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Abstract. In this paper, we propose a new signature scheme that is existentially unforgeable
under a chosen message attack without random oracle. The security of our scheme depends
on a new complexity assumption called the k+1 square roots assumption. We also discuss
the relationship between the k+1 square roots assumption and some related problems and
provide some conjectures. Moreover, the k+1 square roots assumption can be used to construct
shorter signatures under the random oracle model. As some applications, a new chameleon
hash signature scheme and a on-line/off-line signature scheme and a new efficient anonymous
credential scheme based on the proposed signature scheme are presented.
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1 Introduction

It is well known that a signature scheme that produces signatures of length ¢ can have
some security level of at most 2¢, which means that given a public key, it is possible to
forge a signature on any message in O(2%). A natural question that arises is how we can
concretely construct a signature scheme that can produce shorter length of signature whilst
maintaining an existential forgery with the same security level.

Short digital signatures are always desirable. They are necessary in some situation where
people need to enter the signature manually, such as using a PDA that is not equipped with
a keyboard. Additionally, short digital signatures are essential to ensure the authenticity of
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messages in low-bandwidth communication channels. In general, short digital signatures are
used to reduce the communication complexity of any transmission. As noted in [31], when
one needs to sign a postcard, it is desirable to minimize the total length of the original
message and the appended signature. In the early days, research in this area has been
mainly focusing on how to minimize the total length of the message and the appended
signature [32,1] and how to shorten the DSA signature scheme while preserving the same
level of security [31]. From Hidden Field Equation (HFE) problem and Syndrome Decoding
problem, a number of short signature schemes, such as Quartz [33,17], McEliece-based
signature [18], have been proposed.

Boneh, Lynn and Shacham [10] used a totally new approach to design short digital
signatures. The resulting signature scheme, referred to as the BLS signature scheme, is
based on the Computational Diffie-Hellman (CDH) assumption on elliptic curves with low
embedding degree. In BLS signature scheme, with a signature length ¢ = 160 bits (which
is approximately half the size of DSS signatures with the same security level), it provides
a security level of approximately O(28) in the random oracle model. In [40, 5], a more
efficient approach to produce a signature of the same length as BLS scheme was proposed.
Nonetheless, its security is based on a stronger assumption.

Provable security is the basic requirement for signature schemes. Currently, most of the
practical secure signature schemes were proven in the random oracle model [3]. Security
in the random oracle model does not imply security in the real world. The first provably
secure signature scheme in the standard model was proposed by Goldwasser et al. [24] in
1984. However, in this scheme, a signature is produced by signing the message bit-by-bit
and hence, it is regarded as impractical for some applications. Independently, Gennaro,
Halevi and Rabin [23] and Cramer and Shoup [19] firstly proposed secure signature schemes
under the so-called Strong RSA assumption in the standard model and the efficiency of
which is suitable for practical use. Later, Camenisch and Lysyanskaya [12] and Fischlin
[21] constructed two provably secure signature schemes under the strong RSA assumption
in the standard model. In 2004, Boneh and Boyen [5] proposed a short signature scheme
(BB04) from bilinear groups which is existentially unforgeable under a chosen message at-
tack without using random oracles. The security of the scheme depends on a new complexity
assumption, called the Strong Diffie-Hellman assumption. However, Cheon proposed a new
attack to the SDH-related problems in [16]. Therefore, it remains an open problem on how
to construct efficient and provably secure signature schemes in the standard model, and in
particular, how to design short signatures.

Our Contributions. Our main contributions in this paper are:

— We construct a new, efficient and provably secure short signature scheme in the standard
model from bilinear pairings. The signature size and efficiency of the proposed scheme
are the same as in the BB04 scheme. We note that our scheme is the second short



signature scheme without random oracles. The security of our scheme depends on a new
complexity assumption called the k41 square roots assumption.

— In the random oracle model, we present a signature scheme that produces even shorter
signature length. It produces a signature whose length is approximately 160 bits. It is
comparable to the random oracle model variations of BB04 [5] scheme and ZSS [40]
scheme and more efficient than BLS scheme.

— As some applications, a new chameleon hash signature scheme and a on-line/off-line
signature scheme and a new efficient anonymous credential scheme based on the proposed
signature scheme are presented.

— Related to the k+1 square roots assumption, we propose and discuss some new mathe-
matical problems and conjectures.

The rest of the paper is organized as follows. The next section contains some prelim-
inaries required throughout the paper. We briefly review the bilinear pairings and secure
signature schemes, and propose the k+1 square roots problem and k41 square roots as-
sumption. In Section 3, we propose our new short signature scheme and its security analysis
without random oracles. In Section 4 we show that by employing random oracles, the k+1
square roots assumption can be used to build even shorter signatures. In this scheme, we
provide a security proof under the random oracle model. We also discuss some applications
of proposed signature scheme in Section 5 including a new chameleon hash signature scheme,
a on-line/off-line signature scheme and a new efficient anonymous credential scheme. Sec-
tion 6 concludes this paper.

