
Guarding the First Order:
The Rise of AES Maskings

Amund Askeland2, Siemen Dhooghe1, Svetla Nikova1,2, Vincent Rijmen1,2,
Zhenda Zhang1

1 imec-COSIC, ESAT, KU Leuven, Belgium
firstname.lastname@esat.kuleuven.be
2 University of Bergen, Bergen, Norway

firstname.lastname@uib.no

Abstract We provide three first-order hardware maskings of the AES,
each allowing for a different trade-off between the number of shares
and the number of register stages. All maskings use a generalization
of the changing of the guards method enabling the re-use of random-
ness between masked S-boxes. As a result, the maskings do not require
fresh randomness while still allowing for a minimal number of shares and
providing provable security in the glitch-extended probing model. The
low-area variant has five cycles of latency and a serialized area cost of
8.13 kGE. The low-latency variant reduces the latency to three cycles
while increasing the serialized area by 67.89% compared to the low-area
variant. The maskings of the AES encryption are implemented on FPGA
and evaluated with Test Vector Leakage Assessment (TVLA).

Keywords: AES, Hardware, Probing Security, Threshold Implementations

1 Introduction

The Advanced Encryption Standard (AES) [8] is one of the most used crypto-
graphic building blocks in practice. The cipher has secured many applications,
including the world wide web. However, for some applications, like embedded
devices, naive implementations of the AES are vulnerable to side-channel at-
tacks such as Differential Power Analysis (DPA) due to Kocher et al. [18]. The
current agreed-upon method to protect implementations against DPA is mask-
ing. In masking, each key-dependent variable is split into several random shares
such that an adversary needs to view the power consumption of each share to
gain information on the secret variable.

Several maskings of the AES appeared in the literature in the past twenty
years. The efficiency and security of them have been significantly improved over
time. Threshold implementations by Nikova et al. [21] allowed for maskings that
protect against glitches in hardware. The uniformity aspect of threshold imple-
mentations allows for the reduction of randomness. The changing of the guards

technique by Daemen [7] showed how to make a masking uniform without signi-
ficantly increasing costs. Canright [4] proposed an efficient tower field decompos-
ition of the AES S-box in order to improve hardware costs. This decomposition
was then used by De Cnudde et al. [9] to create efficient threshold implementa-
tion maskings of the AES. However, the authors noted that the randomness cost
of their designs is high, which makes it infeasible to generate the randomness in
a cryptographic secure way.

Contributions. In this paper, we generalize the changing of the guards technique
to include maskings that use randomness in Section 3. The method allows the
re-use of randomness between all masked S-boxes and retains first-order probing
security. As a result, the generalization tackles the open question by De Cnudde
et al. as we significantly reduce the randomness cost of their masking, at least for
first-order security. We then provide three variants of the masking in Section 4,
which show the trade-off between the number of register stages and the number
of shares.

We apply these maskings of S-boxes to both the serialized and round-based
hardware architecture of the AES-128 encryption. These constructions are proven
secure in the first-order glitch-extended robust probing model. The low-area
variation of the serialized AES, described in Section 4.2, has an area cost of
8.13 kGE and 5 cycles of latency. The latency is reduced to 4 cycles for the S-
box in Section 4.3 and 3 cycles for the S-box in Section 4.4 with the area cost of
the serialized AES increased by 56.75% and 67.89%, respectively. The serialized
AES implementations are tested on our side-channel leakage assessment setup
to show the first-order security of the designs. Our implementations amortize
the cost of online randomness, at the same time provide provable and physic-
ally tested first-order probing security, and achieve one of the most efficient area
versus latency trade-offs in the literature.

2 Preliminaries

In this section, we go over the used notation, introduce the AES, the probing
side-channel security model, and threshold implementations.

2.1 Notation

We denote bits by subscript and shares by superscript. We denote the most
significant bit by a bigger subscript. For example, given (a1, ..., a8), a8 denotes
the most significant bit (MSB) and a1 the least significant bit (LSB). Finally,
the concatenation of bits is denoted by ‖ .

2.2 Description of AES

We quickly introduce the standardized AES cipher by Daemen and Rijmen [8].
There are three levels of security 128, 192, and 256. AES consists of a 128-bit

2

state and 128, 192, or 256-bit key, respectively, divided into bytes. The cipher
is composed of 10, 12, or 14 rounds, respectively, each applying an addition of
a subkey, a bricklayer of S-Boxes, a ShiftRows operation, and a MixColumns

operation. The AES S-Box consists of an inversion in the field F28 and the
application of an affine layer. This is visually represented in Figure 1.

AddRoundKey

⊕ ⊕
⊕⊕

⊕

⊕⊕ ⊕
⊕

⊕
⊕
⊕

⊕ ⊕ ⊕ ⊕
SubBytes

S S

SS

S

SS S

S

S

S

S

S S S S

ShiftRows MixColumns

Figure 1: Representation of the AES.

The key schedule for AES-128, which operates on 4 columns of 32 bits each, is
depicted in Figure 2. Each round of the AES state function has a parallel round
of the key schedule. We provide a description for the AES-128 key schedule.
Denote Vj , with j ∈ {1, ..., 4}, the jth word of the key state at round i and Wj

the jth word of the key state at round i + 1. Then a round of the key schedule
is defined as

W1 = V1 ⊕ RotWord(SubWord(V4)) + Ci+1 ,

W2 = V2 ⊕W1 ,

W3 = V3 ⊕W2 ,

W4 = V4 ⊕W3 .

With RotWord, the left circular shift, SubWord, the application of four AES S-
boxes, and Ci+1, the round constants for round i+ 1.

S

S

S

S

Ci

Figure 2: The AES-128 key schedule. Ci ∈ F32
2 denotes the ith round constants,

and S denotes the AES S-box.

2.3 The Threshold Glitch-Extended Probing Model

This section introduces the threshold probing model.

