
Polynomial XL: A Variant of the XL Algorithm
Using Macaulay Matrices over Polynomial Rings

Hiroki Furue1 and Momonari Kudo2

1 NTT Social Informatics Laboratories, Tokyo, Japan, hiroki.furue@ntt.com ⋆⋆

2 Fukuoka Institute of Technology, Fukuoka, Japan, m-kudo@fit.ac.jp

Abstract. Solving a system of m multivariate quadratic equations in
n variables over finite fields (the MQ problem) is one of the important
problems in the theory of computer science. The XL algorithm (XL for
short) is a major approach for solving the MQ problem with lineariza-
tion over a coefficient field. Furthermore, the hybrid approach with XL
(h-XL) is a variant of XL guessing some variables beforehand. In this
paper, we present a variant of h-XL, which we call the polynomial XL
(PXL). In PXL, the whole n variables are divided into k variables to
be fixed and the remaining n− k variables as “main variables”, and we
generate a Macaulay matrix with respect to the n − k main variables
over a polynomial ring of the k (sub-)variables. By eliminating some
columns of the Macaulay matrix over the polynomial ring before guess-
ing k variables, the amount of operations required for each guessed value
can be reduced compared with h-XL. Our complexity analysis of PXL
(under some practical assumptions and heuristics) gives a new theoreti-
cal bound, and it indicates that PXL could be more efficient than other
algorithms in theory on the random system with n = m, which is the
case of general multivariate signatures. For example, on systems over the
finite field with 28 elements with n = m = 80, the numbers of operations
deduced from the theoretical bounds of the hybrid approaches with XL
and Wiedemann XL, Crossbred, and PXL with optimal k are estimated
as 2252, 2234, 2237, and 2220, respectively.

Keywords: MQ problem, MPKC, XL, hybrid approach, Macaulay ma-
trices

1 Introduction

In the field of computer science, the problem of solving a multivariate polynomial
system of degree ≥ 2 over a finite field (the MP problem) is one of the most
important problems, where “solve” means to find (at least) one root of the
system. The particular case where polynomials are all quadratic is called the
MQ problem, and both the MP and MQ problems are known to be NP-hard [30].
Moreover, the hardness of the MQ problem is nowadays applied to constructing
various cryptosystems (e.g., multivariate public key cryptosystems (MPKCs)

⋆⋆ This research was conducted while at the University of Tokyo.

such as UOV [37]). Therefore, the analysis even for the quadratic case is a very
important task both in theory and in practice, and thus we mainly focus on
solving the MQ problem in this paper.

A precise definition of the MQ problem is the following: Let n and m be
positive integers, and let q be a power of a rational prime p. Given a sequence
F = (f1, . . . , fm) of m quadratic polynomials f1, . . . , fm in n variables x1, . . . , xn

over a finite field Fq of q elements, the MQ problem requires to find at least one
(a1, . . . , an) ∈ Fn

q such that fi(a1, . . . , an) = 0 for all i with 1 ≤ i ≤ m. Through-
out the rest of this paper, we deal with only the case of n ≤ m (overdetermined
case). This is because algorithms solving the overdetermined MQ problem can
be easily applied to the case of n > m, since, after the values of n−m variables
are randomly specified, the resulting system will have a solution in most cases.
Furthermore, this paper evaluates the efficiency of algorithms solving the MQ
problem by substituting specific parameters into the asymptotic complexity for-
mula following the security evaluation for various multivariate signatures [8,9,27].

In the literature, there are various methods for solving the MQ problem such
as Gröbner basis method, Linearization, resultant-based method [15, Chapter 3],
and Wu’s method [53]. In particular, Gröbner basis method is a generic method
to solve the MQ problem. The most classical method to compute Gröbner bases
is Buchberger’s algorithm [11], and ones of the currently most efficient algorithms
are Faugère’s F4 and F5 algorithms [23,24]. When the ideal generated by F is
zero-dimensional, namely the number of (affine) roots of F over an algebraic
closure of Fq is finite, once a Gröbner basis for the input F is computed for a
given monomial order (typically a graded reverse lexicographic order is chosen
for practical efficiency) with the above algorithms, the FGLM conversion [25]
enables us to obtain its lexicographical Gröbner basis, from which roots of F
can be easily derived [16, Chapter 3].

As a linearization-based algorithm, Courtois et al. [14] proposed the XL algo-
rithm at EUROCRYPT 2000, and this algorithm is an extension of Relineariza-
tion algorithm [38]. The main idea of XL, which is already used in [41,42] by
Lazard in order to analyze Buchberger’s algorithm, is: Linearize the given sys-
tem by regarding each monomial as one variable, and then, similarly to F4, use
linear algebra to the coefficient matrix of the linearized system. More concretely,
we first construct a shift S of F , that is, the set of polynomials of the form t ·fi
for all 1 ≤ i ≤ m with monomials t up to given degree. By linearizing the system
defined by S , we then generate its coefficient matrix (this matrix is nothing but
a Macaulay matrix of S), and compute its reduced row echelon form (RREF) by
the row reduction (Gaussian elimination). If the shift S is sufficiently large, then
the number of linearly independent polynomials in S becomes close to the total
number of monomials of degree up to the maximal degree of polynomials in S ,
and hence a univariate equation would be obtained from RREF of the Macaulay
matrix. We then solve the obtained univariate equation and repeat such pro-
cesses with respect to the remaining variables. Note that XL is considered to be
a redundant variant of F4 algorithm (see [1,2] for details). Furthermore, Yang et
al. [56] analyzed a variant of the XL algorithm called Wiedemann XL (WXL),

2

which adopts Wiedemann’s algorithm [52] instead of row reduction algorithms
in the XL framework. WXL provides another complexity estimate that is used
to evaluate the security of various MPKCs such as UOV [9].

One of the most effective improvements of XL is to apply the hybrid ap-
proach [7,55] (first proposed as FXL in [55] for XL, in which the “F” stands
for “fix”), which is proposed as an approach applying an MQ solver such as
F4, F5, or XL efficiently. This approach fixes the values of k among n variables
(say x1, . . . , xk), and then solves the remaining system in the n − k variables
xk+1, . . . , xn using an MQ solver. These processes are iterated until a solution
is found. In the case of n ≈ m, the hybrid approach may be effective, since the
gain obtained by working on systems with less variables may overcome the loss
due to the exhaustive search on the fixed variables. In this paper, we call the
hybrid approach with XL (resp. WXL) h-XL (resp. h-WXL). Furthermore, Joux
and Vitse proposed the Crossbred algorithm as a practical efficient algorithm
for solving MQ systems over the binary field in 2017 [35]. This Crossbred is
constructed based on h-XL by eliminating parts of Macaulay matrices before
fixing the values of some variables. In this paper, we propose a new variant of
XL following this direction to further reduce the time complexity.

Our contributions In this paper, we propose a new variant of the XL algo-
rithm, which we call polynomial XL (PXL), as an improvement of h-XL. With
notation same as in h-XL described above, the main idea of our improvement
is the following: Before fixing the values of the variables x1, . . . , xk, we partly
perform Gaussian elimination on a Macaulay matrix over the polynomial ring
Fq[x1, . . . , xk], with keeping x1, . . . , xk as indeterminates. More specifically, for
a given MQ system, namely a sequence F = (f1, . . . , fm) ∈ Fq[x1, . . . , xn]

m of m
quadratic (not necessarily homogeneous) polynomials f1, . . . , fm, we first regard
each fi as a polynomial in (Fq[x1, . . . , xk])[xk+1, . . . , xn], and construct a shift
of F by multiplying all fi’s by monomials in xk+1, . . . , xn (up to some degree).
We then generate the Macaulay matrix PM of the shift with respect to a graded
monomial order in xk+1, . . . , xn, where PM is a polynomial matrix with entries
in the polynomial ring Fq[x1, . . . , xk]. Here, due to the gradedness of the mono-
mial order, PM is almost upper-block triangular, and all of its (nearly-)diagonal
blocks are matrices with entries in Fq, not in Fq[x1, . . . , xk]. Thus we can execute
row operations on these blocks efficiently, and as a result, we also obtain a partly-
reduced matrix. Under some practical assumption and heuristic (Assumption 3
and Heuristic 1) such as the semi-regularity of a polynomial sequence, the size
of the uneliminated part of this resulting matrix is expected to be much smaller
than that of the original one (e.g., in the case where n = m = 40 and k = 10, the
sizes of the original matrix and the uneliminated part are approximately 230 and
221, respectively), so that the amount of manipulations for each guessed value
can be reduced compared with h-XL. As we will see in Subsection 4.3 below, this
enables us to solve the system with smaller complexity for some parameters.

We also discuss the time and space complexities of our PXL, and theoreti-
cally compare them with those of h-XL, h-WXL, and Crossbred. Comparing the

3

time complexities, we show that, under some practical assumptions and heuristic
(Assumptions 2 and 3, and Heuristic 1 below) such as the affine semi-regularity
of polynomial sequences, our PXL would be the most efficient in theory for the
case of n ≈ m, see Table 1 for details. For example, on the system over F28

with n = m = 80, the numbers of operations in Fq required for the execution of
h-XL, h-WXL, Crossbred, and PXL are estimated as 2252, 2234, 2237, and 2220,
respectively. On the other hand, in terms of the space complexity, PXL might be
not well compared to h-WXL since the sparsity of the Macaulay matrix is not
maintained through an execution of PXL. Therefore, the relationship between
PXL and h-WXL can be seen as a trade-off between time and memory.

Organizations The rest of this paper is organized as follows: Section 2 reviews
the XL algorithm and the hybrid approach. Section 3 is devoted to describing
the proposed algorithm PXL. We estimate the time complexity, and theoretically
compare it with those of h-XL, h-WXL, and Crossbred in Section 4, and Section 5
introduces experimental results obtained by our (unoptimized) implementation
of PXL. Finally, Section 6 is devoted to the conclusion, where we summarize
the key points and suggest possible future works. Also in Appendix A, we recall
semi-regular polynomial sequences and their properties.

2 Preliminaries

In this section, we recall the definition of the XL algorithm [14], and discuss its
complexity. We also explain the hybrid approach, which combines an exhaustive
search with an MQ solver such as XL.

2.1 Notation and Macaulay matrices

We first fix the notations that are used throughout the rest of this paper. Let
X = {x1, . . . , xn} be a set of n variables, and T (X) denote the set of monomials
in x1, . . . , xn. For each non-negative integer d, we also denote by T (X)d (resp.
T (X)≤d) the set of all monomials in x1, . . . , xn of degree d (resp. less than or
equal to d). Namely, we set

T (X) := {xα1
1 · · ·xαn

n | (α1, . . . , αn) ∈ (Z≥0)
n},

T (X)d := {xα1
1 · · ·xαn

n ∈ T (X) | α1 + · · ·+ αn = d},
T (X)≤d := T (X)0 ∪ · · · ∪ T (X)d ={xα1

1 · · ·xαn
n ∈ T (X) | α1 + · · ·+ αn ≤ d}.

Once X = {x1, . . . , xn} is fixed, we may write T (X), T (X)d, and T (X)≤d as
T , Td, and T≤d, respectively. For a commutative ring A of unity, we denote
by A[X] = A[x1, . . . , xn] the polynomial ring with n variables X = {x1, . . . , xn}
over A. The total degree of f ∈ A[X] is denoted by deg(f), and for a monomial
t ∈ T (X), let coeff(f, t) denote the coefficient of t in f . When F is a set or
sequence of polynomials in A[X], the ideal of A[X] generated by F is denoted
by ⟨F ⟩A[X] or simply ⟨F ⟩. In particular, when F is a finite set {f1, . . . , fm},

4

we denote it by ⟨f1, . . . , fm⟩A[X] or ⟨f1, . . . , fm⟩. For a subset or sequence F of
polynomials in A[X], and for a subset T ⊂ T (X), we set T · F = {t · f : t ∈
T, f ∈ F}, which is called the shift of F by T (we also call a union of shifts a
shift). As a particular but important case, we define the following shifts:

Sd(F) :=
⋃

f∈F≤d

T (X)d−deg(f) · {f} = {tf : f ∈ F≤d, t ∈ T (X)d−deg(f)},

S≤d(F) := S0(F) ∪ · · · ∪ S (X)d = {tf : f ∈ F≤d, t ∈ T (X)≤d−deg(f)}

with F≤d := {f ∈ F : deg(f) ≤ d} for each non-negative integer d, where “S ”
stands for “shift”. In the case where F≤d is empty, we set Sd(F) := {0} and
S≤d(F) := {0}. We may write Sd(F) and S≤d(F) simply by Sd and S≤d

respectively, when F is fixed.
Here, we recall the definition of Macaulay matrices. Let ≺ be a monomial

order on T (X). For a sequence F = (f1, . . . , fm) ∈ A[X]m and an ordered
subset T = {t1, . . . , tℓ} ⊂ T (X) with t1 ≻ · · · ≻ tℓ, we define the Macaulay
matrix M≺(F, T) of F with respect to T as an (m × ℓ)-matrix over R whose
(i, j)-entry is the coefficient of tj in fi, say

M≺(F, T) :=


t1 ··· tℓ

f1 coeff(f1, t1) · · · coeff(f1, tℓ)
...