2 Preliminaries

2.1 Bilinear Pairings

In recent years, the bilinear pairings have been found to be very useful in various applications
in cryptography and have allowed us to construct new cryptographic primitives. We briefly
review the bilinear pairings using the same notation as in [8, 10]:

Let G be (mutiplicative) cyclic groups of prime order g. Let g be a generator of G .

Definition 1. A map e : G x G — Gy (here G is another mutiplicative cyclic group such
that |G| = |G| = q ) is called a bilinear pairing if it satisfies the following properties:

1. Bilinearity: For all u,v € G and a,b € Z,, we have e(u®, v*) = e(u, v)?.

2. Non-degeneracy: e(g,g) # 1. In other words, if g is a generator of G, then e(g, g)
generates Grp.

3. Computability: There is an efficient algorithm to compute e(u, v) for all u,v € G.

We say that G is a bilinear group if there exists a group Gr, and a bilinear pairing
e : G x G — Gy as above. Such groups can be found on supersingular elliptic curves or
hyperelliptic curves over finite fields, and the bilinear parings can be derived from the Weil
or Tate pairing.



2.2 The k 4+ 1 Square Roots Assumption

In this subsection, we first introduce a new hard problem on which the new signature scheme
in this paper is based.

Definition 2 (k+ 1-SRP). The k+ 1 Square Roots Problem in (G,Gr) is as follows:
For an integer k, and x €g Zq, g € G, given

1 1
{g7a = gx7h17 .- '7hk € qug(l"i‘hl)?’. .. ,g(x+hk)§}7

1
compute g@tM? for some h ¢ {hy,..., h;}.

We say that the k£ + 1-SRP is (¢, €)-hard if for any ¢-time adversary A, we have

1 1
A(g,a = g®, g@th)?  g@th)? 1 cp 7, g € G hy, ... by, € Zy)

Pr 1
= g(x-i—h)?’ h ¢ {h17' . 7hk}

<€

where € is negligible.

Definition 3 (k+ 1-SR Assumption). We say that the (k+1,t,€)-SR assumption holds
in (G, Gr) if no t-time algorithm has advantage at least € in solving the k+1-SRP in (G,Gr),
i.e., k+1-SRP is (t,e)-hard in (G,Gr).

2.3 Secure Signature Schemes

A signature scheme consists of the following four algorithms: a parameter generation algo-
rithm ParamGen, a key generation algorithm KeyGen, a signature generation algorithm Sign
and a signature verification algorithm Ver.

There are two types of attacks against signature schemes, namely the no-message attack
and the known-message attack. In the first case, the attacker only knows the public key of
the signer. In the second case, the attacker has access to a list of message-signature pairs.
The strongest type of chosen-message attack is called the adaptively chosen-message attack,
where the attacker has the knowledge of the public key of the signer, and he can ask the
signer to sign any message that he wants. He can then adapt his queries according to the
previous message-signature pairs. The strongest notion of security for signature schemes
was defined by Goldwasser, Micali and Rivest [24, 25] as follows:

Definition 4 (Secure signatures [24, 25]). A signature scheme S = < ParamGen, KeyGen,
Sign, Ver > is existentially unforgeable under an adaptive chosen message attack if it is in-
feasible for a forger who only knows the public key to produce a valid message-signature pair
after obtaining polynomially many signatures on messages of its choice from the signer.



Formally, for every probabilistic polynomial time forger algorithm F there exist no non-
negligible probability ¢ such that

(pk, sk) « (ParamGen, KeyGen)(1!);
fori=1,2,...k;
Adv(F) =Pr | m; — F(pk,my,01,...,mi—1,0i_1),0; < Sign(sk,m;); | > e.
(m,o) — F(pk,mi,01,...,mk, 0k);
m & {mq,...,my} and Ver(pk,m,c) = accept

Goldwasser et al. also constructed a signature scheme that satisfies the above security
notion. Their scheme has an advantage that it does not use hash functions for message
formatting. It is the first secure signature scheme under the standard model.

Here, we use the definition of [4] that takes into account the presence of an ideal hash
function (the cryptographic hash function is seen as an oracle that produces a random value
for each new query), and gives a concrete security analysis of digital signatures.

Definition 5 (Exact security of signatures [4]). A forger F is said to (t,qm,qs,¢€)-
break the signature scheme S = < ParamGen, KeyGen, Sign, Ver > via an adaptive chosen
message attack if after at most qg queries to the hash oracle, qg signatures queries and t
processing time, it outputs a valid forgery with probability at least .

A signature scheme S is (t,qm, qs, €)-secure if there is no forger who (t,qm,qs,€)-breaks the
scheme.