3

Threshold probing. A dth-order threshold probing adversary A, as first proposed
by Ishai et al. [17], can view the values present on up to d gates or wires in
a circuit implementing a cipher during a single execution (cipher evaluation).
We note that by “probe” we do not mean a physical probe such as an EM
probe. Instead, the word probe is used as an abstract concept through which an
adversary can perfectly observe a part of the computation.

The adversary A is computationally unbounded, and must specify the loca-
tion of the probes before querying the circuit. However, the adversary can change
the location of the probes over multiple cipher queries. The adversary’s interac-
tion with the circuit is mediated through the encoder and decoder algorithms,
neither of which can be probed.

The security model is a simulation model where the simulator needs to simu-
late the probed values from scratch, more specifically, the simulator is not given
the input (including the key of a block cipher) of the circuit. The adversary
needs to distinguish the probed values from the real circuit with the returned
values from the simulator. A failure in doing so proves that the adversary can not
learn anything from the circuit’s input via the probes. In a security proof, this
essentially comes down to proving that the probed values follow a distribution
which is independent of the value of the circuit’s input.

Glitches. The above model is extended to capture the effect of glitches on hard-
ware. Whereas one of the adversary’s probes normally results in the value of
a single wire, a glitch-extended probe allows obtaining all the registered inputs
leading to the gate/wire which is probed. This extension of the probing model
has been discussed in the work of Reparaz et al. [22] and formalized by Faust
et al. [12]. The formulation of the latter work is as follows: “For any ε-input
circuit gadget G, combinatorial recombinations (aka glitches) can be modeled
with specifically ε-extended probes so that probing any output of the function
allows the adversary to observe all its ε inputs.”

2.4 Boolean Masking and Threshold Implementations

Boolean masking was independently introduced by Goubin and Patarin [15] and
Chari et al. [5]. It serves as a sound and widely-deployed countermeasure against
side-channel attacks. The technique is based on splitting each secret variable
x ∈ F2 in the circuit into shares x̄ = (x1, x2, . . . , xsx) such that x =

∑sx
i=1 x

i

over F2. A random Boolean masking of a fixed secret is uniform if all maskings
of that secret are equally likely.

There are several approaches to protect a circuit by masking. In this work,
we make use of threshold implementations, proposed by Nikova et al. [21]. In
particular, we focus on “first-order threshold implementations” as those which
protect against first-order side-channel attacks. The interested reader is referred
to the works by Bilgin et al. [2] and Beyne et al. [1] for more information on
how to use threshold implementations to secure against higher-order attacks. In
the following, the main properties of threshold implementations as introduced
by Nikova et al. are reviewed.

4

A threshold implementation consists of several layers of Boolean functions,
as shown in Figure 3. As for any masked design, a black-box encoder function
generates a uniform random masking of the input before it enters the masked
circuit. At the end of each layer, synchronization is ensured by means of registers
which stop the propagation of glitches.

E
n
c
o
d
e
r

D
e
c
o
d
e
r

F 1

F s

G1

Gs

...
...

...x y

x1

xs

y1

ys

Figure 3: Schematic illustration of a threshold implementation assuming an equal
number of input and output shares [11].

Let F̄ be a layer in the threshold implementation corresponding to a part of
the circuit F : Fn2 → Fm2 . For example, F might be the linear layer of a block
cipher. The function F̄ : Fnsx2 → Fmsy2 , where we assume sx shares per input bit
and sy shares per output bit, will be called a masking of F . The ith share of the
function F̄ is denoted by F i : Fnsx2 → Fm2 , for i ∈ {1, .., sy}. Maskings can have a
number of properties that are relevant in the security argument for a threshold
implementation; these properties are summarized in Definition 1.

Definition 1 (Properties of threshold implementations [21]). Let F :
Fn2 → Fm2 be a function and F̄ : Fnsx2 → Fmsy2 be a masking of F . The masking
F̄ is said to be

correct
if
∑sy
i=1 F

i(x1, . . . , xsx) = F
(∑sx

i=1 x
i
)

for all shares x1, . . . , xsx ∈ Fn2 ,

non-complete
if any function F i, measured between register stages, depends on at most
sx − 1 input shares,

uniform
if F̄ maps a uniform random masking of any x ∈ Fn2 to a uniform random
masking of F (x) ∈ Fm2 .

Considering that, in a threshold implementation, all input/outputs of the
functions are stored in registers, placing a glitch-extended probe in a layer of
a threshold implementation returns all inputs of the probed masked Boolean
function. If all layers of a threshold implementation are non-complete and uni-
form, the resulting masked circuit can be proven secure in the first-order probing
model with glitches [11].

5

3 Changing of the Guards with Randomness

The changing of the guards method proposed by Daemen [7] is a technique that
transforms a non-complete masking into a uniform and non-complete masking.
The technique works by embedding the masking into a Feistel-like structure. In
this paper, we slightly generalize the method by considering a first-order probing
secure masking. Such a masking potentially requires multiple register stages and
extra randomness to guarantee its security. The adapted changing of the guards
method still ensures uniformity while allowing the re-use of the randomness. An
example of the method with two shares is shown in Figure 4.

r̄

a1

a2

b1

S̄

⊕

⊕

b′1

a′1

a′2

r̄

Figure 4: Changing of the guards method with two shares where the masked
S-box S̄ uses the randomness r̄.

With the original changing of the guards method, the function S̄ was non-
complete. Meaning that S̄ typically did not use fresh randomness and was com-
puted in one cycle. Instead, with the generalized method, S̄ can use fresh ran-
domness (which can be recycled and used for different S-boxes) and be computed
in multiple stages (in this work the whole tower-field decomposition of the AES
S-box).

We give the changing of the guards method formally in Definition 2.