...
...

fm coeff(fm, t1) · · · coeff(fm, tℓ)

.

When ≺ is clear from the context, we simply denote it by M(F, T).
Conversely, for an (m×ℓ)-matrix M = (ai,j) over A and for T given as above,

let M−1
≺ (M,T) (or M−1(M,T) simply) denote a unique list F ′ of polynomials in

A[X] such that M≺(F
′, T) = M , namely, we set gi :=

∑ℓ
j=1 ai,jtj for 1 ≤ i ≤ m,

and M−1
≺ (M,T) := (g1, . . . , gm).

Example 1. Consider the following three quadratic polynomials (over R = Z) in
two variables x1 and x2:

f1 = 5x2
1 + 6x1x2 + 4x1 + 5x2 + 3,

f2 = 4x2
1 + 5x1x2 + 3x2

2 + 6x1 + 2x2 + 2,

f3 = 2x2
1 + 4x1x2 + 2x2

2 + 6x1 + x2 + 2.

When we put F := (f1, f2, f3), we construct a Macaulay matrix of the shift
S3 = S3(F) = T1 · F = {xifj : 1 ≤ i ≤ 2, 1 ≤ j ≤ 3}, where T1 is the set
of monomials in x1 and x2 of degree one. We order elements of S3 as follows:
S3 = {x1f1, x1f2, x1f3, x2f1, x2f2, x2f3}. Let ≺glex be the graded lexicographic

order on the monomials in x1 and x2 with x1 ≻ x2, that is, x
α1
1 xα2

2 ≺glexx
β1

1 xβ2

2

if α1 + α2 < β1 + β2, or α1 + α2 = β1 + β2 and xβ1

1 xβ2

2 is greater than xα1
1 xα2

2

with respect to the lexicographical order with x1 ≻ x2. When we order elements
of T≤3 (which is the set of monomials in X = {x1, x2} of degree ≤ 3) by ≺glex,

5

the Macaulay matrix M≺glex
(S3,T≤3) of S3 with respect to T≤3 is given as

follows:

M≺glex
(S3,T≤3) =



x3
1 x2

1x2 x1x
2
2 x3

2 x2
1 x1x2 x2

2 x1 x2 1

x1f1 5 6 0 0 4 5 0 3 0 0
x1f2 4 5 3 0 6 2 0 2 0 0
x1f3 2 4 2 0 6 1 0 2 0 0
x2f1 0 5 6 0 0 4 5 0 3 0
x2f2 0 4 5 3 0 6 2 0 2 0
x2f3 0 2 4 2 0 6 1 0 2 0

.

In the XL algorithm in Subsection 2.2, the reduced row echelon form of a
Macaulay matrix of a shift of F is computed, with R a finite field Fq of order
q, where q is a power of a prime. This corresponds to computing a basis G of
the Fq-vector space generated by the shift, and clearly the computed basis also
generates the ideal ⟨F ⟩Fq [X], i.e., ⟨G⟩Fq [X] = ⟨F ⟩Fq [X]. In general, G computed
as above is not necessarily a Gröbner basis of ⟨F ⟩Fq [X], but we will review in
Subsection 2.3 below that for sufficiently large shifts, G becomes a Gröbner basis.

2.2 XL algorithm

This subsection briefly reviews the XL algorithm (which stands for eXtended
Linearizations), which is proposed in [14] by Courtois et al. to find a solution
to a system of multivariate polynomials over finite fields. We write down the
XL algorithm in Algorithm 1 below, where the notations are the same as in the
previous subsections. We also suppose that the input system is zero-dimensional,
namely, the input system has only finite (affine) roots over an algebraically closed
field. Note also that the input polynomials are assumed to be all quadratic
as in the original paper [14], but in fact, their idea is applicable to a general
multivariate system of higher degree.

Algorithm 1 (XL, [14, Section 3, Definition 1]).

Input: A sequence F = (f1, . . . , fm) ∈ Fq[x1, . . . , xn]
m of (not necessarily homo-

geneous) quadratic polynomials, and a natural number D with D ≥ 2.
Output: A solution over Fq to fi(x1, . . . , xn) = 0 for 1 ≤ i ≤ m.

(1) Multiply: Computing all the products t · fi with t ∈ T≤D−2, construct the
shift S≤D := S≤D(F) = T≤D−2 · F , which is the shift of F by T≤D−2.

(2) Linearize: Make the Macaulay matrix M := M≺(S≤D,T≤D) with respect
to some elimination monomial order ≺ such that all the terms containing
one variable (say xn) are eliminated last. Compute the reduced row echelon
form B of M , and put G := M−1

≺ (B,T≤D). A univariate polynomial g(xn)
in xn of degree at most D is surely contained in G when D is sufficiently
large.

(3) Solve: Compute the roots in Fq of g by e.g., combining square-free, distinct-
degree and equal-degree factorization algorithms such as [58], [36] and [31]
respectively.

6

(4) Repeat: Substitute a root into xn, simplify the equations of G, and then find
the values of the other variables.

Note that in the generation of M≺(S≤D,T≤D), one can sort elements in S≤D

arbitrarily. We also note that, in XL, it suffices to obtain a univariate polynomial
in Step (3) to continue the procedures, whence we do not need to compute a
Gröbner basis. On the other hand, XL can be described as a redundant variant
of F4, supposing an assumption that the input system F has only one solution
over a finite field, see [2] for details. Moreover, we remark that we can use any
other monomial order (e.g., a graded monomial order), if we execute only Steps
(1) and (2) to obtain a Gröbner basis of ⟨F ⟩ (in this case, the computation can
be viewed as a special case of Lazard’s algorithm [41,42]). Even in this case, we
can obtain a root easily from the computed Gröbner basis, under an assumption
similar to [2], see Remark 1 below for details.

The condition of the natural number D for XL to continue the procedures is
discussed in the next subsection.

2.3 Degree bounds for the success of XL

Algorithm 1 has an input parameterD called a degree bound, and it is known that
the algorithm surely finds a zero of ⟨F ⟩ for sufficiently large D. This subsection
reviews bounds on such D both in theory and in practice. Let R := K[x1, . . . , xn]
be the polynomial ring of n variables over a field K, and F = (f1, . . . , fm) be
a sequence of not necessarily homogeneous polynomials in R of positive degrees
d1, . . . dm, respectively. We denote by f top the maximal homogeneous part of
f ∈ R∖{0}, and put F top := (f top

1 , . . . , f top
m). Put R′ = R[y] for an extra variable

y for homogenization. We also denote by fh the homogenization of f ∈ R∖{0} by
y, say fh = ydeg(f)f(x1/y, . . . , xn/y), and put Fh := (fh

1 , . . . , f
h
m) ∈ (R′)m. For

each d ∈ Z, let Id denote the degree-d homogeneous component of a homogeneous
ideal I of R (resp. R′), namely Id = I ∩ Rd (resp. Id = I ∩ (R′)d). We put

I≤d := I ∩R≤d with R≤d :=
⊕d

i=0 Ri for a (not necessarily homogeneous) ideal
I of R, and this kind of notation is applied to R′ and its arbitrary ideal.

A well-known (theoretical) upper bound is Dubé’s degree bound [21] given by

D(n, d) := 2
((
d2/2

)
+ d
)2n−1

with d := max{deg(fi) : 1 ≤ i ≤ m}. For any
degree D larger than or equal to the Dubé’s bound, the reduced row echelon
form of M≺(S≤D,T≤D) with S≤D = S≤D(F) and T≤D = T (X)≤D yields a
Gröbner basis of ⟨F ⟩ with respect to an elimination order ≺. Hence, for such a
D one can obtain a root of F with Algorithm 1.

However, Dubé’s degree bound would be impractical under the cryptographic
setting, and we here recall quite smaller bounds under the following assumption:

Assumption 1. The input sequence F = (f1, . . . , fm) is affine semi-regular,
namely F top = (f top

1 , . . . , f top
m) is semi-regular.

See Definition 4 in Appendix A below for the definition of affine semi-regular
sequences. Semi-regular sequences are important in the theory of solving poly-
nomial systems (cf. [3], [5]), and often (e.g., [33, Section 4.3]) the security of

7

multivariate cryptosystems is evaluated under Assumption 1. Under Assump-
tion 1, a bound for the success of XL is obtained by considering the rank of
the Macaulay matrix M≺(S≤d,T≤d), denoted by rank(M≺(S≤d,T≤d)), where
S≤d = S≤d(F) and T≤d = T (X)≤d with X = {x1, . . . , xn}. This rank is clearly
equal to the dimension dimK(⟨S≤d(F)⟩K) of the K-vector space ⟨S≤d(F)⟩K
generated by S≤d(F), and it does not depend on the order of the monomials in
T≤d. Thus, we need to investigate dimK(⟨S≤d(F)⟩K). For this, let us first recall
the following theorem, whose mathematically rigorous and correct proof is given
in [40] (or [39]) by Kudo-Yokoyama:

Theorem 1 ([40, Theorem 1 & 7, Corollary 1], [39, Theorem 1]). With
notation as above, assume that the sequence F = (f1, . . . , fm) of not necessarily
homogeneous polynomials satisfies Assumption 1. Let dreg(F

top) denote the de-
gree of regularity for the homogeneous ideal ⟨F top⟩R, defined as in Definition 2.
Then, for any non-negative integer d with d < dreg(F

top), we have

dimK(R′)d/⟨Fh⟩d =

d∑
i=0

dimKRd/⟨F top⟩d

with Fh := (fh
1 , . . . , f

h
m). Hence, the Hilbert series HSR′/⟨Fh⟩(z) of R′/⟨Fh⟩

satisfies

HSR′/⟨Fh⟩(z) ≡
∏m

j=1(1− zdj)

(1− z)n+1
(mod zD)

for dj := deg(fj) and D := dreg(F
top), so that Fh is dreg(F

top)-regular. More-
over, if dreg(F

top) < ∞ (which is equivalent to m ≥ n under Assumption 1),
then the number of projective zeros of ⟨Fh⟩R′ is finite at most, whence ⟨F ⟩R is
zero-dimensional.

Note that dreg(F
top) in Theorem 1 is easily computed from the Hilbert series

given in (A.3), and in fact it does not depend on F top but is determined only
by n, m, and d1, . . . , dm. From this, for fixed m and d1, . . . , dm, we set

D(n)
reg := dreg(F

top) = min

{
d

∣∣∣∣∣ coeff
(∏m

j=1(1− zdj)

(1− z)n
, td

)
≤ 0

}
,

which we interpret as ∞ if m < n. In particular, if d1 = · · · = dm = 2, we have

D(n)
reg = min

{
d
∣∣∣ coeff ((1− z)

m−n
(1 + z)

m
, td
)
≤ 0

}
.

Here, even if we do not suppose the affine semi-regularity of F , we have

⟨Fh⟩d = ⟨Sd(F
h)⟩K ∼= ⟨S≤d(F)⟩K ⊂ ⟨F ⟩≤d

as K-vector spaces, where a K-isomorphism is given by the dehomogenization
map ⟨Sd(F

h)⟩K ∋ h 7−→ h|y=1 ∈ ⟨S≤d(F)⟩K (see e.g., [17, Section 4] for
details), and therefore

dimK⟨Fh⟩d = dimK⟨Sd(F
h)⟩K = dimK⟨S≤d(F)⟩K ≤ dimK⟨F ⟩≤d.

8

Moreover, it follows that dimK(R′)d = |T (X ∪ {y})d| = dimKR≤d = |T≤d|.
Hence, as a corollary of Theorem 1, we obtain the following:

Corollary 1 (cf. [54, Proposition 1]). Under the same setting and assump-

tions as in Theorem 1, for any d with d < D
(n)
reg = dreg(F

top), we have

|T≤d| − dimK(⟨S≤d(F)⟩K) = coeff

(∏m
j=1(1− zdj)

(1− z)n+1
, zd

)
.

In particular, if the elements of F are all quadratic, then we have

|T≤d| − dimK(⟨S≤d(F)⟩K) = coeff
(
(1− z)

m−n−1
(1 + z)

m
, zd
)

for any d with d < D
(n)
reg .

