
Bootstrapping in FHEW-like Cryptosystems∗

Daniele Micciancio and Yuriy Polyakov

Duality Technologies

April 18, 2024

Abstract

FHEW and TFHE are fully homomorphic encryption (FHE) cryptosystems that can evaluate
arbitrary Boolean circuits on encrypted data by bootstrapping after each gate evaluation. The
FHEW cryptosystem was originally designed based on standard (Ring, circular secure) LWE
assumptions, and its initial implementation was able to run bootstrapping in less than 1 second.
The TFHE cryptosystem used somewhat stronger assumptions, such as (Ring, circular secure)
LWE over the torus with binary secret distribution, and applied several other optimizations to
reduce the bootstrapping runtime to less than 0.1 second. Up to now, the gap between the
underlying security assumptions prevented a fair comparison of the cryptosystems for the same
security settings.

We present a unified framework that includes the original and extended variants of both
FHEW and TFHE cryptosystems, and implement it in the open-source PALISADE lattice
cryptography library using modular arithmetic. Our analysis shows that the main distinction
between the cryptosystems is the bootstrapping procedure used: Alperin-Sherif–Peikert (AP)
for FHEW vs. Gama–Izabachene–Nguyen–Xie (GINX) for TFHE. All other algorithmic op-
timizations in TFHE equally apply to both cryptosystems. The GINX bootstrapping method
makes essential the use of binary secrets, and cannot be directly applied to other secret distribu-
tions. In the process of comparing the two schemes, we present a simple, lightweight method to
extend GINX bootstrapping (e.g., as employed by TFHE) to ternary uniform and Gaussian se-
cret distributions, which are included in the HE community security standard. Our comparison
of the AP and GINX bootstrapping methods for different secret distributions suggests that the
TFHE/GINX cryptosystem provides better performance for binary and ternary secrets while
FHEW/AP is faster for Gaussian secrets. We make a recommendation to consider the variants
of FHEW and TFHE cryptosystems based on ternary and Gaussian secrets for standardization
by the HE community.

1 Introduction

Fully Homomorphic Encryption (FHE) is a powerful approach for performing computations over en-
crypted data. This method can be used for privacy-preserving outsourced storage and computation.
Since the pioneering work by Gentry [25] in 2009, which introduced the bootstrapping procedure
and showed that arbitrary computations can be performed over encrypted data without any inter-
actions, this field has seen a lot of progress, including several new schemes that are dramatically

∗This work was funded solely by Duality Technologies.

1

more efficient than Gentry’s original construction [10, 23, 13, 20, 14] and real-scale applications
of homomorphic encryption for private information retrieval [5], private set intersection [12], and
privacy-preserving genome-wide association studies [7] and logistic regression learning [30]. Several
homomorphic encryption software libraries are now available, including HELib [28], SEAL [38],
PALISADE [1], TFHE [16], and FHEW [21], and some of these libraries are already used for
commercial applications. There is also a major community initiative to standardize homomorphic
encryption, which has put forward a security standard for homomorphic encryption [2].

Bootstrapping, i.e, the homomorphic evaluation of a decryption circuit on the encryption of
a secret key to “refresh” the ciphertext so it could support more computations, has been a cen-
tral component of all FHE schemes since Gentry’s work [25], and the main efficiency bottleneck
in their implementation. The most common approach to mitigate the high cost of bootstrapping
(e.g., see [26, 39, 29]) is to simultaneously refresh several messages during a single bootstrap-
ping computation, and to carefully apply the bootstrapping algorithm only when strictly required.
This allows to reduce the amortized (per message and per homomorphic operation) cost of boot-
strapping, but results in a rather involved programming model where basic operations cannot be
arbitrarily composed. An alternative approach was put forward by the FHEW cryptosystem [20]
which demonstrated (building on work of Gentry, Sahai and Waters [27] and Alperin-Sheriff and
Peikert [4] and some novel technical ingredients) that an elementary bootstrapped computation
(on a single encrypted bit) could be carried out in practice in a fraction of a second, for typical
levels of security. The running time was further improved by the TFHE cryptosystem [14], which
introduced a number of optimizations over [20] in conjunction with an alternative bootstrapping
strategy [24]. Two distinguishing features of the TFHE cryptosystem, which set it apart from most
other homomorphic encryption proposals, are the use of the Ring LWE problem with binary secrets,
and the use of arithmetic operations over the continuous interval [0, 1) (the so-called torus, from
which TFHE derives its name) instead of the more common modular integer arithmetic. These are
legitimate choices in the exploratory context of proposing a new FHE cryptosystem, but also make
it harder both to compare TFHE to other proposals (and FHEW in particular) and to consider the
cryptosystem within the ongoing Homomorphic Encryption Standardization process [2].

Secret distribution. Theoretical work on the LWE and Ring LWE problems [32, 37] suggests
that secret vectors should have random Gaussian entries with standard deviation σ ≈

√
n or larger

(where n is the underlying lattice dimension or security parameter). Small secrets (with binary
entries) have received some attention, but theoretical results supporting their hardness [35, 33]
only apply to the inefficient (non-ring) LWE setting. In fact, this is the reason why the FHEW
cryptosystem [20] used a combination of standard LWE encryption with binary secrets together
with Ring LWE with arbitrary (or large Gaussian) secrets. As a pragmatic choice to support the
use of more efficient schemes, the Homomorphic Encryption standardization document [2] considers
the use of Gaussians over a smaller interval {±8}, or even “ternary” secrets with entries uniformly
distributed in {−1, 0, 1}. However, it does not currently support the extreme choice of binary secrets
with {0, 1} entries. In fact, a recent hybrid attack against LWE with binary secrets suggests that
this variant of LWE may be vulnerable to specialized attacks exploiting certain properties of binary
secrets [22]. These specialized attacks do not seem to give any advantage over previously known
lattice attacks for uniform ternary and small-interval Gaussian secret distributions [19, 40]. So,
binary secrets should be treated with much caution. Even if binary secrets were to be included in
[2], any concrete efficiency comparison between schemes should carefully take into account how the
use of different secret distributions affects the concrete security level, possibly calling for different

2

values of the key size.
Our work. In order to better understand the relative merits of the bootstrapping procedures

employed by FHEW and TFHE, and facilitate the inclusion of these cryptosystems in the standard
[2], we implemented several variants and generalizations of these cryptosystems within a uniform
framework (using the PALISADE lattice cryptography library), supporting the use of different
secret distributions as well as a range of time/memory trade-offs. More specifically, we started from
FHEW as a base cryptosystem, for its use of standard modular integer arithmetic and support for
arbitrary secrets. We reimplemented it within the PALISADE library, including the algorithmic
optimizations from TFHE that are applicable to both cryptosystems, but without sacrificing the
use of modular integers or the support for larger secret key distributions.

As we will explain, there are two main approaches to arithmetic bootstrapping, first suggested
in the (non-ring, inefficient) LWE setting by Alperin-Sheriff and Peikert [4] and Gama, Izabachene,
Nguyen and Xie [24]. The FHEW cryptosystem is essentially an instantiation of [4] for the Ring
LWE setting, while TFHE proposes a similar Ring LWE adaptation of [24]. So, we will refer to
these two bootstrapping procedures as AP/FHEW and GINX/TFHE. This is the main algorithmic
difference between FHEW and TFHE, and the reason why TFHE requires binary secrets: while the
AP bootstrapping algorithm can be equally applied to secrets of any size, the GINX one is directly
applicable only to binary secrets, and extending it to arbitrary secrets carries a substantial cost.

To further facilitate the comparison between the two bootstrapping algorithms, we propose
(and implement) a simple method to adapt GINX/TFHE bootstrapping to non-binary secrets.
For example, using the linearity of the bootstrapping procedure, one can express ternary secrets
as the difference s − s′ ∈ {−1, 0, 1}n between two binary vectors s, s′ ∈ {0, 1}n, carry out two
TFHE computations on binary secrets s, s′, and then take the difference between the two outputs.
This provides a simple method to adapt GINX/TFHE techniques to parameter sets covered by the
standard [2], and compare its performance with AP/FHEW bootstrapping and other schemes in a
uniform security setting. For the sake of comparison, we also considered instantiations of FHEW
with binary secrets, as well as variants of FHEW that offer trade-offs between running time and
bootstrapping key size.

Comparison highlights. Our results suggest that different performance between FHEW
and TFHE can be almost entirely explained by the choice of a different bootstrapping algorithm.
Moreover, how the cryptosystems compare with each other is highly sensitive to the secret key
distribution. In summary, when the secret is binary (in {0, 1}), TFHE is faster than FHEW roughly
by a factor 2 (once FHEW has been improved with algorithmic optimizations that apply equally
to both cryptosystems). However, already for ternary secrets {−1, 0, 1}, the two cryptosystems
have essentially the same running time, with FHEW being slightly faster, but at the cost of a
much larger bootstrapping key. But as one moves to larger secrets (e.g., Gaussian with standard
deviation σ = 3.2 or σ ≈

√
n as supported by [2] and theoretical work), FHEW outperforms TFHE

in terms of running time. So, the performance advantages of TFHE seem to be specific to the
choice of binary secrets. In terms of memory usage, the TFHE bootstrapping key is typically
smaller than for FHEW, but this can be largely mitigated by FHEW’s time/memory trade-off:
when instantiated to optimize space, the FHEW bootstrapping key becomes as small as in TFHE
for Gaussian secrets, while still providing much better running times than TFHE in the Gaussian
secret settings.