3 New Short Signatures Without Random Oracles

3.1 Construction

We describe the new signature scheme as follows:

Let e : G x G — G be the bilinear pairing where |G| = |G| = ¢ for some prime q. We
assume that |¢| > 160. As for the message space, if the signature scheme is intended to be
used directly for signing messages, then |m| = 160 is good enough, since given a suitable
collision resistant hash function, one can first hash a message to 160 bits, and then sign the
resulting value. Hence, the messages m to be signed can be regarded as an element in Z,.
In order to give an exact security proof with a good bound for the new signature scheme,
we limit the message space to Z,4[+1] := {a € Z,| a is a quadratic residue modulo ¢}. The
system parameters are (G, Gr, e, ¢, ¢,Z4[+1]), where g € G is a random generator.

Key Generation. Randomly select z,y €g Z;, and compute v = g”, v = g¥. The public
key is (u, v). The secret key is (z,y).



Signing: Given a secret key x,y €p Z}

! a’ and a message m € Z4[+1] (For any message
m, if m ¢ Zg[+1], we set m =m

mod ¢), pick a random 7 € Zy, and compute
o= glatmn® ¢ G

Here (z + my + 7‘)% is computed modulo q. When = + my + r is not a quadratic residue
modulo ¢ we try again with a different random r. The signature is (o, 7).

Verification: Given a public key (G, Gr, ¢, g, u, v), a message m € Zy[+1], and a
signature (o, ), verify that
e(o, o) =e(w™g", g).

The verification is correct due to the following equations:

( ) — e(g(x—l—my—l—r % :E—i—my—&—r)%)
= 6(97 g) :(:+my+r)? (x-l—my—i—r)%
— 6(97 g)x-i-my-i-r
= (gt g)
= e(u™g", g)

d
Notes: From above construction, we can regard the message space as Zg,, and we also can

1
compute the signature as o = ¢g*+m+¥)? ¢ G. But the security proofs of such schemes are
different from the description at Section 3.3.

3.2 Efficiency

To date, there exist three secure signature schemes without random oracles from the bilin-
ear groups, namely BB04 scheme [5], BMS03 scheme [11] and CL04 scheme [13]. BMS03
signature scheme is based on a signature authentication tree with a large branching factor.
Compared to BMS03 and CL04 schemes, our scheme has the obvious advantages in all
parameters, such as the public key, signature lengths and performance.

The new signature scheme requires one computation of square root in Z; and one expo-
nentiation in G to sign. For the verification, it requires two pairings and two exponentiations
in G. This is the same as in BB04 scheme.

We note that the computation of the pairing is the most time-consuming in pairing based
cryptosystems. Although there have been many papers discussing the complexity of pairings
and how to speed up the pairing computation [2, 20, 22|, the computation of the pairing still
remains time-consuming. Similar to BB04 scheme, some pairings in the proposed signature
scheme can be pre-computed and published as part of the signer’s public key, such that there



is only one pairing operation in the verification. We pre-compute a = e(u, g), b = e(g, g)
and ¢ = e(v, g), and publish them as part of the signer’s public key. Then, for a message
m € Zy, and a signature (o, 7), the verification can be done as follows:

e(o, o) Za-bm.c

Hence, the verification requires only one pairing and two exponentiations in G, and we
note that the exponentiations in G are significantly faster than pairing operations.

Signature Length. A signature in the new scheme contains of two elements (o, ), where
one element is in G and the other element is in Zj. When using a supersingular elliptic
curve over finite field Fj» with embedding degree k = 6 and the modified Weil pairing or
Tate pairing [10, 27], the length of an element in Zg and G can be approximately log, ¢ bits,
and therefore the total signature length is approximately 2log, ¢ bits. To be more precisely,
let P € E(Fyn), ord(P) =q, G=< P >C Elq] (F[q] is the group of g-torsion points of E).
Let ¢ be a distortion map, i.e., an efficiently computable automorphism of E[q] = Z, x Z,
such that ¢(P) ¢< P >= G. Actually, the map ¢ maps ¢ -torsion points defined over Fpn
to g-torsion points defined over the extension field Fnx (For supersingular elliptic curve,
such distortion map always exists). Consider the bilinear pairing

e:GxG — pg,

defined by
é(P,Q) = ew(P, ¢(Q)),

here e,, denotes the Weil pairing and s, is the subgroup of order ¢ in F;nk.

We can select the parameter such that the elements in G are 171-bits strings. A possible
chosen of these parameters can be from Boneh et al.’s short signature scheme [10] : G is
derived from the curve E/GF(3%7) defined by y? = 2> — 2 + 1, which has 923-bit discrete-
log security. Therefore, we obtain a signature whose length is approximately the same as a
DSA signature with the same level of security, but which is provably secure and existentially
unforgeable under a chosen message attack without the random oracle model, which is the
same as BB04. Hence, this is the second short signature scheme without random oracles.