Definition 2. The generalized changing of the guards method applied to a masked
map S̄ given inputs (a1, ..., as), (b1, ..., bs−1), and randomness r̄ is calculated as
follows

r̄′ = r̄ (1)

a′1 = S1(a1, ..., as, r̄)⊕ b1, . . . , a′s−1 = Ss−1(a1, ..., as, r̄)⊕ bs−1, (2)

a′s = Ss(a1, ..., as, r̄)⊕ b1 ⊕ . . .⊕ bs−1 (3)

b′1 = a1, . . . , b′s−1 = as−1 . (4)

In general, we refer to the (b1, ..., bs−1) as the guards of the masked S-box S̄.
We show that the changing of the guards construction with randomness retains
the correctness and probing security properties from S̄ and makes the masking
uniform.

6

Theorem 1. The method from Definition 2 is correct, first-order probing secure,
and uniform.

Proof. The correctness of the construction follows from the correctness of S̄ and
the fact that each share bi is added to two different output shares in Eq. (2)-(3).

First-order probing security of the construction, assuming a joint uniform
input, follows from the first-order probing security of S̄ and the facts that the
share bs is not used in the construction and that each share b′i is calculated
using only one share ai using Eq. (2)-(3).

For the proof of uniformity, we first take an arbitrary input secret a. We show
that the above construction is invertible. In other words, given the secret a and
the outputs (a′1, ..., a′s), (b′1, ..., b′s−1), r̄′, we show it is possible to construct the
inputs (a1, ..., as), (b1, ..., bs−1), r̄.

Since the input secret a is given, we can construct the inputs (a1, ..., as) from
(b′1, ..., b′s−1) using Eq. (4). From r̄′ we can evidently construct r̄ since the two
are equal (see Eq. (1)). By running (a1, ..., as) and r̄ through S̄ and XORing
the output (a′1, ..., a′s), we can also construct (b1, ..., bs) (see Eq. (2)-(3)) which
concludes the proof.

Thus, the changing of the guards method allows for the transformation of any
first-order probing secure masking into a uniform one which allows the re-use of
the randomness used in the S-box.

4 Maskings of the S-Box

This section describes the three first-order glitch-extended probing secure S-box
designs of the AES. We first go over the components which are masked between
all designs and then provide the three designs themselves.

4.1 Overarching Components

We quickly review the functions used in the tower-field decomposition of the
S-box.

Input/output isomorphism. The first operation occurring in the decomposed
S-box performs a change of basis through a linear map. This mapping is im-
plemented in combinational logic, and it maps the 8-bit input (ai1, ..., a

i
8) to the

8-bit output (yi1, ..., y
i
8) for each share i ∈ {1, 2} as follows:

yi8 = ai8 ⊕ ai7 ⊕ ai6 ⊕ ai3 ⊕ ai2 ⊕ ai1 yi4 = ai8 ⊕ ai5 ⊕ ai4 ⊕ ai2 ⊕ ai1
yi7 = ai7 ⊕ ai6 ⊕ ai5 ⊕ ai1 yi3 = ai1

yi6 = ai7 ⊕ ai6 ⊕ ai2 ⊕ ai1 yi2 = ai7 ⊕ ai6 ⊕ ai1
yi5 = ai8 ⊕ ai7 ⊕ ai6 ⊕ ai1 yi1 = ai7 ⊕ ai4 ⊕ ai3 ⊕ ai2 ⊕ ai1

7

The inverse linear map (including the AES affine transformation) maps the
8-bit input (ui1, ..., u

i
8) to the 8-bit output (yi1, ..., y

i
8) for each share i as follows:

yi8 = ui6 ⊕ ui4 yi4 = ui8 ⊕ ui7 ⊕ ui6 ⊕ ui5 ⊕ ui4
yi7 = ui8 ⊕ ui4 yi3 = ui7 ⊕ ui6 ⊕ ui4 ⊕ ui3 ⊕ ui1
yi6 = ui7 ⊕ ui1 yi2 = ui6 ⊕ ui5 ⊕ ui2
yi5 = ui8 ⊕ ui6 ⊕ ui4 yi1 = ui7 ⊕ ui5 ⊕ ui2

The constant 0x63 is then added to the first share (y18 , ..., y
1
1).

Finite field multipliers. In the computation of the masking of the S-box, we
make use of multipliers over F22 and F24 . We note that these equations only
hold for the multipliers in the masked S-box and not for any other operation in
the AES like the MixColumns. We recall the equations for the multiplication over
F22 . These map the two 2-bit inputs (a1, a2), (b1, b2) to the 2-bit output (c1, c2)
as follows:

c1 = (a2 ⊕ a1)(b2 ⊕ b1)⊕ a1b1 c2 = (a2 ⊕ a1)(b2 ⊕ b1)⊕ a2b2

We then recall the equations for the multiplication over F24 . This maps the
two 4-bit inputs (a1, a2, a3, a4), (b1, b2, b3, b4) to the 4-bit output (c1, c2, c3, c4)
as follows:

c1 =a4b4 ⊕ a2b4 ⊕ a3b3 ⊕ a1b3 ⊕ a4b2 ⊕ a1b2 ⊕ a3b1 ⊕ a2b1 ⊕ a1b1
c2 =a4b4 ⊕ a3b4 ⊕ a2b4 ⊕ a1b4 ⊕ a4b3 ⊕ a2b3 ⊕ a4b2 ⊕ a3b2 ⊕ a2b2 ⊕ a4b1 ⊕ a1b1
c3 =a3b4 ⊕ a2b4 ⊕ a4b3 ⊕ a3b3 ⊕ a1b3 ⊕ a4b2 ⊕ a2b2 ⊕ a3b1 ⊕ a1b1
c4 =a4b4 ⊕ a2b4 ⊕ a1b4 ⊕ a3b3 ⊕ a2b3 ⊕ a4b2 ⊕ a3b2 ⊕ a2b2 ⊕ a1b2 ⊕ a4b1 ⊕ a2b1

Scaling functions. In the decomposed S-box, there are two scaling functions, a
“square scale function” and a “scale” function. The linear square scaling SqSc
maps the 4-bit input (x1, ..., x4) to the 4-bit output (y1, ..., y4) = (x1, x1⊕x2, x2⊕
x4, x1⊕x3). The scaling operation Scale maps a 2-bit input (x1, x2) to the 2-bit
output (y1, y2) = (x1 ⊕ x2, x2).