We also observe that TFHE has a slightly higher error in refreshed ciphertexts (up to a mul-
tiplicative factor of

√
2) for ternary secrets, which in some cases allows selecting more efficient

3

parameters for FHEW. For instance, FHEW supports a faster parameter configuration for the
main case of 128-bit security w.r.t. classical computer attacks, which results in a 25% practical
runtime improvement of FHEW over TFHE for this scenario.

A more detailed description of previous work related to FHEW and TFHE and our contribution
is provided in the next subsection.

1.1 Historical Background

The first FHE scheme based on the hardness of approximating lattice problems within polyno-
mial factors was proposed by Brakerski and Vaikuntanathan in [11]. More specifically, that paper
showed how to use the homomorphic encryption scheme of Gentry, Sahai and Waters [27] to evalu-
ate polynomial-size branching programs, while keeping the lattice approximation factor polynomial.
Since LWE ciphertexts can be decrypted by log-depth circuits, and log-depth circuits can be ex-
pressed by polynomial-size branching programs, this allowed, for the first time, to base Gentry’s
bootstrapping procedure on the polynomial hardness of LWE.

However, decrypting by reduction to log-depth circuits and general branching programs is rather
impractical. More efficient methods to bootstrap using the GSW cryptosystem were later proposed
by Alperin-Sheriff and Peikert [4] and Gama, Izabachene, Nguyen and Xie [24]. Similar to [11],
these works can homomorphically compute the LWE decryption function (and therefore, implement
bootstrapping) based on the hardness of LWE with polynomial modulus q. However, the use of the
special structure of the LWE decryption function results in a much simpler procedure than generic
reductions to branching programs.

Still, the practical efficiency of [4, 24] was rather limited because those works employed general
lattices, and were built around a data structure (a cryptographic accumulator) consisting of a large
number of LWE ciphertexts. A big step in improving the speed of bootstrapping was taken by
the FHEW cryptosystem [20], which demonstrated for the first time that a fully bootstrapped
homomorphic evaluation (of an elementary operation) could be performed in a fraction of a second.
The FHEW cryptosystem introduced two important technical innovations:

• The observation that the evaluation of an arbitrary function can be split into the computa-
tion of a linear function (which can be directly implemented by the LWE encryption scheme),
followed by a table look-up, which can be easily performed during bootstrapping essentially
at no additional cost. Due to the ability of evaluating a look-up table as part of bootstrap-
ping, this bootstrapping procedure was called functional or programmable bootstrapping in
subsequent works [18, 31].

• A ring version of the GSW cryptosystem (based on the Ring LWE problem), and a method
to use it to efficiently implement the cryptographic accumulator (of the type needed by the
bootstrapping procedure of [4]) using a single (Ring) LWE ciphertext.

The first contribution allows to realize fully homomorphic encryption by bootstrapping a very
simple LWE-based encryption scheme. (Previous schemes required to bootstrap a scheme capable
of evaluating at least one multiplication operation. This is not the case in FHEW, where the basic
scheme is only required to support addition.) Then, this simple scheme is bootstrapped using the
method of [4], but implemented using the efficient FHEW accumulators based on the Ring GSW
cryptosystem.

4

Finally, [14, 15] proposed TFHE, a homomorphic encryption cryptosystem “over the torus”,
which replaces integer arithmetic modulo q with real arithmetic over the unit interval [0, 1), and
introduced several optimizations to the FHEW cryptosystem. The most important difference be-
tween TFHE and FHEW is that TFHE uses (an optimized version of) the FHEW accumulators to
implement a ring variant of the bootstrapping procedure of [24], rather than [4].

The performance improvement of TFHE over FHEW is substantial. However, TFHE also makes
a number of technical choices (e.g., the use of real arithmetic over [0, 1), and the use of Ring LWE
with binary secrets) that are somehow non-standard and may potentially be exploited by specialized
attacks, such as the recent hybrid binary-LWE attack [22]. These technical choices make it harder
for the cryptosystem to be considered by the current Homomorphic Encryption Standardization
process [2].

The purpose of this paper is twofold:

• Producing a “standard-compliant” version of the FHEW/TFHE cryptosystem, within the
PALISADE lattice cryptography library, to enable the comparison of FHEW with the other
main FHE schemes (e.g., BGV and BFV) currently considered for standardization.

• Implement (Ring LWE versions of) both bootstrapping procedures [4, 24] within the same
(integer-based) FHEW cryptosystem, in order to better understand the relative merits of the
two bootstrapping methods, and the differences between FHEW and TFHE.

We remark that the TFHE library described in [14, 15] provides several other procedures be-
side single gate computations and bootstrapping. Since these auxiliary functions can arguably
be implemented both on top of FHEW and TFHE, we see these extensions as orthogonal to the
standardization and comparison of FHEW/TFHE, and focus on the core functionality of the cryp-
tosystems.

Other developments. The FHEW cryptosystem studied the problem of fast bootstrapping
by considering the evaluation of the simplest possible gate: a Boolean NAND operation, or other
binary gate. This has been extended to larger gates in [6, 8]. In a different direction, [36] showed
how to simultaneously bootstrap n FHEW gates at an asymptotic cost comparable to a single
FHEW bootstrapping, thereby reducing the amortized cost of bootstrapping by a factor (close to)
n. Both improvements are currently mostly of theoretical interest, as they introduce a substantial
overhead that makes them unattractive in practice. Finding more practical implementations of the
ideas in [6, 8, 36] is a theoretically interesting, and practically important open problem.

1.2 Technical contributions

Our contributions can be summarized as follows:

• We extend the GINX bootstrapping [24] to ternary uniform and Gaussian secret key distribu-
tions, which are included in the HE Security Standard [2]. The original GINX bootstrapping
supported only binary secret key distribution, which is not currently included in the HE
standard and was recently shown to be vulnerable to hybrid attacks exploiting the recur-
sive structure of the search space corresponding to binary secret vectors [22]. We remark
that the restriction of GINX bootstrapping to binary secrets is not just a limitation of its
implementation, e.g., as provided by the TFHE cryptosystem. GINX bootstrapping makes
essential algorithmic use of binary secrets s ∈ {0, 1} as selectors between two values m0,m1

5

using the arithmetic formula (1− s) ·m0+ s ·m1. A similar selection procedure for more than
two values would require the use of higher degree polynomials. Our work provides a much
simpler, lightweight method to support arbitrary secrets on top of the binary GINX/TFHE
bootstrapping procedure. (E.g., for ternary secrets, our implementation only incurs a factor
2 slow-down over binary secrets.)

• We present a variant of the TFHE cryptosystem that is compliant with the HE Security
Standard [2]. Our variant does not require any “non-standard” assumptions, such as LWE
over torus or binary secret key distribution.

• We present a theoretical comparison of the AP and GINX bootstrapping procedures for
common secret key distributions. Our analysis suggests that the GINX bootstrapping is
more efficient for binary and ternary secret key distributions while the AP bootstrapping
provides better computational complexity for Gaussian secret key distributions.

• We provide an open-source implementation of the extended FHEW and TFHE cryptosystems
in PALISADE.

1.3 Organization

The rest of the paper is organized as follows. In Section 2 we provide the necessary background
on (Ring) LWE encryption, and define the notation used in the rest of the paper. In Section 3 we
present the two bootstrapping procedures within a unified framework, and compare their theoretical
merits in Section 4. Our implementation and experimental comparison of the two schemes is given
in Section 5. Section 6 concludes with our final recommendations.

2 Ring LWE Encryption

Let R = Z[X]/(Xn+1) be the 2nth cyclotomic ring, for n = 2k, and Rq = R/qR ≡ Zq[X]/(Xn+1).
We identify ring elements with the corresponding coefficient vectors in Zn and Zn

q .
We recall the construction of homomorphic encryption schemes from the Ring LWE problem

following the modular approach of [34]. The basic Ring LWE symmetric encryption scheme encrypts
(the encoding of) a message m̃ ∈ Rq under key s ∈ R as

RLWEs(m̃) = (a, as+ e+ m̃),

where a ← Rq is chosen uniformly at random, and e ← χn
σ is chosen from a discrete Gaussian

distribution of parameter σ. We write RLWEs(m̃; a, e) or RLWEs(m̃; e) when we want to make the
randomness explicit or emphasize the error term e. The secret key s may be chosen from the
uniform distribution over Rq, or from some other distribution with support over “short” elements,
e.g., s← χn

σ or s← {0, 1,−1}n. A ciphertext (a, b) ∈ R2
q is decrypted by computing

RLWE−1
s (a, b) = b− as = m̃+ e

and then evaluating an appropriate decoding function to correct the error e and recover the message
encoded by m̃. The simplest type of encoding is to use Rt as a message space (for a message modulus
t much smaller than q), and encode m ∈ Rt as m̃ = (q/t)m, i.e., by scaling m by a factor (q/t).

