

Brian Udugama, Darshana Jayasinghe, Hassaan Saadat, Aleksandar Ignjatovic,
and Sri Parameswaran. Viti: A tiny self-calibrating sensor for power-variation
measurement in fpgas. IJACR Transactions on Cryptographic Hardware and Embedded
Systems, pages 657-678, 2022.

USA Today. Are us data centers fueling climate change? the best (and worst) regions
for clean energy. [Online] https://www.usatoday.com/story/tech/2022/08/24/
climate-change-data-center-oil-gas-wind/7875280001/7gnt-cfr=1 [Accessed:
Jan.11, 2023], 2022.

Glen O Workman, Jerry G Fossum, Srinath Krishnan, and MM Pelella. Physical
modeling of temperature dependences of soi cmos devices and circuits including
self-heating. IEEE Transactions on Electron Devices, 45(1):125-133, 1998.

Chao Wang, Lei Gong, Qi Yu, Xi Li, Yuan Xie, and Xuehai Zhou. Dlau: A scalable
deep learning accelerator unit on fpga. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 36(3):513-517, 2016.

Qian Xu, Md Tanvir Arafin, and Gang Qu. Security of neural networks from
hardware perspective: A survey and beyond. In 2021 26th Asia and South Pacific
Design Automation Conference (ASP-DAC), pages 449-454. IEEE, 2021.

Yun Xiang, Zhuangzhi Chen, Zuohui Chen, Zebin Fang, Haiyang Hao, Jinyin Chen,
Yi Liu, Zhefu Wu, Qi Xuan, and Xiaoniu Yang. Open dnn box by power side-channel
attack. IEEE Trans. on Clircuits and Systems II: Express Briefs, 67(11):2717-2721,
2020.

Inc. Xilinx. v2021.1. [Online]https://www.xilinx.com/products/design-tools/
vivado.html [Accessed: Jan.11, 2023], 2021.

Kota Yoshida, Takaya Kubota, Shunsuke Okura, Mitsuru Shiozaki, and Takeshi
Fujino. Model reverse-engineering attack using correlation power analysis against
systolic array based neural network accelerator. In 2020 IEEE Intrl. Symp. on
Circuits and Systems (ISCAS), pages 1-5. IEEE, 2020.

Honggang Yu, Haocheng Ma, Kaichen Yang, Yiqiang Zhao, and Yier Jin. Deepem:
Deep neural networks model recovery through em side-channel information leakage.
In 2020 IEEE Intrl. Symp. on Hardware Oriented Security and Trust (HOST), pages
209-218. IEEE, 2020.

Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. Op-
timizing FPGA-based accelerator design for deep convolutional neural networks. In
Proceedings of the 2015 ACM/SIGDA international symposium on field-programmable
gate arrays, pages 161-170, 2015.

Chi Zhang and Viktor Prasanna. Frequency domain acceleration of convolutional
neural networks on cpu-fpga shared memory system. In Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pages
35-44, 2017.

Mark Zhao and G Edward Suh. FPGA-based remote power side-channel attacks. In
2018 IEEE Symp. on Security and Privacy (SP), pages 229-244. IEEE, 2018.

Ritchie Zhao, Weinan Song, Wentao Zhang, Tianwei Xing, Jeng-Hau Lin, Mani
Srivastava, Rajesh Gupta, and Zhiru Zhang. Accelerating binarized convolutional
neural networks with software-programmable fpgas. In Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pages
15-24, 2017.

Yicheng Zhang, Rozhin Yasaei, Hao Chen, Zhou Li, and Mohammad Abdullah Al
Faruque. Stealing neural network structure through remote fpga side-channel analysis.
IEEFE Transactions on Information Forensics and Security, 16:4377-4388, 2021.

https://www.usatoday.com/story/tech/2022/08/24/climate-change-data-center-oil-gas-wind/7875280001/?gnt-cfr=1
https://www.usatoday.com/story/tech/2022/08/24/climate-change-data-center-oil-gas-wind/7875280001/?gnt-cfr=1
[Online] https://www.xilinx.com/products/design-tools/vivado.html
[Online] https://www.xilinx.com/products/design-tools/vivado.html

	Introduction
	Related Work
	Attacks against NNs
	Temperature-based Attacks

	Background
	Brief Introduction to Masking Schemes
	VERICA
	Adversary Model

	FPGA-based Accelerators and ModuloNET
	FPGA-based Accelerators: Pros and Cons
	ModuloNET: An Example of Masked NNs

	Temperature-induced Leakage from NNs
	Thermal Impact on FPGA Operational Dynamics
	Inducing Leakage through Internal Heat Generators

	Experimental Results
	Measurement Setup
	Our implementation of ModuloNET
	Die Temperature Measurement
	Temperature Influence on Delay of FPGA Components
	Leakage Detection
	Leveraging the Leakage
	Inducing Leakage through External HG

	Discussion
	Conclusion
	Acknowledgments