Two-bit inverter. The inversion Inv in F22 is linear and is implemented by
swapping the bits. The inversion operation maps a 2-bit input (x1, x2) to the
2-bit output (y1, y2) = (x2, x1).

4.2 Design I: Two-Share S-Box

The first design uses two shares and is divided into five cycles. The S-box uses
a total of 54 random bits which can be re-used over all the S-boxes. The design
of the masking is given in Figure 5.

8

The masked multipliers are calculated by first computing all cross products
of the input shares and then re-masking them with a random masking of zero
before compressing the cross products back to the input number of shares. More
specifically, the two-shared multiplier is given by

a0 → a0b0 + r0

a1 → a0b1 + r1 → x0 = a0b+ r0 + r1

b0 → a1b0 + r2 → x1 = a1b+ r2 + r3

b1 → a1b1 + r3

, (5)

where r3 = r0 + r1 + r2. Note that the above multiplier is non-complete and
uniform in both stages when fresh randomness ri is used. More specifically, the
first stage expands the two input shares to a four-sharing and the second stage
compresses the uniform four shares back to two output shares.

This masking is the most efficient in terms of area considering the three
designs in this paper. However, the decrease in area is traded for by an increase
in latency.

L
in

ea
r

M
a
p

F 2
4

M
u
lt

.
S
q
.

S
c.

⊕
⊕

⊕

⊕

⊕
⊕

⊕
⊕

⊕

⊕

r1

r2

r3

r4 F 2
2

M
u
lt

.
S
ca

le

⊕
⊕

⊕

⊕

⊕
⊕

⊕
⊕

⊕

⊕

r5

r6

r7

r8

F 2
2

In
v
.

F 2
2

M
u
lt

.
F 2

2
M

u
lt

. ‖

‖

‖

‖

⊕
⊕

⊕
⊕

⊕

⊕

r9

r10

r11

r12

F 2
4

M
u
lt

.
F 2

4
M

u
lt

. ‖

‖

‖

‖

⊕
⊕

⊕
⊕

⊕

⊕

r13

r14

r15

r16 In
v
er

se
L

in
ea

r
M

a
p

First Stage Second Stage Third Stage Fourth Stage Fifth Stage Sixth Stage

Figure 5: Representation of the S-box of design I. Register stages are denoted by
dashed vertical lines.

4.3 Design II: Three-Share S-Box

The second design uses three shares and is divided into four cycles. The S-box
uses a total of 36 random bits which can be re-used in every S-box. The masking
is shown in Figure 6.

The masked multipliers are calculated by combining the cross-products in a
non-complete way and re-masking them with a random masking of zero. More

9

specifically, the three-shared multiplier is given by

a0, b0 → a0b0 + a0b1 + a1b0 + r0

a1, b1 → a1b1 + a1b2 + a2b1 + r1

a2, b2 → a2b2 + a2b0 + a0b2 + r2

, (6)

where r2 = r0 + r1.
Compared to the previous design in Section 4.2, this S-box is larger in terms

of area but has a reduced latency of four cycles compared to five of the pre-
vious design. This design works well with both a serialized and a round-based
architecture.

L
in

ea
r

M
a
p

F 2
4

M
u
lt

.
S
q
.

S
c.

⊕⊕⊕
⊕

⊕

⊕

⊕

⊕

⊕

r1

r2

r3 F 2
2

M
u
lt

.
S
ca

le

⊕⊕⊕
⊕

⊕

⊕

⊕

⊕

⊕

r4

r5

r6

F 2
2

In
v
.

F 2
2

M
u
lt

.
F 2

2
M

u
lt

. ‖

‖

‖

⊕

⊕

⊕

r7

r8

r9

F 2
4

M
u
lt

.
F 2

4
M

u
lt

. ‖

‖

‖

⊕

⊕

⊕

r10

r11

r12 In
v
er

se
L

in
ea

r
M

a
p

First Stage Second Stage Third Stage Fourth Stage Fifth Stage

Figure 6: Representation of the S-box of design II. Register stages are denoted
by dashed vertical lines.

4.4 Design III: Three-Share S-Box

The third design works over three shares and is divided into three cycles. The
masking requires a total of 40 random bits which can be re-used over all S-boxes.
The design is shown in Figure 7. The design uses the three-shared multipliers
from design II, but the design switches to four shares in order to make a non-
complete masking of the inversion over F24 . For the inversion Inv in F24 , the
resulting equations are given by:

y1 = x1x3 ⊕ x1x4 ⊕ x2x3x4 ⊕ x2x4 ⊕ x3
y2 = x1x3x4 ⊕ x1x4 ⊕ x2x4 ⊕ x3 ⊕ x4
y3 = x1x2x4 ⊕ x1x3 ⊕ x1 ⊕ x2x3 ⊕ x2x4
y4 = x1x2x3 ⊕ x1 ⊕ x2x3 ⊕ x2x4 ⊕ x2

10

For each cubic term xaxbxc, the ith share for i ∈ {1, 2, 3, 4} is calculated as
follows, where the convention is used that the superscripts wrap around at four.

xaxbx
i
c = xiax

i
bx
i
c ⊕ xiaxi+1

b xic ⊕ xiaxibxi+1
c ⊕ xiaxi+1

b xi+1
c ⊕ xiaxi+1

b xi+2
c

⊕ xiaxi+2
b xi+1

c ⊕ xiaxibxi+2
c ⊕ xiaxi+2

b xic ⊕ xiaxi+2
b xi+2

c ⊕ xi+2
a xi+1

b xic

⊕ xi+1
a xi+2

b xic ⊕ xi+2
a xibx

i+1
c ⊕ xi+1

a xibx
i+2
c ⊕ xi+2

a xi+1
b xi+1

c

⊕ xi+2
a xi+2

b xi+1
c ⊕ xi+2

a xi+1
b xi+2

c

The ith share for i ∈ {1, 2, 3, 4} of a quadratic term xaxb is calculated as follows:

xax
i
b = xiax

i
b ⊕ xiaxi+1

b ⊕ xiaxi+2
b ⊕ xi+2

a xi+1
b

The linear terms are added share-wise. The output of the inversion is then re-
freshed with a zero-masking.