In the context of the above discussion, we here list the following two kinds
of bounds on D for which Algorithm 1 finds a solution:

Heuristic but practical bound from Yang-Chen, Ars et al., and Diem’s
studies. Assuming that F is an affine semi-regular sequence of quadratic poly-
nomials, we consider a sufficient condition that a univariate polynomial in xn

is obtained in Step (2) of Algorithm 1, when we use an elimination order such
that xD

n , xD−1
n , . . . , xn, 1 are listed at the end. It is straightforward that the last

non-zero row vector of the reduced row echelon form of M(S≤D,T≤D) yields a
univariate equation of xn if rank(M(S≤D,T≤D)) is larger than the number of
columns minus D + 1, i.e.,

rank(M(S≤D,T≤D)) ≥ |T≤D| −D,

equivalently
χ(D) := |T≤D| − dimK(⟨S≤D(F)⟩K) ≤ D, (2.1)

which is used in [17] and [43]. Thus, it follows from Corollary 1 that the minimum
D, denoted by DXL here, required for the success of Step (2) of Algorithm 1 is
upper-bounded by

DXL ≤ D0 := min
{
d
∣∣∣ coeff ((1− z)

m−n−1
(1 + z)

m
, zd
)
≤ d

}
(2.2)

if DXL < D
(n)
reg . The condition coeff((1− z)m−n−1(1 + z)m, zd) ≤ d is equivalent

to that the zd-coefficient of (1− z)m−n−1(1+ z)m − (1− z)−2 is negative (cf. [2,

Section 5.1]). Note that, even when DXL ≥ D
(n)
reg , it would be possible that Step

(2) of Algorithm 1 produces a univariate polynomial at the degree equal to this
upper-bound: See [54, Section 4], where the authors of [54] say “the minimum
D required for the reliable termination of XL is given by D0”. From this, we
may estimate DXL ≈ D0. Assuming the Maximum Rank Conjecture (which is
equivalent over an infinite field to Fröberg conjecture [26], see [47] for a proof of

9

the equivalency), Diem also proved in [17, Theorem 1] that D0 is a lower bound
for (2.1) to be satisfied. One can easily confirm that D0 tends to be much smaller
than Dubé’s degree bound (e.g., the value of D0 on systems with n = 10 and
m = 11 is 11, whereas Dubé’s degree bound on the same system is approximately
10309).

Remark 1. In the case where we use a graded monomial order as noted in Sub-
section 2.2, we consider the inequality χ(D) ≤ 1 instead of (2.1) as a sufficient
condition for XL to compute a solution, supposing the following (i) and (ii):

(i) F has at most one root (counted with multiplicity) over an algebraic closure
K of K (cf. [2, Condition 1] for a similar condition).

(ii) F top has no root other than (0, . . . , 0).

Under these assumptions, there exists a sufficiently large integer d such that the
above inequality definitely holds for anyD withD ≥ d. Indeed, it follows from (i)
and (ii) that the number of projective zeros overK of Fh is also finite (in fact one
at most), whence there exists d > 0 such that for any D with D ≥ d, the value of
the Hilbert function HFR′/⟨Fh⟩(D) = dimK(R′/⟨Fh⟩)D = χ(D) is equal to the

number of roots (counted with multiplicity) overK of F , see e.g., [13, Proposition
3.3.6] or [54, Corollary 10] for a proof (see also [39, Lemma 2.2.2]). In this case,
we remark that the reduced Gröbner basis of ⟨F ⟩ is {x1−a1, . . . , xn−an}, where
(a1, . . . , an) is the unique root of F . For m > n, we estimate

DXL ≈ D1 := min
{
d ≥ 2

∣∣∣ coeff ((1− z)
m−n−1

(1 + z)
m
, td
)
≤ 1

}
, (2.3)

by a discussion following [54, Section 4], similarly to the case of elimination
order. Note that the cases d = 0 and d = 1 are removed in (2.3), since χ(0) = 1
and χ(1) = n + 1. We also note that D1 ≥ D0. We experimentally confirmed
that, in most cases, XL for D = D1 computes a Gröbner basis of the input
system: In our experiments, we randomly generated sequences H = (h1, . . . , hm)
of quadratic non-homogeneous polynomials over F31 with no constant term for
several small n and for all m with n < m ≤ 2n. For each generated sequence
H, we choose (a1, . . . , an) ∈ Fn

31 at random, and then put fi := hi(x1, . . . , xn)−
hi(a1, . . . , an) for 1 ≤ i ≤ m and F := (f1, . . . , fm). Then each sequence F
constructed as above would satisfy the above assumptions (i) and (ii) (in fact,
F top would be semi-regular) with its unique root (a1, . . . , an), in most cases.
This construction of H and F may correspond to the general construction of
multivariate public key encryption (see e.g., [19, Section 2.2], [33, Section 4.3]).
Therefore, our experiments would be meaningful.

Expected theoretical bound from Semaev-Tenti and Kudo-Yokoyama’s
results. We also note that, as a theoretical upper-bound on DXL, we may apply
the following upper-bound on the solving degree of Gröbner basis computation:

Theorem 2 ([40, Lemma 4], [39, Theorem 3]). Let F = (f1, . . . , fm) be
a (not necessarily semi-regular) sequence of polynomials in K[x1, . . . , xn], and

10

≺ be a graded reverse lexicographic order on the monomials in x1, . . . , xn. If
dreg(F

top) < ∞, then there constructively exists a Buchberger-like algorithm A
for computing a Gröbner basis for F with respect to ≺ such that the degree of
critical S-pairs (resp. S-polynomials) appearing in the execution of A is upper-
bounded by 2dreg(F

top)− 1 (resp. 2dreg(F
top)− 2).

These upper-bounds had been proved by Tenti in his PhD thesis [51, Theo-
rem 3.65] (see also [49, Theorem 2.1] by Semaev-Tenti) under some constraints
(e.g., F contains field equations xq

i − xi for 1 ≤ i ≤ n), and Kudo-Yokoyama
extended his result to a general case in [40, Section 5] (see also [39, Section 4]
for algorithmic details). Since we can interpret the Gröbner basis computation
as repeating to execute row reductions on Macaulay matrices as in F4 [23] and
(matrix-)F5 [24], we expect that DXL ≤ 2dreg(F

top) − 1. As for the magnitude
relation between D1 and 2dreg(F

top)−1, they are not equal to each other in gen-
eral, and both D1 < 2dreg(F

top)− 1 and D1 > 2dreg(F
top)− 1 occur depending

on parameters; the former case tend to hold as m is larger than n.
Salizzoni also proved in [48] that the solving degree of mutant algorithms

(tamed in [28]) such as MutantXL [12] and MXL2 [44] is upper-bounded by
dreg(F

top) + 1, but this is not the case that we consider in this paper, since
we will construct our algorithm based on the original XL [14], not on mutant
algorithms.

2.4 Complexity

In this subsection, we estimate the time complexity of (plain) XL together with
that of its variant Wiedemann XL (WXL). Here WXL uses Wiedemann’s algo-
rithm [52] instead of Gaussian elimination in the XL framework, which was first
analyzed in [56]. Wiedemann’s algorithm generally solves sparse linear systems
more efficiently than Gaussian elimination.

Complexity of XL. We first consider plain XL (Algorithm 1), where the Lin-
earize step is clearly dominant in terms of the time complexity. Recall from
Subsection 2.3 that XL could output a solution of the input system for D equal
to or larger thanD0 given in (2.2), and here we assume to takeD to be this bound
D0. In the Linearize step, one uses linear algebra to obtain the reduced row
echelon form of a Macaulay matrix with m ·

(
n+D−2
D−2

)
rows and

(
n+D
D

)
columns.

However, in fact, the cost of this step can be estimated as that of Gaussian
elimination on a matrix with

(
n+D
D

)
rows and columns, assuming the following

practical heuristic as in [45]:

Heuristic 1. In XL, if we pick rows in M(S≤D,T≤D) at random under the
constraint that we have enough equations at each degree d ≤ D, then usually we
have a linearly independent set.

From this heuristic, the complexity of XL is roughly estimated as

O
((

n+D
D

)ω)
, (2.4)

where 2 ≤ ω < 3 is the exponent of matrix multiplication.

11

Complexity of WXL. According to [9], the complexity of WXL is estimated as

O
((

n
2

)
·
(
n+D
D

)2)
, (2.5)

whereD can be taken to beD0 given in (2.2). (We remove the constant part from
the complexity in [9], since we focus on asymptotic complexity.) WXL consumes
less memory than the plain XL, since it can deal with the Macaulay matrix as

a sparse matrix, and its memory consumption is estimated as O
((

n
2

)
·
(
n+D
D

))
,

see [52] for details.

2.5 Improving XL via hybrid approach

One of the most effective improvements of XL (Algorithm 1) is to apply the
hybrid approach [7,55], which is the best known technique for solving the MQ
problem. The hybrid approach combines an exhaustive search with an MQ solver,
and it was proposed in [7] (resp. [55]) for Gröbner basis algorithms such as F4 and
F5 (resp. XL). Specifically, given an MQ system of m equations in n variables,
the values for k (0 ≤ k ≤ n) variables are randomly guessed and fixed before
an MQ solver is applied to the system in the remaining n − k variables; this is
repeated until a solution is obtained. The hybrid approach for XL presented in
[55] is called FXL, where “F” stands for “fix”, and it is constructed by adding
the first and last steps below into Algorithm 1:

Algorithm 2 (Hybrid approach with XL (h-XL)).

Input: A sequence F = (f1, . . . , fm) ∈ Fq[x1, . . . , xn]
m of (not necessarily ho-

mogeneous) quadratic polynomials, the number k of guessed variables, and a
degree bound D.

Output: A solution over Fq to fi(x1, . . . , xn) = 0 for 1 ≤ i ≤ m.

(1) Fix: Fix the values a1, . . . , ak ∈ Fq for the k variables x1, . . . , xk randomly.

In the following two steps, we set f
(a)
i := fi(a1, . . . , ak, xk+1, . . . , xn) and

F (a) := (f
(a)
1 , . . . , f

(a)
m) with a = (a1, . . . , ak).

(2) Multiply: Construct the shift S
(k)
≤D(F (a)) := T

(k)
≤D−2 · F (a), where we set

T
(k)
≤D−2 := T (X(k))≤D−2 with X(k) = {xk+1, . . . , xn}.

(3) Linearize: Compute the reduced row echelon form of M(S
(k)
≤D(F (a)),T

(k)
≤D),

where we set T
(k)
≤D := T (X(k))≤D.

(4) Solve: Compute the root of a univariate polynomial obtained in Linearize.
(5) Repeat: Find the values of the other variables.
(6) If there exists no solution, return to (1) Fix.

The complexities of the hybrid approaches using the plain XL and WXL as MQ
solvers are estimated as

O
(
qk ·

(
n−k+D

D

)ω)
, (2.6)

O
(
qk ·

(
n−k
2

)
·
(
n−k+D

D

)2)
, (2.7)

12

respectively, by using the estimations (2.4) and (2.5). Here D can be taken as

D
(n−k)
0 := min

{
d
∣∣∣ coeff ((1− t)

m−(n−k)−1
(1 + t)

m
, td
)
≤ d

}
(2.8)

from (2.2). In the use of the hybrid approach, the number k of guessed variables is
chosen such that the function inside brackets in (2.6) or (2.7) takes the minimum
value.

2.6 Crossbred Algorithm

This subsection recalls the Crossbred algorithm proposed by Joux and Vitse,
which is a practical efficient algorithm for solving MQ systems over the binary
field [35]. Our proposed algorithm described in Section 3 follows a framework
similar to the Crossbred algorithm. Note that we here change the notation of
Crossbred such that it fixes the values of k variables randomly for consistency
with the description of our proposed algorithm.

We here roughly describe the Crossbred algorithm. The Crossbred algorithm
takes the number k of guessed variables and the degrees d and D with d ≤ D
as parameters. In this Crossbred algorithm, we perform some linear algebra
operations on Macaulay matrices before fixing the values of the k variables as
in h-XL. More specifically, for a given MQ system F ∈ F2r [x1, . . . , xn]

m, the
Crossbred algorithm can be described by the following two steps: The first step
generates the Macaulay matrix of the shift of F with degree ≤ D, and then by
linear algebra on the Macaulay matrix obtains a sequence P = (p1, . . . , pr) of
some polynomials whose degrees in the remaining n−k variables are lower than
or equal to d. The second step then performs linear algebra on the Macaulay
matrix of the shift of the polynomials obtained by fixing the value of k variables
in F and P with degree ≤ d. If the second step obtains a univariate polynomial,
then one can find a solution as in the plain XL algorithm. This second step is
iterated O(qk) times until one solution is found.

In Subsection 4.3 below, we estimate the complexity of the Crossbred algo-
rithm by Multivariate Quadratic Estimator by the Technology Innovation Insti-
tute [22,34]. We refer to [6,20,46] for details on the complexity of the Crossbred
algorithm.

3 Main Algorithm

In this section, we propose a new variant of the XL algorithm for solving the
MQ problem of m equations in n variables over Fq, in the case where n ≤ m.
We first discuss Macaulay matrices over polynomial rings, and second describe
the outline of our proposed algorithm “polynomial XL (PXL)”. After that, de-
tails of the most technical step will be described in Subsection 3.3, and degree
bounds for the success of PXL will be discussed in Subsection 3.4. Further-
more, Subsection 3.5 explains the relationship of PXL with FXL and Cross-
bred, and Subsection 3.6 gives a toy example. Throughout this section, let

13

F = (f1, . . . , fm) ∈ Fq[x1, . . . , xn]
m be a sequence of m quadratic (and not nec-

essarily homogeneous) polynomials in n variables x1, . . . , xn over Fq, where q is
a power of a prime.

3.1 Macaulay matrices over polynomial rings

In this subsection, we fix the notations that are used in the rest of this sec-
tion. In particular, we construct a Macaulay matrix over the polynomial ring
Fq[x1, . . . , xk] with respect to xk+1, . . . , xn for 1 ≤ k ≤ n, where each entry
belongs to Fq[x1, . . . , xk]. Namely, a Macaulay matrix whose coefficient ring is
Fq[x1, . . . , xk] will be constructed. Such a Macaulay matrix, together with our
construction, plays a key role in the main algorithm in Subsection 3.2 below.
Note that most of the notations given below are similar to those defined in
Subsection 2.1 for the case where the coefficient ring is a general ring.