6

Assuming the error distribution χ is concentrated on vectors with entries bounded by q/(2t) in
absolute value, the decoding function

f(x) = ⌊(t/q)x⌉ (mod t)

recovers the message by rounding each coordinate to the closest multiple of q/t.
The error of a Ring LWE ciphertext (a, b) encrypting message (encoding) m̃ under key s is

defined as
Errs((a, b); m̃) = b− as− m̃.

If (a, b) is computed using the RLWE encryption algorithm, then Errs((a, b); m̃) = e is precisely
the error term e ← χn

σ. We will use the function Err to keep track of errors also when computing
homomorphically on ciphertexts.

RLWE encryption is linearly homomorphic, with operations defined as

(a0, b0) + (a1, b1) = (a0 + a1, b0 + b1)

d · (a0, b0) = (d · a0, d · b0)

where c0 = (a0, b0) = RLWEs(m̃0), c1 = (a1, b1) = RLWEs(m̃1) are ciphertexts and d ∈ Rq. The
error growth during homomorphic computations is given by

Errs(c0 + c1; m̃0 + m̃1) = Errs(c0; m̃0) + Errs(c1; m̃1)

Errs(d · c0; d · m̃0) = d · Errs(c0; m̃0).

Notice that the multiplication operation

(·) : R× RLWE→ RLWE

defined above can only be used with “small” multipliers d, otherwise the error could grow beyond
bounds. In order to support multiplication by arbitrary ring elements, one defines a new encryption
scheme

RLWE′
s(m) = (RLWEs(m),RLWEs(Bm),RLWE(B2m), . . . ,RLWEs(B

k−1m))

using the same keys s ∈ Rq, and where ciphertexts consist of k = logB q basic encryptions produced
by the original RLWE scheme. The base B can be set differently to achieve various time/space
trade-offs. For simplicity, we assume q is a power of B, but the scheme can be easily adapted to
other values. Mixed base variants are also possible, where Bi is replaced by a product B1 · · ·Bi.
Incidentally, we note that these ciphertexts allow to recover the message m exactly, even without
encoding/scaling, by first decrypting RLWE(Bk−1m) to recover (m mod B). Then subtracting
Bk−2 · (m mod B) from RLWEs(B

k−2m) to recover (m mod B2), and so on. More importantly,
RLWE′ ciphertexts support multiplication by any constant d ∈ Rq by first expressing d =

∑
iB

idi
with B-bounded component polynomials di, and then computing

d⊙ (c0, . . . , ck−1) =
∑
i

di · ci.

This provides a multiplication operation

(⊙) : R× RLWE′ → RLWE

7

with much smaller error growth than the basic R × RLWE product. Specifically, the error is only
logarithmic in q, rather than linear. It is also possible to define a multiplication operation

(⊙′) : R× RLWE′ → RLWE′

d⊙′ C = (d⊙C, (B · d)⊙C, . . . , (Bk−1 · d)⊙C).

with result in RLWE′.
The RLWE and RLWE′ schemes only support multiplication by constant values. In order to

support multiplication by ciphertexts, we define one more cryptosystem, which is equivalent to a
ring variant of the encryption scheme proposed in [27]. The scheme is built from RLWE′ using the
same keys, and, conceptually, it can be defined as

RGSWs(m) = (RLWE′
s(−s ·m),RLWE′

s(m)). (1)

We said “conceptually” because, as shown below, there is a simpler and more direct way to compute
these ciphertexts. The security of the scheme is based on the fact that RLWE (and therefore also
RLWE′) is circular secure, because an encryption of s can be trivially computed as the ciphertext
(a, b) = (−1, 0), which, by construction, decrypts to b− as = 0− (−1) · s = s. This same property
also provides a method to compute the first component of (1) without explicitly including the secret
key s as part of the message:

RLWE′
s(−s ·m) = RLWE′

s(0)−m · (−1, 0) = (a+m, as+ e).

Readers familiar with the original GSW cryptosystem [27] (or, more precisely, the Ring LWE version
[20] of the simplified variant proposed in [4]) will immediately notice how RGSWs(m) ciphertexts
can be equivalently written as

RGSWs(m) = (RLWEs(0), . . . ,RLWEs(0)) +mG (2)

where G = I⊗(1, B,B2, . . . , Bk−1) is the powers-of-B “gadget matrix”. For simplicity, PALISADE
implements the RGSW cryptosystem directly using equation (2), but multiplication between RGSW
ciphertexts is best analyzed using the modular definition (1) from [34].

Multiplication between RLWE ciphertexts is supported by computing the RLWE decryption
function homomorphically. Specifically, given (a, b) = RLWEs(m0; e0) and (c, c′) = RGSWs(m1)
one computes

(a, b) ⋄ (c, c′) =
〈
(a, b), (c, c′)

〉
= a⊙ c+ b⊙ c′

= a⊙ RLWE′
s(−s ·m1) + b⊙ RLWE′

s(m1)

= RLWEs(−s · a ·m1) + RLWEs(b ·m1)

= RLWEs(b ·m1 − a · s ·m1)

= RLWEs((b− as) ·m1)

= RLWEs(m0m1 + e0m1).

This is an encryption of the product m0m1, with an additional error term e0m1. For this operation
to be effective, RGSW encryption is usually restricted to small messages m1, typically m1 = ±Xv,
so that ∥e0m1∥ = ∥e0∥. This multiplication operation has type

(⋄) : RLWE× RGSW→ RLWE

8

but is easily extended component-wise

(⋄) : RLWE′ × RGSW→ RLWE′ (c0, . . . , ck−1) ⋄C = (c0 ⋄C, . . . , ck−1 ⋄C)

(⋄) : RGSW × RGSW→ RGSW (c, c′) ⋄C = (c ⋄C, c′ ⋄C)

to operate on RLWE′ or RGSW ciphertexts. The last operation provides a way to multiply RGSW
ciphertexts with each other RGSW(m0) · RGSW(m1) = RGSW(m0 · m1), and it is perhaps the
most convenient operation to design protocols. But whenever one needs only a RLWE (or RLWE′)
encryption of the result, efficiency savings can be obtained by only using a component of RGSW(m0)
(which is a ciphertext of the form RLWE(m0),) and computing the product RLWE(m0)·RGSW(m1) =
RLWE(m0 ·m1), e.g., as done in the TFHE scheme, and optimized implementations of FHEW.

3 Bootstrapping

We recall that LWE ciphertexts have the form (a, b) where a ∈ Zn
q and b ∈ Zq, and keys are vectors

s ∈ Zn
q , possibly chosen from a subset of Zn

q . Ciphertext (a, b) is decrypted by first computing
the linear term d = b − ⟨a, s⟩ ∈ Zq, and then “rounding” d to a message m = f(d) ∈ Zt, where
f : Zq → Zt is an appropriate function. (Usually, f(d) = ⌈dt/q⌋ rounds d to the closest multiple
of q/t.) The goal of bootstrapping is to compute this decryption function homomorphically, given
an encryption E(s) of the secret key, so that the result of the computation is again an encryption
E(m) of the message, but with smaller noise. In particular, the noise of the output ciphertext
E(m) only depends on the noise of E(s) (and the complexity of the decryption procedure, which
is fixed), but not on the noise of the ciphertext (a, b) which is “decrypted away”.

We remark that the secret key E(s) may be encrypted under a different scheme than LWE.
Moreover, it is often convenient to consider bootstrapping procedures where the final output Ẽ(m)
is encrypted under still another encryption scheme.

A common feature of [4, 24] is that they both directly implement bootstrapping as an arith-
metic procedure. Since arithmetic computations are well supported by lattice based encryption, this
carries much lower overhead than homomorphic computing via branching programs. More specif-
ically, using the terminology of [20], bootstrapping is implemented by means of a cryptographic
accumulator ACC holding values from Zq and supporting the following operations:

1. Initialize: ACC← b, setting the content of ACC to any known value b ∈ Zq

2. Update: ACC
+← c ·E(s), modifying the content of the accumulator from ACC[v] to ACC[v+

c · s], where c, s ∈ Zq, and s is given encrypted under E.

3. Extract: f(ACC), returning an encryption Ẽ(f(v)) of function f applied to the current
content of the accumulator ACC[v].

