
Low-Cost Solutions for Preventing Simple

Side-Channel Analysis: Side-Channel Atomicity

[Cryptology ePrint Archive, Report 2003/237]

Benôıt Chevallier-Mames1, Mathieu Ciet2, and Marc Joye1

1 Gemplus S.A., Card Security Group
La Vigie, Av. du Jujubier, ZI AThélia IV, 13705 La Ciotat Cedex, France

{benoit.chevallier-mames,marc.joye}@gemplus.com
http://www.gemplus.com/smart/

2 UCL Crypto Group, Université catholique de Louvain
Place du Levant 3, 1348 Louvain-la-Neuve, Belgium

ciet@dice.ucl.ac.be − http://www.dice.ucl.ac.be/crypto/

Abstract. This paper introduces simple methods to convert a cryp-
tographic algorithm into an algorithm protected against simple side-
channel attacks. Contrary to previously known solutions, the proposed
techniques are not at the expense of the execution time. Moreover, they
are generic and apply to virtually any algorithm.

In particular, we present several novel exponentiation algorithms, namely
a protected square-and-multiply algorithm, its right-to-left counterpart,
and several protected sliding-window algorithms. We also illustrate our
methodology applied to point multiplication on elliptic curves. All these
algorithms share the common feature that the complexity is globally
unchanged compared to the corresponding unprotected implementations.

Keywords. Cryptographic algorithms, side-channel analysis, protected im-
plementations, atomicity, exponentiation, elliptic curves.

1 Introduction

According to Goldreich [1], cryptography deals with the conceptualization, def-
inition and construction of computing systems that address security concerns.
We would like to add that cryptography is also concerned with concrete imple-
mentations of such systems. This in turn implies that not only the systems but
also their implementations must withstand any abuse or misuse.

Basically, there are two main families of implementation attacks: faults at-
tacks [2] and side-channel attacks [3, 4]. This paper only deals with the second
family of attacks and more precisely with simple (i.e. non-differential) side-
channel attacks.



2 Benôıt Chevallier-Mames, Mathieu Ciet, and Marc Joye

Suppose that (part of) an algorithm consists of a loop where the execution
of a given set of instructions depends on certain input values. If from some side-
channel information (e.g. timing or power consumption) one can distinguish
which set of instructions is processed, then one can retrieve some secret data (if
any) involved during the course of the algorithm. This is the basic idea behind
simple side-channel attacks.

For example, imagine that, at a given step, a secret bit is used to select
process Π0 or Π1. A straightforward counter-measure against simple side-channel
attacks consists in making processes Π0 and Π1 indistinguishable. This is usually
achieved by executing process Π0 followed by a fake execution of process Π1 when
process Π0 must be executed, and by executing a fake execution of process Π0

followed by process Π1 when process Π1 must be executed. Such a solution is
however unsatisfactory from a computational perspective because the running
time can be increased by a non-negligible factor.

In a sense, our approach refines this obvious solution, as much as possible.
By potentially inserting dummy (fake) operations, we divide each process so
that it can be expressed as the repetition of instruction blocks which appear
equivalent by side-channel analysis. Such a block is called a side-channel atomic
block. Building on this, we develop several approaches for unrolling the whole
code so that it appears as an uninterrupted succession of the processes. In other
words, the whole code appears as a succession of blocks that are indistinguishable
by simple side-channel analysis. Remarkably, contrary to previous solutions, the
techniques we propose are inexpensive and present the additional advantage of
being fully generic, i.e. they apply to a large variety of cryptographic algorithms.

The rest of this paper is organized as follows. In the next section, we define
the notion of side-channel atomicity. We explain how to efficiently convert a
cryptographic algorithm into an algorithm protected against simple side-channel
attacks. Then, in Sections 3 and 4, we provide concrete applications to the
RSA cryptosystem and to elliptic curve cryptosystems. Finally, we conclude in
Section 5.

2 Side-Channel Atomicity

2.1 Side-channel atomic blocks

We view a process as a sequence of instructions. We say that two instructions
(or a sequence thereof) are side-channel equivalent if they are indistinguishable
through side-channel analysis. This relation is denoted by symbol “∼”. From
this, we define what we call a common side-channel atomic block.

Definition 1 (Side-channel atomicity [5]). Given a set of processes {Π0,
. . . , Πn}, a common side-channel atomic block Γ for Π0, . . . , Πn is a side-
channel equivalent sequence of instructions so that each process Πj (0 ≤ j ≤ n)
can be expressed as the repetition of this block Γ , i.e. there exist sequences
γj,i ∼ Γ s.t. Πj = γj,1‖γj,2‖ · · · ‖γj,`j

. The instruction sequences γj,i are called
side-channel atomic blocks.



Side-Channel Atomicity 3

A common side-channel atomic block Γ always exists by noticing that fake
instructions can be artificially added to an existing process to make the differ-
ent processes indistinguishable. The main difficulty resides in finding a block Γ
which is small with respect to some metric (e.g. running time, code size, . . . ). We
note that a possible rearranging and/or rewriting of the processes may shorten
Γ or limit the number of dummy operations and thus improve the overall per-
formances.