Compared to the previous designs, this one reduces the latency to three
cycles, but it trades off a larger area cost. This design is better suited for a
round-based architecture.

L
in

ea
r

M
a
p

F 2
4

M
u
lt

.
S
q
.

S
c.

⊕⊕⊕ ⊕
⊕
⊕

⊕
⊕
⊕
⊕

r1

r2

r3

r4

F 2
4

In
v
.

⊕
⊕
⊕
⊕

r5

r6

r7

r8

F 2
4

M
u
lt

.
F 2

4
M

u
lt

.

‖

‖

‖

⊕

⊕

⊕

r9

r10

r11 In
v
er

se
L

in
ea

r
M

a
p

First Stage Second Stage Third Stage Fourth Stage

Figure 7: Representation of the S-box of design III. Register stages are denoted
by dashed vertical lines.

5 Architecture

Our designs of the masked AES-128 encryption are implemented in both a seri-
alized architecture and a round-based architecture.

11

In the round-based AES-128 architecture, 20 S-boxes are instantiated in
which 16 S-boxes process SubBytes for the state function and 4 for SubWord in
the key expansion. The bus width of MixColumns and ShiftRows is n shares×
128 bits. After each round of the AES encryption, the state of the cipher is stored
in a register array. Thus, the whole encryption needs 10 rounds of sbox latency+1
cycles plus the latency by the control logic. The changing of the guards method
is applied to the bricklayer of S-boxes following Definition 1 by Daemen [6].

The implementations that are evaluated in Section 7.2 use the serialized
architecture where there is one S-box for both the key expansion and the state.
The bus width is thus n shares × 8 bits. The state registers and key registers
can be viewed as 4 × 4 arrays, similar to the serialized encryption modules by
Shahmirzadi and Moradi [24] and De Meyer et al. [10]. Each masked byte after
AddRoundKey, or after RotWord in the key expansion, is fed into the masked S-
box. Thus, the serialized architecture needs at least 20 cycles per round. If the
latency of the S-box is 4 cycles, the stages of the S-box are pipelined without
wasting a cycle. If the latency is larger than 4 cycles, waiting cycles are inserted
at the end of each round. If the latency is less than 4 cycles, the round-based
architecture is preferred for lower latency applications.

The guard shares are initialized with randomness and the subsequent guards
are taken from the input of the S-box. Shift registers are used to store these
shares in such a way that they are delayed by one more cycle than the S-box
delay before they are applied to the output. This is depicted in Figure 8. A
total of 8 × (n shares − 1) random bits are required to initialize the guard
shares. These can be static throughout the AES encryption. The random bits
in the masked S-boxes are rotated per applied S-box. This prevents transitional
leakages from happening in the pipeline registers. Taking the two-shared multi-
plication of Eq. (5) as an example, by rotating (r0, r1, r2, r3), two consecutive
executions (first with a, b and then with c, d) calculating x0 gives Hamming
distance leakage HD(a0b+ r0 + r1, c0d+ r1 + r2) which is masked by r0, r2.

Before the AES starts for the serialized implementations, the masked key
and plaintext are loaded to the register array in 16 cycles. The ciphertext is read
out from the state register array in 16 cycles when the computation is finished.
Table 1 depicts the latency in the number of cycles from when the load signal
arrives to when the ciphertext is ready at the output.

6 First-Order Probing Security

In this section, we argue the first-order probing security of the three designs.
We show this by arguing that the designs are threshold implementations, see
Definition 1. We refer to Dhooghe et al. [11] for the proof that a threshold
implementation is first-order robust probing secure.

The masked S-boxes are first-order probing secure due to the extra random-
ness added to each register stage. This refreshing works as follows. Given an input
(a1, ..., as), an arbitrary masked map F̄ , and randomness r1, ..., rs−1, refreshing

12

⊕

r̄g

r̄s

S-box input

sel

Guards
Shift Reg

S-box

N + 1
cycles
delay

N cycles
delay

(a) Application of the guards in the seri-
alized architecture.

⊕ ⊕

r̄g

S-box input S-box input

r̄s r̄s

S-box S-box

N cycles
delay

N cycles
delay

(b) Application of the guards in the
round-based architecture.

Figure 8: Application of changing of the guards in our implementations.

is done as follows, for i ∈ {1, ..., s− 1}

a′i = F i(a1, ..., as)⊕ ri, a′s = F s(a1, ..., as)⊕ r1 ⊕ ...⊕ rs−1 , (7)

where each F i is non-complete.

Lemma 1. The refreshing following Eq (7) gives a uniform output.

Proof. We show that the function, taking (a1, ..., as) and (r1, ..., rs−1) as input
and (a1, ..., as), F i(a1, ..., as)⊕ ri for i ∈ {1, ..., s− 1}, and F s(a1, ..., as)⊕ r1 ⊕
...⊕rs−1 as output, is invertible. Removing the (a1, ..., as) then gives a balanced
(or uniform) output of the refreshing detailed in Eq (7).