Using this cryptographic data structure with

ek = E(s) = (E(s1), . . . , E(sn))

as a bootstrapping (also called “evaluation” or “refreshing”) key, the bootstrapping procedure is
easily implemented by the pseudo-code in Figure 1. The exact computations performed by this
bootstrapping procedure depend on the details of how the accumulator operations are implemented:

9

Bootstrap(ek = (E(si))i,(a, b)):
ACC← b
for i = 1, . . . , n do
ci = −ai (mod q)

ACC
+← ci · eki

return f(ACC)

Figure 1: Arithmetic bootstrapping using a generic cryptographic accumulator ACC and rounding
function f .

• The AP bootstrapping procedure [4] supports basic updates ACC
+← E(s) for arbitrary s ∈ Zq.

Then, ACC
+← c · E(s) is implemented by providing (in the bootstrapping key) encryptions

E(2is) of multiples of the secret key elements s, taking the binary expansion of c =
∑

i 2
ici,

and then executing ACC
+← E(2is) for all i such that ci = 1.

• The GINX bootstrapping procedure [24] supports basic updates ACC
+← c ·E(s) where c ∈ Zq

is arbitrary, but s ∈ {0, 1} is a single bit. Then, for an arbitrary secret s =
∑

i 2
isi ∈ Zq, one

can execute ACC
+← (2ic) · E(si) for all i.

The AP scheme can be generalized to offer a space/time trade-off, where a =
∑

iBr
iai is written

to a base Br ≥ 2 (with digits ai ∈ ZBr), and the bootstrapping key includes encryptions E(Br
ias)

for all i ≤ logBr
q and a ∈ ZBr . This speeds up bootstrapping by a factor log2Br ≤ log2 q, but at

the cost of increasing the size of the bootstrapping key by a factor Br/ log2Br ≤ q/ log2 q.
No such trade-off is offered by the GINX scheme [24], which only supports binary expansion

of the secret key s =
∑

i 2
isi. But efficiency can be improved at the cost of a stronger security

assumption, by using a small secret key s to start with. This is why [24, 14] make the non-standard
assumption that the key s has binary entries, which results is the highest possible performance
improvement log2 q = O(log n) (over the same scheme with arbitrary secrets s ∈ Zq, or even
“small” secrets |s| = O(

√
n) following the error distribution.)

In this paper, we consider standard instantiations of GINX, e.g., using uniform ternary secrets
si ∈ {−1, 0,+1} [2] or gaussian secrets si = O(

√
n) [32, 37], which offer better security (at least,

based on known lattice attacks), at a modest performance penalty.

3.1 Ring LWE accumulators

We now describe how to implement the cryptographic accumulators ACC required by the boot-
strapping procedure. Since, for efficiency’s sake, we will use ring lattices, we focus on the Ring
LWE-based accumulators proposed in [20] and further refined/optimized in [14].

The main idea of the FHEW accumulators [20] (building on a suggestion of [4]) is to work in
a cyclotomic ring of order q, and represent values v ∈ Zq as Xv ∈ Z[X]/Φq(X), where Φq(X) is
the qth cyclotomic polynomial. Since X has multiplicative order q in Z[X]/Φq(X), addition in the
exponent of Xv is performed modulo q. Following [20], we assume q = 2k is a power of 2, and use
the ring RQ = ZQ[X]/(Xq/2 + 1) for a sufficiently larger modulus Q, but generalizations to other

10

cyclotomic rings are possible, e.g., see [6, 8]. The ring RQ is used to implement the RLWE,RLWE′

and RGSW encryption schemes described in Section 2. The smaller modulus q is only used for the
LWE ciphertext given as input to the bootstrapping procedure.

Note that in the implementation, we use N larger than q/2 to achieve a desired security level for
the RLWE/RGSW schemes. The requirement in this case is that q divides 2N so that we can embed
the ring ZQ[X]/(Xq/2 + 1) into ZQ[X]/(XN + 1). Please see the PALISADE implementation [1]
for more details.

FHEW accumulators store the value v ∈ Zq as ACC[v] = RGSW(Xv), and support the compu-
tation of any function f (during extraction) such that

f(v + (q/2)) = −f(v). (3)

For this reason, bootstrapping in FHEW-like cryptosystems is often called as functional or pro-
grammable bootstrapping.

Two optimizations are possible, and will be used in this paper:

• If the function f is known in advance, the value v can be alternatively stored as

ACC[v] = RGSW

q/2−1∑
i=0

f(v − i) ·Xi

 .

This leads to a simpler and more efficient extraction procedure.

• If only an LWE ciphertext is needed at the end of the computation, one can set the accumulator

ACC[v] = RLWE(Xv)

to a simple RLWE ciphertext, i.e., a single component of a RGSW ciphertext.

We remark that the more complex accumulators may be useful, e.g., to support multiple functions
f , and more advanced bootstrapping methods, like [36]. But for the main purpose of this paper,
both optimizations can be used, and we set

ACC[v] = RLWE

q/2−1∑
i=0

f(v − i) ·Xi

 .

We write ACCf to emphasize that the value of the extraction function is fixed at initialization time.
The initialization and extraction operations are easily implemented:

• Initialize: ACCf ← v simply sets ACCf to a noiseless encryption RLWE(m) = (0,m) of the
polynomial

m(X) =
∑
i<q/2

f(v − i) ·Xi.

• Extract: if ACCf = (a, b) is the RLWE ciphertext with component polynomials a(X) =∑
i<q/2 aiX

i, b(X) =
∑

i<q/2 biX
i, the extraction operation outputs the LWE ciphertext

f(ACCf) = (a, b0),

where a = (a0, . . . , aq/2−1) is the coefficient vector of a(X).

11

ACCf [v] = RLWE

q/2−1∑
i=0

f(v − i) ·Xi

 ∈ R2
Q

Initf (v):
for i = 0, . . . , q/2− 1
mi = f(v − i)

m =
∑

i<q/2miX
i = (m0, . . . ,mq/2−1)

return (0,m)

Extractf (a,b):
let (b0, . . . , bq/2−1) = b

return (a, b0)

Figure 2: FHEW accumulators and initialization/extraction procedures for any fixed function
f : Zq → ZQ such that f(v + q/2) = −f(v). Init takes as input a value v ∈ Zq, and outputs
an accumulator ACCf [v] holding it. The Extract function takes as input an RLWE ciphertext
representing an accumulator ACCf [v] for a given function f and key z(X) ∈ RQ, and outputs an

LWE encryption (modulo Q) of f(v) ∈ ZQ with respect to key z = (z0,−zq/2−1, . . . ,−z1) ∈ Zq/2
Q .

In the implementation, it is more convenient to compute the transpose of a to get an encryption
of the result under the original (rather than permuted) secret.

The pseudo-code of the initialization and extraction procedures is given is Figure 2.
The initialization procedure is clearly correct, and it has the useful feature of not introducing

any noise. For the extraction procedure, recall that

b(X) = z(X) · a(X) + e(X) +m(X) mod (Q,Xq/2 + 1)

for some secret key polynomial z(X) ∈ RQ (typically different from the input LWE secret key s)
and small noise polynomial e(X). So, the constant term b0 = b(0) of this polynomial equals

b0 = z0 · a0 +
q/2−1∑
i=1

ziaq/2−i · (−1) + e(0) +m(0)

= ⟨a, z⟩+ e0 +m(0),

where z = (z0,−zq/2−1, . . . ,−z1) is a signed permutation of the coefficients of the secret key poly-
nomial z(X). Notice that m(0) = f(v). So, (a, b0) is precisely an LWE encryption of f(v) under key
z with small noise e0 = e(0). Notice that the resulting LWE ciphertext uses a different dimension
q/2 and modulus Q than the input LWE ciphertext given to the bootstrapping procedure. An LWE
encryption of f(v) under key s, in dimension n and modulus q, can be obtained using a standard
key-switching operation.

We now move to the update operation ACC
+← c·E(s). This operation is implemented differently

in the AP/FHEW and GINX/TFHE bootstrapping procedures, and using different methods to
encrypt the secret values E(si). But both methods operate on the same FHEW accumulators
described in Figure 2, and support he same initialization and extraction procedures.

• In AP/FHEW, each secret value s ∈ Zq is encrypted as

E(s) = {Zj,v = RGSW(XvBr
j ·s) | j < logBr

q, v ∈ ZBr}.

12

Then, the update operation ACC[v]
+← c · E(s) is computed by writing c =

∑
iBr

ici in
base Br, and sequentially updating ACC := ACC ⋄ Zj,cj for j = 0, . . . , logBr

q − 1, using the
RLWE× RGSW→ RLWE multiplication operation. The pseudo-code is given in Figure 3.

• In GINX/TFHE, each secret value s ∈ Zq needs to be expressed as a subset-sum s =
∑

u∈U u ·
xu (with xu ∈ {0, 1}) where U ⊂ Zq is an appropriate subset of Zq. For example, for
binary secrets one can simply set U = {1}. Arbitrary elements of Zq can be expressed using
U = {1, 2, 4, . . . , 2k−1}. For ternary secrets one can use U = {1,−1}, or U = {1,−2} to make
the representation unambiguous.