2.2 Illustration

Before going further, we quote a simple example: the square-and-multiply algo-
rithm. On input of an element x in a (multiplicatively written) group G and the
binary expansion of exponent d, d = (dm−1, . . . , d0)2, the square-and-multiply
algorithm returns y = xd.

Input: x, d = (dm−1, . . . , d0)2
Output: y = xd

R0 ← 1 ; R1 ← x ; i← m− 1
while (i ≥ 0) do

R0 ← (R0)
2

if (di = 1) then R0 ← R0 ·R1

i← i − 1
endwhile

return R0

Fig. 1. (Unprotected) square-and-multiply algorithm.

As aforementioned, a valid choice for common side-channel atomic Γ con-
sists of a squaring followed by a (possibly fake) multiplication and a counter
decrementation. This algorithm is the well-known square-and-multiply always
algorithm [6]. This is the classical way for preventing simple side-channel at-
tacks in the square-and-multiply algorithm.

Such a choice for Γ is suboptimal. Assuming that (i) a squaring operation
can be performed by calling the (hardware) multiplication routine, and (ii) in-
structions R0 ← R0 ·R0 and R0 ← R0 ·R1 are side-channel equivalent,3 we can
rewrite the previous algorithm to clearly reveal a shorter common side-channel
block Γ (see Fig. 2-a). Remark the fake instruction i ← i − 0. Of course, we
assume that this instruction is side-channel equivalent to i← i− 1.
As depicted in Fig. 2-a, the algorithm is not balanced. There are two copies of
Γ when di = 1 and only one when di = 0. However, as explained in the next
section, it is easy to unroll the code so that a side-channel analysis only reveals
a regular succession of copies of Γ without enabling to make the distinction

3 These assumptions are discussed in Section 3.1.



4 Benôıt Chevallier-Mames, Mathieu Ciet, and Marc Joye

Decision
di=0di=1

R0←R0·R0

i←i−0

R0←R0·R1

i←i−1

Π0

Π1
R0←R0·R0

i←i−1

Γ =

Input: x, d = (dm−1, . . . , d0)2
Output: y = xd

R0 ← 1 ; R1 ← x ; i← m− 1
k← 0
while (i ≥ 0) do

R0 ← R0 · Rk

k← k ⊕ di ; i← i− ¬k
endwhile

return R0

(a) Synopsis. (b) Side-channel atomic
square-and-multiply algorithm.

Fig. 2. Protected square-and-multiply algorithm.

amongst the processes being executed (i.e. Π0 or Π1). After simplification, we
obtain the algorithm presented in Fig. 2-b.

It is worth noting that our protected algorithm (Fig. 2-b) only requires 1.5m
multiplications, on average, for computing y = xd, that is, the complexity of the
usual, unprotected square-and-multiply algorithm (Fig. 1).4

2.3 General methodology

Given different processes Π0, . . . , Πn, we first identify a common side-channel
atomic block Γ . Next, we write the processes Πj (0 ≤ j ≤ n) as a repetition of
Γ , i.e. Πj = γcj

‖ · · · ‖γcj+`j−1 where `j is the number of copies of Γ in Πj ,

{

c0 = 0
cj = cj−1 + `j−1 for 1 ≤ j ≤ n

and with γk ∼ Γ for all c0 ≤ k ≤ cn + `n − 1. Our strategy is to execute exactly
`j times a sequence side-channel equivalent to Γ for process Πj . As a result,
denoting by t the running time for Γ , the time required for processing Πj will
only be `j · t instead of (max0≤j≤n `j) · t for the trivial solution.

In order to chain the different processes, we use a bit, say s, to keep track
when there are no more blocks γk ∼ Γ to be executed when processing Πj . When
process Πj is terminated (and thus s = 1), we have to execute the next process
according to the input values of the algorithm. Moreover, at the beginning of
each loop, we update k, the number of the current sequence γ, as

k ← (¬s) · (k + 1) + s · f(input values)

4 As a side-effect, it also leaks the Hamming weight of the exponent. While this is
generally not an issue, we note that the Hamming weight can be masked using
standard techniques (e.g. blinding or splitting).



Side-Channel Atomicity 5

so that f(input values) = cj′ if the next process to be executed is Πj′ . We see
that when s = 0 then the value of k is incremented by 1. Of course, the above
expression for k must be coded in such a way that no information about the
input values is revealed from a given side-channel.

Alternatively, k can be defined as a counter in the current process; the up-
dating step then becomes: k ← (¬s) · (k +1). The input values are used to make
the distinction amongst the different atomic blocks.

The last step consists in expressing each atomic block γk:

– explicitly as the elements of a table, or

– implicitly as a function of k and s (and the input values).

3 Side-Channel Atomic RSA Exponentiation

The most widely used public-key cryptosystem is the RSA [7]. Its basic oper-
ation is the (modular) exponentiation, which is usually carried out with the
square-and-multiply algorithm. A side-channel atomic version of the square-
and-multiply algorithm is given in Fig. 2 (see also [8]). This section presents a
protected version of the ω-bit sliding-window exponentiation algorithm for any
ω > 1.5 It also presents a simplified version for ω = 2 as well as a right-to-left
variant for ω = 1. All these new algorithms use the implicit approach.