3.3 Proof of Security

The following theorem shows that the scheme above is existentially unforgeable in the
strong sense under chosen message attacks, provided that the k£ + 1-SR assumption holds

in (G, GT)



Theorem 1. Suppose the (k+1,t' €' )-SR assumption holds in (G,Gr). Then the signature
scheme above is (t, qgs, €)-secure against existential forgery under an adaptive chosen message
attack provided that

gs <k+1, e=2¢ + 4% ~ o, t <t/ — O(qsT).
q

where T' is the mazimum time for computing a square Toot in Zy and an exponentiation in

G.

Proof. To prove the theorem, we will prove the following: “If there exists a (t, ¢, €)-forger F
using adaptive chosen message attack for the proposed signature scheme, then there exists
a (t',€)-algorithm A solving gs-SRP (also k4 1-SRP, if k + 1 > qg), where t' > t + O(qsT),
€=5- 2%5 J
Assume F is a forger that (t,qg, €)-breaks the signature scheme. We construct an algo-
rithm A that, by interacting with F, solves the ¢s-SRP in time ¢’ with advantage €.
Suppose A is given a challenge — a random instance of ¢g-SRP:

“ For an integer qs, and v €r Zg, g € G, given
{97 o = gSC7 h17 seey hqs € an g(SL‘-f-hl)% 9. 7g(x+hqs)%}7
1
to compute g@+M? for some h ¢ {h1,..., hys}.”

Next, we describe how the algorithm A to solve the ¢g-SRP by interacting with F. The
approach is similar to BB04 [5] and [39]. We distinguish between two types of forgers that
F can emulate. Let (G, Gr, g, g,u, v) be the public key given to forger F where u = g
and v = g¥. Suppose F asks for signatures on messages m1,ma,- -+ ,mgyy € Zy and is given
signatures (r;, 0;) on these messages for i = 1,--- ,qg. Let h; = m;y + r; and let (m,r,0)
be the forgery produced by F. Denote two types of forger F as:

Type-1 Forger which either makes query for m; = —z, or outputs a forgery where
my+T ¢ {h17h27"' ah’qs}'

Type-2 Forger which never makes any query for a message m = —x, and outputs a
forgery where my +1r € {hi,ha, -+ ,hgg}.

A plays the role of the signer, it produces a forgery for the signature scheme as follows:

1
Setup: A is given g, a = g%, with gg known solutions (h; € Z,, s; = ¢@@M)? € G)
for random h; (i =1,--- ,qg). A picks random y € Z, and a bit bye4e € {1,2} randomly. If



bmode = 1, A publishes the public key PK; = (G, Gr, q, g,u, v), here u = a, v = g¥. If
bimode = 2, A publishes the public key PKy = (G, Gr, ¢, g,u, v), here u = ¢¥, v =a. In
F ’s view, both PK; and PK>y are valid public keys for the signature scheme.

Simulation: The forger F can issue up to gg signature queries in an adaptive fashion.
To respond these signature queries, .4 maintains a list H-list of tuples (m;,r;, h;) and a
query counter [ which is initially set to 0.

Upon receiving a signature query for m;, A increments [ by one, and checks if [ > ¢g. If
[ > qg, it neglects further queries by F and terminates F. Otherwise, it checks if ¢g7™ = u.
If so, then A just obtained the private key for the public key PK = (G, Gr, ¢, g,u, v) it
was given, which allows it to forge the signature on any message of its choice. At this point
A successfully terminates the simulation.

Otherwise, if byoqe = 1, set r; = h; — m;y € Zy. In the very unlikely event that r; = 0,
A reports failure and aborts. Otherwise, A gives F the signature (r;, o; = s;). This is a
valid signature on m; under the public key PK; = (G, Gr, ¢, g,u, v) since r; is uniform
in Z4 and
othi)® (x+hi)%)

ri+miy
)

e(os, a;) = e(g' . g = e(ugh', g) = e(ug g9) = e(uww™g", g).

If byode = 2, set 1y = mih; —y € Zg. If r; = 0, A reports failure and aborts. Otherwise,

A returns (r;, o; = s;/nTi ) as answer (This is the reason why we limit the message space to
Zgy[+1]). This is a valid signature on m; for PKy because r; is uniform in Z, and

€0, 0) = e(g® MV gahodvim)
= e(g™M™, g)
= e(g"T™, g)
=e(uw™g", g)

A adds the tuple (m;, r;, v"™ig") to H-list.

Reduction: Eventually, the forger F returns a forgery (m,r,o), where (r,0) is a valid
forgery distinct from any previously given signature on message m. Note that by adding
dummy queries as required, we may assume that F made exactly gg signature queries. Let
W «— v™g". Algorithm A searches the H-list for a tuple whose rightmost component is
equal to W. Then according to two types of forger F , we denote the following events as:

F1: (Type-1 forgery:) No tuple of the form (-, -, W) appears on the H-list.
F2: (Type-2 forgery:) The H-list contains at least one tuple (mj,r;, W;) such that W; =
w.