For any such U , the secret encryption function is defined as

E′(s) = {Zu = RGSW(xu) | for some x ∈ {0, 1}U

such that
∑

u u · xu = s}.

Then, the update operation ACC[v]
+← c · E(s) is computed by sequentially updating

ACC := ACC ⋄ Z̄u + (Xu·c · ACC) ⋄ Zu

for u ∈ U , where
Z̄u = G− Zu = RGSW(1)− Zu

is the (homomorphic) logical negation of the encrypted bit Zu.

When implementing the GINX/TFHE bootstrapping procedure, it is more efficient to write
the update operation as

ACC := ACC+ (Xu·c − 1) (ACC ⋄ Zu) .

This form requires only a single RLWE× RGSW product.

See Figure 4 for the pseudo-code.

3.2 Rounding functions and Boolean gates

The full bootstrapping procedure is obtained by implementing the algorithm in Figure 1 using the
accumulator described in Figure 2 and the update procedure from either Figure 3 or Figure 4.

We conclude with a discussion of the function f used by the extraction function at the end of
bootstrapping. In its simplest instantiation, the FHEW encryption scheme uses ciphertexts of the
form LWEs(m·(q/4)) = (a, b), for message bit m ∈ {0, 1} with error e = b−⟨a, s⟩−m·(q/4) bounded
by |e| < q/16. The NAND of two ciphertexts (a0, b0) = LWE(m0(q/4)) and (a1, b1) = LWE(m1(q/4))
is computed by first adding them up, to obtain an encryption (a, b) = (a0+a1, b0+b1) of m0+m1 ∈
{0, 1, 2} with noise less than |e0 + e1| < q/8. Then, this ciphertext (a, b) = LWE((m0 +m1)(q/4))
is homomorphically decrypted using the bootstrapping procedure from Figure 1. This requires a
function f that

• rounds m+ e = (m0 +m1)(q/4) + (e0 + e1) to the closest multiple of q/4, then

• maps 0 7→ 1, 1 7→ 1, 2 7→ 0, (and, for completeness, also 3 7→ 0), and

13

E(s) = {Zj,v = RGSW(XvBr
j ·s) | j < logBr

q, v ∈ ZBr}.

Update(c,{Zj,v}j,v = E(s)):
for j = 0, . . . , logBr

q − 1
cj = ⌊c/Br

j⌋ mod Br

if cj > 0
ACC← ACC ⋄ Zj,cj

return ACC

Figure 3: Encryption function E and accumulator update method for the FHEW bootstrapping
procedure.

E′
(
t =

∑
T
)
= {Zu = RGSW(IT (u)) | u ∈ U}

Update′(c,{Zu}u = E′(t)):
for u ∈ U

ACC← ACC+ (Xu·c − 1) (ACC ⋄ Zu)
return ACC

Figure 4: Encryption function E′ and accumulator update method for the TFHE bootstrapping
procedure. The function E′ encrypts values t ∈ Zq that can be written as a subset sum t =

∑
T

for some T ⊆ U . IT (u) ∈ {0, 1} is the indicator function of set T , i.e., IT (u) = 1 if u ∈ T , and
IT (u) = 0 otherwise.

14

• finally multiplies the resulting bit by the scaling factor Q/4. (Remember that the extraction
procedure returns an LWE ciphertext modulo Q. A ciphertext modulo q can be obtained
using key/modulus switching.)

In summary, the function f should map the set [0, q/4]± (q/8) = (−q/8, 3q/8) ⊂ Zq to q/4, and its
complement [2q/4, 3q/4] ± (q/8) = (3q/8, 7q/8) to 0. However, this mapping does not satisfy the
requirement f(v + q/2) = −f(v) imposed by the bootstrapping procedure. This issue is addressed
using a function f that maps (−q/8, 3q/8) to q/8 and (3q/8, 7q/8) to −q/8. Using this function,
the result of the bootstrapping procedure is an LWE encryption of m = ¬(m0 ∧ m1) ∈ {0, 1},
encoded as LWE((2m−1) · (q/8)). Adding a noiseless encryption (0, q/8) = LWE(q/8) of q/8 to this
ciphertext, yields an encryption of m under the standard encoding

LWE((2m− 1) · (q/8) + (q/8)) = LWE(m · (q/4)).

For reference, the pseudo-code of the full NAND operation is listed in Figure 5 for the AP/FHEW
bootstrapping procedure and Figure 6 for the GINX/TFHE bootstrapping procedure).

The same approach can be used to encode other Boolean gates. The homomorphic operations
and mapping ranges for some common binary and ternary Boolean gates are listed in Table 1. Each
of these gates requires a single bootstrapping operation.

The only Boolean operation that does not require bootstrapping is NOT. For an LWE ciphertext
(a, b), the NOT gate is evaluated as (−a,−b+ q/4).

Table 1: Additive homomorphic computations and mappings for Boolean gates; ci is an encryption
of i-th Boolean input.

Gate Computation maps to q/8 maps to −q/8
AND c1 + c2 [3q/8, 7q/8) [−q/8, 3q/8)
NAND c1 + c2 [−q/8, 3q/8) [3q/8, 7q/8)

OR c1 + c2 [q/8, 5q/8) [−3q/8, q/8)
NOR c1 + c2 [−3q/8, q/8) [q/8, 5q/8)

XOR 2 (c1 − c2) [q/8, 5q/8) [−3q/8, q/8)
XNOR 2 (c1 − c2) [−3q/8, q/8) [q/8, 5q/8)

Majority c1 + c2 + c3 [3q/8, 7q/8) [−q/8, 3q/8)

4 Theoretical Comparison of FHEW/AP and TFHE/GINX

To compare the computational complexity and bootstrapping key size of FHEW/AP and TFHE/GINX,
we use the following parameters:

• q, small (LWE) modulus;

• n, lattice parameter for the LWE scheme;

• Q, RLWE/RGSW modulus used in the core boostrapping procedure based on an accumulator;

• Qks, LWE/RLWE modulus used for key switching;

15

EvalKeyGen(z, s):
for i = 1, . . . , n

for j = 0, . . . , logBr
q − 1

for v ∈ 0, . . . , Br − 1

Zi,j,v = RGSWz(X
vBr

j ·si)
ek = {Zi,j,v}i,j,v
return ek

NAND(ek, c0, c1):
(a, b) = c0 + c1
p = 2N/q
for j = 0, . . . , q/2− 1:
if (b− j) mod q ∈ [3q/8, 7q/8)
then mj·p = −Q/8
else mj·p = Q/8

m = (m0, . . . ,m(q/2−1)·p)

ACC← (0,m)
for i = 1, . . . , n

c = −ai mod q
for j = 0, . . . , logBr

q − 1

cj = ⌊c/Bj
r ⌋ mod Br

if cj > 0
ACC← ACC ⋄ Zi,j,cj

(a′,b′) = ACC
b′0 = b′(0)
return (a′, b′0 +Q/8 mod Q)

Figure 5: FHEW-style encrypted NAND computation. The input values cb = LWEs((q/4) · mb)
are LWE ciphertexts encrypting message bits mb ∈ {0, 1} for b = 0, 1 under key s ∈ Zn

q with
noise bounded by q/16. The bootstrapping key ek encrypts s under z ∈ RQ. The output is an
LWEz((Q/4)m) encryption of the NAND m = ¬(m0 ∧m1) under key z = (z0,−zq/2−1, . . . ,−z1) ∈
Z2k

Q . Key-switching (not shown) can be used to turn the output into an LWE encryption under s,
and perform additional NAND operations.

16

EvalKeyGen(z, s):
for i = 1, . . . , n

pick T ⊆ U such that si =
∑

T (mod q)
for u ∈ U
if u ∈ T
then Zi,u = RGSWz(1)
else Zi,u = RGSWz(0)

ek = {Zi,u}i,u
return ek

NAND(ek, c0, c1):
(a, b) = c0 + c1
p = 2N/q
for j = 0, . . . , q/2− 1:
if (b− j) mod q ∈ [3q/8, 7q/8)
then mj·p = −Q/8
else mj·p = Q/8

m = (m0, . . . ,m(q/2−1)·p)

ACC← (0,m)
for i = 1, . . . , n

c = −ai mod q
for u ∈ U
ACC← ACC+ (Xu·c − 1) (ACC ⋄ Zi,u)

(a′,b′) = ACC
b′0 = b′(0)
return (a′, b′0 +Q/8)

Figure 6: Encrypted NAND computation with GINX/TFHE-style accumulator updates. Input and
output are as in Figure 5.

17

• N , ring dimension for RLWE/RGSW;

• Bg, gadget base for digit decomposition in each accumulator update, which breaks integers
modQ into dg digits;

• Bks, gadget base used for key switching, which breaks integers modQ into dks digits;

• Br, gadget base in FHEW/AP (not used in TFHE/GINX), which breaks integers modq into
dr digits.