The derivation is straightforward. Since (a1, ..., as) is given in the output, one
can calculate F i(a1, ..., as) for i ∈ {1, ..., s}. Subtracting this from the output
(a1, ..., as−1) then gives (r1, ..., rs−1) showing the map is invertible.

Theorem 2. Designs I, II, and III from Sections 4.2,4.3, and 4.4 are threshold
implementations as given by Definition 1.

Proof. First, each design uses a changing of the guards method. We refer to
Theorem 1 for the proof that the masked input and output of each masked
S-box is uniform.

Since firstly, the linear layers of the construction are evidently non-complete;
secondly, they work share-wise and uniform; and thirdly, the unmasked linear
functions are permutations, these comply with the properties from Definition 1.

We then show that the masked S-box from designs I, II, and III are first-order
probing secure. Since a probe in the designs can only view one masked S-box, it
suffices to show that each stage in the masked S-box complies with the threshold
implementation properties.

13

Each stage in the masked S-box either maps a part of the input to the
output (such as in the outer wires of Figure 5) or the output is masked using
the randomness r̄. Due to the changing of the guards structure this randomness
r̄ is joint uniform with the input of the masked S-box. From Lemma 1, we find
that each stage of the masked S-box of design I, II, or III is uniform.

Finally, each stage in the masked S-box is also non-complete. As a result, the
masked S-boxes from designs I, II, and III are itself threshold implementations
and thus first-order robust probing secure.

7 Implementations and Physical Evaluations

In this section, we explain the hardware implementations of the three AES
designs and their side-channel analysis security.

7.1 Implementations and Comparison to Related Work

We implement our three AES designs for a Xilinx Kintex-7 FPGA mounted
on a Sakura-X [19] evaluation board. The implementations are synthesized and
programmed using Xilinx ISE. The KEEP_HIERACHY option is enabled in the
Xilinx ISE to prevent optimization across modules in the synthesis step.

The area of the masked ciphers is measured in gate equivalences (GE), i.e., the
cipher area normalized to the area of a 2-input NAND gate in a given standard cell
library. The cell library we use is the NANGATE 45nm Open Cell Library [20], and
the synthesis results are obtained with the Synopsis Design Compiler v2021.06.
Comparing the area cost in gate equivalences can reduce the impact of different
cell libraries. However, the delay on the critical path, or the maximum frequency,
depends on the timing metrics of the used cell library. The latency is measured
in the number of cycles to get from the input to the output (e.g. from an S-box
or a cipher).

Table 1 and Table 2 show the results of our implementation. Table 1 contains
the serialized AES implementations and their comparison to other implementa-
tions in the literature. Design I gives a 2-share masked AES with the changing of
the guards techniques and opts for a low area cost and a moderate latency. Com-
pared to the 4-share AES by Wegener and Moradi [26] and the 3-share AES by
Sugawara [25] which also uses the changing of the guards technique, this imple-
mentation costs 91.37% fewer cycles and 52.46% less area, respectively. Design
II reduces 10 cycles of latency in the AES encryption with the trade-off on a
56.75% larger area and a 37.11% lower maximum frequency. Shahmirzadi and
Moradi [24] present a randomness-free 2-share AES implementation with a 5.2%
smaller area and a design using one bit per S-box with a 12.2% smaller area. Both
designs require a lower maximum frequency compared to design I, although the
UMC 180 standard cell library was used. However, we wish to emphasize that
both designs are based on using a non-uniform masked S-box whereas our S-box
is uniform allowing for a stronger security argument. Moreover, in the work of
Shahmirzadi and Moradi, it is mentioned that “the application of changing of

14

Table 1: Implementation cost of the serialized AES. Latency for the S-box is
given in the number of register layers and for the AES in cycles.

Design Area
(S-box)
[kGE]

Area
(AES)
[kGE]

Latency
(S-box)
[regs.]

Latency
(AES)
[cc]

Random1

[bpc]
fmax

[MHz]2

Design I: Sec. 4.2 2.71 8.13 5 242 0 820
Design II: Sec. 4.3 4.33 12.75 4 232 0 515
Design III: Sec. 4.4 5.83 13.66 3 232 0 534

Bilgin et al. [3]4 2.84 8.12 2 246 32 -
De Cnudde et al. [9] 1.98 6.68 5 276 54 -
Wegener-Moradi [26] 4.20 7.60 16 2 804 0 -
Sugawara [25] 3.50 17.10 4 266 0 -
Shahmirzadi-Moradi [24]3 - 7.14 5 246 1 160
Shahmirzadi-Moradi [24]3 - 7.71 5 246 0 160

1. Cost of online fresh random bits per cycle (bpc)
2. Depending on different standard cell libraries
3. With a non-uniform masked S-box
4. Requires an additional register stage in the S-box to store the state

the guards on 2-share implementations to nullify the required fresh randomness
does not seem trivial (or even possible)”. As a result, our work indicates that this
is possible. Table 2 covers the round-based implementations. The low-latency S-
box reduces the latency of the whole encryption down to 42 cycles using design
III. Although the same S-boxes are used in the round-based AES compared to
the serialized implementations in Table 1, each estimated fmax is 3% to 20%
lower than its serialized counterpart. The reason of this reduction is the wider
bus in the round-based architecture making the fan-out in control logic cost an
extra delay on the critical path. Design III costs 26.52% less area compared
to the work by Sasdrich et al. [23]. Note that Sasdrich et al. used LUT-based
Masked Dual-Rail with Pre-charge Logic (LMDPL) and included the mask-table
generation circuit in the implementation.

7.2 Evaluation

In this section, we describe the practical evaluation of the three masked designs.
We collect the amplified power traces from the measurement point on the Sakura-
X board. The power measurements are amplified by a 30 dB SMA pre-amplifier [13].
The traces are captured by an oscilloscope at a sample rate of 500 MS/s while
the FPGA is clocked at 6.144 MHz.