3.1 Assumptions

Our methodology supposes that a simple side-channel analysis does not allow
making the distinction between the different atomic blocks (cf. Definition 1). As
a consequence, the atomic blocks are device-dependent. From most present-day
smart cards equipped with an arithmetic co-processor, our experience shows that
the following operations are side-channel equivalent:6

1. The (modular) multiplication of two large registers: Ri ·Rj , for all i, j. This
includes the case i = j, provided that the squaring operation is carried out
by a call to the hardware multiplication (not to the hardware squaring);

2. The (modular) addition/subtraction of two large registers: Ri ± Rj , for all
i, j;

3. The CPU operations, i.e. all arithmetical and logical operations manipu-
lating the CPU registers. If the hardware does not satisfy the assumption,
resistance against side-channel analysis can be obtained by a software imple-
mentation. For example, if the hardware evaluation of b·A behaves differently
whether bit b = 0 or 1, a simple trick consists in evaluating bA as (b+t)A−tA
for a random t; similarly, the addition A±b can be evaluated as A±(b+t)∓t;

5 The square-and-multiply algorithm corresponds to the case ω = 1.
6 This is even more true when hardware countermeasures are activated.



6 Benôıt Chevallier-Mames, Mathieu Ciet, and Marc Joye

4. The equality testing of two CPU registers: A
?
= B. Again, if this is not

satisfied by the hardware, a software emulation could for example read the
zero flag resulting from A⊕B or perform an OR on all bits of A⊕B;

5. The loading/storing of values from different registers.

[The algorithms presented in this section and in Section 4 assume hardware im-
plementations (or software emulations thereof) satisfying the above conditions.]

3.2 Generic sliding-window algorithm

When additional registers are available, the expected amount of multiplications
for evaluating y = xd can be lowered by precomputing and storing the values of
x2j+1 for j ∈ {1, . . . , 2ω−1 − 1} and then by left-to-right scanning exponent bits
with an ω-bit sliding window [9, Algorithm 14.85]. This is an efficient extension
of the square-and-multiply algorithm [10, 11].

Input: x, d = (dm−1, . . . , d0)2, and an integer ω > 1

Output: y = xd

Precomputation: Rj+1 ← x2j+1 for 1 ≤ j ≤ 2ω−1 − 1

R0 ← 1 ; R1 ← x ; i← m− 1
for j = 1 to ω − 1 do d−j ← 0
s← 1
while (i ≥ 0) do

k← (¬s) · (k + 1)
b← 0 ; t← 1 ; l← ω ; u← 0
for j = 1 to ω do

b← b ∨ di−ω+j ; l← l − ¬b
u← u + t · di−ω+j ; t← b · (2t) + ¬b

endfor

l← l · di ; u← [(u + 1) div 2] · di

s← (k = l)
R0 ← R0 ·Ru·s

i← i− k · s− ¬di

endwhile

return R0

Fig. 3. Side-channel atomic ω-bit sliding-window algorithm.

3.3 Simplified algorithms

A larger value for ω in the ω-bit sliding-widow algorithm speeds up the compu-
tations but increases the memory requirements. A choice of particular interest
for constrained devices is the case ω = 2. The resulting algorithm is usually



Side-Channel Atomicity 7

Input: x, d = (dm−1, . . . , d0)2
Output: y = xd

R0 ← 1 ; R1 ← x ; R2 ← x3

d−1 ← 0 ; i← m− 1 ; s← 1
while (i ≥ 0) do

k← (¬s) · (k + 1)
s← s⊕di⊕(di−1∧(k mod 2))
R0 ← R0 · Rk·s

i← i − k · s− ¬di

endwhile

return R0

Input: x, d = (dm−1, . . . , d0)2
Output: y = xd

R0 ← 1 ; R1 ← x ; i← 0
k ← 1
while (i ≤ m− 1) do

k← k ⊕ di

Rk ← Rk ·R1

i← i + k
endwhile

return R0

(a) Side-channel atomic (b) Side-channel atomic right-to-left
(M, M3) algorithm. binary algorithm.

Fig. 4. Further simplified algorithms for constrained devices.

referred to as the (M, M3) algorithm. The generic algorithm of Fig. 3 can then
be simplified to the algorithm given in Fig. 4-a.

In some cases, it is easier to scan bits from the least significant position to the
most significant one. There is a right-to-left analogue of the square-and-multiply
algorithm for computing y = xd. Analogously to Fig. 2, we can modify it into
an algorithm preventing simple side-channel attacks. After simplification, we get
the protected right-to-left exponentiation algorithm given in Fig. 4-b.

There are of course numerous possible variants that may be more efficient
on a particular given architecture. What is remarkable is that our protected
algorithms have roughly the same complexity (running time and memory re-
quirements) as their respective unprotected versions.

4 Side-Channel Atomic Elliptic Curve Point

Multiplication

Our methodology applies to virtually any algorithm. We show hereafter how
to adapt it in the context of elliptic curve cryptography [12]. Two categories
of elliptic curves are commonly used [13]: elliptic curves over large prime fields
and non-supersingular elliptic curves over binary fields. The basic operation in
elliptic curve cryptography consists in computing the multiple of a point, that
is, given a point P1 on an elliptic curve, one has to compute Pd = dP1. To ease
the presentation, we assume that this is carried out with the (additive version
of the) square-and-multiply algorithm. Other methods are discussed in [14]. Our
methodology readily applies to those implementation choices as well.