Note that we have applied all other TFHE algorithmic optimizations [14, 15, 17] to both
FHEW/AP and TFHE/GINX. These include the precomputation of f before extraction, which
reduces the noise growth, and treating ACC as an RLWE rather than a RGSW ciphertext, which
improves the runtime of bootstrapping by a factor of 2dg. Both of these optimizations were not
included in the original FHEW implementation [20]. All other TFHE optimizations described
in [14, 15] are specific to the floating-point arithmetic implementation of FFT/torus operations,
and hence ignored in our analysis.

4.1 Computational complexity

The bottleneck operation in both FHEW/AP and TFHE/GINX is the Number Theoretic Transform
(NTT) that is used to switch a ring element in RQ = ZQ[X]/(XN+1) from coefficient to evaluation
representation and back. NTT operations are called inside each digit decomposition in the RLWE×
RGSW products of the accumulator update steps for both bootstrapping methods.

The pseudocode in Figures 5-6 and the corresponding implementation in PALISADE can be
used to estimate the number of NTTs needed for each method:

• FHEW/AP: 2
(
1− 1

Br

)
ndr(dg + 1) NTTs.

• TFHE/GINX: 2n|U |(dg +1) NTTs, where |U | is the cardinality of U , i.e., the number of bits
needed to represent the full range of secret key samples with a given (very high) probability.

Note that the accumular updates also require 2
(
1− 1

Br

)
ndrdg and 2n|U |(dg+1) vector component-

wise modular multiplications for FHEW/AP and TFHE/GINX, respectively. However, the contri-
bution of these vector multiplications is relatively small compared to the NTTs, and hence can be
excluded from our analysis for simplicity.

The ratio of runtimes for TFHE/GINX and FHEW/AP can be expressed as |U |/
(
1− 1

Br

)
dr.

Figure 7 compares the computational complexity of FHEW/AP and TFHE/GINX for different
secret key distributions, ranging from binary secret key distribution used in TFHE to theoretically
secure Gaussian distribution corresponding to the standard RLWE assumption. For FHEW/AP,
we include the cases of Br = 2 (classical AP bootstrapping) and Br = 32 (runtime-optimized
setting used in [20]). We assume that q = 1024, which corresponds to typical practical settings (as
discussed in Section 5). Although the value of q may increase as we go from binary/ternary secret
key distributions to Gaussian secrets, the ratio between GINX and AP is still expected to be quite
accurate.

We see that the TFHE/GINX bootstrapping is roughly twice faster than AP with Br = 32
for binary secret distribution, which is used in the TFHE implementation [14]. Note that the

18

Binary Ternary Gauss. Pract. Gauss. Theor.
0

1

2

3

4

5

6
 AP (Br = 2, dr = 10)
 AP (Br = 32, dr = 2)
 GINX

N
or

m
al

iz
ed

 B
oo

ts
tra

pp
in

g
R

un
tim

e

Secret Key Distribution

Figure 7: Comparison of boostrapping computational complexity of TFHE/GINX and FHEW/AP
methods. All estimates of computational complexity are normalized to the AP complexity for
Br = 32, dr = 2, q = 1024. “Gauss Pract.” corresponds to the Gaussian secret key distribution
with standard deviation σ = 3.19; “Gauss. Theor.” to the case of σ =

√
n; both secret key

distributions are assumed to be bounded by 12σ.

AP mode can theoretically run twice faster if we set Br = q, i.e., use the mode without digit
decomposition (dr = 1); in this case the AP runtime is roughly the same as in TFHE for the
binary secret setting. However, this AP setting dramatically increases the bootstrapping key size
(by an additional multiplicative factor of 32 for q = 1024) and, hence, is not used in practical
implementations.

Once we switch to the ternary secret distribution, the runtimes become about the same (with
FHEW/AP being slightly faster than THFE/GINX due to the 1 − Br

−1 factor). When the norm
of secret key distribution is further increased, which corresponds to Gaussian distribution, the
runtime of the FHEW/AP bootstrapping procedure becomes significantly smaller. The FHEW/AP
bootstrapping at Br = 2 is also faster than GINX for Gaussian secret distributions.

4.2 Bootstrapping key size

One of the practical limitations of the original FHEW implementation [20] is the bootstrapping
key size. The key sizes can be estimated as:

• AP/FHEW: 4nNdr (Br − 1) dg log2Q bits;

• TFHE/GINX: 4nN |U |dg log2Q bits.

It is convenient to consider the ratio of |U |/ (dr (Br − 1)). Figure 8 illustrates the compari-
son of key sizes for FHEW/AP and TFHE/GINX at different secret key distributions. For any

19

Binary Ternary Gauss. Pract. Gauss. Theor.
0.01

0.1

1

 AP (Br = 2, dr = 10)
 AP (Br = 32, dr = 2)
 GINXN

or
m

al
iz

ed
 B

oo
ts

tra
pp

in
g

Ke
y

Si
ze

Secret Key Distribution

Figure 8: Comparison of boostrapping key size for TFHE/GINX and FHEW/AP methods. All
estimates of bootstrapping key size are normalized to the AP key size for Br = 32, dr = 2, q =
1024. “Gauss Pract.” corresponds to the Gaussian secret key distribution with standard deviation
σ = 3.19; “Gauss. Theor.” to the case of σ =

√
n; both secret key distributions are assumed to be

bounded by 12σ.

practically used secret key distribution, TFHE/GINX bootstrapping requires a smaller key size.
However, the key size improvement becomes less pronounced as the norm of secret key distribution
is increased. For instance, the key size for TFHE/GINX bootstrapping becomes as large as for
FHEW/AP at Br = 2 for Gaussian secret distributions, which implies that this AP setting may be
preferred over GINX for Gaussian secret distributions due to better computational complexity of
the bootstrapping.

In addition to the bootstrapping key, both bootstraping procedures require a switching key to
switch LWE ciphertexts to the original secret key. The size of switching key for both bootstrapping
methods is the same, and is equal to nNBksdks log2Qks bits.

4.3 Recommendation for ternary secret key distribution

The most efficient case included in the HE Security Standard [2] is based on ternary secret key
distribution. For this setting, our analysis shows that the runtimes of FHEW/AP and TFHE/GINX
bootstrapping procedures are roughly the same while the bootstrapping key size is more than one
order of magnitude smaller for TFHE/GINX. Therefore, the TFHE/GINX method is preferred for
this setting. However, the AP/FHEW bootstrapping at Br = 2 becomes a more efficient option
than TFHE/GINX when Gaussian secret key distributions are considered.

20

5 Implementation Results

5.1 Proposed parameter sets

In PALISADE we added several parameter sets corresponding to various levels of security. All
parameters sets were built for ternary uniform secret distribution. We first present theoretical noise
estimates for FHEW/AP and TFHE/GINX and then discuss the concrete parameters, explaining
experimentally observed decryption failure probabilities in terms of theoretical estimates.

We have modified the steps executed after the core bootstrapping procedure, as compared
to [20]. In [20], the core bootstrapping procedure based on an accumulator is first followed by
key switching, changing parameters from (Q,N) to (Q,n), and then modulus switching, changing
parameters from (Q,n) to (q, n). In our implementation, we introduced an additional modulus
switching operation from (Q,N) to (Qks, N) between the core boostrapping operation and key
swiching. We made this modification to enable the use of the small standard deviation of 3.19
recommended by the HE security standard [2], while keeping the noise level approximately the
same.

Theoretical estimates. We use the approach from [20] to write the error of a refreshed
ciphertext as a Gaussian of standard deviation

β =

√
q2

Q2
ks

(
Q2

ks

Q2
σ2
ACC + σ2

MS1
+ σ2

KS

)
+ σ2

MS2
,

where σ2
ACC , σ

2
MS1

, σ2
KS , and σ2

MS2
are the variance contributions from the core bootstrapping

procedure based on an accumulator, first modulus switching, key switching, and second modulus
switching, respectively. The estimates of σ2

ACC differ for FHEW/AP and TFHE/GINX schemes
because of the differences in the accumulator, and the expressions for σ2

KS and σ2
MSi

are the same
for both cryptosystems. Similar to [20], we can write the estimates

σ2
MS1

=
∥sN∥2 + 1

12
, σ2

KS = σ2Ndks, σ
2
MS2

=
∥sn∥2 + 1

12
,

where the factor 1
12 corresponds to the variance of the rounding error in

[
−1

2 ,
1
2

]
, ∥sN∥ ≤

√
2N/3,

and ∥sn∥ ≤
√
2n/3. As σMSi scales with the norm of secret key distribution, the error will

get significantly larger if we switch from ternary distribution to Gaussian practical/theoretical
distributions discussed in Section 4.

The variances σ2
ACC−AP and σ2

ACC−GINX can be estimated as

σ2
ACC−AP = ndr2dgN

B2
g

12
σ2 = drdgnN

B2
g

6
σ2,

σ2
ACC−GINX = 2udgnN

B2
g

6
σ2.