The non-specific leakage detection test from Goodwill et al. [14] is performed
which verifies that our implementations do not show first-order leakage. The
measured power traces are partitioned into two sets, where the first set S0 re-
ceives fixed plaintexts and the second set S1 contains random plaintexts. The

15

Table 2: Implementation cost of the round-based AES. Latency for the S-box is
given in the number of register layers and for the AES in cycles.

Design Area
(S-box)
[kGE]

Area
(AES)
[kGE]

Latency
(S-box)
[regs.]

Latency
(AES)
[cc]

Random1

[bpc]
fmax

[MHz]2

Design I: Sec. 4.2 2.71 63.91 5 62 0 800
Design II: Sec. 4.3 4.33 102.44 4 52 0 505
Design III: Sec. 4.4 5.84 115.73 3 42 0 426

Gross et al. [16] 60.76 - 1 - 2 048 356
Gross et al. [16] 6.74 - 2 - 416 584
Sasdrich et al. [23] 3.48 157.50 1 10 720 400

1. Cost of online fresh random bits per cycle (bpc)
2. Depending on different standard cell libraries

two sets of measurements are compared using the t-test statistic:

t =
µ(S0)− µ(S1)√
σ2(S0)
|S0| + σ2(S1)

|S1|

(8)

The t-test verifies whether the two sets have the same first-order moment. Its null
hypothesis H0 states that “the sets S0 and S1 are drawn from populations with
the same mean.” Large absolute values of this t-statistic indicate that the null
hypothesis can be rejected with a high degree of confidence. The threshold value
of the t-test commonly used by the side-channel research community is 4.5. If
the t-test value of the measured power trace grows over 4.5, the implementation
under test is considered as insecure.

Figure 9, 11, and 12 illustrate the TVLA result of the three serialized masked
AES implementations. Figure 10 shows the maximum univariate t-test value
changing over time which is denoted by the number of traces. The first-order
probing security is verified physically for the implementations. The second-order
leakages shows as anticipated. The exception is the third order leakage for design
I which does not leak due to the noise amplification for third-order moments.

8 Conclusion

We proposed three first-order secure maskings of the AES with a different num-
ber of shares and register stages. These maskings allow the area versus latency
trade-off in the hardware design of AES. The maskings use the generalized chan-
ging of the guards technique, which allows for the re-use of their randomness
between the S-boxes. As a result, all designs proposed in this paper do not
require fresh randomness in their calculation.

The three variations of the masked AES S-boxes show the area versus latency
trade-off. Design I needs 5 cycles to compute the S-box and achieves a low-area

16

Figure 9: Univariate fixed-vs.-random t-test results for the serialized AES-128
encryption for design I. The right three plots show the results for the first to the
third order statistical moments of the masked implementations at 108 traces.
The results in the left column are for the unmasked implementations at 104

traces. The regions of interest are between vertical red lines, which indicate the
start and end of the AES encryption.

(a) Design I. (b) Design II. (c) Design III.

Figure 10: The Y-axes of each subfigure is the maximum value of the univariate
t-test results for the serialized AES-128 designs in this paper. The X-axes are
the numbers of traces. The first two figures show the maximum t-test values
of the first to the third statistical moments. The last one shows the first-order
maximum t-test values only.

17

Figure 11: Univariate fixed-vs.-random t-test results for the serialized AES-128
encryption for design II. The layout is the same as in Figure 9.

Figure 12: Univariate fixed-vs.-random t-test results for the serialized AES-128
encryption for design III. The layout is the same as in Figure 9.

18

serialized AES which costs only 8.13 kGE. Design II balances the area and
latency cost. It reduces the S-box latency to 4 cycles and increases the area cost
to 12.75 kGE. Design III is made for low latency applications, which requires 3
cycles for the S-box and costs 13.66 kGE for the serialized AES encryption. The
designs do not require online randomness and are proven to be probing secure.
The maskings are also implemented on FPGA and tested in practice. The TVLA
results verify that the designs are first-order secure.

Acknowledgments. This work was supported by CyberSecurity Research Flanders
with reference number VR20192203. Siemen Dhooghe is supported by a PhD
Fellowship from the Research Foundation - Flanders (FWO). Zhenda Zhang is
funded by a research grant from KU Leuven.

References

1. Beyne, T., Dhooghe, S., Zhang, Z.: Cryptanalysis of masked ciphers: A not so ran-
dom idea. In: ASIACRYPT 2020, Part I. pp. 817–850. LNCS, Springer, Heidelberg
(Dec 2020). https://doi.org/10.1007/978-3-030-64837-4˙27

2. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order
threshold implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014,
Part II. LNCS, vol. 8874, pp. 326–343. Springer, Heidelberg (Dec 2014).
https://doi.org/10.1007/978-3-662-45608-8˙18

3. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Trade-offs for threshold
implementations illustrated on AES. IEEE Trans. on CAD of ICs and Systems
34(7), 1188–1200 (2015). https://doi.org/10.1109/TCAD.2015.2419623, https://
doi.org/10.1109/TCAD.2015.2419623

4. Canright, D.: A very compact S-box for AES. In: Rao, J.R., Sunar, B. (eds.)
CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (Aug / Sep 2005).
https://doi.org/10.1007/11545262˙32

5. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M.J. (ed.) CRYPTO’99. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (Aug 1999). https://doi.org/10.1007/3-540-
48405-1˙26

6. Daemen, J.: Changing of the guards: a simple and efficient method for achiev-
ing uniformity in threshold sharing. Cryptology ePrint Archive, Report 2016/1061
(2016), https://eprint.iacr.org/2016/1061

7. Daemen, J.: Changing of the guards: A simple and efficient method for
achieving uniformity in threshold sharing. In: Fischer, W., Homma, N. (eds.)
CHES 2017. LNCS, vol. 10529, pp. 137–153. Springer, Heidelberg (Sep 2017).
https://doi.org/10.1007/978-3-319-66787-4˙7