10

Denote E1 to be the event b,,,5 = 1 (i.e., F produced a type-1 forgery, or F made a
signature query for a message m; such that g~ = u.) and denote E2 to be the event b,,,4. =
2 . We claim that A can succeed in breaking the signature scheme if (E1A F1)V (E2 A F2)
happens.

Case 1. If u = g7, then A has already recovered the secret key of its challenger, A can forge
a signature on any message of his choice. We assume that F produced a type-1 forgery
(m,r, o). Since the forgery is valid, we have

my-+r
)

e(o, o) = e(w™g", g) = e(ug 9)-

Let h = my + r. So, the forgery (m,r,o) provides a new ¢gg — SRP solution (h, o).
Case 2. Since v = a = g%, then we know that there exists a pair v g"7 = v™g". Since (m,r) #
(mj,rj), otherwise it is not regarded as a forgery, so, m # mj, r # r;j. Therefore, A can

m t _ ’f‘j—’f‘
compute r = —

m— which also enables A to recover the secret key of its challenger. He

can now forge a signature on any message of its choice.

Any valid forgery (m,r, o) will give a new gg — SRP solution under at least one of the
2 above reductions.

This completes the description of Algorithm A. A standard argument shows that if A
does not abort, then, from the viewpoint of F, the simulation provided by A is indistin-
guishable from a real attack scenario. Since the simulations are perfect, F cannot guess
which reduction the simulator is using. Therefore, F produces a valid forgery in time ¢ with
probability at least e.

Since E1 and F1 are independent with uniform distribution, Pr[E1V E2] = 1 and
Pr[F1V F2] = 1, the probability that A succeeds is Pr[(E1 A F1) Vv (E2 A F2)] = 1.

Next we bound the probability that A dos not abort. From above description of A we
know that 4 aborts if

— At E1AF1,only if r; =0, i.e., myy = h;. For given y, this happens with probability at
most 45,

— or at B2 A F2, only if r; =0, i.e., m;h; = y. For given y, this happens with probability
at most %S.

So, A succeeds with probability at least § — 2%5.
Let T' be the maximum time for a computing square root in Z; and an exponentiation
in G. The running time of A is t' >t + ©(qsT). This complete the proof. O

4 Shorter Signatures with Random Oracles

In this section, we present a more efficient short signature scheme based on qg — SRP in
the random oracle model. The proposed new short signature scheme with random oracle is



11
described as follows:

The system parameters are (G, Grp, e, ¢, g,I), here ¢ € G is a random generator and
I is the upper bound of ¢ used in the signing and verification phase.

Key Generation. Randomly select # €r Zy, and compute u = g*. The public key is
u. The secret key is x.

Signing: Given a secret key z, and a message m, computes o = ¢Hmll ) ® . The sig-
nature ¢ is computed for ¢ starting from 0 and it is increased by 1 at each trial, until
H(ml||i) + x is a quadratic residue modulo q.

Verification: Given a public key (G, Gr, e, ¢, g, u,I), a message m € Zj, and a signature
o, verify that
e(o, ) = e(g"y, g).

Here i starting from 0 and it is increased by 1 at each trial, until H(m||i) 4+ z is a quadratic
residue modulo gq.

The verification is correct due to the following equations:

(a-+H(ml|i)) %

elg » g

(z+H (ml|li))2 )
)(@+H(mlli )2 -(w+H(m|li)) 2

e

<

» g

)m—l—H(mH i)

lQ

H{(ml|i)

, 9)
, 9)

e(g™"

— e(ugHmll)

= ¢(
(
e(y,
= e(g”
(ug
O
The probability of failure can be made to be arbitrarily small by picking an appropriately
large I. For each i, the probability that H(m||i) + x leads to a quadratic residue modulo q
is approximately 1/2. Hence, the probability that a given message m will fail is 3 =
We pre-compute a = e(u, g) and b = e(g, g) and publish them as part of the signer’s
public key. Then, for a message m € Zj, and a signature o, the verification can be done as
follows:
2 JH(ml)
e(o, o)/b=a .

This signature scheme can provide the same signature length as BLS scheme. We com-
pare this signature scheme with the BLS scheme from the view point of computation over-
head. The key and signature generation times are comparable to BLS signatures. The verifi-
cation time is faster, since the verification requires only one pairing and one exponentiation
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if the signature is (o, 7). If the signature is only o, then this scheme will require one pairing
and many exponentiations in Gt due to the pre-computation of a = e(u, ¢g) and b = e(g, g),
but nevertheless, BLS scheme will require more pairings.