4.1 Elliptic curves defined over large prime fields

Consider the elliptic curve E defined over a prime field Fp (with p > 3) given by
the Weierstraß equation

E/Fp
: y2 = x3 + ax + b .



8 Benôıt Chevallier-Mames, Mathieu Ciet, and Marc Joye

To avoid field inversion, Jacobian coordinates are generally used [13] for
representing points on E. With Jacobian coordinates, the doubling of P1 is
2(X1, Y1, Z1) = (X3, Y3, Z3) where

X3 = M2 − 2S, Y3 = M(S −X3)− T, Z3 = 2Y1Z1

with M = 3X2
1 + aZ4

1 , S = 4X1Y
2
1 and T = 8Y 4

1 . The sum of two (distinct)
points P1 = (X1, Y1, Z1) and P2 = (X2, Y2, Z2) is (X3, Y3, Z3) where

X3 = W 3 − 2U1W
2 + R2,

Y3 = −S1W
3 + R(U1W

2 −X3), Z3 = Z1Z2W

with U1 = X1Z
2
2 , U2 = X2Z

2
1 , S1 = Y1Z

3
2 , S2 = Y2Z

3
1 , W = U1 − U2 and

R = S1 − S2.

As the operations doubling or adding points are somewhat involved, we adopt
the explicit approach. We refer the reader to the appendix for the detailed for-
mulæ leading to the expression of atomic blocks γk as the rows of matrix:

(u∗k,l)0≤k≤25

0≤l≤9

=

































































































4 1 1 5 4 4 3 4 4 5
5 3 3 1 1 1 3 1 1 3
5 5 5 1 1 3 3 1 1 3
5 0 5 4 4 5 3 5 2 2
3 3 5 1 1 3 3 1 1 3
2 2 2 2 2 2 4 1 1 3
5 1 2 1 1 5 5 1 1 5
1 4 4 1 1 5 4 1 1 5
2 2 2 2 2 2 3 5 1 5
4 4 5 2 2 4 2 4 4 5
4 9 9 5 1 5 5 5 1 5
1 1 4 5 1 5 5 5 1 5
4 4 9 5 1 5 5 5 1 5
2 2 4 5 1 5 5 5 1 5
4 3 3 5 1 5 5 5 1 5
5 4 7 2 2 5 5 5 1 5
4 3 4 2 2 5 6 6 5 6
4 4 8 6 5 6 4 4 2 4
3 3 9 6 5 6 6 6 5 6
3 3 5 6 5 6 6 6 5 6
6 5 5 6 3 6 3 6 3 6
1 1 6 1 1 4 4 1 1 4
5 5 6 6 1 2 2 6 2 6
1 4 4 1 1 5 6 1 1 6
2 2 5 1 1 6 3 6 1 6
4 4 6 2 2 4 6 6 1 6

































































































.

The resulting algorithm is given in the next figure.



Side-Channel Atomicity 9

Input: P1 = (X1, Y1, Z1), d = (1, dm−2, . . . , d0)2, and matrix (u∗

k,l) as above
Output: Pd = dP1

R0 ← a ; R1 ← X1 ; R2 ← Y1 ; R3 ← Z1 ; R7 ← X1 ; R8 ← Y1 ; R9 ← Z1

i← m− 2 ; s← 1
while (i ≥ 0) do

k← (¬s) · (k + 1)
s← di · (k div 25) + (¬di) · (k div 9)
Ru∗

k,0
← Ru∗

k,1
· Ru∗

k,2
; Ru∗

k,3
← Ru∗

k,4
+ Ru∗

k,5

Ru∗

k,6
← −Ru∗

k,6
; Ru∗

k,7
← Ru∗

k,8
+ Ru∗

k,9

i← i − s
endwhile

return (R1, R2, R3)

Fig. 5. Side-channel atomic double-and-add algorithm for elliptic curves over Fp.

Again, it is worth noting that, in terms of field multiplications, this algorithm
is as efficient as the corresponding unprotected implementation (cf. [13]).

4.2 Elliptic curves defined over a binary field

Atomicity is a relative notion. In the previous examples, we considered addition
and multiplication as basic operations. One could also imagine that division is
an basic operation; for instance, if division is provided by a dedicated hardware
routine. The more different (from a side-channel perspective) basic operations
there are, the more difficult it is to exhibit a common side-channel atomic block
Γ . We give hereafter an example involving a division (a rather costly operation)
as basic operation.

For efficiency reasons, it is recommended to use affine coordinates for adding
points on an elliptic curve defined over a binary field [15]. A (non-supersingular)
elliptic curve E defined over the binary field F2q is given by the Weierstraß
equation

E/F2q : y2 + xy = x3 + ax2 + b .