In the following, an integer k is fixed, unless otherwise noted. Similarly
to the hybrid approach reviewed in Subsection 2.5, the main algorithm di-
vides x1, . . . , xn into k variables x1, . . . , xk and the remaining n − k variables
xk+1, . . . , xn, and then regards f1, . . . , fm as elements of the polynomial ring

(Fq[x1, . . . , xk])[xk+1, . . . , xn]. As in Subsection 2.1, we define subsets T
(k)
d ,

T
(k)
d′;d, T

(k)
≤d , S

(k)
d , S

(k)
d′;d, and S

(k)
≤d of (Fq[x1, . . . , xk]) [xk+1, . . . , xn] as follows:

Putting X(k) = {xk+1, . . . , xn}, we set

T
(k)
d := T (X(k))d =

{
x
αk+1

k+1 · · ·xαn
n ∈ T (X(k)) :

n∑
i=k+1

αi = d

}
,

T
(k)
d′;d := T

(k)
d′ ∪ T

(k)
d′+1 ∪ · · · ∪ T

(k)
d , T

(k)
≤d := T

(k)
0;d = T (X(k))≤d

for 0 ≤ d′ ≤ d, and

S
(k)
d :=

⋃
1≤i≤d

T (X(k))d−2 · {fi} = {tfi : 1 ≤ i ≤ m, t ∈ T (X(k))d−2}

for 2 ≤ d. We also set S
(k)
0 := {0}, S

(k)
1 := {0}, and

S
(k)
d′;d := S

(k)
d′ ∪ S

(k)
d′+1 ∪ · · · ∪ S

(k)
d , S

(k)
≤d := S0;d

for 0 ≤ d′ ≤ d. In particular, S
(k)
≤d is the shift of F by the set T

(k)
≤d−2 of monomials

in xk+1, . . . , xn of degree ≤ d− 2.

Here, we construct a Macaulay matrix of the shift S
(k)
≤D with respect to T

(k)
≤D

for D ≥ 2, as in the plain XL. For this, unlike the plain XL (mainly adopting an
elimination order described in Section 2), we use a graded monomial order (e.g.,
graded lexicographic order), which is a monomial order first comparing the total

degree of two monomials. Furthermore, as for the order of elements in S
(k)
≤D, we

also use an order that first compares the degree of two polynomials.
To simplify the notation, once F , k, and D are fixed, we denote the Macaulay

matrix M(S
(k)
≤D,T

(k)
≤D) constructed as above by PM to emphasize that it is

14

a polynomial matrix, and call it a Macaulay matrix of F at degree D over
Fq[x1, . . . , xk]. For two integers d1 and d2 with 2 ≤ d1 ≤ D and 0 ≤ d2 ≤ D,

we also denote by PM[S
(k)
d1

,T
(k)
d2

] the submatrix of PM whose rows (resp.

columns) correspond to polynomials of S
(k)
d1

(resp. monomials of T
(k)
d2

). Then,

PM is divided by submatrices PM[S
(k)
d1

,T
(k)
d2

] for 2 ≤ d1 ≤ D and 0 ≤ d2 ≤ D.
Thanks to our choice of a graded monomial order together with the quadratic-

ity of F , the following lemma holds:

Lemma 1. For a sequence F = (f1, . . . , fm) of quadratic and not necessarily
homogeneous polynomials in Fq[x1, . . . , xn] and for positive integers k and D
with 1 ≤ k ≤ n and D ≥ 2, let PM be a Macaulay matrix of F at degree D
over Fq[x1, . . . , xk]. Then, for each integer d with 2 ≤ d ≤ D, the submatrix

PM[S
(k)
d ,T

(k)
d′] with d′ /∈ {d, d− 1, d− 2} is a zero matrix, and all elements of

PM[S
(k)
d ,T

(k)
d] belong to Fq.

Proof. Each fi is written as

fi = qi(xk+1, . . . , xn) +

n∑
j=k+1

ℓi,j(x1, . . . , xk)xj + ci(x1, . . . , xk) (3.1)

for a quadratic form qi(xk+1, . . . , xn) in Fq[xk+1, . . . , xn], linear polynomials
ℓi,j(x1, . . . , xk)’s in Fq[x1, . . . , xk], and a quadratic polynomial ci(x1, . . . , xk) in

Fq[x1, . . . , xk]. Therefore, multiplying it by a monomial t ∈ T
(k)
d−2 in xk+1, . . . , xn

of degree d− 2, we have

tfi = tqi(xk+1, . . . , xn) +

n∑
j=k+1

ℓi,j(x1, . . . , xk)txj + ci(x1, . . . , xk)t,

where tqi is a form in Fq[xk+1, . . . , xn] of degree d and where each txj is a mono-
mial in Fq[xk+1, . . . , xn] of degree d − 1. This expression of the shift tfi, which

corresponds to a row of PM[S
(k)
d ,T

(k)
≤d] and vice versa, implies the assertions

of the lemma. □

Due to this lemma, we can partly perform row reduction on PM, which is a
key operation of the proposed algorithm in the next subsection.

3.2 Outline of our algorithm PXL

This subsection describes the proposed algorithm polynomial XL (PXL). As
in the h-XL described in Subsection 2.5, PXL first sets the first k variables
x1, . . . , xk as guessed variables, whereas the main difference between our PXL
and h-XL is the following: While h-XL performs row reduction after substituting
actual k values to x1, . . . , xk, PXL partly performs Gaussian elimination before
fixing k variables. These manipulations are possible due to our construction of
Macaulay matrices over Fq[x1, . . . , xk] described in Lemma 1.

Here, we give the outline of PXL. The notations are same as those in Sub-
section 3.1.

15

Algorithm 3 (Polynomial XL).

Input: A sequence F = (f1, . . . , fm) ∈ Fq[x1, . . . , xn]
m of not necessarily homo-

geneous polynomials of degree 2, the number k of guessed variables, and a
degree bound D.

Output: A solution over Fq to fi(x1, . . . , xn) = 0 for 1 ≤ i ≤ m.

(1) Multiply: Compute the set S
(k)
≤D of all the products t · fi with t ∈ T

(k)
≤D−2.

(2) Linearize(1): Generate PM := M(S
(k)
≤D,T

(k)
≤D), which is the Macaulay

matrix of F at degree D over Fq[x1, . . . , xk], and partly perform Gaussian
elimination on it. (The details will be described in Subsection 3.3 below.)

(3) Fix: Fix randomly the values for the k variables x1, . . . , xk in the resulting
matrix of Linearize(1).

(4) Linearize(2): Compute the reduced row echelon form of the resulting matrix
of step 3.

(5) Solve: If step 4 yields a univariate polynomial, compute its root.
(6) Repeat: Substitute the root, simplify the equations, and then repeat the pro-

cess to find the values of the other variables.
(7) If there exists no solution, return to (3) Fix.

Note that the definition of ‘the resulting matrix of Linearize(1)’ is given in the
next paragraph.

Let us here describe only the first two steps, since the last four steps are

executed similarly to h-XL. The Multiply step generates the shift S
(k)
≤D of

F by T
(k)
≤D−2, defined in Subsection 3.1, by regarding each polynomial as one

in (Fq[x1, . . . , xk])[xk+1, . . . , xn]. At the beginning of the Linearize(1) step,
PM is a polynomial matrix with entries in the polynomial ring Fq[x1, . . . , xk],
but by Lemma 1 it is almost upper-block triangular, and all of its (nearly-
)diagonal blocks are matrices with entries in Fq. By utilizing this property, the
Linearize(1) step repeats to transform such a block into the row echelon form
and to eliminate entries of its upper blocks. After the Linearize(1) step, the

resulting Macaulay matrix is supposed to be of the form

(
I ∗
0 A

)
, by interchang-

ing rows (and columns). Here I is an identity matrix, and A is a matrix over
Fq[x1, . . . , xk]. Then, the last four steps deal with only the submatrix composed
of rows and columns including no leading coefficient of the reduced part, which
corresponds to A. We call this submatrix A the resulting matrix of Linearize(1).

3.3 Details of Linearize(1) step

In this subsection, we describe the details of the Linearize(1) step in the pro-
posed algorithm, and show that it works well as row operations on PM. We
use the same notations as in Subsection 3.1. In the following, we also denote by

PM[S
(k)
d ,T

(k)
d′] the same part even after PM is transformed.

The Linearize(1) step is mainly performed on each PM[S
(k)
d ,T

(k)
(d−2);d],

starting from d = D down to 2. Each iteration d consists of the following three
substeps:

16

(d)-1. Perform Gaussian elimination on PM[S
(k)
d ,T

(k)
d].

(d)-2. Perform the same row operations as those of (d)-1 on the submatrix

PM[S
(k)
d ,T

(k)
(d−2);(d−1)].

(d)-3. Using the leading coefficients of the resulting PM[S
(k)
d ,T

(k)
d] (namely

the reduced row echelon form of the initial PM[S
(k)
d ,T

(k)
d]), eliminate

the corresponding columns of PM. Here, a leading coefficient is the left-
most nonzero entry in each row of a row echelon form of a matrix.

Here, we show that the Linearize(1) step described above works well as
row operations on PM. Note that for any 3 ≤ d ≤ D, the (d)-3 step does

not affect the submatrix PM[S
(k)
≤(d−1),T

(k)
d], since PM[S

(k)
≤(d−1),T

(k)
d] is al-

ways a zero matrix by Lemma 1. This indicates that PM[S
(k)
d ,T

(k)
≤D] does not

change from the original structure at the beginning of the (d)-1 step. There-
fore, from Lemma 1, the manipulations in the (d)-1 and (d)-2 steps can be
performed correctly and seen as row operations on PM. Furthermore, the (d)-3
step can be also performed correctly, since the leading coefficients of the resulting

PM[S
(k)
d ,T

(k)
d] belong to Fq. As a result, we have that all the manipulations

are practicable and regarded as row operations on the whole PM.

After the Linearize(1) step, all manipulations are performed on the re-
sulting matrix of Linearize(1) obtained by concatenating rows and columns

including no leading coefficient of the row echelon form PM[S
(k)
d ,T

(k)
d] with

2 ≤ d ≤ D.

Remark 2. As in the XL algorithm, in practice, PXL randomly chooses approx-

imately |T (k)
≤D | independent rows from the Macaulay matrix with |S (k)

≤D| rows
(namely we suppose a heuristic similar to Heuristic 1), and executes the Lin-
earize(1) step on the submatrix composed of chosen row vectors. We then
assume that the rank of the resulting matrix of Linearize(1) is large enough to
yield a univariate equation, and we experimentally confirmed that this assump-
tion is correct in most cases.

3.4 Degree bounds for the success of PXL

This subsection estimates the minimum value DPXL where PXL with input
D = DPXL succeeds in finding a solution, under a practical assumption (As-
sumption 2 below), which requires conditions similar to (i) and (ii) in Remark 1.
Note that the success of PXL means the following: For some evaluation of
a = (a1, . . . , ak) ∈ Fk

q to (x1, . . . , xk) in the Fix step, the remaining steps finds a

solution (ak+1, . . . , an) ∈ Fn−k
q to the multivariate system in xk+1, . . . , xn corre-

sponding to the resulting matrix of the Linearize(1) step, and then (a1, . . . , an)
is exactly a solution to the original system.

To estimate the value of DPXL, we discuss the rank of the resulting ma-
trix of Linearize(1). Recall from Subsection 3.2 that the Linearize(1) step

17

transforms the Macaulay matrix into a matrix of the form

(
I ∗
0 A

)
, by inter-

changing rows (and columns). Here I is an identity matrix, and A is a matrix
over Fq[x1, . . . , xk]. The resulting matrix of the Linearize(1) step is A, and let
α be the number of columns of A. For a = (a1, . . . , ak) ∈ Fk

q , we denote by

A(a) (resp. M(S
(k)
≤D,T

(k)
≤D)(a)) the matrix obtained by substituting (a1, . . . , ak)

to (x1, . . . , xk) in A (resp. M(S
(k)
≤D,T

(k)
≤D)). Since an evaluation of x1, . . . , xk

and elementary row operations over Fq[x1, . . . , xk] (without multiplying rows by
elements in Fq[x1, . . . , xk] of degree ≥ 1) are commutative, we have the following:

Lemma 2. With notation as above, we have

α− rank(A(a)) = |T (k)
≤D | − rank(M(S

(k)
≤D,T

(k)
≤D)(a)).

Furthermore, we also suppose the following assumption, in order to estimate the
value of DPXL:

Assumption 2. For any a = (a1, . . . , ak) ∈ Fk
q , we have that the sequence

F (a) := (f
(a)
1 , . . . , f

(a)
m) with f

(a)
i := fi(a1, . . . , ak, xk+1, . . . , xn) satisfies the fol-

lowing conditions.

(i) F (a) has at most one root (counted with multiplicity) over an algebraic clo-
sure Fq of Fq.

(ii) (F (a))top is semi-regular (hence it has no root other than (0, . . . , 0)∈Fn−k
q).