About the security of proposed signature scheme against an adaptive chosen message
attack, we obtain the following theorem:

Theorem 2. If there exists a (t,qm,qs,€)-forger F using adaptive chosen message attack
for the proposed signature scheme, then there exists a (t',€')-algorithm A solving qi —k-SRP
(for a constant k € 7" ), where

Especially, there exists a (t' =t, ¢ > ;172 - €)-algorithm A solving qi — 1-SRP.
Proof. In the proposed signature scheme, before signing a message m, we need to make
a query H(m||i). We ignore the case that H(m||i) is not a quadratic residue modulo ¢. In
other words, we assume that for any hash query, the hash oracle will give a correct response.
Our proof is in the random oracle model (the hash function is seen as a random oracle, i.e.,
the output of the hash function is uniformly distributed).

Suppose that a forger F (¢,qm,qs,€)-break the signature scheme using an adaptive
chosen message attack. We will use F to construct an algorithm A to solve gy — 1-SRP.

Suppose A is given a challenge:

“ For integer qg and k, and x €gr Zq, g € G, given

1 1
{gv a:gxa h17”‘7th—k Ean g(x+h1)§7”‘7g(x+th7k)2}7

1
to compute g@+M? for some h ¢ {h1,..., hgy_1}.”

Now A plays the role of the signer and sets the public key be u = a.. A will answer hash
oracle queries and signing queries itself. We assume that J never repeats a hash query or a
signature query.

S1 A prepares qg responses {wq,wa, ..., Wg, } of the hash oracle queries, hi, ..., hq, _j are
distributed randomly in this response set.

S2 F makes a hash oracle query on m; for 1 < j < qy. A sends w; to F as the response of
the hash oracle query on m;.

1
S3 F makes a signature oracle query for w;. If w; = hj, A returns g thi)? to F as the
response. Otherwise, A reports failure and aborts.
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S4 Eventually, F halts and outputs a message-signature pair (m, o). Here the hash value of
m is some w; and w; ¢ {h1,...,hg,—k}. Since (m, o) is a valid forgery and H(m||i) = wy,
it satisfies:

mli)

e(o, o) = e(gMmDy, ).

1
So, o = gl tw)? A outputs (wy,0) as a solution to A’s challenge.

Algorithm A simulates the random oracles and signature oracle perfectly for 7. F cannot
distinguish between A ’s simulation and real life because the hash function behaves as a ran-
dom oracle. Therefore F produces a valid forgery for the signature scheme with probability
at least e.

Now, we bound the probability A dos not abort. In step S3, the success probability of
Ais 12 _k, and hence, for all signature oracle queries, A will not fail with probability

qH
qs_lQH—k—]
p> 1]
ioaH—

. . . e . s—1 q—k—j
(if 7 only makes s(< gs) signature oracle queries, the success probability of Ais J[;Z; #- —)

Hence, after the algorithm A finished the step S4, the success probability of A is:

€ > q—25 <€
Yz
The running time of A is equal to the running time of F, where t' = t. g

Another most impressive application of pairings to cryptography is the identity-based
(or ID-based, for short) encryption scheme [8]. The concept of ID-based cryptosystem was
first introduced by Shamir [36]. The basic idea of ID-based cryptosystem is to use the
identity information of a user as his public key. As noted in [8], there is a relationship
between the short signature schemes and the ID-based public key setting from bilinear
pairing, that is the signing process in the short signature scheme can be regarded as the
private key extract process in the ID-based public key setting. Therefore, how to construct
ID-based cryptosystem using the new short signature, such as ID-based encryption schemes
[8, 6], ID-based signature schemes[14, 26, 34], etc., is an interesting topic.
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5 Applications

5.1 Relation to Chameleon Hash Signatures and On-line/Off-line Signatures

Chameleon signatures, introduced by Krawczyk and Rabin [29], are based on a well estab-
lished hash-and-sign paradigm, where a chameleon hash function is used to compute the
cryptographic message digest. A chameleon hash function is a trapdoor one-way hash func-
tion, which prevents everyone except the holder of the trapdoor information from computing
the collisions for a randomly given input. Chameleon signatures simultaneously provide the
properties of non-repudiation and non-transferability of the signed message, i.e., the desig-
nated recipient is capable of verifying the validity of the signature, but cannot disclose the
contents of the signed information to convince any third party without the signer’s consent.

Similarly to the discussion in BB04 [5], the my + r component in our signature scheme
provides us with the functionality of a chameleon hash, too: given m, we can choose r so
that my + r maps to some predefined value of our choice. This makes it possible to handle
the chosen message attack. Embedding the hash my + r directly in the signature scheme
results in a much more efficient construction than using an explicit chameleon hash (that
requires additional exponentiations). Therefore, our new signature scheme is a chameleon
signature scheme.

Shamir and Tauman [37] showed that a chameleon hash function can be used to develop
a new paradigm called hash-sign-switch, which can convert any signature scheme into a
highly efficient on-line/off-line signature scheme. It is easy to convert our new signature
scheme into a highly efficient on-line/off-line signature scheme, as follows.