In affine coordinates (cf. [13]), the doubling of point P1 = (x1, y1) is 2(x1, y1) =
(x3, y3) where

x3 = a + λ2 + λ, y3 = (x1 + x3)λ + x3 + y1

with λ = x1 + (y1/x1). The sum of two (distinct) points P1 = (x1, y1) and
P2 = (x2, y2) is (x3, y3) where

x3 = a + λ2 + λ + x1 + x2, y3 = (x1 + x3)λ + x3 + y1

with λ = (y1 +y2)/(x1 +x2). We clearly see that doubling and addition of points
can be made very similar. As a result, we choose for Γ a whole elliptic curve



10 Benôıt Chevallier-Mames, Mathieu Ciet, and Marc Joye

doubling or addition (see Fig. 6-a). Only two extra (field) additions are needed
for doubling a point compared to the unprotected version of [13].

From this, an efficient protected double-and-add algorithm can then be de-
rived (see Fig. 6-b).

Input: (T1, T2) = P1, (T3, T4) = P2

Output: P1 + P2 or 2P1

Addition: P1 ← P2 + P1 Doubling: P1 ← 2P1

T1 ← T1 + T3 (= x1 + x2) T6 ← T1 + T3 (fake)
T2 ← T2 + T4 (= y1 + y2) T6 ← T3 + T6 (= x1)
T5 ← T2/T1 (= λ) T5 ← T2/T1 (= y1/x1)
T1 ← T1 + T5 T5 ← T1 + T5 (= λ)
T6 ← T5

2 (= λ2) T1 ← T5
2 (= λ2)

T6 ← T6 + a (= λ2 + a) T1 ← T1 + a (= λ2 + a)
T1 ← T1 + T6 (= x3) T1 ← T1 + T5 (= x3)
T2 ← T1 + T4 (= x3 + y2) T2 ← T1 + T2 (= x3 + y1)
T6 ← T1 + T3 (= x2 + x3) T6 ← T1 + T6 (= x1 + x3)
T5 ← T5 · T6 T5 ← T5 · T6

T2 ← T2 + T5 (= y3) T2 ← T2 + T5 (= y3)

return (T1, T2)

Input: P1 = (x1, y1), d = (1, dm−2, . . . , d0)2
Output: Pd = dP1

R1 ← x1 ; R2 ← y1 ; R3 ← x1 ; R4 ← y1

i← m− 2 ; s← 1
while (i ≥ 0) do

k ← (¬s) · (k + 1) ; s← k ∨ (¬di)
R6−5k ← R1 +R3 ; R6−4k ← R3−k +R6−2k

R5 ← R2/R1

R5−4k ← R1 + R5

R1+5k ← (R5)
2

R1+5k ← R1+5k + a
R1 ← R1 + R5+k

R2 ← R1 + R2+2k ; R6 ← R1 + R6−3k

R5 ← R5 ·R6 ; R2 ← R2 + R5

i← i− s
endwhile

return (R1, R2)

(a) Side-channel atomic elliptic curve addition7 (b) Side-channel atomic double-and-add
for elliptic curves over F2q . for elliptic curves over F2q .

Fig. 6. Side-channel atomic elliptic curve algorithms.

5 Conclusion

This paper introduced the notion of common side-channel atomicity. Based on
this, novel solutions towards resistance against side-channel attacks were pre-
sented. The proposed solutions are generic and apply to a large variety of cryp-
tographic systems. In particular, they apply to exponentiation-based systems for
which they lead to protected algorithms having roughly the same efficiency as
their straightforward (i.e. unprotected) implementations. Finally, it should be
noted that our methodology nicely combines with countermeasures against the
more sophisticated differential analysis.

7 In order to save a register, we take advantage of commutativity by computing P1 ←
P2 + P1 instead of P1 ← P1 + P2 for the elliptic curve addition.



Side-Channel Atomicity 11

Acknowledgements

Part of this work was performed while the second author was visiting Gemplus.
Thanks go to David Naccache, Philippe Proust and Jean-Jacques Quisquater for
making this arrangement possible.

References

1. O. Goldreich. Foundations of Cryptography – Basic Tools. Cambridge University
Press, 2001.

2. D. Boneh, R.A. DeMillo, and R.J. Lipton. On the importance of checking crypto-
graphic protocols for faults. In Advances in Cryptology – EUROCRYPT ’97, vol.
1233 of Lecture Notes in Computer Science, pages 37–51. Springer-Verlag, 1997.

3. P.C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In Advances in Cryptology – CRYPTO’96, vol. 1109 of Lecture
Notes in Computer Science, pages 104–113. Springer-Verlag, 1996.

4. P.C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Advances in
Cryptology – CRYPTO ’99, vol. 1666 of Lecture Notes in Computer Science, pages
388–397. Springer-Verlag, 1999.

5. B. Chevallier-Mames and M. Joye. Procédé cryptographique protégé contre les
attaques de type à canal caché. Demande de brevet français, FR 28 38 210, April
2002.

6. J.-S. Coron. Resistance against differential power analysis for elliptic curve cryp-
tosystems. In Cryptographic Hardware and Embedded Systems (CHES ’99), vol.
1717 of Lecture Note in Computer Science, pages 292–302. Springer-Verlag, 1999.

7. R.L. Rivest, A. Shamir, and L.M. Adleman. A method for obtaining digital signa-
tures and public-key cryptosystems. Communications of the ACM 21(2):120–126,
1976.

