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Abstract

Naveed, Kamara, and Wright’s recent paper “Inference Attacks on Property-Preserving Encrypted
Databases” (ACM-CCS 2015) evaluated four attacks on encrypted databases, such as those based
on the design of CryptDB (Popa et al., SOSP 2011). Two of these attacks—frequency analysis and
ℓp-optimization—apply to deterministically encrypted columns when there is a publicly-available aux-
iliary data set that is “well-correlated” with the ciphertext column. In their experiments, frequency
analysis performed at least as well as ℓp-optimization for p = 1, 2, and 3. We use maximum likelihood
estimation to confirm their intuition and show that frequency analysis is an optimal cryptanalytic
technique in this scenario.

1 Overview of the attacks and attacker’s capabilities

Naveed, Kamara, and Wright evaluated two attacks on deterministically-encrypted database columns
when the attacker has access to an auxiliary data set [1].

Frequency analysis decrypts the column by matching the most frequent ciphertext with the most
frequent plaintext from the auxiliary data (and so on for the other less frequent ciphertexts).

ℓp-optimization decrypts the column by matching the frequencies of the ciphertexts with the frequencies
of the auxiliary plaintexts in a way that minimizes the ℓp-distance of their histograms.

Existing adversarial models do not describe attackers who have access to auxiliary information. The two
above attacks are not ciphertext-only, since the adversary also has the auxiliary data set, nor are they
known-plaintext, since the adversary does not actually know any plaintext-ciphertext pairs. Instead, they
could be called “ciphertext with frequency data” attacks.

Decrypting a deterministically-encrypted database column using this type of auxiliary data is analogous to
breaking a monoalphabetic substitution cipher given plaintext letter frequencies. However, in the context
of an encrypted database column, these “letters” are not ordered, and therefore higher-order frequency
statistics (of bigrams, trigrams, etc.) do not apply. Cryptanalysis of monoalphabetic substitution ciphers
does not usually consider this case.

2 What is auxiliary data, exactly?

The attacker’s challenge is to decrypt a deterministically encrypted column with the help of some auxil-
iary data. We use the language of statistics to state explicitly what we believe is Naveed, Kamara, and
Wright’s assumption: the encrypted column’s underlying plaintext is a collection of independent samples
of a random variable that has the distribution defined by the auxiliary data.

The auxiliary data is a multiset (i.e., which may contain repetitions) that we write as a vector z =
(z1, . . . , znz ), where each zi comes from the plaintext alphabet AM = {m1, . . . ,mn}. Let Z be the
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discrete random variable whose space is AM and whose probability mass function is defined by the
relative frequencies of elements in z:

fZ(mi) = Pr(Z = mi) =
Nmi

nz

where Nmi is the frequency of the symbol mi in z. Without loss of generality, assume that the plaintext
symbols are numbered in decreasing order of frequency, i.e., Nm1 ≥ Nm2 ≥ . . . ≥ Nmn .

3 Finding the most likely decryption

The encrypted database column is a multiset that we also write as a vector, y = (y1, . . . , yny ), where each
yi comes from some ciphertext alphabet AC = {c1, . . . , cn}. Naveed, Kamara, and Wright also assumed
that the ciphertext alphabet AC and the plaintext alphabet AM have the same size, n. Let Nci be the
frequency of the symbol ci in y. Frequency analysis and ℓp-optimization attacks rely on the assumption
that the auxiliary data is “well-correlated” with the database column. We believe that Naveed, Kamara,
and Wright’s implicit assumption is that each yi is a “re-labelled” sample of the random variable Z.

To decrypt y, the adversary needs a bijective map from values in AC to values in AM . Let π be a per-
mutation of the integers {1, . . . , n}. The adversary’s goal is to find the permutation that maps elements
of AC to elements of AM , i.e., the π for which c1 = mπ(1), . . . , cn = mπ(n).

Maximum likelihood estimation (MLE) is a technique for finding the true value of a parameter of a
probability distribution function given some samples of data having that distribution.
For many classes of distributions arising naturally in applications (excepting some contrived counterex-
amples), MLE performs at least as well as any other statistical method for parameter estimation, for
example, in the sense that it provides a minimum variance unbiased estimator for large sample sizes. Its
main idea is that the parameter’s true value is the one that makes the observed samples most likely. The
likelihood of a parameter is the hypothetical probability that a particular outcome was observed given
this parameter. The adversary wants to find a permutation π that maximizes the likelihood function for
the observed encrypted column.

By our assumption, the samples y1, . . . , yny were drawn from a distribution identical to Z’s, but they
were “re-labelled” according to some permutation. The adversary wants to find a permutation π that
was most likely to have generated y—a permutation that maximizes L(π|y), the likelihood function.

argmax
π

L(π|y) = argmax
π

P (y|π)

= argmax
π

ny∏
i=1

P (yi|c1 = mπ(1), . . . , cn = mπ(n)) (the ny samples are independent)

= argmax
π

n∏
i=1

fZ(mπ(i))
Nci (each ci appears Nci times in y with mπ(i)’s prob.)

= argmax
π

n∏
i=1

Nmπ(i)

Nci

(
fZ(mπ(i)) =

Nmπ(i)

nx

)

= argmax
π

n∏
i=1

Nmi

Nc
π−1(i) (π is a bijection)

Since the plaintext messages were numbered so that Nmi ≥ Nmi+1 for each i from 1 to n − 1, it must
also be the case that Ncπ−1(i)

≥ Ncπ−1(i+1)
. (If Ncπ−1(i)

< Ncπ−1(i+1)
, then swapping their positions would

yield a permutation with a strictly greater likelihood.) Therefore, the most likely permutation π is the
one that assigns the most frequent plaintext in the auxiliary data to the most frequent ciphertext in the
encrypted column, and so on. This permutation is simply the frequency analysis attack mentioned in the
first section.
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4 Conclusion

Frequency analysis naturally arises from maximum likelihood estimation of the unknown permutation.
Given the power of MLE, this strongly suggests that simple frequency analysis is the “right” statistical
procedure to use in our setting. Of course, in individual experiments, alternative techniques such as
ℓp-optimization may perform better, for example, because of sampling noise. As Naveed et al. remarked,
ℓp-optimization could also be useful when the attacker does not know which encrypted column corresponds
to which auxiliary data set, because it assigns “cost information” to each pair of columns. It is interesting
to note that deterministic encryption, a modern technique that allows searching on encrypted data, can
be seen as a classical monoalphabetic substitution cipher with a potentially large alphabet where order
does not matter.
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