— Key Generation. This is the same as the scheme provided in Section 3.1.
— Signing: This step is split into two phases, online and offline.

Offline phase.
The signer selects r» € Z, and computes:

VT

o =glotn?,

Online phase.
For any message m, the signer computes:

/
r =r—my,

Publish (1, 0) as the signature on m.
— Verification: Given a public key (G, Gp, ¢, g, u, v), a message m, and a signature
(o,7"), verify that
e(o, o) = e(uvmgrl, 9).
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5.2 Apply to Anonymous Credential

The notion of anonymous credential was introduce by Chaum [15]. A credential system
allows a user to obtain credentials, and to prove that he has a given set of credentials. An
anonymous credential system enables a user to work with his credentials without revealing
any information not explicitly requested. A user should be able to obtain a credential
without revealing his identity, and to prove that he has a set of credentials without revealing
any information beyond that fact. A sound anonymous credential system should be secure
against attacks from a coalition of users. It should be able to be used for multiple times,
i.e., so-called “multi-show”. It is also essential that one a credential has been issued to a
user, it cannot be transferred to any one else, i.e. “non-transferability”. It is desirable that
the overheads of communication and computation imposed by a credential system to users
and services must not heavily affect their performance.

In general, an anonymous multi-show credential scheme consists of an organization,
a group of users, and a service provider and 5-tuple of polynomial-time algorithms (Gen,
Clssue, CVerify, CProve, PVerify). Gen(1¢) is used to generate public and private keys
for the organization. ClIssue is used to issue the credential to user by the organization. The
user uses CVerify to check the validity of his credential. CProve used to give a proof on
user’s credential without revealing any information about it to the service provider. The
service provider checks the correctness of proof using PVerify.

Anonymous credential scheme has a strong relationship with signature scheme. Given
any signature scheme S = < ParamGen, KeyGen, Sign, Ver > , for the relationship of message
m and its signature o, we consider the following three levels:

Level 1: (Basic requirements of signature): Given the message-signature pair (m, o), any one can
check if Ver(PK : m,o) = valid. Any signature scheme must achieve this level.

Level 2: Only given the message m, the signature holder can give a proof that he has the signature
o of m, but does not leak any information of ¢. If a signature scheme can achieve such
level, then it is easy to construct ID-based signature scheme (Let the signer be the PKG,
the message be the ID of the user and then the signature o can be regarded as the secret
key respond to ID. The proof will be the ID based signature signing phase).

Level 3: Neither message m nor signature o are published, the holder of them can give a proof
that he has a valid message-signature pair without revealing any information about
them.

So, if a signature scheme has the property of level 3, then we can use it to design a
multi-show anonymous credential scheme (The organization acts as the signer who issues
credentials to users for some service provided by the service provider).

The proposed new signature scheme can achieve level 3. We now construct an efficient
multi-show anonymous credential scheme based on it as follows:

— Gen(1): The system parameter is same as above signature scheme. Generate public
(u,v) and private signing key (z,y).
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— Clssue: The user first registers and obtains a credential issued by the organization:
1
(m7 r, 0= g(x—l-my—‘rr)?)'

— CVerify. The user checks e(o, o) L e(uv™g", g).
— CProve. The user picks random k € Z, and computes o’ = o", sends (o', Proof) to the
service provider. Here, the (Proof) is the zero-knowledge proof:

ZKP{(a, B, Ne(0’, o’) = e(u, g)%e(v, g)’e(g, 9)* Na # 0},

Here a = k2, 8 = k’*m, A = k?r.
— PVerify. The service provider checks the correctness of (¢, Proof).

Our credential scheme is of multi-show, i.e., the user can blind the credential by using
a randomly generate number k. The credential itself is never sent to the service provider
in clear. Clearly, our scheme also supports non-transferability. To show a credential to the
service provider, the user has to know his secret (m, o). Of course, we have to assume that
his secret should not be given to others.

6 Conclusion and Further Works

In this paper, we propose the second short signature scheme from bilinear pairing which
is existentially unforgeable under a chosen message attack without using random oracles.
The security of our scheme depends on a new complexity assumption called the k+1 square
roots assumption. We discuss the relationship between the k+1 square roots assumption
and some related problems and conjectures. Furthermore, the k+1 square roots assumption
gives even shorter signatures in the random oracle model, where a signature is only one
element in a finite field.

Another main contribution of this paper is that we first propose some new mathematical
problems (k + 1 RSP, SREP, etc.). These problems are not well studied before and we are
uncertain of their difficulty. For further works, we expect to give a bound on the computa-
tional complexity of these problems and seek more applications for designing cryptographic
schemes.