8. Daemen, J., Rijmen, V.: Advanced Encryption Standard (AES). National Insti-
tute of Standards and Technology (NIST), FIPS PUB 197, U.S. Department of
Commerce (Nov 2001)

9. De Cnudde, T., Reparaz, O., Bilgin, B., Nikova, S., Nikov, V., Rijmen, V.: Mask-
ing AES with d+1 shares in hardware. In: Gierlichs, B., Poschmann, A.Y. (eds.)
CHES 2016. LNCS, vol. 9813, pp. 194–212. Springer, Heidelberg (Aug 2016).
https://doi.org/10.1007/978-3-662-53140-2˙10

19

https://doi.org/10.1007/978-3-030-64837-4_27
https://doi.org/10.1007/978-3-662-45608-8_18
https://doi.org/10.1109/TCAD.2015.2419623
https://doi.org/10.1109/TCAD.2015.2419623
https://doi.org/10.1109/TCAD.2015.2419623
https://doi.org/10.1007/11545262_32
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://eprint.iacr.org/2016/1061
https://doi.org/10.1007/978-3-319-66787-4_7
https://doi.org/10.1007/978-3-662-53140-2_10

10. De Meyer, L., Reparaz, O., Bilgin, B.: Multiplicative masking
for AES in hardware. IACR TCHES 2018(3), 431–468 (2018).
https://doi.org/10.13154/tches.v2018.i3.431-468

11. Dhooghe, S., Nikova, S., Rijmen, V.: Threshold implementations in the ro-
bust probing model. In: Bilgin, B., Petkova-Nikova, S., Rijmen, V. (eds.)
Proceedings of ACM Workshop on Theory of Implementation Security,
TIS@CCS 2019, London, UK, November 11, 2019. pp. 30–37. ACM (2019).
https://doi.org/10.1145/3338467.3358949, https://doi.org/10.1145/3338467.

3358949

12. Faust, S., Grosso, V., Pozo, S.M.D., Paglialonga, C., Standaert, F.X.:
Composable masking schemes in the presence of physical defaults &
the robust probing model. IACR TCHES 2018(3), 89–120 (2018).
https://doi.org/10.13154/tches.v2018.i3.89-120

13. GmbH, L.E.T.: Langer emv - pa 303 sma, preamplifier 100 khz up to 3 ghz

14. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side-channel
resistance validation (September 2011)

15. Goubin, L., Patarin, J.: DES and differential power analysis (the “duplication”
method). In: Koç, Çetin Kaya., Paar, C. (eds.) CHES’99. LNCS, vol. 1717, pp.
158–172. Springer, Heidelberg (Aug 1999). https://doi.org/10.1007/3-540-48059-
5˙15

16. Gross, H., Iusupov, R., Bloem, R.: Generic low-latency masking in hardware. IACR
TCHES 2018(2), 1–21 (2018). https://doi.org/10.13154/tches.v2018.i2.1-21

17. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (Aug 2003). https://doi.org/10.1007/978-3-540-45146-4˙27

18. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.)
CRYPTO’99. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (Aug 1999).
https://doi.org/10.1007/3-540-48405-1˙25

19. Lab./UEC, S.: Sakura (sasebo-giii) (2014), https://satoh.cs.uec.ac.jp/

SAKURA/hardware/SAKURA-X.html

20. NANGATE: The NanGate 45nm Open Cell Library, version: PDKv1.3 v2010 -
12.Apache.CCL. Available at https://github.com/The-OpenROAD-Project/

OpenROAD-flow-scripts/tree/master/flow/platforms/nangate45

21. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 06. LNCS,
vol. 4307, pp. 529–545. Springer, Heidelberg (Dec 2006)

22. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidat-
ing masking schemes. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015,
Part I. LNCS, vol. 9215, pp. 764–783. Springer, Heidelberg (Aug 2015).
https://doi.org/10.1007/978-3-662-47989-6˙37

23. Sasdrich, P., Bilgin, B., Hutter, M., Marson, M.E.: Low-latency hardware
masking with application to AES. IACR TCHES 2020(2), 300–326 (2020).
https://doi.org/10.13154/tches.v2020.i2.300-326

24. Shahmirzadi, A.R., Moradi, A.: Re-consolidating first-order
masking schemes. IACR TCHES 2021(1), 305–342 (2021).
https://doi.org/10.46586/tches.v2021.i1.305-342

25. Sugawara, T.: 3-share threshold implementation of AES s-box
without fresh randomness. IACR TCHES 2019(1), 123–145 (2018).
https://doi.org/10.13154/tches.v2019.i1.123-145

20

https://doi.org/10.13154/tches.v2018.i3.431-468
https://doi.org/10.1145/3338467.3358949
https://doi.org/10.1145/3338467.3358949
https://doi.org/10.1145/3338467.3358949
https://doi.org/10.13154/tches.v2018.i3.89-120
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.13154/tches.v2018.i2.1-21
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/3-540-48405-1_25
https://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-X.html
https://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-X.html
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts/tree/master/flow/platforms/nangate45
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts/tree/master/flow/platforms/nangate45
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.13154/tches.v2020.i2.300-326
https://doi.org/10.46586/tches.v2021.i1.305-342
https://doi.org/10.13154/tches.v2019.i1.123-145

26. Wegener, F., Moradi, A.: A first-order SCA resistant AES without fresh random-
ness. In: Fan, J., Gierlichs, B. (eds.) COSADE 2018. LNCS, vol. 10815, pp. 245–262.
Springer, Heidelberg (Apr 2018). https://doi.org/10.1007/978-3-319-89641-0˙14

21

https://doi.org/10.1007/978-3-319-89641-0_14

	Guarding the First Order: The Rise of AES Maskings