This assumption is expected to hold since F (a) is highly overdetermined (see [33,
Section 4.4] for arguments on (ii)). From the above lemma and assumption, we
then obtain

α− rank(A(a)) = coeff
(
(1− z)

m−(n−k)−1
(1 + z)

m
, zD

)
,

if D is lower than D
(n−k)
reg as in Corollary 1, where

D(n−k)
reg = min

{
d
∣∣∣ coeff ((1− z)

m−(n−k)
(1 + z)

m
, zd
)
≤ 0

}
. (3.2)

Similarly to Remark 1, from Assumption 2, we obtain a practical estimation

DPXL≈D
(n−k)
1 :=min

{
d ≥ 2

∣∣∣coeff((1− z)
m−(n−k)−1

(1 + z)
m
, zd
)
≤ 1
}
. (3.3)

Indeed, we experimentally confirmed that PXL finds a solution at D = D
(n−k)
1 .

Note that D
(n−k)
1 ≥ D

(n−k)
0 for the bound D

(n−k)
0 given in (2.8) for h-XL, but

the equality holds in most cases. We also note that, as a theoretical upper-bound

on DPXL in the worst case, we expect from Theorem 2 that DPXL ≤ 2D
(n−k)
reg −1.

18

3.5 Relationships with XFL and Crossbred

Remark 3 (Relationships with XFL [14,54]). We here briefly discuss the rela-
tionship between our algorithm PXL and XFL [14,54] proposed as a variant of
h-XL. XFL is roughly described as follows: First, the k variables to be fixed are
chosen and generate a shift of the given system by all monomials in the remain-
ing n−k variables up to some degree D−2. Second, construct a Macaulay matrix
(over Fq, but not over Fq[x1, . . . , xk]) of the shift with respect to all monomials
in the whole n variables up to the degree D, and then eliminate only monomials
of degree D including only the n − k variables. Third, substitute actual values
for the k variables, and execute XL for a system in n− k variables obtained by
the substitution.

The first step of XFL clearly coincides with the Multiply step of our PXL.
The main difference of XFL from PXL is the second step: The second step of
XFL eliminates monomials in the n−k variables of degree D, and it corresponds

to eliminating only PM[S
(k)
D ,T

(k)
D] in the second step of our PXL (in fact, PXL

eliminates every block PM[S
(k)
d ,T

(k)
d] with 2 ≤ d ≤ D). Therefore, PXL can

be regarded as an extension of XFL, and the size of the uneliminated part of the
second step of XFL is larger than that of PXL.

Remark 4 (Relationships with Crossbred [35]). This remark explains the differ-
ence between our PXL and the Crossbred algorithm proposed by Joux and
Vitse [35], from the following two points: (i) The parts of Macaulay matrices
echelonized before the fixing step, and (ii) Our original structure of Macaulay
matrices over the polynomial ring Fq[x1, . . . , xk], where x1, . . . , xk are variables
to be fixed.

First, the parts of Macaulay matrices echelonized before the fixing step for
PXL are definitely different from those for Crossbred by the following reason:
Crossbred eliminates monomials in which the degree of the remaining n − k
variables is larger than a given degree, whereas our algorithm PXL eliminates

rank
(
PM[S

(k)
d ,T

(k)
d]

)
monomials among degree d monomials in the n − k

variables for each 2 ≤ d ≤ D. This could cause a difference in the estimations of
the degrees D (for which a root is found) and the complexities.

Second, our Macaulay matrix is constructed over Fq[x1, . . . , xk] by regarding
each polynomial in Fq[x1, . . . , xn] as an element of the polynomial ring in the
n − k variables over Fq[x1, . . . , xk], unlike Crossbred, which uses a Macaulay
matrix over the base field Fq. In our Macaulay matrix over Fq[x1, . . . , xk], row
operations adding a multiple of one row with one variable xi with 1 ≤ i ≤ k
into another row can be realized. By contrast, such a row operation cannot
be performed in the standard Macaulay matrix over Fq clearly. Therefore, row
reductions performed in our PXL cannot be duplicated in the standard Macaulay
matrix over Fq, and thus row reductions of our PXL performed before fixing the
values of k variables are different from those of Crossbred.

19

3.6 Toy Example

We here solve an MQ system F = (f1, f2, f3) in n = 3 variables (x1, x2, x3) over
F7 of m = 3 polynomials

f1 = 5x2
1 + 6x1x2 + 4x1x3 + x2x3 + 5x2

3 + 4x1 + 5x2 + 3,

f2 = 4x2
1 + 5x1x2 + 4x1x3 + 3x2

2 + 5x2x3 + x2
3 + 6x1 + 2x2 + 3x3 + 2,

f3 = 2x2
1 + 4x1x2 + 2x2

2 + 6x2
3 + 6x1 + x2 + 3x3 + 2,

by our PXL with k = 1 and D = 4; in fact, we can take D = 3 by D
(n−k)
1 = 3

from (3.3) (or 2dreg(F
top) − 1 = 3 in Theorem 2), but we take D = 4 for a

demonstration.
Then the Macaulay matrix PM of F at degree D over F7[x1] is given as



x4
2 x3

2x3 x2
2x2

3 x2x3
3 x4

3 x3
2 x2

2x3 x2x2
3 x3

3

x2
2f1 1 5 6x1 + 5 4x1

x2
2f2 3 5 1 5x1 + 2 4x1 + 3

x2
2f3 2 6 4x1 + 1 3

x2x3f1 1 5 6x1 + 5 4x1

x2x3f2 3 5 1 5x1 + 2 4x1 + 3
x2x3f3 2 6 4x1 + 1 3
x2
3f1 1 5 6x1 + 5 4x1

x2
3f2 3 5 1 5x1 + 2 4x1 + 3

x2
3f3 2 6 4x1 + 1 3

x2f1 1 5
x2f2 3 5 1
x2f3 2 6
x3f1 1 5
x3f2 3 5 1
x3f3 2 6
f1

f2

f3

x2
2 x2x3 x2

3 x2 x3 1

5x2
1 + 4x1 + 3

4x2
1 + 6x1 + 2

2x2
1 + 6x1 + 2

5x2
1 + 4x1 + 3

4x2
1 + 6x1 + 2

2x2
1 + 6x1 + 2

5x2
1 + 4x1 + 3

4x2
1 + 6x1 + 2

2x2
1 + 6x1 + 2

6x1 + 5 4x1 5x2
1 + 4x1 + 3

5x1 + 2 4x1 + 3 4x2
1 + 6x1 + 2

4x1 + 1 3 2x2
1 + 6x1 + 2

6x1 + 5 4x1 5x2
1 + 4x1 + 3

5x1 + 2 4x1 + 3 4x2
1 + 6x1 + 2

4x1 + 1 3 2x2
1 + 6x1 + 2

1 5 6x1 + 5 4x1 5x2
1 + 4x1 + 3

3 5 1 5x1 + 2 4x1 + 3 4x2
1 + 6x1 + 2

2 6 4x1 + 1 3 2x2
1 + 6x1 + 2



,

and this can be regarded as a block matrix with the following form:


PM[S
(1)
4 , T

(1)
4] PM[S

(1)
4 , T

(1)
3] PM[S

(1)
4 , T

(1)
2] PM[S

(1)
4 , T

(1)
1] PM[S

(1)
4 , T

(1)
0]

PM[S
(1)
3 , T

(1)
4] PM[S

(1)
3 , T

(1)
3] PM[S

(1)
3 , T

(1)
2] PM[S

(1)
3 , T

(1)
1] PM[S

(1)
3 , T

(1)
0]

PM[S
(1)
2 , T

(1)
4] PM[S

(1)
2 , T

(1)
3] PM[S

(1)
2 , T

(1)
2] PM[S

(1)
2 , T

(1)
1] PM[S

(1)
2 , T

(1)
0]

 .

20

In the Linearize(1) step, we first perform the Gaussian elimination on

PM[S
(1)
4 ,T

(1)
4], and then PM[S

(1)
4 ,T

(1)
2;4] is changed into



x4
2 x3

2x3 x2
2x2

3 x2x3
3 x4

3 x3
2 x2

2x3 x2x2
3 x3

3 x2
2 x2x3 x2

3
1 4x1 + 3 2 6x1 + 3 6x2

1 + 2x1 + 3 3x2
1 + x1

1 5x1 + 3 3x1 + 2 5x1 + 6 3x2
1 + x1 + 6 6x2

1 + 2x1
1 3x1 + 6 3x1 + 1 6x1 + 3 6x2

1 + 2x1 + 5 3x2
1 + x1

1 5x1 + 3 2x1 + 5 x1 + 5 3x2
1 + x1 + 6 6x2

1 + 2x1 + 2

1 6x1 + 5 x1 + 6 x1 5x1 5x2
1 + 4x1 + 3 3x2

1 + x1 + 1 x2
1 + 5x1 + 2

2x1 + 5 x1 5x1 + 6 x2
1 + 6x1 + 5 6x2

1 + 2x1
3x1 + 6 3 4x1 + 1 6x2

1 + 2x1 + 5 x2
1 + 6x1 + 6

3x1 + 6 3 4x1 + 1 6x2
1 + 2x1 + 5 x2

1 + 6x1 + 6

6x1 + 5 3x1 + 3 6x1 + 2 4x1 + 2 5x2
1 + 4x1 + 3 2 2x2

1 + 3x1


.

Note that the first five rows of the above matrix can be ignored after this elimina-

tion. We then eliminate elements of PM[S
(1)
3 ,T

(1)
3], and then PM[S

(1)
3 ,T

(1)
1;3]

is changed into



x3
2 x2

2x3 x2x
2
3 x3

3 x2
2 x2x3 x2

3 x2 x3

1 4x1 + 3 2 6x1 + 3 6x2
1 + 2x1 + 3 3x2

1 + x1

1 5x1 + 3 3x1 + 2 5x1 + 6 3x2
1 + x1 + 6 6x2

1 + 2x1

1 3x1 + 6 3x1 + 1 6x1 + 3 6x2
1 + 2x1 + 5 3x2

1 + x1

1 5x1 + 3 2x1 + 5 x1 + 5 3x2
1 + x1 + 6 6x2

1 + 2x1 + 2
3x1 + 6 3 4x1 + 1 6x2

1 + 2x1 + 5 x2
1 + 6x1 + 6

4x1 + 3 2x1 3x1 + 5 2x2
1 + 5x1 + 3 5x2

1 + 4x1

.

Then using the leading coefficient of this partly reduced PM[S
(1)
3 ,T

(1)
3], we

eliminate nonzero elements of the last four rows of PM[S
(1)
4 ,T

(1)
3], and then

the last four rows of PM[S
(1)
4 ,T

(1)
1;2] becomes the following form


x2
2 x2x3 x2

3 x2 x3

x2
1 + 6x1 + 3 2x2

1 + x1 + 5 2x2
1 + 5x1 + 2 4x3

1 + 3x2
1 + 4x1 + 4 x3

1 + 3x1

3x2
1 + 4x1 3x2

1 + 5x1 + 1 6x1 + 3 5x2
1 + 3x1 + 1 3x2

1 + x1

5x1 + 3 3x2
1 + 3x1 + 6 3x2

1 + 3x1 + 5 3x2
1 + x1 + 6 5x2

1 + 3x1 + 5
5x2

1 + 4x1 + 3 2 2x2
1 + 3x1 5x3

1 + 3x2
1 + 3x1 + 1 6x3

1 + 3x1 + 3

.

Similarly, we perform the (d)-1, (d)-2, and (d)-3 steps with d = 2, and then the
resulting matrix of the Linearize(1) step is given as



x2 x3 1

5x3
1 + 3x1 + 2 3x3

1 + 5x2
1 + 2x1 + 3 4x4

1 + 3x3
1 + 6x2

1 + 3x1 + 6
3x3

1 + 2x2
1 + 2x1 + 3 6x3

1 + 3x2
1 + 6x1 + 2 2x4

1 + 2x3
1 + 5x2

1 + 2
6x3

1 + 6x1 + 6 4x3
1 + 6x2

1 + 3x1 + 3 2x4
1 + 3x3

1 + 2x2
1 + 4x1 + 1

3x2
1 + 3x1 + 1 3x2

1 + x1 + 1 x2
1 + 2

6x2
1 + 2x1 + 5 6x2

1 + 6x1 + 3 3x3
1 + x2

1

.

In the Fix step, we here substitute x1 = 3 and obtain the following matrix
by the Gaussian elimination

(x2 x3 1

1 4
1 1

)
.

21

Then, we can obtain two univariate equations x2 + 4 = 0 and x3 + 1 = 0, and
thus a solution is (x1, x2, x3) = (3, 3, 6).

4 Complexity

In this section, we first estimate the size of the resulting matrix of Linearize(1).
After that, we estimate the time complexity of PXL and compare it with those

of h-XL, h-WXL, and Crossbred. We take D to be D
(n−k)
1 so that PXL can find

a solution (as described in Subsection 3.4).

4.1 Size of resulting matrix of Linearize(1)

Let α be the number of columns of the resulting matrix of Linearize(1). In the
following, we estimate the value of this α, and show that it can be quite smaller
than the number of the columns of the original Macaulay matrix PM. We also
describe that the resulting matrix of Linearize(1) can be assumed to be an
α× α matrix.