8. M. Joye. Recovering lost efficiency of exponentiation algorithms on smart cards.
Electronics Letters 38(19):1095–1097, 2002.

9. A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied Cryp-
tography. CRC Press, 1997.

10. L.-C.-K. Hui and K.-Y. Lam. Fast square-and-multiply exponentiation for RSA.
Electronics Letters 30(17):1396–1397, 1994.

11. K.-Y. Lam and L.-C.-K. Hui. Efficiency of SS(l) square-and-multiply exponenti-
ation algorithms. Electronics Letters 30(25):2115–2116, 1994.

12. I. Blake, G. Seroussi, and N.P. Smart. Elliptic Curves in Cryptography. Cambridge
University Press, 1999.

13. IEEE Std 1363-2000. IEEE Standard Specifications for Public-Key Cryptography.
IEEE Computer Society, August 29, 2000.

14. D.M. Gordon. A survey of fast exponentiation methods. Journal of Algorithms
27:129–146, 1998.

15. E. De Win, S. Mister, B. Preneel, and M. Wiener. On the performance of signature
schemes based on elliptic curves. In Algorithmic Number Theory Symposium, vol.
1423 of Lecture Notes in Computer Science, pages 252–266. Springer-Verlag, 1998.

16. M. Joye and C. Tymen. Protections against differential analysis for elliptic curve
cryptography: An algebraic approach. In Cryptographic Hardware and Embedded
Systems (CHES 2001), vol. 2162 of Lecture Notes in Computer Science, pages
377–390. Springer-Verlag, 2001.

17. C.D. Walter. MIST: An efficient randomized exponentiation algorithm for re-
sisting power analysis. In Topics in Cryptology – CT-RSA 2002, vol. 2271 of of
Lecture Notes in Computer Science, pages 53–66. Springer-Verlag, 2002.



12 Benôıt Chevallier-Mames, Mathieu Ciet, and Marc Joye

A Matrix Representation for the Side-Channel Atomic

Double-and-Add Algorithm for Elliptic Curves over Fp

This appendix details how matrix (u∗k,l) used in the double-and-add algorithm
of Fig. 5 was obtained.

From the point addition formulæ given in Section 4.1, we see that doubling a
point requires 10 multiplications and adding two points requires 16 multiplica-
tions. In addition to multiplications, adding or doubling points also involve (field)
additions/subtractions. Consequently, a common side-channel atomic block, Γ ,
must at least include one multiplication and one addition (a subtraction can
be considered as a special case of negation followed by an addition). Since
1) the formula for adding two (distinct) points requires more multiplications
than (field) additions, and 2) the formula for doubling a point requires 11 (field)
additions/subtractions, we choose to express Γ with 1 (field) multiplication and
2 (field) additions (along with a negation to possibly perform a subtraction).

We now express the point doubling and point addition as a repetition of
blocks side-channel equivalent to Γ . A ‘?’ indicates that any register that does
not disturb the course of the algorithm can be selected.

Replacing the ‘?’ by appropriate choices, process Π0 (doubling followed by
an addition) and process Π1 (doubling) in the double-and-add algorithm can be
defined by matrix

(uk,l)0≤k≤35

0≤l≤10

=

































































































































4 1 1 5 4 4 3 4 4 5 0

5 3 3 1 1 1 3 1 1 3 0

5 5 5 1 1 3 3 1 1 3 0

5 0 5 4 4 5 3 5 2 2 0

3 3 5 1 1 3 3 1 1 3 0

2 2 2 2 2 2 4 1 1 3 0

5 1 2 1 1 5 5 1 1 5 0

1 4 4 1 1 5 4 1 1 5 0

2 2 2 2 2 2 3 5 1 5 0

4 4 5 2 2 4 2 4 4 5 0

4 9 9 5 1 5 5 5 1 5 0

1 1 4 5 1 5 5 5 1 5 0

4 4 9 5 1 5 5 5 1 5 0

2 2 4 5 1 5 5 5 1 5 0

4 3 3 5 1 5 5 5 1 5 0

5 4 7 2 2 5 5 5 1 5 0

4 3 4 2 2 5 6 6 5 6 0

4 4 8 6 5 6 4 4 2 4 0

3 3 9 6 5 6 6 6 5 6 0

3 3 5 6 5 6 6 6 5 6 0

6 5 5 6 3 6 3 6 3 6 0

1 1 6 1 1 4 4 1 1 4 0

5 5 6 6 1 2 2 6 2 6 0

1 4 4 1 1 5 6 1 1 6 0

2 2 5 1 1 6 3 6 1 6 0

4 4 6 2 2 4 6 6 1 6 1

4 1 1 5 4 4 3 4 4 5 0

5 3 3 1 1 1 3 1 1 3 0

5 5 5 1 1 3 3 1 1 3 0

5 0 5 4 4 5 3 5 2 2 0

3 3 5 1 1 3 3 1 1 3 0

2 2 2 2 2 2 4 1 1 3 0

5 1 2 1 1 5 5 1 1 5 0

1 4 4 1 1 5 4 1 1 5 0

2 2 2 2 2 2 3 5 1 5 0

4 4 5 2 2 4 2 4 4 5 1



































































































































Side-Channel Atomicity 13

Point doubling Point addition

T0 ← a, T1 ← X1, T2 ← Y1, T3 ← Z1

1.