BLS[10], BB04 [5] and ZSS [40] short signature schemes play an important role in many
pairing-based cryptographic systems. The proposed short signature scheme in this paper is
comparable to them and we expect to see many other schemes based on it, such as group
signatures [7], aggregate signatures [9] and universal designated-verifier signatures [38].
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Appendix B: Some New Mathematical Problems

Before describing some mathematical problems, we need the following notions from com-
plexity theory.

¢ We say problem A is polynomial time reducible to problem B, denoted by B = A, if

there exists a polynomial time algorithm R for solving problem A that makes calls to
a subroutine for problem B. In this case, we also say the problem B is harder than the
problem A.

We say that A and B are polynomial time equivalent if A is polynomial time reducible
to B and B is polynomial time reducible to A.

Now we describe two well studied problems in the group (G, -).

Discrete Logarithm Problem (DLP): Given two group elements g and h, find an

integer n € Zy, such that h = ¢g" whenever such an integer exists.

Computational Diffie-Hellman Problem (CDHP): For a,b € Ly, given 7,9% g%,

compute ¢g®.
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There are two variations of CDHP:

— Inverse Computational Diffie-Hellman Problem (Inv-CDHP): For a € Zj, given

g, g%, to compute g% .
— Square Computational Diffie-Hellman Problem (Squ-CDHP): For a € Ly, given

g, 9%, to compute g‘lQ.
Due to the results of [30, 35], we have the following theorem:
Theorem 3. CDHP, Inv-CDHP and Squ-CDHP are polynomial time equivalent.
In [28], C. Konoma et al defined a new problem called Square-Root Exponent:
Definition 6 (SREP). Fory € Zy, given g,gyz, to compute gY.

They analyzed reduction between the discrete logarithm problem modulo a prime and the
factoring problem through the square-root exponent. This new problem is very closely
related to the proposed signature scheme with hash function.

Theorem 4. The new signature scheme with hash function is secure under no-message
attack if SREP is hard, i.e., if there exists a (t,qm, €)-forger F against no-message attack for
1

new scheme, then there exists an (t',€')-algorithm A solving SREP, where t' =t,¢ = €

Proof. Suppose that a forger F via no-message attack (¢, qp, €)-breaks the proposed scheme.
We will use F to construct an attack algorithm A to solve SREP. Suppose that A is given
a challenge:
2
“ Fory € Zg, given g,g%", to compute g¥.”

A chooses t € Z; at random, then A runs F with the system parameter (G, Gr, e, g, g,1),

the public key is u = gy2 /gt. F makes hash oracle queries during its execution. A picks an
integer io from {1,--- ,qy} at random.

Now, suppose F makes a hash oracle query on m; for 1 < i < qg. If i = ig, then
A returns ¢ as a hash value of m;,. Otherwise, A chooses h; € Z; and returns it as the
hash value of m;. Eventually F halts and outputs a message-signature pair (m, o). Without
loss of generality we may assume that F has requested the hash query m before. Suppose
m = m; for some i. If i # iy, then A outputs “failure” and halts. Otherwise, A outputs o
as a solution of SREP given by g and gyz. Since (m, o) is a valid forgery and H(m) = t, it
satisfies:
M g) =e(g” /9" - g', g) =elg”, 9).
The running time of A is equal to the running time of ¢’ = ¢. Then, the success probability
of Ais: ¢ = qLHe. O

e(o, o) =e(ug

It is not hard to prove that



20

Theorem 5. SREP — 1-RSP — 2-RSP — --- —> k-RSP — k+1-RSP.

Similar to the Square Computational Diffie-Hellman Problem and Square-Root Expo-
nent Problem, we have

Definition 7 (k+1 Exponent Problem [40]). Given k+1 values < g,gy,gyz, .. ,gyk >,
compute gykﬂ.

Definition 8 (k-SRE problem). Fory € Ly, given g,gyz,gyg, e ,gyk,gyk+1 to compute
97

We present some open problems and conjectures below for the first time:
Conjecture 1 k-RSP and k-SREP are polynomial time equivalent.
Motivated by the signature scheme we also formulate a strong form of the conjecture.

Conjecture 2 SREP is harder than SCDHP. Especially, if the order q of G is prime,
SREP and SCDHP are polynomial time equivalent.

When the order ¢ of G is not a prime, e.g., a RSA module (i.e., it is the product of two
safe primes), SREP may be harder than SCDHP. This is because that even DLP can be
solved (hence the SCDHP is also solved), it seems that we still can not solve SREP due to
the computation of the quadratic residue modulo a RSA module.

It remains an open problem to study how hard the k+1 square roots problem is. A
simple observation is that when we obtain enough values of h; (about logg) that = + h;
is a quadratic residue modulo then the x is uniquely determined. But we do not know if
there exists a polynomial time algorithm to compute z. It seems that this is not a threat,
because the discrete logarithm problem (Given a,b € G, to find z € Z7, such that o = b)
is uniquely determined too.