As in the proof of Lemma 1, we denote by qi the sum of degree-2 terms
with respect to xk+1, . . . , xn in fi. Note that qi = f top

i (0, . . . , 0, xk+1, . . . , xn)
for each i with 1 ≤ i ≤ m. Then, by putting F (top,k) := (q1, . . . , qm), it is

straightforward that the elements in the shift S
(k)
d (F (top,k)), which is equal

to ((S
(k)
d)top)|(x1,...,xk)=(0,...,0), correspond to the rows of PM[S

(k)
d ,T

(k)
d], for

each non-negative integer d. We have that the number of columns eliminated

in the step (d)-1 of Linearize(1) on PM[S
(k)
d ,T

(k)
d] is equal to the rank of

PM[S
(k)
d ,T

(k)
d], that is dimFq

⟨S (k)
d (F (top,k))⟩Fq

. Therefore, we have

α = |T (k)
≤D | −

D∑
d=0

dimFq ⟨S
(k)
d (F (top,k))⟩Fq

=

D∑
d=0

(
|T (k)

d | − dimFq
⟨S (k)

d (F (top,k))⟩Fq

)
=

D∑
d=0

(
dimFq

Fq[xk+1, . . . , xn]d − dimFq
⟨F (top,k)⟩d

)
=

D∑
d=0

dimFqFq[xk+1, . . . , xn]d/⟨F (top,k)⟩d, (4.1)

where we used ⟨S (k)
d (F (top,k))⟩Fq = ⟨F (top,k)⟩d since all the elements in the se-

quence F (top,k) = (q1, . . . , qm) are homogeneous. Here, we suppose the following:

Assumption 3. The sequence F (top,k) = (q1, . . . , qm) of homogeneous polyno-
mials in Fq[xk+1, . . . , xn] is semi-regular, where qi is given in (3.1) of the proof
of Lemma 1.

22

Under this assumption, the value of (4.1) can be estimated as

α =

D∑
d=0

max
{
coeff

(
(1− t)

m−(n−k)
(1 + t)

m
, td
)
, 0
}

(4.2)

by Proposition 1. Note that this can be quite smaller than
(
n−k+D

D

)
, which is

the number of the columns of the whole Macaulay matrix PM. For example,
when n = m = 40 and k = 10, the degree D for which PXL could succeed is
estimated as 10 by (3.3), and then α and

(
n−k+D

D

)
are approximately 221 and

230, respectively.

Recall from Remark 2 that PXL randomly chooses approximately |T (k)
≤D |

independent rows from the whole Macaulay matrix PM. When S̃
(k)
d denotes

the subset of S
(k)
d including polynomials corresponding to randomly chosen rows

and r
(k)
d denotes the rank of PM[S̃

(k)
d ,T

(k)
d], the number of rows of the resulting

matrix of Linearize(1) is equal to
∑D

d=2

(
|S̃ (k)

d | − r
(k)
d

)
, and we suppose the

following approximation:

D∑
d=2

(
|S̃ (k)

d | − r
(k)
d

)
≈ α. (4.3)

This can be realized by avoiding choosing too many rows from S
(k)
D , and, by

doing so, the size of the resulting matrix of Linearize(1) is approximately α×α.

4.2 Time complexity

In this subsection, we estimate the time complexity of PXL. Here, C(d)1 (resp.
C(d)2, C(d)3) denotes the estimation of the sum of the number of operations in
Fq required for (d) − 1 (resp. (d) − 2, (d) − 3) in the Linearize(1) step for all
d with 2 ≤ d ≤ D. Furthermore, Cfix (resp. Cli2) denote the estimation of the
number of operations in Fq required for the fix (resp. Linearize(2)) step. These
estimations are determined from the number n of all variables, the number k

of guessed variables, the degree bound D (which can be taken to be D
(n−k)
1

given in (3.3)), and the size α of the resulting matrix of Linearize(1). After
obtaining each of these five estimations, we give a practical estimation of total
time complexity by (4.8) below.

Time Complexity of (d)-1. Recall that the (d)-1 step performs Gaussian elimi-

nation on PM[S̃
(k)
d ,T

(k)
d], and its complexity is given as max{|S̃ (k)

d |, |T (k)
d |}ω

for each d with 2 ≤ d ≤ D. Since we have
∑D

d=2 max{|S̃ (k)
d | − |T (k)

d |, 0} ≤ α
from (4.3), an upper bound on the sum of the complexity estimation of the (d)-1

23

step for all 2 ≤ d ≤ D is given by

D∑
d=2

max{|S̃ (k)
d |, |T (k)

d |}ω ≤

(
D∑

d=2

max{|S̃ (k)
d |, |T (k)

d |}

)ω

≤
(
|T (k)

≤D |+ α
)ω

≤ (2 · |T (k)
≤D |)ω = O

((
n−k+D

D

)ω)
,

where we used the equality

D∑
d=2

max{|S̃ (k)
d |, |T (k)

d |} =

D∑
d=2

max{|S̃ (k)
d | − |T (k)

d |, 0}+ |T (k)
≤D |.

Therefore, we set C(d)1 to be
(
n−k+D

D

)ω
.

Time Complexity of (d)-2. In each (d)-2 step, the complexity of executing the
same row operations as those in (d)-1 step is estimated as that of multiply-

ing a square matrix over Fq of size |S̃ (k)
d | × |S̃ (k)

d | to the polynomial ma-

trix PM[S̃
(k)
d ,T

(k)
(d−2);(d−1)] from the left. Note that PM[S̃

(k)
d ,T

(k)
(d−2);(d−1)]

is a sparse matrix, since PM[S
(k)
d ,T

(k)
≤(d−1)] does not change from the original

structure at the beginning of the (d)-2 step by the same discussion as in Sub-
section 3.3, where each row of it has at most n − k + 1 non-zero entries. Thus,

multiplying the two matrices are done in O((n − k) · |S̃ (k)
d |2) additions and

scalar multiplications in Fq[x1, . . . , xk]. Since polynomials appearing in each ad-

dition or scalar multiplication have degree ≤ 2, its cost is bounded by O
((

k+2
2

))
with naive approach. Considering above together, each (d)-2 step has complex-

ity O
((

k+2
2

)
· (n− k) · |S̃ (k)

d |2
)
, and hence the total complexity of (d)-2 for all

2 ≤ d ≤ D is given by

D∑
d=2

((
k+2
2

)
· (n− k) · |S̃ (k)

d |2
)
≤
(
k+2
2

)
· (n− k) ·

(
D∑

d=2

|S̃ (k)
d |

)2

=
(
k+2
2

)
· (n− k) · |T (k)

≤D |2

= O
(
k2 · (n− k) ·

(
n−k+D

D

)2)
,

and thus C(d)2 is set to be k2 · (n− k) ·
(
n−k+D

D

)2
.

Time Complexity of (d)-3. To estimate the time complexity of (d)-3 for all d
with 2 ≤ d ≤ D, we use the following lemma:

Lemma 3. At the time of executing the (d)-3 step with 2 ≤ d ≤ D − 1, the

degree of every element of PM[S̃
(k)
(d+1);D,T

(k)
d] is lower than or equal to D− d.

24

Proof. By the induction, we prove that, at the time of starting the (d)-3 step,

the degree of every element of PM[S̃
(k)
(d+1);D,T

(k)
d] and PM[S̃

(k)
(d+1);D,T

(k)
d−1] is

lower than or equal to D−d and D−d+1, respectively. In the case of d = D−1,
the above statement clearly holds. In the following, we show that, if the statement
holds when d = d′ with 3 ≤ d′ ≤ D − 1, then it also holds when d = d′ − 1.

Before executing the step (d′)-3, it is clear that PM[S̃
(k)
(d′+1);D,T

(k)
d′−2] is a zero

matrix. Then, the (d′)-3 step adds row vectors, which are obtained by multiplying

rows corresponding to S̃
(k)
d′ by a polynomial with the degree D − d′, to rows

corresponding to S̃
(k)
(d′+1);D. Here, the degree of each entry of PM[S̃

(k)
d′ ,T

(k)
d′−1]

and PM[S̃
(k)
d′ ,T

(k)
d′−2] are at most 1 and 2, respectively. Hence, through (d′)-3,

the degree of each entry of PM[S̃
(k)
(d′+1);D,T

(k)
d′−2] becomes at most D − d′ + 2

and that of PM[S̃
(k)
(d′+1);D,T

(k)
d′−1] remains at most D − d′ + 1, Therefore, the

statement holds in the case where d = d′ − 1, as desired. □

Each (d)-3 step eliminates the corresponding columns using the leading co-

efficients of PM[S̃
(k)
d ,T

(k)
d]. More concretely, for each i with 1 ≤ i ≤ rd, we

conduct row operations to eliminate the non-zero entries in the column to which

the leading coefficient of the i-th row of PM[S̃
(k)
d ,T

(k)
d] (in reduced row ech-

elon form) belong, where rd is the rank of PM[S̃
(k)
d ,T

(k)
d]. Such the non-zero

entries to be eliminated are ones of PM[S̃
(k)
(d+1);D,T

(k)
d], and we suppose from

(4.3) that the number of them is at most α for each i. In each elimination

process, we multiply the i-th row of PM[S̃
(k)
d ,T

(k)
(d−2);d] by a non-zero polyno-

mial in Fq[x1, . . . , xk] of degree at most D − d (this degree bound comes from

Lemma 3), and then add the multiple to a row of PM[S̃
(k)
(d+1);D,T

(k)
(d−2);d]. Since

each entry of PM[S̃
(k)
d ,T

(k)
(d−2);d] is a polynomial in Fq[x1, . . . , xk] of degree ≤ 2

at this point, and since PM[S̃
(k)
d ,T

(k)
(d−2);d] has |T

(k)
(d−2);d| = O(|T (k)

d |) columns,

each elimination process is done in O
((

k+2
2

)
·
(
k+D−d
D−d

)
· |T (k)

d |
)

with a naive

approach. The total number of these elimination processes is upper-bounded by
rd · α, we estimate the complexity of the (d)-3 step as

O
((

k+D−d
D−d

)
·
(
k+2
2

)
· α · rd · |T (k)

d |
)
≤ O

((
k+D−d
D−d

)
·
(
k+2
2

)
· α ·

(
n−k+d−1

d

)2)
.

Note that the (D)-3 step can be omitted since PM[S̃
(k)
≤(D−1),T

(k)
D] is a zero

matrix. Consequently, the sum of the complexities of the (d)-3 step for all d with
2 ≤ d ≤ D − 1 is estimated by

D−1∑
d=2

((
k+D−d
D−d

)
·
(
k+2
2

)
· α ·

(
n−k+d−1

d

)2)
≤
(
k+2
2

)
· α ·

(
D−1∑
d=2

(
n−k+d−1

d

))
·

(
D−1∑
d=2

(
k+D−d

k

)
·
(
n−k+d−1
n−k−1

))
. (4.4)

25

Putting d′ = k +D − d, one has

D−1∑
d=2

(
k+D−d

k

)
·
(
n−k+d−1
n−k−1

)
=

k+D−2∑
d′=k+1

(
d′

k

)(
(n+D−1)−d′

(n−1)−k

)
≤

n+D−1∑
d′=0

(
d′

k

)(
(n+D−1)−d′

(n−1)−k

)
=
(
(n+D−1)+1
(n−1)+1

)
=
(
n+D
D

)
from a formula similar to Vandermonde’s identity. Therefore, the right hand side
of (4.4) is upper-bounded by

O
(
k2 · α ·

(
n−k+D

D

)
·
(
n+D
D

))
,

and thus we set C(d)3 to be k2 · α ·
(
n−k+D

D

)
·
(
n+D
D

)
.

Time Complexity of Fix. The size of the resulting matrix of Linearize(1) is
approximately α × α due to the discussion in Subsection 4.1, and the degree
of every element in the matrix is lower than or equal to D from Lemma 3.
Therefore, the time complexity of Fix is estimated as that of substituting k
values to x1, . . . , xk in α2 polynomials with degree D in Fq[x1, . . . , xk]. When we
use a naive approach, the complexity of evaluation of a polynomial with degree
d in k variables is estimated by

(
k+d
d

)
. Therefore, Cfix is given by

Cfix = qk · α2 ·
(
k+D
D

)
, (4.5)

since the Fix step is iterated for any values of x1, . . . , xk.

Time Complexity of Linearize(2). The Linearize(2) step performs Gaussian
elimination on an α× α matrix over Fq, and thus we estimate Cli2 by

Cli2 = qk · αω, (4.6)

considering qk times iterations.

Rough Estimations of Time Complexity Here, we present a more com-
pact formula for the time complexity of PXL. Comparing the estimations C(d)2

and C(d)3, we can easily confirm that the value of C(d)3 is larger than that of
C(d)2. Furthermore, comparing the estimations C(d)1 and C(d)3, we experimen-
tally confirmed that, for the case where 10 ≤ n ≤ 100, m = n, 1.5n, 2n, and
k is the value minimizing the sum of the above five estimations, the value of
C(d)3 is always much larger than that of C(d)1 (e.g., C(d)1 and C(d)3 in the case
where n = m = 100 with q = 28 is approximately 2210 and 2259, respectively).
These facts indicate that the complexity of the Linearize(1) step is dominated
by C(d)3 for practical cases, and it is estimated as follows:

O
(
k2 · α ·

(
n−k+D

D

)
·
(
n+D
D

))
. (4.7)

26

Table 1. The number of field operations approximated by power of 2 between
PXL (4.8), h-XL (2.6), h-WXL (2.7), and Crossbred [22], the optimal number k of

guessed variables of PXL, the value ofD = D
(n−k)
1 estimated in (3.3), and the estimated

size α of the resulting matrix of Linearize(1) on the MQ system with n = m = 20,
40, 60, and 80 over F28 (above) and over F31 (below).