T4 ← T1 · T1 (= X2
1 )

T5 ← T4 + T4 (= 2X2
1 )

?
T4 ← T4 + T5 (= 3X2

1 )

6.









T2 ← T2 · T2 (= Y 2
1 )

T2 ← T2 + T2 (= 2Y 2
1 )

?
?

2.









T5 ← T3 · T3 (= Z2
1 )

T1 ← T1 + T1 (= 2X1)
?
?

7.









T5 ← T1 · T2 (= S)
?
T5 ← −T5 (= −S)
?

3.









T5 ← T5 · T5 (= Z4
1 )

?
?
?

8.









T1 ← T4 · T4 (= M2)
T1 ← T1 + T5 (= M2 − S)
?
T1 ← T1 + T5 (= X2)

4.









T5 ← T0 · T5 (= aZ4
1 )

T4 ← T4 + T5 (= M)
?
T5 ← T2 + T2 (= 2Y1)

9.









T2 ← T2 · T2 (= 4Y 4
1 )

T2 ← T2 + T2 (= T )
?
T5 ← T1 + T5 (= X2 − S)

5.









T3 ← T3 · T5 (= Z2)
?
?
?

10.









T4 ← T4 · T5 (= −Y2 − T )
T2 ← T2 + T4 (= −Y2)
T2 ← −T2 (= Y2)
?

These formulæ assume that multiplication by parameter a
(cf. Step 4) behaves identically as a multiplication with an-
other value. If this multiplication can be distinguished by
side-channel analysis, elliptic curve operations can be per-
formed on a randomly chosen isomorphic curve [16]. Pro-
vided that multiplication by −a cannot be distinguished,
another way to prevent side-channel leakage is to replace
above Steps 2, 3 and 4 by

2.







T5 ← T3 · T3

T1 ← T1 + T1

T0 ← −T0

?

3.







T5 ← T5 · T5

?
T5 ← −T5

?

4.







T5 ← T0 · T5

T4 ← T4 + T5

T0 ← −T0

T5 ← T2 + T2

.

T1 ← X1, T2 ← Y1, T3 ← Z1, T7 ← X2, T8 ← Y2, T9 ← Z2

1.









T4 ← T9 · T9 (= Z2
2 )

?
?
?

9.









T3 ← T3 · T9 (= Z1Z2)
?
?
?

2.









T1 ← T1 · T4 (= U1)
?
?
?

10.









T3 ← T3 · T5 (= Z3)
?
?
?

3.









T4 ← T4 · T9 (= Z3
2 )

?
?
?

11.









T6 ← T5 · T5 (= W 2)
?
?
?

4.









T2 ← T2 · T4 (= S1)
?
?
?

12.









T1 ← T1 · T6 (= U1W
2)

?
T4 ← −T4 (= −R)
?

5.









T4 ← T3 · T3 (= Z2
1 )

?
?
?

13.









T5 ← T5 · T6 (= W 3)
T6 ← T1 + T2 (= S1 + U1W

2)
T2 ← −T2 (= −S1)
T6 ← T2 + T6 (= U1W

2)

6.









T5 ← T4 · T7 (= U2)
?
T5 ← −T5 (= −U2)
T5 ← T1 + T5 (= W )

14.









T1 ← T4 · T4 (= R2)
T1 ← T1 + T5 (= R2 + W 3)
T6 ← −T6 (= −U1W

2)
T1 ← T1 + T6 (= X3 + U1W

2)

7.









T4 ← T3 · T4 (= Z3
1 )

?
?
?

15.









T2 ← T2 · T5 (= −S1W
3)

T1 ← T1 + T6 (= X3)
?
T6 ← T1 + T6 (= X3 − U1W

2)

8.









T4 ← T4 · T8 (= S2)
?
T4 ← −T4 (−S2)
T4 ← T2 + T4 (= R)

16.









T4 ← T4 · T6 (= Y3 + S1W
3)

T2 ← T2 + T4 (= Y3)
?
?

Fig. 7. Expressing point doubling and point addition as a repetition of blocks ∼ Γ .



14 Benôıt Chevallier-Mames, Mathieu Ciet, and Marc Joye

whose kth row represents sequence γk, which reads as

γk = [Ruk,0
← Ruk,1

·Ruk,2
; Ruk,3

← Ruk,4
+ Ruk,5

;

Ruk,6
← −Ruk,6

; Ruk,7
← Ruk,8

+ Ruk,9
; i← i− uk,10] .

So, a direct application yields the following implementation of the double-
and-add algorithm.

Input: P1 = (X1, Y1, Z1), d = (1, dm−2, . . . , d0)2, and matrix (uk,l) as above
Output: Pd = dP1

R0 ← a ; R1 ← X1 ; R2 ← Y1 ; R3 ← Z1 ; R7 ← X1 ; R8 ← Y1 ; R9 ← Z1

i← m− 2 ; s← 1
while (i ≥ 0) do

k← (¬s) · (k + 1) + s · 26(¬di)
(u0, u1, . . . , u9, s)← (uk,0, uk,1, . . . , uk,9, uk,10)
Ru0
← Ru1

· Ru2
; Ru3

← Ru4
+ Ru5

; Ru6
← −Ru6

; Ru7
← Ru8

+ Ru9

i← i− s

return (R1, R2, R3)

Fig. 8. A [simple] side-channel atomic double-and-add algorithm for elliptic curves
over Fp.