Here, the factor dgN
B2

g

6 σ2 accounts for the noise growth of a single RLWE × RGSW product.
The factor 2 in σ2

ACC−GINX accounts for the MUX-like operation in the accumulator update for

TFHE/GINX. The ratio between σ2
ACC−AP and σ2

ACC−GINX is dr
2u . For all parameter sets presented

below, dr = 2 and u = 2, implying that σ2
ACC−AP is smaller by a factor of 1

2 , which may theoretically
result in reduced refreshing noise in some scenarios.

21

Concrete parameters. We introduce the following parameter sets: STD128, STD192, STD256,
STD128Q, STD192Q, and STD256Q (see Figure 2). The prefix “STD” implies that the tables in
the HE security standard [2] are used. The numbers correspond to the estimated bits of security.
The suffix “Q” stands for the quantum attack estimates. We also introduce their optimized variants
with suffix “OPT” where the lattice dimension n is allowed to be a non-power-of-two (see Table 3).
Although non-power-of-two lattice dimensions are not included in the HE security standard [2],
there are no known attacks specific to non-power-of-two LWE. The power-of-two lattice dimension
constraint was introduced in the HE security standard [2] specifically for the ring setting. For
STD128, we list two parameter sets in each table because FHEW/AP supports a more efficient op-
tion (STD128 AP with dg = 3 vs. STD128 with dg = 4) due to smaller noise growth (the variance
σ2
ACC−AP is twice smaller than σ2

ACC−GINX).
The correctness of the parameters was checked using numerical experiments. The fresh cipher-

texts were pre-bootstrapped before performing any Boolean operations to estimate the error for the
case of independently refreshed ciphertexts. For each parameter set, we recorded the actual values
of the error/noise for a relatively large sample (1000 bootstrapping runs), and then estimated the
standard deviation of the error βexp. Assuming the normal distribution of the error, we estimated
the decryption failure probability, i.e., the probability of the error exceeding Q/8 or q/8, for both
FHEW/AP and TFHE/GINX cryptosystems. Since we need to support one homomorphic addi-
tion for AND, OR, NAND, and NOR gates, we estimated the probability of decryption failure as
1− erf(q/8

2βexp
). Similar to [20, 14], we set the probability upper bound to 2−32 for a parameter set

to be used for practical computations. Note the probability of failure for XOR/XNOR gates is

higher and can be estimated as 1 − erf(q/8
4βexp

) because the result of homomorphic addition needs

to be added to itself (see Table 1). Similarly, the probability of failure for the Majority/Minority

gates would be 1− erf(q/8√
6βexp

).

Tables 2 and 3 show that the decryption failure probability after bootstrapping is roughly the
same in both cryptosystems for all parameter sets, with a minor advantage on the FHEW/AP side.
The only exception is the STD128 case, where only the FHEW/AP case supports a more efficient
option of dg = 3 with a sufficient probability of failure (the probability for TFHE/GINX in this
scenario is about 2−25). This implies that although there is a theoretical increase in accumulator
noise variance by a factor of two in the case of TFHE/GINX, often there is no significant prac-
tical difference due to additional noise contributions from key switching and modulus switching
operations.

In this work, we provide implementation results for the STD128, STD128 OPT, STD128 AP,
and STD128 APOPT parameter sets. These parameter sets correspond to 128 bits of security for
classical computers, and are the main parameter sets recommended for use in practice.

For the “OPT” parameter sets (non-power-of-two values of n), we used the LWE estimator [3]
to find the approximate work factors for classical and quantum computers, respectively. We ran the
LWE security estimator1 (commit a2a6e84 from November 16, 2021) [3] to find the lowest security
levels for the uSVP, decoding, and dual attacks following the HE Security Standard recommenda-
tions [2]. We selected the least value of the number of security bits λ for all 3 attacks on classical
computers based on the estimates for the BKZ sieve reduction cost model.

1https://bitbucket.org/malb/lwe-estimator

22

Table 2: Parameter sets for ternary secret distribution using a power-of-two n; PAP and PGINX

are estimated upper bounds for decryption failure probabilities of FHEW/AP and TFHE/GINX,
respectively.

Parameter Set n q N log2 Q log2 Qks Bks Bg Br PAP PGINX

STD128 512 1024 1024 27 14 128 27 32 2−52 2−52

STD128 AP 512 1024 1024 27 14 128 29 32 2−36 –

STD192 1024 1024 2048 37 19 28 213 32 2−96 2−96

STD256 1024 2048 2048 29 14 128 28 46 2−33 2−33

STD128Q 1024 1024 2048 50 25 32 225 32 2−101 2−101

STD192Q 1024 1024 2048 35 17 64 212 32 2−101 2−101

STD256Q 2048 2048 2048 27 16 16 27 32 2−77 2−48

Table 3: Optimized parameter sets for ternary secret distribution using an arbitrary value of n;
PAP and PGINX are estimated upper bounds for decryption failure probabilities of FHEW/AP and
TFHE/GINX, respectively.

Parameter Set n q N log2 Q log2 Qks Bks Bg Br PAP PGINX

STD128 OPT 502 1024 1024 27 14 128 27 32 2−52 2−48

STD128 APOPT 502 1024 1024 27 14 128 29 32 2−36 –

STD192 OPT 755 1024 2048 37 15 32 213 32 2−63 2−63

STD256 OPT 990 2048 2048 29 14 128 28 46 2−37 2−33

STD128Q OPT 585 1024 2048 50 15 32 225 32 2−65 2−65

STD192Q OPT 875 1024 2048 35 15 32 212 32 2−52 2−52

STD256Q OPT 1225 1024 2048 27 16 16 27 32 2−57 2−52

5.2 Software implementation

We implemented both bootstrapping methods in PALISADE v1.10. Our implementation is publicly
available. The evaluation environment was a commodity desktop computer system with an Intel(R)
Core(TM) i7-9700 CPU @ 3.00GHz and 64 GB of RAM, running Ubuntu 18.04 LTS. The compiler
was clang++ 9.0.0. We compiled PALISADE with the following CMake flags: NATIVE SIZE
= 32 (32-bit single-precision integer backend) and WITH NATIVEOPT=ON (machine-specific
optimizations were applied by the compiler).

5.3 Runtime results

Table 4 summarizes the runtime results for both bootstrapping and key switching operations (the
key switching runtime was included in the bootstraping runtime). These runtime results were
obtained using PALISADE v1.11.6.

The runtime of AP/FHEW is about 5% smaller for STD128 and STD128 OPT, which is roughly
the same as what we expected from the theoretical analysis in Section 4. The gap is due to a slightly
smaller number of NTTs and smaller number of multiplications for AP. Note that STD128 AP and
STD128 APOPT are only supported for FHEW/AP as the probability of decryption failure for
TFHE/GINX is above 2−32 for this case. The improved GINX variant proposed in [9] (after our
paper was published) is faster by about 35% than the best runtime for FHEW/AP.

23

Table 4: Single-threaded timing results for gate evaluation (bootstrapping); improved GINX refers
to a ternary CMUX optimization proposed by Bonte at al. [9] (after our paper was published), and
is added here as it is implemented in PALISADE starting with v1.11.6.

Parameter Set AP [ms] GINX [ms] Improved GINX [ms] KeySwitch [ms]

STD128 126 131 75 0.46

STD128 OPT 125 129 74 0.49

STD128 AP 101 – – 0.45

STD128 APOPT 100 – – 0.48

6 Concluding Remarks

We presented a theoretical comparison of the FHEW/AP and TFHE/ GINX cryptosystems for
common secret key distributions. Our analysis suggests that the TFHE/GINX cryptosystem is
more efficient for binary and ternary secret key distributions while the AP bootstrapping provides
better computational complexity for Gaussian secret key distributions. We also provide an open-
source implementation of both cryptosystems in PALISADE.

Our implementation in PALISADE does not use any AVX extensions and barely uses any
assembly-level optimizations. As a result, it is significantly slower (about 3.3x for the same pa-
rameters) than the TFHE results reported in [15]. The use of AVX2 optimizations would give a
speedup of up to 8x (theoretical maximum for 32-bit integers). If we want to estimate how the
runtime reported for the TFHE library increases when we switch to a standardized HE setting
(ignoring for simplicity the runtime differences between floating-point operations/FFTs and mod-
ular operations/NTTs), we should expect a 3.3x slowdown, i.e., 13 ms would change to 43 ms. A
factor of 2x is introduced by going from binary secret distribution to the ternary one. Additional
factor of 5/3 is because we have to use a smaller Q, 27 vs. 32 bits, which requires 4 digits to avoid
decryption failures, i.e., dg = 4 vs. dg = 2 in the TFHE setting. For more accurate performance
results, an AVX-optimized implementation based on NTTs and modular arithmetic would need
to be evaluated. Note that the use of AVX extensions is mostly independent of the details of
the bootstrapping procedures implemented in our work as both procedures use the same primitive
operations. As soon as AVX support is added to the core of the PALISADE library, our work will
immediately benefit from it, and will readily provide a comparison between the two schemes in an
AVX-optimized setting.