F28

n = m 20 40 60 80

ω 2.37 2.81 2.37 2.81 2.37 2.81 2.37 2.81

h-XL 275 285 2134 2153 2194 2221 2252 2287

h-WXL 275 275 2129 2129 2182 2182 2234 2234

Crossbred 265 274 2123 2137 2180 2201 2237 2265

PXL 262 264 2117 2121 2169 2178 2220 2233

k 3 3 6 5 8 7 10 8

D 9 9 14 15 19 20 24 27

α 214 214 227 229 242 244 256 260

F31

n = m 20 40 60 80

ω 2.37 2.81 2.37 2.81 2.37 2.81 2.37 2.81

h-XL 266 273 2119 2131 2170 2191 2221 2246

h-WXL 265 265 2116 2116 2162 2162 2208 2208

Crossbred 257 262 2109 2117 2158 2170 2208 2224

PXL 257 257 2105 2107 2152 2158 2197 2208

k 5 5 8 8 11 10 13 12

D 7 7 12 12 16 17 21 22

α 211 211 224 224 237 238 251 253

By using this estimation on C(d)3, the time complexity of PXL is roughly esti-
mated by C(d)3 + Cfix + Cli2, say

O
(
k2 · α ·

(
n−k+D

D

)
·
(
n+D
D

)
+ qk ·

(
α2 ·

(
k+D
D

)
+ αω

))
. (4.8)

4.3 Comparison

We compare the complexity of our PXL with those of h-XL, h-WXL, and Cross-
bred with our motivation towards contribution of PXL to evaluating the security
of MPKCs. Following the security estimation of [9], we choose h-WXL among the
XL family as a target for comparison. We also adopt the complexity of h-XL on
which h-WXL is originally based (in fact, h-XL is the most basic method in the
framework of the hybrid approaches with XL) and that of Crossbred recognized
as the theoretical most efficient algorithm for some parameter sets in [6]. Recall
that the complexities of h-XL, h-WXL, Crossbred, and PXL are estimated by
(2.6), (2.7), [22] and (4.8), respectively, where the estimation (4.8) for our PXL

27

is obtained by supposing practical Assumptions 2 and 3, and Heuristic 1. Note
that, for fixed n, m, and q, each of the four approaches chooses the number k of
guessed variables (and D and d for Crossbred) so that its complexity estimation
becomes the smallest value, and thus the value of k depends on each approach.
Furthermore, we here take the exponent of matrix multiplication ω as 2.37 [29]
and 2.81 [50]. As we will see below, PXL is theoretically more efficient than other
algorithms in the case of n = m (this is the case where hybrid approaches for
the MQ problem work most efficiently).

Table 1 compares the bit complexities of PXL, h-XL, h-WXL, and Crossbred
on the MQ system of m equations in n variable with n = m over F28 and F31.
These orders of the finite fields are chosen following the MQ challenge [57],
and in particular, q = 28 = 256 is also suggested as a parameter of [9]. Note
also that we do not choose q = 2 since exhaustive searches are known to be
effective in this case. Specifically, Table 1 shows the bit complexities of the
four approaches, the optimal k of PXL minimizing the value of (4.8), the value

of D = D
(n−k)
1 estimated in (3.3), and the estimated size α of the resulting

matrix of Linearize(1) obtained from (4.2) for the case where n = m with
n ∈ {20, 40, 60, 80}. For example, when q = 28, n = m = 80, and ω = 2.37, the
complexities of h-XL, h-WXL, Crossbred, and PXL are approximately estimated
as 2252, 2234, 2237, and 2220, respectively. As a result, we expect that PXL has the
less complexity than those of other algorithms especially in the case of ω = 2.37;
we also expect that similar results will be obtained in other finite fields from the
form of the complexity estimation (4.8).

On the other hand, we confirmed that PXL is not efficient in highly overde-
termined cases. This is because, in such overdetermined cases, k is set to be a
very small value for efficiency.

Remark 5 (Space Complexity). The memory space consumed by PXL is upper-

bounded by O
((

k+D
D

)
·
(
n−k+D

D

)2)
, since the degree of every element of the

Macaulay matrix and its transformed matrices in Linearize(1) is at most D
through an execution of PXL from Lemma 3. This estimation cannot be directly
compared with other algorithms, since the values of the following two parameters
depend on one’s choice of an algorithm: The degree bound D (for the success of
the algorithm) and the number k of fixed values.

On the other hand, focusing on the sparsity/density of matrices, we predict
that PXL is not efficient compared with h-WXL in terms of the space complexity
for the following reason: Through the elimination process of Macaulay matrices,
WXL can deal with a Macaulay matrix as a sparse matrix due to Wiedemann’s
algorithm, whereas PXL maintains some dense submatrices. Considering this
together with the time complexities for practical parameters, we conclude that
the relationship between PXL and h-WXL would be a trade-off between time
and memory.

28

Fig. 1. Comparison between the estimation of complexity by (4.7) and the execution
time of the Linearize(1) step on an MQ system with n = m over F24 .

5 Experimental Results

We implemented the proposed algorithm PXL in the Magma computer algebra
system (V2.26-10) [10], in order to examine that it behaves as our complexity
estimation provided in Section 4. (As it will be described below, note that our
current implementation is not optimized one, see also Remark 6.) We also con-

firmed in our experiments that PXL outputs a solution correctly at D = D
(n−k)
1

as estimated in (3.3).

First, we confirmed that the Linearize(1) step behaves as in (4.7). The
reason why we focus on the behavior of the Linearize(1) step is the following:
In the estimation (4.8) of the total time complexity, only C(d)3 is specific to
our estimation in theory, while the later parts Cfix and Cli2 for the Fix and
Linearize(2) steps just come from known complexity estimations. Figure 1
compares the execution time of the Linearize(1) step and the bit complexity
(4.7) on the system with n = m from n = 13 to n = 19 over F24 , and the number
k of fixed variables is chosen so as to minimize the value of (4.8). As a result,
Figure 1 shows that the execution time and our estimation (4.7) have almost the
same behavior, which indicates that the estimation (4.7) would be reliable.

On the other hand, our current Magma implementation of the Fix and Lin-
earize(2) steps does not show the similar behavior as our complexity estima-
tion, due to the use of unoptimized implementation. For example, in the case of
n = m = 16 with k = 5, Linearize(1), Fix, and Linearize(2) took 10 min.,
40 hr., and 30 min., respectively, whereas the estimated numbers of field op-
erations of these three steps from (4.7), (4.5), and (4.6) are 239, 244, and 239,
respectively. We observe that this inefficiency of the latter two steps (in particu-
lar Fix with a lot of for-loops) is due to the use of Magma’s interpreter language.
Using compiler languages such as C instead could be a solution to resolve this
problem, but we must newly implement the arithmetic of matrices and polyno-

29

mials efficiently, which is not the topic of this paper. We leave such an efficient
implementation with compiler languages to future work.

Remark 6. We remark that here we do not compare the execution time of our
PXL with that of any other variant of XL, since the practical behavior deeply
depends on how one implements the arithmetic of matrices (and polynomials)
efficiently, which is not the topic of this paper. For a fair comparison, providing
optimized implementations of several variants including PXL is required, and it
is a very important task for practical cryptanalysis.

6 Conclusion

We presented a new variant of XL, which is a major approach for solving the MQ
problem. Our proposed polynomial XL (PXL) eliminates the linearized mono-
mials in polynomial rings to solve the system efficiently, and we estimated its
complexities. Given an MQ system of m equations in n variables, the proposed
algorithm first regards each polynomial in n variable as one in n − k variables
xk+1, . . . , xn, whose coefficients belong to the polynomial ring Fq[x1, . . . , xk]. We
then generate a Macaulay matrix over Fq[x1, . . . , xk], and partly perform the row
reduction (Gaussian elimination). Finally, random values are substituted for the
k variables, and the remaining part of the (partly-reduced) Macaulay matrix is
transformed into the reduced row echelon form. Partly reducing the (polynomial)
Macaulay matrix is done mainly on submatrices over Fq (not over Fq[x1, . . . , xk])
with arithmetic of polynomials in Fq[x1, . . . , xk] of bounded degree, and under
some practical assumption and heuristic (Assumption 3 and Heuristic 1), the
remaining part is expected to have size much smaller than the original one. This
construction can reduce the amount of field operations for each guessed value,
compared to h-XL. Supposing the above assumption and heuristic and additional
but still practical one (Assumption 2), which assumes the affine semi-regularity
of polynomial sequences, we gave an asymptotic estimation of the time complex-
ity of PXL, which implies that PXL could solve the system faster in theory for
the case of n ≈ m than h-XL, h-WXL, and Crossbred. On the other hand, PXL
might be less efficient than h-WXL with respect to the space complexity.

This paper discusses only the quadratic case, but, as in the plain XL, the
proposed algorithm can be also generalized to higher degree cases. Therefore, one
considerable future work is to analyze the complexity of PXL on such higher de-
gree systems. Furthermore, for a comparison of the practical time-efficiencies of
our PXL and other XL variants, it is important to implement PXL (and the other
variants) efficiently. In our experiments, we implemented PXL over Magma, but
this can be more optimized by using an alternative (compiler) programming
language, e.g., C. Note that there will be a drawback that the construction of
our PXL over the polynomial ring prohibits the use of existing linear algebra
libraries, which are often heavily optimized. Therefore, to provide such an opti-
mized code for PXL will be a challenging task. Finally, we leave the analysis of
the effect of PXL on the security of various multivariate signature schemes to a
future work.

30

Acknowledgements

The authors thank the anonymous referees for helpful comments and suggestions.
The authors also thank Tsuyoshi Takagi and Kazuhiro Yokoyama for helpful
comments and suggestions. The authors are grateful to Kosuke Sakata for his
advice on the implementation of our proposed algorithm.

This work was supported by JST CREST Grant Number JPMJCR2113,
Japan, JSPS KAKENHI Grant Number JP22KJ0554, Japan, and JSPS Grant-
in-Aid for Young Scientists 20K14301 and 23K12949, Japan.

References

1. M.-R. Albrecht, C. Cid, J.-C. Faugère, and L. Perret. On the relation between
the MXL family of algorithms and Gröbner basis algorithms. J. Symb. Comput.,
47(8):926–941, 2012.

2. G. Ars, J.-C. Faugère, H. Imai, M. Kawazoe, and M. Sugita. Comparison between
XL and Gröbner basis algorithms. In ASIACRYPT 2004, pages 338–353. Springer,
2004.

3. M. Bardet. Étude des systèms algébriques surdéterminés. Applications aux codes
correcteurs et à la cryptographie. PhD thesis, Université Pierre et Marie Curie-Paris
VI, 2004.

4. M. Bardet, J.-C. Faugére, and B. Salvy. On the complexity of Gröbner basis com-
putation of semi-regular overdetermined algebraic equations (extended abstract).
In ICPSS 2004, pages 71–74, 2004.

5. M. Bardet, J.-C. Faugére, B. Salvy, and B.-Y. Yang. Asymptotic behaviour of the
degree of regularity of semi-regular polynomial systems. In MEGA 2005, 2005.

6. E. Bellini, R. H. Makarim, C. Sanna, and J. A. Verbel. An estimator for the
hardness of the MQ problem. In AFRICACRYPT 2022, pages 323–347. Springer,
2022.

7. L. Bettale, J.-C. Faugère, and L. Perret. Hybrid approach for solving multivariate
systems over finite fields. J. Math. Cryptol., 3:177–197, 2009.

8. W. Beullens, F. Campos, S. Celi, B. Hess, and M. J. Kannwischer. MAYO specifica-
tion. https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/

round-1/spec-files/mayo-spec-web.pdf, 2023.
9. W. Beullens, M.-S. Chen, J. Ding, B. Gong, M. J. Kannwischer, J. Patarin, B.-

Y. Peng, D. Schmidt, C.-J. Shih, C. Tao, and B.-Y. Yang. UOV: Unbalanced
oil and vinegar algorithm specifications and supporting documentation version
1.0. https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/

round-1/spec-files/UOV-spec-web.pdf.
10. W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user

language. J. Symb. Comput., 24(3-4):235–265, 1997.
11. B. Buchberger. Ein algorithmus zum auffinden der basiselemente des restklassen-

ringes nach einem nulldimensionalen polynomideal. PhD thesis, Universität Inns-
bruck, 1965.

12. J. A. Buchmann, J. Ding, M. S. E. Mohamed, and W. S. A. E. Mohamed. Mu-
tantXL: Solving multivariate polynomial equations for cryptanalysis. In Dagstuhl
seminar proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2009.