Matrix (uk,l) is highly redundant: except for variable s (last column), the
first 10 rows are exactly the same as the last 10 ones. This is not too surprising
since these rows correspond to the same operation (namely an elliptic curve
doubling). It is fairly easy to remove the redundancy. Since, except for s, the 10
rows representing a doubling in matrix (uk,l) are equivalent, they can be shared.
It suffices then to express s as a function of di and k in the optimized matrix
(u∗k,l) given by

(u∗k,l)0≤k≤25

0≤l≤9

=



























































































4 1 1 5 4 4 3 4 4 5

5 3 3 1 1 1 3 1 1 3

5 5 5 1 1 3 3 1 1 3

5 0 5 4 4 5 3 5 2 2

3 3 5 1 1 3 3 1 1 3

2 2 2 2 2 2 4 1 1 3

5 1 2 1 1 5 5 1 1 5

1 4 4 1 1 5 4 1 1 5

2 2 2 2 2 2 3 5 1 5

4 4 5 2 2 4 2 4 4 5

4 9 9 5 1 5 5 5 1 5

1 1 4 5 1 5 5 5 1 5

4 4 9 5 1 5 5 5 1 5

2 2 4 5 1 5 5 5 1 5

4 3 3 5 1 5 5 5 1 5

5 4 7 2 2 5 5 5 1 5

4 3 4 2 2 5 6 6 5 6

4 4 8 6 5 6 4 4 2 4

3 3 9 6 5 6 6 6 5 6

3 3 5 6 5 6 6 6 5 6

6 5 5 6 3 6 3 6 3 6

1 1 6 1 1 4 4 1 1 4

5 5 6 6 1 2 2 6 2 6

1 4 4 1 1 5 6 1 1 6

2 2 5 1 1 6 3 6 1 6

4 4 6 2 2 4 6 6 1 6



























































































.



Side-Channel Atomicity 15

Since, when di = 1 we have s = 0 if 0 ≤ k ≤ 24 and s = 1 if k = 25, and when
di = 0 we have s = 0 if 0 ≤ k ≤ 8 and s = 1 if k = 9, we may for example define
s as

s = di · (k div 25) + (¬di) · (k div 9) .

The expression for k must also be modified accordingly: k is always incremented
unless when s = 1, in which case it must be set to 0. So, k ← (¬s) · (k + 1) is
a valid expression for updating k. Doing so, we obtain the algorithm of Fig. 5,
which is very similar to the one above but with a smaller matrix representation
(i.e. matrix (u∗k,l)).

B Side-Channel Atomic Implementation of the MIST

Exponentiation Algorithm

MIST is a randomized exponentiation algorithm for preventing DPA-like attacks.
However, as presented in [17], the MIST algorithm is susceptible to SPA-like
analysis. We give hereafter a [simple] side-channel atomic version of the MIST
algorithm8 as an additional illustration of the genericity of our methodoly for
preventing SPA-like attacks.

Input: x, d = (dm−1, . . . , d0)2, and matrices (Fδ,r) and (Gk,l) (see below)

Output: y = xd

R1 ← m ; R3 ← 1 ; i← 0 ; s← 1
while (d > 0) do

ρ←R {2, 3, 5} ; δ ← ¬s · δ + s · ρ ; r← d mod δ
k ← ¬s · (k + 1) + s · Fδ,r

(u1, u2, u3, s)← (Gk,0, Gk,1, Gk,2, Gk,3)
Ru3
← Ru1

· Ru2

d← ¬s · d + s · (d div δ)
endwhile

return R3

Fig. 9. Side-channel atomic MIST exponentiation algorithm.9

8 To avoid register rewritting, the divisor subchain corresponding to the divi-
sor/residue pair [2, 1] is replaced with {(133), (111)}. The original MIST algorithm
uses subchain {(112), (133)}; cf. [17, Table 3.1].

9 Again, we assume that all involved operations are side-channel equivalent (and if
not, are made so by an appropriate software emulation).



16 Benôıt Chevallier-Mames, Mathieu Ciet, and Marc Joye

with matrices:

(Fδ,r)2≤δ≤5
0≤r≤4

=









0 1 ? ? ?
3 5 8 ? ?
? ? ? ? ?
11 14 18 22 26









and (Gk,l)0≤k≤29
0≤l≤4

=



















































































































1 1 1 1

1 3 3 0
1 1 1 1

1 1 2 0
1 2 1 1

1 1 2 0
1 3 3 0
1 2 1 1

1 1 2 0
2 3 3 0
1 2 1 1

1 1 2 0
1 2 1 0
1 2 1 1

1 1 2 0
1 3 3 0
1 2 1 0
1 2 1 1

1 1 2 0
2 3 3 0
1 2 1 0
1 2 1 1

1 1 2 0
1 2 1 0
1 3 3 0
1 2 1 1

1 1 2 0
2 2 2 0
2 3 3 0
1 2 1 1



















































































































.