As the FHEW/AP and TFHE/GINX cryptosystems based on ternary uniform and Gaussian
secret distributions (described in this paper and implemented in PALISADE) satisfy all require-
ments of the HE Security Standard [2], we make a recommendation to consider these variants for
standardization by the HE community.

As a final remark, we recall that cryptosystems following the FHEW single-gate bootstrapping
approach are still a very active research area. In fact, the most recent developments [8, 36] provide
some more advanced bootstrapping procedures showing that much better performance can be
achieved, at least in theory. We believe that our unified, modular, open-source implementation
of FHEW and TFHE offers a solid starting point for further practical experimentation, and will
encourage other researchers to investigate possible extensions, potentially leading to more practical
variants of the advanced bootstrapping methods of [8, 36].

24

7 Acknowledgements

We would like to thank Yongwoo Lee and Andrey Kim for spotting an error in the original version
of the paper (this error affected the values of proposed parameter sets). We are also grateful to
Thomas (Zeyu) Liu for finding the new parameter sets and implementing the related changes in
PALISADE.

References

[1] PALISADE Lattice Cryptography Library (release 1.10.3). https://palisade-crypto.org/,
Aug. 2020.

[2] M. Albrecht, M. Chase, H. Chen, and et al. Homomorphic encryption security standard.
Technical report, HomomorphicEncryption.org, Toronto, Canada, November 2018.

[3] M. Albrecht, S. Scott, and R. Player. On the concrete hardness of learning with errors. Journal
of Mathematical Cryptology, 9(3):169–203, 10 2015.

[4] J. Alperin-Sheriff and C. Peikert. Faster bootstrapping with polynomial error. In CRYPTO
2014, volume 8616 of Lecture Notes in Computer Science, pages 297–314, 2014.

[5] S. Angel, H. Chen, K. Laine, and S. T. V. Setty. PIR with compressed queries and amortized
query processing. In 2018 IEEE Symposium on Security and Privacy, pages 962–979, 2018.

[6] J. Biasse and L. Ruiz. FHEW with efficient multibit bootstrapping. In LATINCRYPT 2015,
volume 9230 of Lecture Notes in Computer Science, pages 119–135, 2015.

[7] M. Blatt, A. Gusev, Y. Polyakov, and S. Goldwasser. Secure large-scale genome-wide associa-
tion studies using homomorphic encryption. Proceedings of the National Academy of Sciences,
117(21):11608–11613, 2020.

[8] G. Bonnoron, L. Ducas, and M. Fillinger. Large FHE gates from tensored homomorphic
accumulator. In AFRICACRYPT 2018, volume 10831 of Lecture Notes in Computer Science,
pages 217–251, 2018.

[9] C. Bonte, I. Iliashenko, J. Park, H. V. L. Pereira, and N. P. Smart. Final: Faster fhe in-
stantiated with ntru and lwe. Cryptology ePrint Archive, Report 2022/074, 2022. https:

//ia.cr/2022/074.

[10] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic encryption
without bootstrapping. TOCT, 6(3):13:1–13:36, 2014.

[11] Z. Brakerski and V. Vaikuntanathan. Lattice-based FHE as secure as PKE. In ITCS’14, pages
1–12, 2014.

[12] H. Chen, K. Laine, and P. Rindal. Fast private set intersection from homomorphic encryption.
In CCS 2017, pages 1243–1255. ACM, 2017.

25

https://palisade-crypto.org/
https://ia.cr/2022/074
https://ia.cr/2022/074

[13] J. H. Cheon, A. Kim, M. Kim, and Y. S. Song. Homomorphic encryption for arithmetic
of approximate numbers. In ASIACRYPT (1), volume 10624 of Lecture Notes in Computer
Science, pages 409–437. Springer, 2017.

[14] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster fully homomorphic encryption:
Bootstrapping in less than 0.1 seconds. In ASIACRYPT (1), volume 10031 of Lecture Notes
in Computer Science, pages 3–33, 2016.

[15] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster packed homomorphic oper-
ations and efficient circuit bootstrapping for TFHE. In ASIACRYPT 2017, volume 10624 of
Lecture Notes in Computer Science, pages 377–408, 2017.

[16] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. TFHE: Fast fully homomorphic
encryption library, August 2016. https://tfhe.github.io/tfhe/.

[17] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. TFHE: Fast fully homomorphic
encryption over the torus. Journal of Cryptology, 33:34–91, 2020.

[18] I. Chillotti, M. Joye, and P. Paillier. Programmable bootstrapping enables efficient homomor-
phic inference of deep neural networks. In S. Dolev, O. Margalit, B. Pinkas, and A. Schwarz-
mann, editors, Cyber Security Cryptography and Machine Learning, pages 1–19, Cham, 2021.
Springer International Publishing.

[19] B. R. Curtis and R. Player. On the feasibility and impact of standardising sparse-secret lwe
parameter sets for homomorphic encryption. In WAHC’19, page 1–10, 2019.

[20] L. Ducas and D. Micciancio. FHEW: bootstrapping homomorphic encryption in less than
a second. In EUROCRYPT (1), volume 9056 of Lecture Notes in Computer Science, pages
617–640. Springer, 2015.

[21] L. Ducas and D. Micciancio. FHEW: A fully homomorphic encryption library, May 2017.
https://github.com/lducas/FHEW.

[22] T. Espitau, A. Joux, and N. Kharchenko. On a hybrid approach to solve binary-lwe. Cryptology
ePrint Archive, Report 2020/515, 2020.

[23] J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption. IACR Cryp-
tology ePrint Archive, 2012:144, 2012.

[24] N. Gama, M. Izabachène, P. Q. Nguyen, and X. Xie. Structural lattice reduction: Generalized
worst-case to average-case reductions and homomorphic cryptosystems. In EUROCRYPT
2016, volume 9666 of Lecture Notes in Computer Science, pages 528–558, 2016.

[25] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178. ACM,
2009.

[26] C. Gentry, S. Halevi, and N. P. Smart. Fully homomorphic encryption with polylog overhead.
In EUROCRYPT, volume 7237 of Lecture Notes in Computer Science, pages 465–482. Springer,
2012.

26

[27] C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO (1), volume 8042
of Lecture Notes in Computer Science, pages 75–92. Springer, 2013.

[28] S. Halevi and V. Shoup. Design and implementation of a homomorphic-encryption library.
https://shaih.github.io/pubs/he-library.pdf, 2013.

[29] S. Halevi and V. Shoup. Bootstrapping for helib. In EUROCRYPT 2015, volume 9056 of
Lecture Notes in Computer Science, pages 641–670, 2015.

[30] K. Han, S. Hong, J. H. Cheon, and D. Park. Logistic regression on homomorphic encrypted
data at scale. In AAAI 2019, pages 9466–9471, 2019.

[31] K. Kluczniak and L. Schild. Fdfb: Full domain functional bootstrapping towards practical
fully homomorphic encryption. Cryptology ePrint Archive, Paper 2021/1135, 2021. https:

//eprint.iacr.org/2021/1135.

[32] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over
rings. J. ACM, 60(6):43:1–43:35, 2013.

[33] D. Micciancio. On the hardness of learning with errors with binary secrets. Theory Comput.,
14(1):1–17, 2018.

[34] D. Micciancio. Fully homomorphic encryption from the ground up. Invited Talk, Eurocrypt
2019, 2019.

[35] D. Micciancio and C. Peikert. Hardness of SIS and LWE with small parameters. In CRYPTO
(1), volume 8042 of Lecture Notes in Computer Science, pages 21–39, 2013.

[36] D. Micciancio and J. Sorrell. Ring packing and amortized FHEW bootstrapping. In ICALP
2018, volume 107 of LIPIcs, pages 100:1–100:14, 2018.

[37] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM,
56(6):34:1–34:40, 2009.

[38] Microsoft SEAL (release 3.5). https://github.com/Microsoft/SEAL, Apr. 2020. Microsoft
Research, Redmond, WA.

[39] N. P. Smart and F. Vercauteren. Fully homomorphic SIMD operations. Des. Codes Cryptogr.,
71(1):57–81, 2014.

[40] Y. Son and J. H. Cheon. Revisiting the hybrid attack on sparse secret lwe and application to
he parameters. In WAHC’19, page 11–20, 2019.

27

https://shaih.github.io/pubs/he-library.pdf
https://eprint.iacr.org/2021/1135
https://eprint.iacr.org/2021/1135
https://github.com/Microsoft/SEAL

	Introduction
	Historical Background
	Technical contributions
	Organization

	Ring LWE Encryption
	Bootstrapping
	Ring LWE accumulators
	Rounding functions and Boolean gates

	Theoretical Comparison of FHEW/AP and TFHE/GINX
	Computational complexity
	Bootstrapping key size
	Recommendation for ternary secret key distribution

	Implementation Results
	Proposed parameter sets
	Software implementation
	Runtime results

	Concluding Remarks
	Acknowledgements