13. J. G. Capaverde. Gröbner Bases: Degree Bounds and Generic Ideals. PhD thesis,
Clemson University, 2014.

31

https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/mayo-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/mayo-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/UOV-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/UOV-spec-web.pdf

14. N. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In EUROCRYPT 2000,
pages 392–407. Springer, 2000.

15. D.-A. Cox, J. Little, and D. O’Shea. Using algebraic geometry. Springer, second
edition edition, 2005.

16. D.-A. Cox, J. Little, and D. O’Shea. Ideals, varieties, and algorithms. Springer,
fourth edition edition, 2015.

17. C. Diem. The XL-algorithm and a conjecture from commutative algebra. In
ASIACRYPT 2004, pages 323–337. Springer, 2004.

18. C. Diem. Bounded regularity. Journal of Algebra, 423:1143–1160, 2015.
19. J. Ding, A. Petzoldt, and D. S. Schmidt. Multivariate public key cryptosystems

(Second edition). Advances in Information Security, 80, Springer, 2020.
20. J. D. Duarte. On the complexity and admissible parameters of the Crossbred

algorithm in Fq≥2. Cryptology ePrint Archive, Paper 2023/1664, 2023.
21. T.-W. Dubé. The structure of polynomial ideals and Gröbner bases. SIAM J.

Comput., 19(4):750–773, 1990.
22. A. Esser, J. Verbel, F. Zweydinger, and E. Bellini. CryptographicEstimators: A

software library for cryptographic hardness estimation. Cryptology ePrint Archive,
Paper 2023/589, 2023.

23. J.-C. Faugère. A new efficient algorithm for computing Gröbner bases (F4). J.
Pure Appl. Algebra, 139(1-3):61–88, 1999.

24. J.-C. Faugère. A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In ISSAC 2002, pages 75–83. ACM, 2002.

25. J.-C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient computation of zero-
dimensional Gröbner bases by change of ordering. J. Symb. Comput., 16(4):329–
344, 1993.

26. R. Fröberg. An inequality for Hilbert series of graded algebras. Math. Scand,
56:117–144, 1985.

27. H. Furue, Y. Ikematsu, F. Hoshino, T. Takagi, K. Yasuda, T. Miyazawa,
T. Saito, and A. Nagai. QR-UOV specification document. https:

//csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/

spec-files/qruov-spec-web.pdf, 2023.
28. G. Gaggero and E. Gorla. The complexity of solving a random polynomial system.

arxiv:2309.03855, 2023.
29. F. L. Gall. Powers of tensors and fast matrix multiplication. In ISSAC 2014, pages

296–303. ACM, 2014.
30. M.-R. Garey and D.-S. Johnson. Computers and intractability: A guide to the

theory of NP-completeness. W. H. Freeman, 1979.
31. J. v. z. Gathen and V. Shoup. Computing Frobenius maps and factoring polyno-

mials. Comput. Complexity, 2(3):87–224, 1992.
32. G.-M. Greuerl and G. Pfister. A Singular Introduction to Commutative Algebra

(2nd Edition). Springer, 2007.
33. Y. Ikematsu, S. Nakamura, and T. Takagi. Recent progress in the security evalua-

tion of multivariate public-key cryptography. IET Information Security, 17(2):210–
226, 2023.

34. Technology Innovation Institute. Multivariate quadratic estimator. https://

estimators.crypto.tii.ae/configuration?id=MQEstimator.
35. A. Joux and V. Vitse. A Crossbred algorithm for solving boolean polynomial

systems. In NuTMiC 2017, pages 3–21. Springer, 2017.
36. E. Kaltofen and V. Shoup. Subquadratic-time factoring of polynomials over finite

fields. Math. Comp., 67(223):1179–1197, 1998.

32

https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/qruov-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/qruov-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/qruov-spec-web.pdf
https://estimators.crypto.tii.ae/configuration?id=MQEstimator
https://estimators.crypto.tii.ae/configuration?id=MQEstimator

37. A. Kipnis, J. Patarin, and L. Goubin. Unbalanced oil and vinegar signature
schemes. In EUROCRYPT 1999, pages 206–222. Springer, 1999.

38. A. Kipnis and A. Shamir. Cryptanalysis of the HFE public key cryptosystem by
relinearization. In CRYPTO 1999, pages 19–30. Springer, 1999.

39. M. Kudo and K. Yokoyama. The solving degrees for computing Gröbner bases of
affine semi-regular polynomial sequences. arXiv:2404.03530., 2024.

40. M. Kudo and K. Yokoyama. On Hilbert-Poincaré series of affine semi-regular
polynomial sequences and related Gröbner bases. In Mathematical Founda-
tions for Post-Quantum Cryptography, page 26 pages. Springer, 2024, to appear
(arXiv:2401.07768).

41. D. Lazard. Systems of algebraic equations. In EUROSAM 1979, pages 88–94.
Springer, 1979.

42. D. Lazard. Gröbner bases, gaussian elimination and resolution of systems of alge-
braic equations. In Computer algebra (London, 1983), LNCS, 162, pages 146–156.
Springer, Berlin, 1983.

43. G. McGuire and D. O’Hara. On the termination of the general XL algorithm and
ordinary multinomials. J. Symb. Comput., 104:90–104, 2021.

44. M. S. E. Mohamed, W. S. A. E. Mohamed, J. Ding, and J. Buchmann. MXL2:
Solving polynomial equations over GF(2) using an improved mutant strategy. In
PQCrypto 2008, pages 203–215. Springer, 2008.

45. W. S. A. Mohamed. Improvements for the XL algorithm with applications to alge-
braic cryptanalysis. PhD thesis, TU Darmstadt, 2011.

46. S. Nakamura. Admissible parameter sets and complexity estimation of Crossbred
algorithm. Cryptology ePrint Archive, Paper 2023/1687, 2023.

47. K. Pardue. Generic sequences of polynomials. Journal of Algebra, 324.4:579–590,
2010.

48. F. Salizzoni. An upper bound for the solving degree in terms of the degree of
regularity. arXiv:2304.13485, 2023.

49. I. Semaev and A. Tenti. Probabilistic analysis on Macaulay matrices over finite
fields and complexity constructing Gröbner bases. Journal of Algebra, 565:651–674,
2021.

50. V. Strassen. Gaussian elimination is not optimal. Numer. Math., 13(4):354–356,
1969.

51. A. Tenti. Sufficiently overdetermined random polynomial systems behave like
semiregular ones. PhD thesis, University of Bergen, 2019.

52. D.H̃. Wiedemann. Solving sparse linear equations over finite fields. IEEE Trans.
Inf. Theor., 32(1):54–62, 1986.

53. W.-T. Wu. Basic principles of mechanical theorem proving in elementary geome-
tries. J. Autom. Reason., 2(3):221–252, 1986.

54. B.-Y. Yang and J.-M. Chen. All in the XL family: Theory and practice. In ICISC
2004, pages 67–86. Springer, 2004.

55. B.-Y. Yang, J.-M. Chen, and N. Courtois. On asymptotic security estimates in XL
and Gröbner bases-related algebraic cryptanalysis. In ICICS 2004, pages 401–413.
Springer, 2004.

56. B.-Y. Yang, O.C.-H. Chen, D.J. Bernstein, and J.-M. Chen. Analysis of QUAD.
In FSE 2007, pages 290–308. Springer, 2007.

57. T. Yasuda, X. Dahan, Y.-J. Huang, T. Takagi, and K. Sakurai. MQ challenge:
Hardness evaluation of solving multivariate quadratic problems, 2015. NIST Work-
shop on Cybersecurity in a Post-Quantum World.

58. D. Y.Ỹ. Yun. On square-free decomposition algorithm. In ISSAC 1976, pages
26–35. ACM, 1976.

33

A Semi-regular sequences

We here review the notion of semi-regular sequence, which is introduced first
by Bardet et al. (e.g., [3], [4], [5]). Semi-regular sequences are formulated also
by Diem [18] in terms of commutative and homological algebra. See also [40,
Section 2] for a survey.

We use the following notation: Let R = K[x1, . . . , xn] be the polynomial ring
of n variables x1, . . . , xn over a field K. For a finitely generated graded R-module
M =

⊕
d∈Z Md (namelyMd is the degree-d homogeneous component), we denote

by HFM its Hilbert function, namely HFM (d) = dimKMd for each integer d, and
denote by HSM the Hilbert series of M , say HSM (z) =

∑∞
d=0 HFM (d)zd ∈ ZJzK.

For a sequence (f1, . . . , fm) of homogeneous polynomials in R of positive degrees,
let K•(f1, . . . , fm) denote the Koszul complex on the sequence (see e.g., [32,
Section 7.6] for its definition), and let Hi(K•(f1, . . . , fm)) be its i-th homology
group. In particular, the first homology group is a finitely generated graded
R-module given by

H1(K•(f1, . . . , fm)) = syz(f1, . . . , fm)/tsyz(f1, . . . , fm), (A.1)

the sum of whose homogeneous components of degree less than or equal to d is
denoted by H1(K•(f1, . . . , fm))≤d for each d ∈ Z. Here, syz(f1, . . . , fm) denotes
the module of syzigies on (f1, . . . , fm), say

syz(f1, . . . , fm) =

(h1, . . . , hm) ∈
m⊕
j=1

R(−dj)ej

 ,

where each R(−dj) is the shifted graded ring given by R(−dj)d = Rd−dj for
d ∈ Z, and where each ej denotes a standard basis element. On the other hand,
tsyz(f1, . . . , fm) is defined as an R-submodule of syz(f1, . . . , fm) given by

tsyz(f1, . . . , fm) := ⟨ti,j := fiej − fjei : 1 ≤ i < j ≤ m⟩R,

which is called the module of trivial syzigies on (f1, . . . , fm).
We first recall the definiton of d-regular sequences:

Definition 1 ([4, Definition 3], [18, Definition 1]). Let f1, . . . , fm ∈ R
be homogeneous polynomials of positive degrees d1, . . . , dm respectively, and put
I = ⟨f1, . . . , fm⟩R. For each integer d with d ≥ max{di : 1 ≤ i ≤ m}, we say
that a sequence (f1, . . . , fm) is d-regular if it satisfies the following condition:

– For each i with 1 ≤ i ≤ m, if a homogeneous polynomial g ∈ R satisfies
gfi ∈ ⟨f1, . . . , fi−1⟩R and deg(gfi) < d, then we have g ∈ ⟨f1, . . . , fi−1⟩R.

The (truncated) Hilbert series of d-regular sequences was determined by
Diem [18], as in the following proposition:

Theorem 3 (cf. [18, Theorem 1]). We use the same notation as in Definition
1. Then, the following are equivalent for each d with d ≥ max{di : 1 ≤ i ≤ m}:

34

(1) The sequence (f1, . . . , fm) of homogeneous polynomials is d-regular.
(2) We have

HSR/⟨f1,...,fm⟩(z) ≡
∏m

j=1(1− zdj)

(1− z)n
(mod zd). (A.2)

(3) H1(K•(f1, . . . , fm))≤d−1 = 0.

Recall that a finitely generated graded R-module M is said to be Artinian if
there exists a sufficiently large D ∈ Z such that Md = 0 for all d ≥ D.

Definition 2 ([4, Definition 4], [5, Definition 4]). For a homogeneous ideal
I of R, we define its degree of regularity dreg(I) as follows: If the finitely generated
graded R-module R/I is Artinian, we set dreg(I) := min{d : Rd = Id} with
Id = I ∩ Rd, and otherwise we set dreg(I) := ∞. We also denote dreg(I) by
dreg(F) for a subset or a sequence F of homogeneous elements in R generating
the homogeneous ideal I.

Definition 3 ([4, Definition 5], [5, Definition 5]; see also [18, §2]). A
sequence (f1, . . . , fm) ∈ Rm of homogeneous polynomials of positive degrees is
said to be semi-regular if it is dreg(I)-regular, where we set I = ⟨f1, . . . , fm⟩R.

The semi-regularity is characterized by equivalent conditions in the following
proposition:

Proposition 1 ([18, Proposition 1 (d)]; see also [5, Proposition 6]). With
the same notation as in Definition 1, we put D = dreg(I). Then, the following
are equivalent:

(1) The sequence (f1, . . . , fm) of homogeneous polynomials is semi-regular.
(2) We have

HSR/I(z) =

[∏m
j=1(1− zdj)

(1− z)n

]
, (A.3)

where [·] means truncating a formal power series over Z after the last con-
secutive positive coefficient.

(3) H1(K•(f1, . . . , fm))≤D−1 = 0.

Note that, by Definition 3, if (f1, . . . , fm) is semi-regular, then the degree of
regularity dreg(I) coincides with deg(HSR/I)+1, where we set I = ⟨f1, . . . , fm⟩R.

Finally, we recall the definition of an affine semi-regular sequence:

Definition 4 ([5, Definition 5]). A sequence F = (f1, . . . , fm) ∈ Rm of not
necessarily homogeneous polynomials of positive degrees is said to be semi-regular
if the sequence F top = (f top

1 , . . . , f top
m) is semi-regular . In this case, the sequence

F is said to be affine semi-regular.

35

	Polynomial XL: A Variant of the XL Algorithm Using Macaulay Matrices over Polynomial Rings

